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available upon request.)
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Springer-Verlag
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Chapter 1

Introduction

Linear Models play an important role in applications of statistics. By means of such models one
can model and analyse data from various disciplines. Typically the main question is as follows:
Let (X,Y ) be a generic observation consisting of a covariate X with values in some set X and
a response (variable) Y with values in some set Y . Is there an association between X and Y ?
More precisely, what is the conditional distribution of Y , given X? This type of question is called
regression (analysis).

The first part of this course treats the important special case of a numerical response Y , that means,
Y = R. In the second part we shall also consider integer-valued or categorical responses Y .
Regression models for a vector-valued response Y are sometimes treated in Multivariate Statistics.

The covariate X could be a tuple of several covariates X(1), . . . , X(d) with values in certain
sets X1, . . . ,Xd. The components X(j) are sometimes called independent variables whereas Y is
called the dependent variable. Here the adjective “independent” has nothing to do with stochastic
independence, it refers rather to the asymmetrical viewpoint of considering the conditional distri-
bution of Y depending on X . Categorical covariates are sometimes called factors. The variety of
nomenclature is due to the many different fields and communities utilizing regression models.

1.1 Definition of a Linear Model

Depending on the specific application,X may be viewed as a random variable or as a fixed quantity
or tuple, possibly to be chosen haphazardly by an experimenter. In the present course, we shall
treat X mostly as a fixed quantity or tuple. In settings with genuinely random X , we always
condition on the actual value of X .

• We assume that Y may be written as

Y = f(X) + ε

with an unknown regression function f : X → R and a random error ε such that

IE(ε) = 0.

11
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The distribution of ε may depend on X . For instance, one could think about ε = σ(X)Z with a
certain function σ : X → [0,∞) and a standard Gaussian random variable Z.

• We often assume that the standard deviation of ε is finite and does not depend on X . In that
case, we write

σ := Std(ε) =
√

Var(ε)

and talk about homoscedastic errors. Otherwise we talk about heteroscedastic errors.

• Concerning the regression function f , we assume that it belongs to a given family F of func-
tions. Moreover, F is a finite-dimensional linear space (i.e. a finite-dimensional real vector space)
of functions. The latter property is the reason for the term “linear model”.

1.2 Examples of Linear Models

The subsequent examples have somewhat mysterious names which arose historically. The reader
should not be frustrated if he or she does not see any coherent scheme (yet).

Example 1.1 (One-way analysis of variance (One-way ANOVA)). Let X be a categorical co-
variate with values in a set X with L different elements. For simplicity, we identify X with
{1, 2, . . . , L}, but note that the numbers have no specific meaning. The set F of all real-valued
functions on X is a linear space of dimension L. It corresponds to RL if we identify a function
f ∈ F with the vector (f(j))Lj=1.

A specific example is the yield of a certain agricultural crop on a field of given area. The covariate
X could stand for different types of soil, irrigation schemes, treatments of the seeds etc. Thus, we
assume that the yield Y is equal to a number f(X) plus some random fluctuation ε which is for
instance due to variations in the weather conditions or other environmental influences.

Example 1.2 (Simple linear regression). Let X be a numerical covariate, i.e. X ∈ R. Often one
assumes that there is a linear relationship between X and Y , that means,

(1.1) Y = a+ bX + ε

with unknown parameters a and b. Thus, we consider the family F of all affine functions on R,
which is a two-dimensional linear space.

A specific example are indirect measurements and calibration lines. Suppose that X stands for a
physical or chemical parameter, e.g. the concentration of a certain substance in a fluid. Suppose
that the value X could be determined precisely with an expensive or time-consuming method.
Suppose further that an indirect and less precise measurement Y is comparatively easy to obtain,
e.g. the measurement of light absorption of a fluid. If the relationship betweenX and Y is given by
(1.1) with b > 0, one could estimate the parameters a and b by means of a calibration experiment
in which complete observation pairs (X1, Y1), . . . , (Xn, Yn) with different values X1, . . . , Xn

are determined, leading to â and b̂. Then for any future observation (X,Y ) of which only Y is
observed, one could estimate X by X̂ = (Y − â)/b̂. We shall come back to this specific example
later.
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Example 1.3 (Polynomial regression). As in Example 1.2 let X ∈ R. Instead of a linear rela-
tionship between X and Y one could assume that f is a polynomial of given order d ≥ 1. That
means, we consider the (d+ 1)-dimensional vector space of all functions f of type

(1.2) f(x) = a0 + a1x+ a2x
2 + · · ·+ adx

d

with real parameters a0, a1, . . . , ad. In case of d = 1 we have simple linear regression, the cases
d = 2 and d = 3 are called quadratic and cubic regression, respectively.

This model is often used with d ≥ 2 to check the plausibility of simple linear regression (Exam-
ple 1.2). That means, one tests whether the coefficients aj with j > 1 are really needed.

The special model of quadratic regression (d = 2) can be used, for instance, to model the effect
of the dose X of some ingredient (e.g. a fertilizer) on a certain response Y (e.g. the yield of an
agricultural crop). In case of a1 > 0 > a2, the function f in (1.2) describes a parabola with unique
maximum at x = a1/(−2a2) > 0.

Example 1.4 (One-way analysis of covariance (One-way ANCOVA)). Suppose that X consists
of a categorical covariate C ∈ {1, . . . , L} and a numerical covariate W ∈ R. A possible model F
consists of all functions f of type

f(c, w) = a(c) + bw

with real parameters a(1), . . . , a(L) and b. Thus one combines one-way ANOVA (Example 1.1)
with simple linear regression (Example 1.2). The term “covariance” has nothing to do with co-
variance in the sense of stochastics. It is rather a wordplay combining “variance” as in ANOVA
with “(numerical) covariate”.

A specific example is the cholesterol level of adults (Y ). This is known to be dependent on their
age (W ), but it may also depent on other factors such as gender (C).

Another specific example is the log-income (Y ) of persons in relation to their age (W ) and pro-
fession or type of education (C).

Example 1.5 (Multiple linear regression). Suppose that X = (X(j))dj=1 is a vector of d numer-
ical (or {0, 1}-valued) covariates. A simple linear model for the relationship between X and Y
assumes that

(1.3) Y = a+
d∑
j=1

bjX(j) + ε

with real parameters a and b1, . . . , bd.

Again, a specific example is the cholesterol level of adults (Y ) and numerical covariates such as
age, body height and weight as well as gender, coded by a number in {0, 1}.

Exercise 1.6 (A data analysis, part I). The data set ‘Trees.txt’ contains for n = 31 wild cherry
trees the values of the variables

Y : its timber yield,

X(1) : the height of its trunk,

X(2) : its maximal diameter (at waist height).
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Explore this data set. Look at scatter plots of all pairs of two variables, making sure that the axes
start at 0. Do you see anything remarkable?

Exercise 1.7. For any wild cherry tree in a certain region we consider the variables Y , X(1) and
X(2) as in Exercise 1.6.

(a) Which connection do you expect between Y and the pair (X(1), X(2)) ?

(b) What does your model look like if you replace Y with log Y ?

Exercise 1.8 (Periodic signals, “autoregression”). For t ∈ Z let

yt = µ+ γ cos(ωt− φ)

with certain parameters µ ∈ R, γ > 0, ω ∈ (0, 2π) and φ ∈ R.

(a) Show that for suitable coefficients a, b1, b2 ∈ R,

yt = a+ b1yt−1 + b2yt−2 for all t ∈ Z.

(Are these coefficients a, b1, b2 unique?)

(b) Show that for arbitrary integers s and T > 0,

1

T

s+T∑
t=s+1

yt → µ as T →∞.



Chapter 2

Estimation of Parameters

This chapter is about estimation of the regression function f ∈ F and, in case of homoscedastic
errors, the standard deviation of the error ε = Y − f(X). The available data are n observation
pairs (X1, Y1), . . . , (Xn, Yn) ∈ X ×R. The valuesX1, . . . , Xn ∈ X are considered as fixed while

Yi = f(Xi) + εi

with random errors ε1, . . . , εn such that IE(εi) = 0.

2.1 Vector and Matrix Representation

It is useful to represent data and model by means of vectors and matrices. We define the response
vector

Y :=


Y1

Y2
...
Yn

 ∈ Rn

and the (unobserved) error vector

ε :=


ε1

ε2
...
εn

 ∈ Rn.

For the model F , we choose basis functions f1, . . . , fp. Then, any function f ∈ F may be written
as

f(x) =

p∑
j=1

θjfj(x)

with a parameter vector

θ =

θ1
...
θp

 ∈ Rp.

15
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The basis functions fj and the observations Xi yield the so-called design matrix

D :=


f1(X1) · · · fp(X1)
f1(X2) · · · fp(X2)

...
...

f1(Xn) · · · fp(Xn)

 ∈ Rn×p.

With these ingredients we may write

Y = Dθ + ε.

With the tuple X := (Xi)
n
i=1 ∈ X n and the convention g(X) := (g(Xi))

n
i=1 ∈ Rn for functions

g : X → R, one may also write

D =
[
f1(X), . . . , fp(X)

]
and Dθ = f(X).

Note that many authors and most textbooks denote the design matrix with X rather than D. We
prefer the symbol D to emphasize the dependence of the design matrix on both, the observations
Xi and the choice of the basis functions fj .

Examples for this parametrization. We illustrate the vector and matrix representation with the
examples from Section 1.2.

One-way ANOVA (Example 1.1). For the space F of all functions on {1, . . . , L} we choose the
basis functions fj(x) := 1[x=j], 1 ≤ j ≤ L. (If one identifies F with RL, the functions f1, . . . , fL

correspond to the standard basis of RL.) In this case the design matrix contains the entries

Dij = 1[Xi=j] ∈ {0, 1}.

Hence, the i-th row contains L− 1 zeros and one entry 1. The corresponding parameter vector θ
for f ∈ F is just θ = (f(j))Lj=1.

Suppose we have arranged the observation pairs (Xi, Yi) such that

X =
(

1, . . . , 1︸ ︷︷ ︸
n(1) times

, 2, . . . , 2︸ ︷︷ ︸
n(2) times

, . . . , L, . . . , L︸ ︷︷ ︸
n(L) times

)>
.

Then, the design matrixD equals

D =



1 0 · · · 0
...

...
...

