Wartungsarbeiten: Opencast, Podcasts & Tobira Di 28. Jan 2025 08:00 - 13:00 | Aufgrund von Wartungsarbeiten an den Opencast-Servern werden Ihnen Podcasts, Opencast-Videos und Tobira nicht zur Verfügung stehen. Kontakt: www.podcast.unibe.ch

HS2022: 62116 Fairness and Privacy in Machine Learning

This course explains the basic concepts of algorithmic privacy and fairness. The main application area is statistics and machine learning.

Allgemeine Informationen

Kursbeschreibung
This course gives a thorough technical introduction to algorithmic privacy and fairness. The course work is centered around individual assignments and group project work.

Assessment: 80% project work, 20% exam
Kursprogramm
1. Algorithmic privacy, fairness and reproducibility
2. Privacy and anonymity
3. Differential privacy
4. Approximate differential privacy
5. Privacy amplification
6. Group fairness: Equalised odds
7. Group fairness: Balance and calibration
8. Individual fairness: Meritocracy
9. Individual fairness: Smoothness
10. Reproducibility
Zielgruppe
Highly-motivated master students interested in algorithmic privacy and fairness.

Prerequisites, in order of importance:
1. Elementary Probability.
2. Good programming skills.
3. Multivariate calculus
4. Linear algebra

The advanced seminar course explores further topics in the area in more detail. It is possible to take both courses in parallel.

Lernziele und Links

Links
https://github.com/olethrosdc/ml-society-science

Beschreibung

This course explains the basic concepts of algorithmic privacy and fairness. The main application area is statistics and machine learning.

Allgemein

Sprache
Englisch
Copyright
This work has all rights reserved by the owner.

Kontakt

Name
Christos Dimitrakakis
E-Mail
christos.dimitrakakis@unine.ch
Sprechstunde
By appointment

Verfügbarkeit

Zugriff
Unbegrenzt – wenn online geschaltet
Aufnahmeverfahren
Sie können diesem Kurs direkt beitreten.
Zeitraum für Beitritte
Unbegrenzt
Veranstaltungszeitraum
27. Sep 2022 - 16. Dez 2022

Für Kursadministratoren freigegebene Daten

Daten des Persönlichen Profils
Anmeldename
Vorname
Nachname
E-Mail