1 0 · · · 0

0 1 0 · · · 0
...

...
...

...
0 1 0 · · · 0

. . . . . . . . .

0 · · · 0 1
...

...
...

0 · · · 0 1



∈ Rn×L.
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Simple linear regression (Example 1.2). Here one can take the basis function f1(x) := 1 and
f2(x) := x, leading to the design matrix

D =


1 X1

1 X2
...

...
1 Xn

 = [1X] ∈ Rn×2

with 1 := (1, 1, . . . , 1)> ∈ Rn. If f(x) = a + bx, then the corresponding parameter vector is
θ = (a, b)>.

Polynomial regression (Example 1.3). If we choose the basis functions fj(x) := xj−1, 1 ≤
j ≤ d+ 1, then

D =


1 X1 X2

1 · · · Xd
1

1 X2 X2
2 · · · Xd

2
...

...
...

...
1 Xn X2

n · · · Xd
n

 ∈ Rn×(d+1).

If f(x) =
∑d

j=0 ajx
j , then the corresponding parameter vector is θ = (a0, a1, . . . , ad)

>.

One-way ANCOVA (Example 1.4). Similarly as in Example 1.1, suppose that the observations
(Ci,Wi, Yi) have been rearranged such that

(C1, C2, . . . , Cn) =
(

1, . . . , 1︸ ︷︷ ︸
n(1) times

, 2, . . . , 2︸ ︷︷ ︸
n(2) times

, . . . , L, . . . , L︸ ︷︷ ︸
n(L) times

)
.

With the basis functions fj(c, w) := 1[c=j] for 1 ≤ j ≤ L and fL+1(c, w) := w we obtain the
design matrix

D =



1 0 · · · 0 W1
...

...
...

...
1 0 · · · 0 Wn(1)

0 1 0 · · · 0 Wn(1)+1
...

...
...

...
...

0 1 0 · · · 0 Wn(1)+n(2)

. . . . . . . . .
...

0 · · · 0 1 Wn−n(L)+1
...

...
...

...
0 · · · 0 1 Wn



∈ Rn×(L+1),

and f(c, w) = a(c) + bw corresponds to the parameter vector θ =
(
a(1), . . . , a(L), b

)>.
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Multiple linear regression (Example 1.5). Here we observe Xi = (Xi(j))
d
j=1 ∈ Rd. The basis

functions f1(x) := 1 and f1+j(x) := x(j) for 1 ≤ j ≤ d yield the design matrix

D =


1 X1(1) · · · X1(d)
1 X2(1) · · · X2(d)
...

...
...

1 Xn(1) · · · Xn(d)

 =


1 X>1
1 X>2
...

...
1 X>n

 ∈ Rn×(d+1),

and f(x) = a+
∑d

j=1 bjx(j) corresponds to the parameter vector θ = (a, b1, . . . , bd)
>.

2.2 Estimation of θ

From now on, we assume that the design matrix has linearly independent colums, that means,

(2.1) rank(D) = p ≤ n.

In particular, n ≥ p. That means, for arbitrary vectors η ∈ Rp \ {0}, the vectorDη 6= 0, so

0 < ‖Dη‖2 = η>D>Dη.

Here and throughout this course, ‖ · ‖ denotes standard Euclidean norm. Consequently, Condi-
tion (2.1) is equivalent to

(2.2) D>D is positive definite.

This fact will be used frequently.

Exercise 2.1. For real numbers X1, X2, . . . , Xn and an integer d ≥ 1, let

D :=


1 X1 X2

1 · · · Xd
1

1 X2 X2
2 · · · Xd

2
...

...
...

1 Xn X2
n · · · Xd

n


be the design matrix for polynomial regression of order d. What is a necessary and sufficient
condition on the numbers Xi for (2.1) to hold?

Hint: One can use determinants. Alternatively, one can think about the meaning of Dη = 0 in
terms of the function R 3 x 7→ g(x) :=

∑d
j=0 ηj+1x

j .

2.2.1 Least Squares Estimation

A vector θ̂ ∈ Rp is called least squares estimator (LSE) of θ if

‖Y −Dθ̂‖2 = min
η∈Rp

‖Y −Dη‖2.

In other words, one chooses θ̂ ∈ Rp such that the sum of squares
n∑
i=1

(
Yi −

p∑
j=1

θ̂jfj(Xi)
)2

becomes minimal. The function f̂ :=
∑p

j=1 θ̂jfj is a LSE of the true regression function f .
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Lemma 2.2. Under Condition (2.1) there exists a unique LSE of θ, namely,

θ̂ = (D>D)−1D>Y .

First proof of Lemma 2.2 (analytical). Let Q(η) := ‖Y −Dη‖2. For arbitrary vectors η,v ∈
Rp,

Q(η + v) = ‖Y −Dη −Dv‖2

= ‖Y −Dη‖2 − 2(Y −Dη)>Dv + ‖Dv‖2

= Q(η)− 2(D>Y −D>Dη)>v + v>D>Dv.

This shows that the gradient of Q at η is given by −2(D>Y −D>Dη), and the Hessian matrix
(2nd derivative) equals 2D>D everywhere. The latter is positive definite by assumption (2.2),
whence Q is a strictly convex function. The gradient is zero if and only if D>Y = D>Dη,
so η = (D>D)−1D>Y . Hence, Q has a unique local minimum at (D>D)−1D>Y , and by
convexity of Q, this point is a global minimum.

Second proof of Lemma 2.2 (quadratic completion). One may write

‖Y −Dη‖2 = ‖Y ‖2 − 2η>D>Y + η>D>Dη

= ‖Y ‖2 − 2η>(D>D)(D>D)−1D>Y + η>D>Dη

= ‖Y ‖2 − 2η>(D>D)ηo + η>D>Dη

= ‖Y ‖2 − η>oD>Dηo + (η − ηo)>(D>D)(η − ηo),

where ηo := (D>D)−1D>Y . Together with (2.2) this implies that ηo is the unique LSE of
θ.

Remark 2.3 (Numerical computation). The formula in Lemma 2.2 is useful for theoretical con-
siderations. For the explicit calculation of θ̂, it is possibly problematic because the quadratic
matrix D>D can be rather ill-conditioned in the sense that the ratio of its smallest and largest
eigenvalues is very small. Numerically more stable procedures are based on good choices of basis
functions, as illustrated later in three particular settings, or, on the QR decomposition of D; see
Section A.1 in the appendix.

Remark 2.4 (Geometric interpretation). For a better understanding of the properties of θ̂ and
other prodedures introduced later, the following consideration is useful: We assume that the vector
Y is equal to f(X) = Dθ plus some random error ε. The vector f(X) is a point in the linear
subspace

M := {g(X) : g ∈ F} = span
(
f1(X), f2(X), . . . , fp(X)

)
= {Dη : η ∈ Rp}

of Rn, the so-called model space. By definition of the LSE,

Ŷ := f̂(X) = Dθ̂ = arg min
w∈M

‖Y −w‖.
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Rn M⊥

M

0 Ŷ

Y

Figure 2.1: Data vector Y and its projection Ŷ = HY onto the model spaceM .

Hence, the “fitted vector” (vector of fitted values) Ŷ is the orthogonal projection of Y onto the
model space M ; see figure 2.1. That Y − Ŷ is perpendicular to M follows from the following
standard argument: Since ‖Y − Ŷ ‖ minimizes ‖Y − w‖ over all w ∈ M , for any direction
v ∈M ,

0 =
d

dt

∣∣∣
t=0
‖Y − (Ŷ + tv)‖2 = −2(Y − Ŷ )>v.

If one uses a different parametrization of the linear model F , that means, different basis functions
fj , both the design matrix D and the parameter vectors θ, θ̂ change, but the model space M , the
vectors f(X), Ŷ = f̂(X) and the function f̂ remain the same!

Remark 2.5 (Hat matrix). By means of Lemma 2.2, one may write the fitted vector Ŷ = Dθ̂ as

Ŷ = HY

with the so-called hat matrix

H := D(D>D)−1D> ∈ Rn×n.

This matrix describes the orthogonal projection of Rn onto the model space M . The name indi-
cates, that multiplying Y withH results in “putting a hat on Y ”.

Exercise 2.6 (Projections and orthogonal projections). With this exercise we recall some facts
from linear algebra.

(a) Let X be a real vector space, and suppose that H : X → X is a linear mapping. With
I(x) := x we define H̄ := I −H . Then, any point x ∈ X may be decomposed as x = x1 + x2

with x1 := H(x) and x2 := H̄(x). Moreover, X = X1 + X2 with X1 := H(X) and X2 := H̄(X).
Show that the following three statements are equivalent:
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(a.1) H2 = H;
(a.2) H̄2 = H̄;
(a.3) X1 ∩ X2 = {0}.

In case of (a.1-3), H is called a (linear) projection. Verify that in this case,

H(x) = x and H̄(x) = 0 if x ∈ X1,

H(x) = 0 and H̄(x) = x if x ∈ X2.

(b) Now let X = R2 and H(x) := (x1 − x2, 0)>. Show that H2 = H , and determine the
subspaces X1,X2.

(c) Now let X = Rn. A linear mapping H : Rn → Rn corresponds to a matrixH ∈ Rn×n. Show
that the following statements are equivalent:

(c.1) H = H> andH2 = H;
(c.2) H = H>H;
(c.3) X1 ⊥ X2.

In case of (c.1-3), H is called an orthogonal projection.

Exercise 2.7 (An abuse of regression?). In various contexts, people try to use linear regression
in a somewhat unusual way to obtain “adjusted data”. Suppose there are n units (for instance
social services of n different municipalities) which should be ranked in terms of their costs. Let
Y1, Y2, . . . , Yn be the units’ raw cost measures (for instance, expenditure for social welfare per
year and inhabitant). To avoid comparing apples and oranges, one takes into account vectors
X1, X2, . . . , Xn ∈ X of covariates describing the units’ circumstances (for instance, percentage
of single parents, percentage of foreigners). The idea is that

Yi = fo(Xi) + πi

with an unknown function fo : X → R describing the costs to be expected under given circum-
stances and individual performances π1, π2, . . . , πn which are the units’ true contributions to the
costs, low or high values of πi meaning strong or poor performance, respectively. In order to
reconstruct

πi = Yi − fo(Xi),

one estimates fo, for a given linear model F , by

f̂ ∈ arg min
f∈F

n∑
i=1

(Yi − f(Xi))
2,

and estimates πi by the residual
π̂i := Yi − f̂(Xi).

What is your gut feeling about this approach?

(a) Suppose that our choice of F is appropriate, that means, fo ∈ F . Under what condition on π
is

π̂ = π?

(b) Could you imagine potential reasons for this assumption to be violated?
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2.2.2 Examples for θ̂

In this subsection we derive the LSE in some specific models.

One-dimensional models. The simplest linear model is certainly

Y = θ + ε

with an unknown parameter θ = IE(Y ) ∈ R. In case of n observations, D = 1 = (1, 1, . . . , 1)>,
soD>Y =

∑n
i=1 Yi, ‖D‖2 = n and θ̂ is just the sample mean of Y ,

θ̂ = Ȳ .

Here and throughout these notes, we write v̄ := n−1
∑n

i=1 vi for a vector v = (vi)
n
i=1.

Now, more generally, suppose that

Y = θf1(X) + ε

with a given function f1 : X → R and an unknown parameter θ ∈ R. In this case,D = f1(X) ∈
Rn, and

θ̂ =
D>Y

‖D‖2
.

We encountered a specific example for such a one-dimensional model in Exercise 1.7: There, we
considered the timber yield Y of a wild cherry tree in relation to the height X(1) and maximal
diameter X(2) of its trunk. A simple geometrical consideration led to the linear model

Y = θX(1)X(2)2 + ε,

so f1(X) = X(1)X(2)2.

One-way ANOVA (Example 1.1) Here X ∈ {1, 2, . . . , L} and θ = (f(j))Lj=1. A natural
estimator seems to be the vector (Ȳ (j))Lj=1 of group-wise sample means

Ȳ (j) := n(j)−1
∑

i:Xi=xj

Yi

with the group sizes

n(j) := #{i : Xi = xj}.

Indeed, this is the least squares estimator: One can easily verify that

D>D = diag
(
n(1), n(2), . . . , n(L)

)
=


n(1) 0 · · · 0

0 n(2)
. . .

...
...

. . . . . . 0
0 · · · 0 n(L)


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and
D>Y =

( ∑
i:Xi=j

Yi

)L
j=1

.

The fitted vector Ŷ is given by

Ŷ =
(
Ȳ (X1), Ȳ (X2), . . . , Ȳ (Xn)

)>
.

The corresponding model space consists of all vectors g(X) = (g(Xi))
n
i=1 with an arbitrary

function g : {1, . . . , L} → R.

Simple linear regression (Example 1.2). HereD = [1,X], so

D>D =

[
1>1 1>X
1>X ‖X‖2

]
= n

[
1 X̄
X̄ n−1‖X‖2

]
,

(D>D)−1 =
(
‖X‖2 − nX̄2

)−1
[
n−1‖X‖2 −X̄
−X̄ 1

]
,

D>Y =

[
1>Y

X>Y

]
=

[
nȲ

X>Y

]
.

Consequently,

θ̂ =

[
â

b̂

]
=
(
‖X‖2 − nX̄2

)−1
[
n−1‖X‖2 −X̄
−X̄ 1

] [
nȲ

X>Y

]
=
(
‖X‖2 − nX̄2

)−1
[
‖X‖2Ȳ −X>Y X̄
X>Y − nX̄Ȳ

]
=
(
‖X‖2 − nX̄2

)−1
[(
‖X‖2 − nX̄2

)
Ȳ −

(
X>Y − nX̄Ȳ

)
X̄

X>Y − nX̄Ȳ

]
,

leading to

(2.3) â = Ȳ − b̂X̄ and b̂ =
X>Y − nX̄Ȳ
‖X‖2 − nX̄2

.

This was a brute-force calculation using Lemma 2.2. The resulting fomula for b̂ should be used
with care, because small rounding errors in X̄ or Ȳ may lead to strong aberrations in b̂.

With a bit more geometry, one can derive equivalent formulae more elegantly: The computation
of the LSE is rather easy if the columns of the design matrix are orthogonal, because then D>D
is a diagonal matrix. This can always be achieved by orthogonalizing the columns of D, e.g. via
the Gram–Schmidt procedure. In the present example this works as follows:

We replace the vectorX with

X̃ := X − 1>X

1>1
1 = X − X̄1,

because this vector is perpendicular to 1. In other words, we rewrite the model equation for a
generic observation (X,Y ) as

Y = a+ bX + ε = ã+ b(X − X̄) + ε,
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where ã := a+ bX̄ . Hence, we consider the new basis functions f1(x) = 1 and f2(x) = x− X̄ .
The corresponding design matrix equals

D̃ =
[
1, X̃

]
=


1 X1 − X̄
1 X2 − X̄
...

...
1 Xn − X̄

 ,
and

D̃
>
D̃ =

[
n 0

0 ‖X̃‖2
]

=

[
n 0
0 ‖X‖2 − nX̄2

]
,

D̃
>
Y =

[
nȲ

X̃
>
Y

]
=

[
nȲ

X>Y − nX̄Ȳ

]
.

Thus [̂̃a
b̂

]
=

[
Ȳ

X̃
>
Y
/
‖X̃‖2

]
=

[
Ȳ

(X>Y − nX̄Ȳ )/(‖X‖2 − nX̄2)

]
.

Since ̂̃a = â+ b̂X̄ , these formulae imply the expressions (2.3).

Remark: The estimated regression function f̂ may be written as

f̂(x) = Ȳ + b̂(x− X̄).

In particular, f̂(X̄) = Ȳ , so the regression line contains the barycenter (X̄, Ȳ ) of all data pairs
(Xi, Yi).

With the sample standard deviation

S(V ) :=

√√√√(n− 1)−1

n∑
i=1

(Vi − V̄ )2

of an arbitrary vector V ∈ Rn and the sample correlation coefficient

r(X,Y ) :=

∑n
i=1(Xi − X̄)(Yi − Ȳ )√∑n

i=1(Xi − X̄)2
√∑n

i=1(Yi − Ȳ )2
∈ [−1, 1]

one can also write
b̂ = r(X,Y )

S(Y )

S(X)
.

Hence, the regression line always lies between the graphs of the functions

(2.4) x 7→ Ȳ ± S(Y )

S(X)
(x− X̄);

see Figure 2.2.

The inequality r(X,Y ) ∈ [−1, 1] is a consequence of the Cauchy–Schwarz inequality. For
r(X,Y ) is the standard inner product of the unit vectors u := ‖X − X̄1‖−1(X − X̄1) and
v := ‖Y − Ȳ 1‖−1(Y − Ȳ 1). The extremal cases r(X,Y ) = ±1 correspond to v being a posi-
tive or negative multiple of u, and this is equivalent to all observations (Xi, Yi) lying on a straight
line with positive or negative slope, respectively.
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Figure 2.2: Position of the regression line (black). The red lines indicate X̄ and Ȳ , the blue lines
are given by (2.4).

Exercise 2.8 (Orthogonal polynomials, I). The Gram–Schmidt procedure is just one of several
possibilities to orthogonalize the columns of the design matrix. In particular, for polynomial
regression there is an elegant alternative based on so-called three-term recursions.

Preliminary consideration: Let p0(x) := 1 and p1(x) := x− b0 for some b0 ∈ R. Now, we define
inductively

pk+1(x) := xpk(x)− bkpk(x)− ckpk−1(x)

for k = 1, 2, 3, . . . with certain real numbers bk, ck. One can verify that for each k ∈ N0, the func-
tion pk(x) is a polynomial of degree k with leading coefficient 1. In particular, each polynomial
p(x) of order k is a linear combination of p0(x), . . . , pk(x).

Now, let X ∈ Rn with #{X1, X2, . . . , Xn} ≥ d + 1, where d ∈ N. Show that the constants
b0 and bk, ck (1 ≤ k < d) can be chosen such that the vectors p0(X), p1(X), . . . , pd(X) are
orthogonal.

Hint: The considerations for simple linear regression show already that b0 = X̄ . Now suppose
that for some 1 ≤ k < d the vectors p0(X), . . . , pk(X) are orthogonal.

(i) Show that pk+1(X)>pj(X) = 0 for 0 ≤ j ≤ k − 2, no matter how bk and ck are chosen.

(ii) Determine bk and ck such that pk+1(X)>pk(X) = pk+1(X)>pk−1(X) = 0.

Exercise 2.9 (Orthogonal polynomials, II). Write a computer program OrthPoly(X, d) with in-
put arguments X ∈ Rn and d ∈ N, performing the following tasks: First it checks whether
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#{X1, X2, . . . , Xn} ≥ d+ 1. If no, it returns a warning. If yes, it returns the design matrix

D = [p0(X), p1(X), . . . , pd(X)]

with the polynomials p0, p1, . . . , pd(X) as in Exercise 2.8.

In addition, it should return upper triangular matricesB,Θ ∈ R(d+1)×(d+1) such that

pk(x) ≡
k∑
j=0

Bj+1,k+1x
j

and

xk ≡
k∑
j=0

Θj+1,k+1pj(x)

for k = 0, 1, . . . , d. These requirements on Θ,B are equivalent to saying that for arbitrary vectors
θ,β ∈ Rd+1,

d∑
k=0

θk+1pk(x) ≡
d∑
j=0

(Bθ)j+1x
j ,

and
d∑

k=0

βk+1x
k ≡

d∑
j=0

(Θβ)j+1pj(x).

One-way ANCOVA (Example 1.4). Here, X = (C,W ) with the categorial covariate C ∈
{1, 2, . . . , L} and the numerical covariate W ∈ R. The basis functions fj(c, w) := 1[c=j] for
1 ≤ j ≤ L and fL+1(c, w) := w yield the design matrixD with columns

Dj =
(
1[Ci=j]

)n
i=1
, 1 ≤ j ≤ L,

and
DL+1 = W = (Wi)

n
i=1.

As mentioned for one-way ANOVA, the columns D1, . . . ,DL are orthogonal. So the Gram–
Schmidt procedure would replaceW with

W̃ := W −
L∑
j=1

D>j W

‖Dj‖2
Dj = W −

L∑
j=1

W̄ (j)Dj =


W1 − W̄ (C1)
W2 − W̄ (C2)

...
Wn − W̄ (Cn)

 ,
where

(2.5) W̄ (j) := n(j)−1
∑
i:Ci=j

Wi and n(j) := #{i : Ci = j}.

ReplacingW with W̃ means to rewrite the model equation for (Y,C,W ) as follows:

Y = a(C) + bW + ε = ã(C) + b(W − W̄ (C)) + ε
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with
ã(c) := a(c) + bW̄ (c).

The corresponding design matrix D̃ has the orthogonal columns D1, . . . ,DL, W̃ , and the LSE
for θ̃ =

(
ã(1), . . . , ã(L), b

)> is given by

̂̃
θ =


Ȳ (1)

...
Ȳ (L)

W̃
>
Y /‖W̃ ‖2

 ,
where Ȳ (j) is defined as W̄ (j) in (2.5) with Y in place ofW . Consequently,

â(j) = Ȳ (j)− b̂W̄ (j), 1 ≤ j ≤ L,

and

b̂ = W̃
>
Y /‖W̃ ‖2 =

n∑
i=1

(Wi − W̄ (Ci))Yi

/ n∑
i=1

(Wi − W̄ (Ci))
2.

Hence, the groupwise means of Y are corrected for the potential influence of W on Y and take
into account potential differences of the groupwise means of W .

2.2.3 The Coefficient of Determination

A descriptive measure of the fit Ŷ is the coefficient of determination

R2 := 1−
∑n

i=1(Yi − Ŷi)2∑n
i=1(Yi − Ȳ )2

= 1−
∥∥Y − Ŷ ∥∥2∥∥Y − Ȳ 1

∥∥2 ,

also called ‘R-squared’. The differences

Yi − Ŷi

are the so-called residuals, so R2 compares the residual sum of squares
∑n

i=1(Yi − Ŷi)2 with the
total sum of squares

∑n
i=1(Yi − Ȳ )2 of the Y -values. One could say, R2 is the percentage of

variability in the Y -values which can be “explained” by the covariate X .

Obviously, R2 ≤ 1, where R2 = 1 if and only if Ŷ = Y . Typically, R2 ≥ 0. The latter inequality
is guaranteed if the linear space F contains the constant functions. A bit more generally, R2 ≥ 0

whenever the model space M contains the constant vector 1. Because then, the vector Ŷ − Ȳ 1

lies in the model spaceM , and this implies that it is perpendicular to Y − Ŷ ∈M⊥. Hence,∥∥Y − Ȳ 1
∥∥2

=
∥∥Y − Ŷ ∥∥2

+
∥∥Ŷ − Ȳ 1

∥∥2
.

The complete geometrical picture is that Y may be represented as a sum of three pairwise orthog-
onal vectors,

Y = Ȳ 1︸︷︷︸
∈ span(1)

+ Ŷ − Ȳ 1︸ ︷︷ ︸
∈M∩1⊥

+ Y − Ŷ︸ ︷︷ ︸
∈M⊥

.

In particular,

R2 = 1−
∥∥Y − Ŷ ∥∥2∥∥Y − Ŷ ∥∥2

+
∥∥Ŷ − Ȳ 1

∥∥2 =

∥∥Ŷ − Ȳ 1
∥∥2∥∥Y − Ŷ ∥∥2

+
∥∥Ŷ − Ȳ 1

∥∥2 ∈ [0, 1].
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Exercise 2.10. Show that in the model of simple linear regression, the coefficient of determination
equals the square of the sample correlation coefficient,

R2 = r(X,Y )2.

When comparing different models for the same data set, it is advisable to work with the adjusted
coefficient of determination (adjusted R-squared ). It takes into account the complexity of a linear
model F , i.e. its dimension. For if we increase the set of basis functions, we usually decrease
the residual sum of squares as well. The residual sum of squares

∑n
i=1(Yi − Ŷi)

2 involves p
parameters, while the total sum of squares

∑n
i=1(Yi − Ȳ )2 corresponds to a one-dimensional

model. Thus, we define the adjusted R-squared to be

R2
adj := 1−

(n− p)−1
∑

i(Yi − Ŷi)2

(n− 1)−1
∑

i(Yi − Ȳ )2
= 1− (n− p)−1‖Y − Ŷ ‖2

(n− 1)−1‖Y − Ȳ 1‖2
.

This formula has also a geometric interpretation: Y − Ŷ is the orthogonal projection of the data
vector Y onto the (n−p)-dimensional linear subspaceM⊥ of Rn, while Y −Ȳ 1 is its orthogonal
projection onto the (n− 1)-dimensional linear subspace 1⊥.

Exercise 2.11. The data set ‘Trees.txt’ contains for n = 31 wild cherry trees the values of the
variables

Y : its timber yield,

X(1) : the height of its trunk,

X(2) : its maximal diameter (at waist height).

(a) Determine by means of a suitable computer program the LSE and the values of R2 and R2
adj

for each of the following models:

Y = θ X(1)X(2)2 + ε,

Y = θ X(1)3 + ε,

Y = θ X(2)3 + ε,

Y = a+ b(1)X(1) + b(2)X(2) + ε,

log Y = a+ b(1) logX(1) + b(2) logX(2) + ε,

log Y = a+ logX(1) + 2 logX(2) + ε.

Compare and discuss the results.

(b) Which of the two covariates X(1) and X(2) is more reliable to predict the response Y ? Can
you imagine a biological reason for that? Or a technical one?

Exercise 2.12. Apply the model of one-way ANCOVA to the data set ‘Goats.txt’. The latter is
about the weight gain of goats in relation to their initial weight and the variant of an anti-worm
treatment. Compute the LSE by means of the formulae provided in the lecture, and compare your
results with the output of some statistics software.
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Exercise 2.13. The data set ‘Exam.txt’ contains the exam results of n = 88 students in five
different subjects. Analyze to what extent the results in one subject may be predicted by an affine
function of the results in the other four subjects.

Exercise 2.14. The data set ‘BrainSize.txt’ contains for n = 40 students three different IQ scores
plus the values of other covariates such as gender, body height, size and density of brain (based
on magnetic resonance images). Analyze the (apparent) connection between one of the IQ scores
(Y ) ane the covariates gender, body height and brain size. What happens if you leave out some of
the covariates? Specify your model equation for each analysis and interpret the results.

2.2.4 The Precision of θ̂

Throughout these lecture notes, we use standard definitions and properties of expectations and
covariances of matrix- and vector-valued random variables. These are collected in Section A.2 in
the appendix.

The assumption that IE(εi) = 0 for all i may be rewritten as

IE(ε) = 0.

If we assume that the errors εi are uncorrelated with the same finite standard deviation σ ≥ 0, then

Var(ε) = σ2I.

This has the following consequences for the LSE:

Lemma 2.15. If IE(ε) = 0, then θ̂ is an unbiased estimator of θ, that means,

IE(θ̂) = θ.

In case of Var(ε) = σ2I , it holds that

Var(θ̂) = σ2(D>D)−1.

Proof of Lemma 2.15. Recall that θ̂ = AY with

A := (D>D)−1D> ∈ Rp×n.

If IE(ε) = 0, it follows from the general rules of expected values and Y = Dθ + ε that

IE(θ̂) = IE(ADθ +Aε)

= ADθ +A IE(ε)

= (D>D)−1D>Dθ

= θ.
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Moreover, in case of Var(ε) = σ2I ,

Var(θ̂) = Var(AY )

= AVar(Y )A>

= σ2AA>

= σ2(D>D)−1D>D(D>D)−1

= σ2(D>D)−1.

Simple linear regression (Example 1.2). To avoid tedious calculations, we apply the orthogo-
nalization trick and write

Y = a+ bX + ε = ã+ b(X − X̄) + ε.

With X̃ := (Xi− X̄)ni=1 and D̃ := [1, X̃], it follows from D̃
>
D̃ = diag(n, ‖X̃‖2) that the LSE

of (ã, b)> equals [̂̃a
b̂

]
=

[
Ȳ

X̃
>
Y /‖X̃‖2

]
.

Moreover, in case of homoscedastic errrors, Lemma 2.15 implies that the covariance matrix of this
LSE (Ȳ , b̂)> is given by

σ2

[
1/n 0

0 1/‖X̃‖2

]
.

This implies that the LSE for θ = (a, b)> = (ã− bX̄, b)> is given by

θ̂ =

[
Ȳ − b̂X̄

b̂

]

with covariance matrix[
Var(Ȳ − X̄b̂) Cov(Ȳ − X̄b̂, b̂)

Cov(Ȳ − X̄b̂, b̂) Var(̂b)

]
=

[
Var(Ȳ ) + X̄2 Var(̂b) −X̄ Var(̂b)

−X̄ Var(̂b) Var(̂b)

]

= σ2

[
1/n+ X̄2/‖X̃‖2 −X̄/‖X̃‖2

−X̄/‖X̃‖2 1/‖X̃‖2

]
,

because Cov(Ȳ , b̂) = 0. For a fixed number x ∈ R, a natural estimator for f(x) is given by

f̂(x) = â+ b̂x = Ȳ + b̂(x− X̄),

so IE f̂(x) = f(x) and

Var(f̂(x)) = σ2
( 1

n
+

(x− X̄)2

‖X̃‖2

)
= σ2

( 1

n
+

(x− X̄)2∑n
i=1(Xi − X̄)2

)
.

Hence, this variance is minimal at x = X̄ , and it is a strictly increasing, quadratic function of
|x− X̄|.



2.2. ESTIMATION OF θ 31

One-way ANCOVA (Example 1.4). Again we work with the modified model equation

Y = a(C) + bW + ε = ã(C) + b(W − W̄ (C)) + ε.

With the groupwise centered vector W̃ := (Wi − W̄ (Ci))
n
i=1, the LSE of

(
ã(1), . . . , ã(L), b

)>
equals 

Ȳ (1)
...

Ȳ (L)

W̃
>
Y /‖W̃ ‖2

 ,
and its covariance matrix is

σ2

[
diag

(
n(1)−1, . . . , n(L)−1

)
0

0 ‖W̃ ‖−2

]

(in case of homoscedastic errors). Hence, the LSE of θ =
(
a(1), . . . , a(L), b

)> equals

θ̂ =


Ȳ (1)− b̂W̄ (1)

...
Ȳ (L)− b̂W̄ (L)

b̂

 ,
and its covariances are as follows:

Var(̂b) =
σ2

‖W̃ ‖2
,

Cov
(
â(c), â(d)

)
= σ2

(1[c=d]

n(c)
+
W̄ (c)W̄ (d)

‖W̃ ‖2

)
,

Cov
(
â(c), b̂

)
= −σ2 W̄ (c)

‖W̃ ‖2
.

In particular, for two different categories c, d ∈ {1, . . . , L},

Var
(
â(c)− â(d)

)
= Var

(
Ȳ (c)− Ȳ (d)−

(
W̄ (c)− W̄ (d)

)
b̂
)

= σ2
( 1

n(c)
+

1

n(d)
+

(W̄ (c)− W̄ (d))2

‖W̃ ‖2

)
.

Exercise 2.16. Consider the model of one-way ANCOVA (Example 1.4). For two different cate-
gories c, d ∈ {1, . . . , L}, we consider estimators γ̂ = γ̂(data) of the difference γ := a(c) − a(d)

and quantify their imprecision with the mean squared error

MSE(γ̂) := IE
(
(γ̂ − γ)2

)
.

Compare the estimator â(k)− â(j) with the naive estimator Ȳ (c)− Ȳ (d) resulting from the model
of one-way ANOVA, ignoring W . When is the LSE strictly better than the naive one in terms of
MSE?
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2.3 Estimation of σ

The observation vector Y can be written as

Y = Ŷ + ε̂.

Here Ŷ = f̂(X) = HY is the fitted vector, withH denoting the hat matrix, and ε̂ is the so-called
residual vector

ε̂ := Y − Ŷ = (I −H)Y .

The i-th component of ε̂ is Yi − Ŷi, called the i-th residual. Geometrically speaking, Ŷ is the
orthogonal projection of Y onto the model spaceM , and ε̂ is the orthogonal projection of Y onto
the orthogonal complementM⊥ ofM .

The least squares estimator θ̂ depends only on Ŷ , because ε̂ is perpendicular to M , which is
equivalent toD>ε̂ = 0, whence

θ̂ = (D>D)−1D>(Ŷ + ε̂) = (D>D)−1D>Ŷ .

On the other hand, ε̂ depends only on the error vector ε, because (I −H)D = 0, whence

ε̂ = (I −H)(Dθ + ε) = (I −H)ε.

Now let’s assume that all errors ε1, ε2, . . . , εn have mean zero and variance σ2 <∞. If an oracle
would give us the error vector ε or at least its Euclidean norm ‖ε‖, a natural unbiased estimator
of σ2 would be given by ‖ε‖2/n. One could read this estimator as the “squared norm of the error
vector divided by its dimension”. Since we know at least the projection ε̂ of ε ontoM⊥, a feasible
estimator for σ2 is given by

σ̂2 :=
‖ε̂‖2

dim(M⊥)
=
‖ε̂‖2

n− p
=
‖Y ‖2 − ‖Ŷ ‖2

n− p
.

The following Theorem provides some statistical properties of σ̂2.

Theorem 2.17. If IE(ε) = 0 and Var(ε) = σ2I with 0 ≤ σ <∞, then

IE(σ̂2) = σ2.

If the errors ε1, ε2, . . . , εn are independent with IE(εi) = 0, IE(ε2
i ) = σ2 and IE(ε4

i ) ≤ Kσ4 for
all i and some real constant K, then

Var(σ̂2) ≤ (K − 3)+ + 2

n− p
σ4.

Remark 2.18. In case of independent errors with a Gaussian distribution N(0, σ2), we have the
equation IE(ε4

i ) = 3σ4. Then, the proof of Theorem 2.17 reveals that Var(σ̂2) = 2σ4/(n − p);
see also the next chapter.
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Proof of Theorem 2.17. With the hat matrixH , the matrix H̄ := I−H describes the orthogonal
projection ontoM⊥; see also Exercise 2.6. In particular,

H̄
>

= H̄ = H̄
2
.

(This could also be verified by direct calculations.) Hence,

‖ε̂‖2 = ‖H̄ε‖2 = ε>H̄
>
H̄ε = ε>H̄ε =

n∑
i,j=1

H̄ijεiεj .

Now, it follows from IE(εiεj) = 0 whenever i 6= j and IE(ε2
i ) = σ2 that

IE
(
‖ε̂‖2

)
=

n∑
i,j=1

H̄ij IE(εiεj) = σ2
n∑
i=1

H̄ii = σ2 trace(H̄) = σ2(n− p),

and this yields the desired equation IE(σ̂2) = σ2. Here we used the equation

trace(H̄) = dim(M⊥) = n− p.

The latter may be verified by elementary calculations, but it is also a general fact for matrices
describing orthogonal projections; see Exercise 2.19.

Concerning the variance of σ̂2, the variance-covariance formula for weighted sums of random
variables implies that

Var
(
‖ε̂‖2

)
= Var

( n∑
i,j=1

H̄ijεiεj

)
=

n∑
i,j,k,`=1

H̄ijH̄k` Cov(εiεj , εkε`).

Elementary calculations (Exercise 2.20) show that

Cov(εiεj , εkε`) =


IE(ε4

i )− σ4 if i = j = k = `,

σ4 if i 6= j and {i, j} = {k, `},
0 else.

These formulae, together with symmetry of H̄ , lead to

Var
(
‖ε̂‖2

)
=

n∑
i=1

H̄2
ii

(
IE(ε4

i )− σ4
)

+ 2σ4
n∑

i,j=1

1[i 6=j]H̄
2
ij

=
n∑
i=1

H̄2
ii

(
IE(ε4

i )− 3σ4
)

+ 2σ4
n∑

i,j=1

H̄2
ij

=

n∑
i=1

H̄2
ii

(
IE(ε4

i )− 3σ4
)

+ 2σ4 trace(H̄
>
H̄)

=
n∑
i=1

H̄2
ii

(
IE(ε4

i )− 3σ4
)

+ 2σ4 trace(H̄)

=

n∑
i=1

H̄2
ii

(
IE(ε4

i )− 3σ4
)

+ 2σ4(n− p).

But 0 ≤ H̄ii ≤ 1, so H̄2
ii ≤ Ĥii (Exercise 2.19). Consequently,

Var
(
‖ε̂‖2

)
≤
(
(K − 3)+ + 2

)
(n− p)σ4,

whence Var(σ̂2) = (n− p)−2 Var
(
‖ε̂‖2

)
satisfies the asserted inequality.
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Exercise 2.19 (Orthogonal projections). Let H ∈ Rn×n describe an orthogonal projection, that
means,H = H2 = H>.

(a) Show that

‖Hx‖2


≤ ‖x‖2,
= ‖x‖2 if and only if x ∈HRn,
= 0 if and only if x ∈ (In −H)Rn.

Deduce from that the inequality

0 ≤ Hii ≤ 1 for 1 ≤ i ≤ n.

(b) Show that

trace(H) = dim(HRn).

Hint: Recall (or verify) that trace(ab>) = b>a for a, b ∈ Rk or, more generally, trace(AB>) =

trace(B>A) for matricesA,B ∈ Rk×`.

Exercise 2.20. Show that in case of independent and homoscedastic errors ε1, . . . , εn with finite
fourth moments,

Cov(εiεj , εkε`) =


IE(ε4

i )− σ4 if i = j = k = `,

σ4 if i 6= j and {i, j} = {k, `},
0 else.

Remark 2.21 (Adjusted R-squared). With the variance estimator σ̂2 in mind, one may re-interpret
the adjusted coefficient of determination as follows:

R2
adj = 1−

∑
i(Yi − Ŷi)2

/
(n− p)∑

i(Yi − Ȳ )2
/

(n− 1)
= 1−

σ̂2
full model

σ̂2
minimal model

.

Here σ̂2
full model is the estimator σ̂2 described before while σ̂2

minimal modell is the sample variance
of Y , corresponding to the simplistic model equation Y = θ + ε with unknown θ ∈ R.

2.4 The Gauss–Markov Theorem and Standard Errors

Often one is not interested in the full vector θ but rather in specific linear combinations of its
components. Such a quantity may be written as ψ>θ with a non-zero vector ψ ∈ Rp.

Example 2.22 (Polynomial regression). Let Xi ∈ R and Yi = f(Xi) + εi, where f(x) =∑d
j=0 θj+1x

j with an unknown parameter vector θ ∈ Rd+1. Suppose we are interested in the
value f(x) for a particular point x ∈ R. Then, we consider

f(x) = ψ>θ with ψ = (1, x, x2, . . . , xd)>.

Suppose we are interested in the derivative f ′(x). Then, we consider

f ′(x) = ψ>θ with ψ = (0, 1, 2x, . . . , dxd−1)>.
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Exercise 2.23. Consider Xi ∈ R and Yi = f(Xi) + εi with f(x) =
∑d

j=0 θj+1x
j with unknown

θ ∈ Rd+1, where d ≥ 2. Represent the three quantities

1

n

n∑
i=1

f ′(Xi),

∫ b

a
f(x) dx and f(b)− f(a)− (b− a)f ′(a)

as ψ>θ with suitable vectors ψ ∈ Rd+1.

Example 2.24 (Simple linear regression). Let Xi ∈ R and Yi = a + bXi + εi with unknown
parameter vector θ = (a, b)>. Suppose we are interested only in the slope b, that means, in ψ>θ
with ψ = (0, 1)>. One could think of various estimators for b, for instance

b̂ := ψ>θ̂ =

n∑
i=1

(Xi − X̄)Yi
/ n∑
i=1

(Xi − X̄)2,

b̂ :=
Yn − Y1

Xn −X1
(if X1 6= Xn),

b̂ :=

n∑
i,j=1

1[Xi<Xj ](Yj − Yi)
/ n∑
i,j=1

1[Xi<Xj ](Xj −Xi).

All previous estimators b̂ may be written as a>Y with a certain weight vector a ∈ Rn. Moreover,
in all three cases one can show that IE(̂b) = b. Now an obvious question is whether there exists an
optimal estimator of this type.

Exercise 2.25. Show that in the model of simple linear regression, the least squares estimator b̂
for the slope b may be written as

b̂ =

∑
1≤i<j≤n(Xi −Xj)(Yi − Yj)∑

1≤i<j≤n(Xi −Xj)2
.

In general, ψ>θ̂ is a natural estimator for ψ>θ, and it may be written as

ψ>θ̂ = a>ψY with aψ := D(D>D)−1ψ.

Moreover, it follows from Lemma 2.15 or from a direct calculation that IE(ψ>θ̂) = ψ>θ. Thus,
it is an unbiased linear estimator in the following sense:

Definition 2.26 (Linear and unbiased estimators). A linear estimator of ψ>θ is a linear form
a>Y with a fixed vector a ∈ Rn. Such an estimator is called unbiased if

IE(a>Y ) = ψ>θ

regardless of the actual value of θ. This is equivalent to the requirement

a>Dη = ψ>η for all η ∈ Rp,

which may be expressed as

(2.6) D>a = ψ.
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The following theorem shows that the so-called Gauss-Markov estimator ψ>θ̂ is the unique linear
and unbiased estimator with minimal variance.

Theorem 2.27 (Gauss–Markov). Suppose that IE(ε) = 0 and Var(ε) = σ2I . A linear unbiased
estimator Y 7→ a>Y of ψ>θ has minimal variance if and only if a is contained in the model
spaceM = DRp, that meansHa = a. There exists precisely one vector a with these properties,
namely,

a = D(D>D)−1ψ.

Proof of Theorem 2.27. The variance of an arbitrary linear estimator a>Y is equal to

Var(a>Y ) = a>Var(Y )a = σ2‖a‖2.

Thus, we would like to minimize ‖a‖2 under the constraint (2.6). Since

D>H = D>D(D>D)−1D> = D>,

property (2.6) for a carries over toHa. Hence

Var(a>Y ) = σ2‖a‖2

= σ2‖Ha‖2 + σ2‖a−Ha‖2

= Var
(
(Ha)>Y

)
+ σ2‖a−Ha‖2

≥ Var
(
(Ha)>Y

)
with equality if and only if a = Ha. Together with (2.6) the latter identity implies that

a = Ha = D(D>D)−1D>a = D(D>D)−1ψ.

Example 2.28 (Absorption spectra). Consider an aqueous solution of p different substances with
unknown concentrations θ1, . . . , θp. To determine θ, one measures for given wavelengths X1 <

X2 < · · · < Xn the absorptions Y1, Y2, . . . , Yn of light. One assumes that

Yi =

p∑
j=1

θjfj(Xi) + εi

with independent random errors ε1, ε2, . . . , εn with mean 0 and standard deviation σ > 0, and
f1, . . . , fp are the absorption spectra of the p substances, which have been determined in extensive
experiments before. That means, fj(x) ≥ 0 is the mean absorption of light of wavelength x in a
solution with unit concentration of substance j only.

Often, each spectrum fk has a characteristic peak at a given frequency xk, where x1, . . . , xp are
different. Then, chemists or physicists often choose a moderate number ` and compute for 1 ≤
k ≤ p the local average

Ȳk :=
1

`

∑̀
s=1

Yi(k)+s
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over wavelengths Xi(k)+1, . . . , Xi(k)+` close to xk. Then, they solve the linear equation system

p∑
j=1

f̄kj θ̂
o
j

!
= Ȳk for 1 ≤ k ≤ p

with the average

f̄kj :=
1

`

∑̀
s=1

fj(Xi(k)+s)

of spectrum fj over the ` frequencies for substance k. If the matrix

F := (f̄kj)
p
k,j=1

is nonsingular, the vector θ̂
o

= (θ̂oj )
p
j=1 is given by

θ̂
o

= F−1(Ȳk)
p
k=1.

Note that this defines an unbiased linear estimator of θ. Moreover, the covariance matrix of this
estimator θ̂ is given by

Var(θ̂
o
) = σ2`−1(F>F )−1,

provided that all p` frequencies Xi(k)+s, 1 ≤ k ≤ p and 1 ≤ s ≤ `, are different. In that case, the
local averages Ȳ1, . . . , Ȳp are independent, each with variance σ2/`.

The Gauss–Markov theorem, however, recommends to compute the LSE θ̂ with components

θ̂j = a>j Y ,

where the vectors a1, . . . ,ap ∈ span(f1(X), . . . , fp(X)) are given by

[a1, . . . ,ap] =
[
f1(X), . . . , fp(X)

]
(D>D)−1

withD>D =
(
fj(X)>fk(X)

)p
j,k=1

. Here we know that

Var(θ̂) = σ2(D>D)−1.

The following (artificial) example with p = 3 substances illustrates the benefit of using the LSE
θ̂ rather than the ad hoc estimator θ̂

o
. The upper panel of Figure 2.3 shows the spectral vectors

f1(X), f2(X), f3(X) with peaks at x1 = X80, x2 = X100, x3 = X160. The lower panel shows
the optimal “filter vectors” a1,a2,a3. Explicit formulae are

a1 = 0.1830 · f1(X)− 0.0620 · f2(X) + 0.0002 · f3(X),

a2 = −0.0620 · f1(X) + 0.0917 · f2(X)− 0.0024 · f3(X),

a3 = 0.0002 · f1(X)− 0.0024 · f2(X) + 0.0371 · f3(X).

Here and in what follows, numbers are rounded to four decimal places.

Now we compare θ̂ with the ad hoc estimator θ̂
o

based on the local averages

Ȳ1 :=
1

11

85∑
i=75

Yi, Ȳ2 :=
1

11

105∑
i=95

Yi, Ȳ3 :=
1

11

165∑
i=155

Yi
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Figure 2.3: Three absorption spectra fj(X) (upper panel), and the corresponding filter vectors
aj = (aij)

n
i=1 (lower panel).



2.5. PROPERTIES OF THE ESTIMATORS IN MISSPECIFIED MODELS 39

over ` = 11 frequencies. The resulting covariance matrices are equal to

Var(θ̂) = σ2

 0.1830 −0.0620 0.0002
−0.0620 0.0917 −0.0024

0.0002 −0.0024 0.0371

 ,
Var(θ̂

o
) = σ2

 0.4050 −0.1149 −0.0003
−0.1149 0.1381 −0.0057
−0.0003 −0.0057 0.1445

 .
In particular, the standard deviations of the components of θ̂ and θ̂

o
are equal toStd(θ̂1)

Std(θ̂2)

Std(θ̂3)

 = σ

0.4278
0.3027
0.1927

 and

Std(θ̂o1)

Std(θ̂o2)

Std(θ̂o3)

 = σ

0.6364
0.3717
0.3802

 .
As predicted by the Gauss–Markov theorem, the estimator θ̂ is substantially more accurate than
the ad hoc estimator θ̂

o
.

To illustrate the LSE, we simulated noisy data Yi = f(Xi) + εi with independent random er-
rors εi ∼ N(0, 0.32), where f(x) = θ1f1(x) + θ2f2(x) + θ3f3(x) with concentration vec-
tor θ = (3, 2, 1)>. Figure 2.4 shows the true spectrum f(X) as well as the noisy data Y
plus the fitted spectrum Ŷ = f̂(X) and its constituents θ̂jfj(X). The LSE turned out to be
θ̂ = (2.9524, 2.0442, 0.9649)>.

Remark 2.29 (Standard errors). In case of IE(ε) = 0 and Var(ε) = σ2I , the standard deviation
Std(ψ>θ̂) of the Gauss–Markov estimator of ψ>θ is equal to

σψ := σ

√
ψ>(D>D)−1ψ = σ‖aψ‖

with aψ := D(D>D)−1ψ. This standard deviation σψ involves the unknown standard deviation
σ of the errors εi. If we replace σ with σ̂, we obtain the so-called standard error

σ̂ψ := σ̂

√
ψ>(D>D)−1ψ = σ̂‖aψ‖.

In general, an estimated standard deviation is called a standard error.

2.5 Properties of the Estimators in Misspecified Models

Let us talk briefly about the behaviour of the estimators θ̂ and σ̂ in case of the true regression
function f being not necessarily an element of the linear model F . Geometrically this means, that
the vector f(X) = IE(Y ) could be outside of the model spaceM = DRp.

As to θ̂ we could simply define

θ := IE(θ̂) = (D>D)−1D>f(X),

withD = [f1(X), . . . , fp(X)]. Then, θ̂ is still an unbiased estimator of θ, and

Dθ = Hf(X).
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Figure 2.4: The spectrum f(X) of a mixture (upper panel), and its noisy measurement Y (lower
panel) together with the fitted spectrum Ŷ =

∑3
j=1 θ̂jfj(X) and the constituents θ̂jfj(X).
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That means, θ represents an approximation f̌ :=
∑p

j=1 θjfj of the regression function f such that

∥∥f(X)− f̌(X)
∥∥2

=

n∑
i=1

(
f(Xi)− f̌(Xi)

)2
is minimal.

In case of homoscedastic errors εi with variance σ2, misspecification of the model implies a posi-
tive bias of σ̂2. Precisely,

(2.7) IE(σ̂2) = σ2 +

∥∥f(X)− f̌(X)
∥∥2

n− p
.

The proof of this equation is left to the reader as an exercise.

In case of polynomial regression, one can provide a rather accurate bound for the approximation
error

∥∥f(X)− f̌(X)
∥∥. It involves orthogonal polynomials as constructed in Exercise 2.8.

Theorem 2.30 (Approximation error in polynomial regression). Let X be a real interval, and let
X ∈ X n be a data vector with at least d+2 different components, d ∈ N0. Further let f : X → R
be d+1 times differentiable. For 0 ≤ k ≤ d+1, let pk(x) be a polynomial of order k with leading
coefficient 1, such that the vectors p0(X), p1(X), . . . , pd+1(X) are orthogonal. If F is the linear
space of all polynomials of order d, then∥∥f(X)− f̌(X)

∥∥ ≤ supx∈X |f (d+1)(x)|
(d+ 1)!

∥∥pd+1(X)
∥∥.

Equality holds if f is a polynomial of order d+ 1.

Proof of Theorem 2.30. We use a few well-known results about orthogonal polynomials and in-
terpolation polynomials as presented, for instance, in the monograph of G. Opfer (1994).

Fact 1: The polynomial pd+1(x) has d+ 1 different zeros in X !

Proof of Fact 1: Suppose there exist only m ≤ d points x1 < · · · < xm in X at which pd+1 equals
0 and changes its sign. Then, for a suitable ξ ∈ {−1, 1}, q(x) := ξ

∏m
i=1(x − xi) would be a

polynomial of degree m with the particular property that pd+1(x)q(x) > 0 for all x ∈ X such
that pd+1(x) 6= 0. (In case of m = 0 we set q(x) := ξ.) Since q(X) is a linear combination
of p0(X), . . . , pd(X), all of which are orthogonal to pd+1(X), we arrive at the equation 0 =

q(X)>pd+1(X), so pd+1(X) = 0. Since X has at least d + 2 different components, this would
contradict our assumption that pd+1 has degree d+ 1.

Fact 2: Let x0 < x1 < · · · < xd be the zeros of pd+1(x) in X . Further let p(x) be the unique
polynomial of order d such that p(xi) = f(xi) for 0 ≤ i ≤ d. Then, for any z ∈ X , there exists a
point ξ(z) ∈ X such that

f(z)− p(z) =
f (d+1)(ξ(z))

(d+ 1)!
pd+1(z).

Proof of Fact 2: For z ∈ {x0, x1, . . . , xd} there is nothing to be shown, because f(z) − p(z) =

0 = pd+1(z). Hence, let z 6∈ {x0, x1, . . . , xd}. Now we define

h(x) := f(x)− p(x)− γpd+1(x)
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with γ :=
(
f(z) − p(z)

)/
pd+1(z). This defines a function h : X → R which is d + 1 times

differentiable and has at least d+ 2 different zeros on X , namely, z, x0, x1, . . . , xd. Consequently,
h′ has at least d+1 different zeros on X , and inductively one may conclude that h(d+1) has at least
one zero ξ(z) ∈ X . Since pd+1(x) has degree d+ 1 with leading coefficient 1, p(d+1)

d+1 ≡ (d+ 1)!,
whereas p(d+1) ≡ 0. Consequently,

0 = h(d+1)(ξ(z)) = f (d+1)(ξ(z))− γ(d+ 1)!,

and this implies that f(z)− p(z) = pd+1(z)f (d+1)(ξ(z))/(d+ 1)!.

Proof of the theorem: With the interpolation polynomial p from Fact 2, the definition of f̌ implies
that

∥∥f(X)− f̌(X)
∥∥2 ≤

∥∥f(X)− p(X)
∥∥2

=
n∑
i=1

(f (d+1)(ξ(Xi))

(d+ 1)!

)2
pd+1(Xi)

2

≤
(supx∈X |f (d+1)(x)|

(d+ 1)!

)2∥∥pd+1(X)
∥∥2
.

Equality holds, for instance, if f is a polynomial of order d+ 1. For then f ≡ p+ cpd+1 for some
c ∈ R, and f̌ = p, f (d+1) ≡ (d+ 1)! c.

Example 2.31. Suppose that X = (−5,−4, . . . , 0, 1, . . . , 5)>, i.e. n = 11, and let Fd be the
space of all polynomials of order d for a given d ≤ 10. By means of Exercises 2.8 and 2.9 one can
determine the polynomials p0, p1, . . . , p10 mentioned in Theorem 2.30. The first seven are given
by p0(x) = 1, p1(x) = x, and

p2(x) = −10 + x2,

p3(x) = −17.8x+ x3,

p4(x) = 72− 25x2 + x4,

p5(x) = 190.667x− 31.667x3 + x5,

p6(x) = −436.364 + 342.182x2 − 37.727x4 + x6.

with coefficients rounded to three decimals. Now suppose that

f(x) = sin(x− 1).

Then, the best approximation of f by a function in Fd is given by

f̌(x) =
d∑
j=0

θj+1pj(x) with θj+1 =
n∑
i=1

f(Xi)pj(Xi)
/ n∑

i=1

pj(Xi)
2.

The following table shows for d = 0, 1, . . . , 9 the coefficients θd+1, the approximation errors
‖f(X) − f̌d(X)‖ and the normalized squared norm ‖f(X) − f̌d(X)‖2/(n − d − 1) which
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determines the bias of σ̂2, all numbers rounded to five decimals:

d θd+1 ‖f(X)− f̌d(X)‖
‖f(X)− f̌d(X)‖2

n− d− 1

0 0.11258 2.26127 0.51133

1 −0.04655 2.20793 0.54166

2 0.01185 2.18047 0.59430

3 −0.01260 1.94260 0.53910

4 −0.00841 0.92950 0.14400

5 0.00148 0.56555 0.06397

6 0.00047 0.13640 0.00465

7 −0.00005 0.05296 0.00094

8 −0.00001 0.00671 0.00002

9 0.00000 0.00129 0.00000

Figure 2.5 depicts the true function f and the approximation f̌ for orders d = 4 and d = 6.
Note that the polynomial approximations are useful within the range of X but problematic when
extrapolated to values x < min(X) or x > max(X).

2.6 Special Parametrizations and Interactions

In connection with categorial covariates, so-called factors, one uses often special parametrizations.
We shall explain these for the cases of one and two factors. Moreover, in the setting of multiple
linear regression, an important concept are so-called interactions which will be introduced as well.

2.6.1 One-Way Analysis of Variance

As in Example 1.1, we consider a covariate X ∈ {1, 2, . . . , L}. Instead of the model equation
Y = f(X) + ε one often writes

Y = µ+ a(X) + ε

with unknown parameters µ, a(1), . . . , a(L) satisfying certain constraints:

Convention 1. For a given reference category jo we require that a(jo) = 0. Then, µ is the mean
of Y in case ofX = jo, and a(j) quantifies the difference between the category j and the category
jo with respect to the mean of Y . The connection to the function f : {1, . . . , L} → R is:

µ = f(jo) and a(j) = f(j)− f(jo).

This convention is often appropriate in medical applications when X stands for potential medical
treatments, and jo refers to a standard treatment or placebo. Here a(j) is the benefit of treatment
j compared to treatment jo.

This convention is used by most statistical software packages, and the user may specify the refer-
ence category jo.
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Figure 2.5: Approximating f(x) = sin(x − 1) (green/black) by a polynomial f̌ (blue) of order
d = 4 (upper panel) and d = 6 (lower panel) on {−5,−4, . . . , 4, 5}.
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Convention 2. We require that
∑L

j=1 a(j) = 0. In this case one may interpret µ as basic effect,
and a(j) is the effect of category j in relation to all others. Now, the connection to the function
f : {1, . . . , L} → R is:

µ =
1

L

L∑
j=1

f(j) and a(j) = f(j)− µ.

Connection to multiple linear regression. Suppose we have arranged the values ofX such that
jo = L. Then, one may interpret the model equation Y = µ + a(X) + ε as a special case of
multiple linear regression. To this end we introduce so-called dummy variables

X(j) := 1[X=j], 1 ≤ j < L,

and then

Y = µ+

L−1∑
j=1

a(j)X(j) + ε,

which is essentially the standard model for multiple linear regression with the covariate vector
(X(j))L−1

j=1 ∈ {0, 1}L−1. Note that the value of X is uniquely determined by the latter vector and
vice versa.

2.6.2 Two-Way Analysis of Variance

Suppose that X consists of two covariates C ∈ {1, . . . , L} and D ∈ {1, . . . ,M}. One could view
X itself as a categorical covariate with L ·M potential values. This leads to the model equation

Y = f(C,D) + ε

with an unknown regression function f : {1, . . . , L}×{1, . . . ,M} → R. From the perspective of
users, however, it is often desirable to distinguish and highlight the influence of the two covariates
separately. For that purpose, there are two different possibilities.

Cross classification

Instead of Y = f(C,D) + ε, we write

Y = µ+ a(C) + b(D) + h(C,D) + ε

with a “basic effect” µ, the “main effects” a : {1, . . . , L} → R and b : {1, . . . ,M} → R of the
two covariates and their “interactions”

h : {1, . . . , L} × {1, . . . ,M} → R.

That means, the impact of the main effects is purely additive, and the interactions describe the
deviation of the regression function from a purely additive regression function with summands de-
pending only on C or only on D. Again one needs certain conventions such that these parameters
µ, a(j), b(k) and h(j, k) are well-defined.
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Convention 1. For given reference categories jo ∈ {1, . . . , L} and ko ∈ {1, . . . ,M}, it is
required that

a(jo) = 0,

b(ko) = 0,

h(jo, k) = 0 for 1 ≤ k ≤M,

h(j, ko) = 0 for 1 ≤ j ≤ L.

Hence,

µ = f(jo, ko),

a(j) = f(j, ko)− f(jo, ko),

b(k) = f(jo, k)− f(jo, ko),

h(j, k) = f(j, k)− f(j, ko)− f(jo, k) + f(jo, ko).

Convention 2. We require that
L∑
j=1

a(j) = 0,

M∑
k=1

b(k) = 0,

M∑
k=1

h(j, k) = 0 for 1 ≤ j ≤ L,

L∑
j=1

h(j, k) = 0 for 1 ≤ k ≤M.

Here,

µ =
1

LM

L∑
j=1

M∑
k=1

f(j, k),

a(j) =
1

M

M∑
k=1

f(j, k)− µ,

b(k) =
1

L

L∑
j=1

f(j, k)− µ,

h(j, k) = f(j, k)− a(j)− b(k)− µ

= f(j, k)− 1

M

M∑
k′=1

f(j, k′)− 1

L

L∑
j′=1

f(j′, k) + µ.

Hierarchical Modelling

Instead of Y = f(C,D) + ε, we write

Y = µ+ a(C) + b(C,D) + ε
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with a “basic effect” µ, the “main effect” a : {1, . . . , L} → R of factor C and the “side effects”
b(j, ·) : {1, . . . ,M} → R of the factor D for 1 ≤ j ≤ L. Again, we may achieve identifiability in
two ways:

Convention 1: For given reference categories jo ∈ {1, . . . , L} and ko ∈ {1, . . . ,M}, we require
that

a(jo) = 0,

b(j, ko) = 0 for 1 ≤ j ≤ L.

Then,

µ = f(jo, ko),

a(j) = f(j, ko)− f(jo, ko),

b(j, k) = f(j, k)− f(j, ko).

Convention 2: We require that

L∑
j=1

a(j) = 0,

M∑
k=1

b(j, k) = 0 for 1 ≤ j ≤ L.

Here,

µ =
1

LM

L∑
j=1

M∑
k=1

f(j, k),

a(j) =
1

M

M∑
k=1

f(j, k)− µ,

b(j, k) = f(j, k)− 1

M

M∑
`=1

f(j, `).

2.6.3 Interactions

Let X = (X(j))dj=1 with d ≥ 2 numerical or {0, 1}-valued covariates X(1), . . . , X(d). Some of
the latter covariates could be the dummy variables of categorical covariates as described earlier.
The standard model of multiple linear regression assumes a purely additive dependence of Y on
X , i.e.

Y = µ+
d∑
j=1

βjX(j) + ε

with unknown real parameters µ, β1, . . . , βd and a centered random error ε. The interpretation of
the parameters is as follows:

• µ equals IE(Y ) in case of X(j) = 0 for 1 ≤ j ≤ d ;
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• if X(`) is increased by c ∈ R units, while the other covariates X(j), j 6= `, remain fixed, then
the mean IE(Y ) changes by β`c.

A more flexible model which allows for the influence of one covariate to be moderated by the
others is as follows:

Y = µ+
d∑
j=1

βjX(j) +
∑

(j,k)∈I

γjkX(j)X(k) + ε

with unknown real parameters µ, β1, . . . , βd and γjk, (j, k) ∈ I, and a centered random error ε.
Here, I is a given set of index pairs (j, k) such that 1 ≤ j < k ≤ d and X(j)X(k) 6≡ 0. Now, the
parameters may be interpreted as follows:

• µ equals IE(Y ) in case of X(j) = 0 for 1 ≤ j ≤ d;

• if X(`) is increased by c ∈ R units, while X(j) = 0 for j 6= `, then the mean IE(Y ) changes
by β`c;

• if X(`) is increased by c ∈ R units, while the other covariates X(j), j 6= `, remain fixed, then
the mean IE(Y ) changes by(

β` +
∑

j<`:(j,`)∈I

γj`X(j) +
∑

k>`:(`,k)∈I

γ`kX(k)
)
c.

That means, for any fixed ` ∈ {1, . . . , d}, the impact of the single covariate X(`) on the response
Y is affine, but the corresponding intercept and slope are functions of X(−`) := (X(j))j 6=`:

Y = µ`(X(−`)) + β`(X(−`)) ·X(`) + ε

with

µ`(X(−`)) := µ+
∑
j 6=`

βjX(j) +
∑

(j,k)∈I:` 6∈{j,k}

γjkX(j)X(k),

β`(X(−`)) := β` +
∑

j<`:(j,`)∈I

γj`X(j) +
∑

k>`:(`,k)∈I

γ`kX(k).

Whenever one uses one of the previous models, with or without interactions, it is advisable to
replace any raw covariate X(j) with X(j)− xo(j), where xo(j) stands for a reasonable standard
value of X(j). Otherwise the parameters βj and γjk may be difficult to interpret.

Example 2.32 (Boston housing data). The data set ‘Boston’ (available in the R package MASS)
contains for 506 quarters in the Boston metropolitan area the median house price Y (in 1000

USD) and the values of various covariates, some of which on the level of municipality rather than
quarter. The data set is from the 1970s. When checking the raw data, one realizes that for 16

observations the value of Y has been truncated from the right at 50, that means, for these very
expensive quarters the precise value of Y is only known to be at least 50. Hence, we reduced the
raw data to the n = 490 observations with Y < 50. From all covariates, we picked the following
ones:
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NAME meaning reference value
X(1) CRIM per capita crime rate by town 0

X(2) ZN proportion of residential land zoned 0
for lots over 25′000 square feet

X(3) INDUS proportion of non-retail business acres per town 10

X(4) NOX nitrogen oxides concentration (parts per 10 million) 0.5

X(5) RM average number of rooms per dwelling 6

X(6) AGE proportion of owner-occupied units 70
built prior to 1940

X(7) DIS weighted mean of distances to five 3
Boston employment centres

X(8) RAD index of accessibility to radial highways 5

X(9) TAX full-value property-tax rate per 10′000 USD 330

X(10) PTRATIO pupil-teacher ratio by town 19

X(11) LSTAT lower status of the population (percent) 12

The reference values have been chosen ad hoc by inspecting the respective range, median and
mean. In the subsequent analyses, X(j) stands for the raw covariate minus its reference value.

A standard multiple regression analysis, assuming that

Y = µ+
11∑
j=1

βjX(j) + ε,

yields the Gauss–Markov estimators µ̂, β̂1, . . . , β̂11 and corresponding standard errors (all rounded
to three decimals) in Table 2.1. The value µ̂ (intercept) estimates IE(Y ) for a quarter with all raw
covariates being equal to their reference values, i.e. a quarter in a town with crime rate 0, with 6

rooms per house on average, with a nitrogen oxide concentration of 0.5, et cetera.

The main interest lies in the estimated parameters β̂j , in particular, in their signs. As to be ex-
pected, the house prices decrease with the crime rate, increase with the number of rooms, decrease
with the amount of air pollution, et cetera. The ‘t ratio’ is the ratio of the estimator and its standard
error. The computation and meaning of the ‘p-values’ will be explained in the next chapter. Each
p-value is a strictly decreasing function of the modulus of the t ratio. Small p-values indicate that
the corresponding parameter µ or βj of the true regression function is significantly different from
zero.

The left panel of Figure 2.6 shows a scatter plot of the values Yi versus the fitted values Ŷi =

f̂(Xi), together with the straight line ‘y = x’. In a later chapter, we shall investigate the inter-
pretation of such and related plots in more detail. But note that the Yi seem to be systematically
larger than the predictions Ŷi whenever the latter are very large. Note also the opposite effect
in case of Ŷi lying between 20 and 30. Another curiosity is that one fitted value Ŷi is negative.
The adjusted coefficient of determination is equal to R2

adj = 0.7658, and the estimated standard
deviation equals σ̂ = 3.807.

Next, we tried the standard linear model with all
(

11
2

)
= 55 interactions included,

Y = µ+

11∑
j=1

βjX(j) +
∑

1≤j<k≤11

γjkX(j)X(k) + ε.



50 CHAPTER 2. ESTIMATION OF PARAMETERS

estimate st. error t ratio p-value
intercept 22.509 0.310 72.694 < 0.001

CRIM −0.119 0.026 −4.545 < 0.001

ZN 0.036 0.011 3.130 0.002

INDUS −0.048 0.050 −0.946 0.344

NOX −13.066 3.082 −4.239 < 0.001

RM 3.630 0.360 10.090 < 0.001

AGE −0.021 0.011 −1.970 0.050

DIS −1.222 0.163 −7.515 < 0.001

RAD 0.241 0.053 4.517 < 0.001

TAX −0.014 0.003 −4.791 < 0.001

PTRATIO −0.831 0.106 −7.821 < 0.001

LSTAT −0.372 0.043 −8.732 < 0.001

Table 2.1: Standard linear model output for the Boston housing data.
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Figure 2.6: Observations versus fitted values for the Boston housing data, without interactions
(left panel) and with interactions (right panel).
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estimate st. error t ratio p-value
Intercept 21.819 0.454 48.059 < 0.001

CRIM −0.544 0.726 −0.750 0.454

ZN 0.078 0.037 −2.112 0.036

INDUS −0.039 0.121 −0.325 0.745

NOX −12.234 8.091 −1.512 0.131

RM 5.757 0.656 8.774 < 0.001

AGE −0.060 0.014 −4.339 < 0.001

DIS −1.111 0.284 −3.914 < 0.001

RAD 0.437 0.177 2.471 0.014

TAX −0.018 0.007 −2.449 0.015

PTRATIO −0.589 0.209 −2.813 0.006

LSTAT −0.126 0.073 −1.731 0.085

CRIM*NOX −2.882 0.721 −3.998 < 0.001

CRIM*RM 0.183 0.039 4.655 < 0.001

CRIM*LSTAT 0.020 0.005 4.040 < 0.001

ZN*RAD −0.013 0.006 −2.130 0.034

ZN*LSTAT −0.008 0.005 −1.988 0.047

NOX*AGE −0.392 0.198 −1.974 0.050

RM*AGE −0.044 0.020 −2.209 0.028

RM*PTRATIO −0.483 0.214 −2.259 0.025

RM*LSTAT −0.215 0.036 −5.964 < 0.001

AGE*RAD 0.010 0.004 2.773 0.006

TAX*PTRATIO 0.007 0.002 3.337 < 0.001

Table 2.2: Standard linear model output for the Boston housing data, including interactions.

The right panel of Figure 2.6 shows the corresponding plot of observations Yi versus the fitted
values Ŷi. Now R2

adj = 0.8946 and σ̂ = 2.554. The problematic features of the model fit without
interactions disappeared. Table 2.2 shows the estimated parameters µ̂, β̂1, . . . , β̂11, and all γ̂jk
such that the corresponding p-value is no larger than 0.05. Note the clear evidence that association
between Y and covariates is modulated by the other covariates.

2.6.4 Paper and Blackboard Notation

In numerous papers and monographs, factors (i.e. categorical covariates) are often hidden by
means of multiple subscripts. We illustrate this type of notation in three settings.

One-way ANOVA. Starting from Xi ∈ {1, . . . , L}, let Yj1, Yj2, . . . , Yjnj be those observations
Yi such that Xi = j. Then, we may write

Yjs = fj + εjs, 1 ≤ j ≤ L, 1 ≤ s ≤ nj ,

or

Yjs = µ+ aj + εjs, 1 ≤ j ≤ L, 1 ≤ s ≤ nj .
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Here, f1, . . . , fL, or µ, a1, . . . , aL are unknown parameters, and the εjs are independent random
errors with mean 0. The least squares estimators for f1, . . . , fj are given by the subsample means

f̂j := Ȳj· :=
1

nj

nj∑
s=1

Yjs.

Two-way ANOVA. Starting from categorical covariates C ∈ {1, . . . , L} and D ∈ {1, . . . ,M},
let Yjk1, Yjk2, . . . , Yjknjk

be those observations Yi such that (Ci, Di) = (j, k). Then, we may
write

Yjks = fjk + εjks, 1 ≤ j ≤ L, 1 ≤ k ≤M, 1 ≤ s ≤ njk,

or
Yjks = µ+ aj + bk + hjk + εjks, 1 ≤ j ≤ L, 1 ≤ k ≤M, 1 ≤ s ≤ njk,

or
Yjks = µ+ aj + bjk + εjks, 1 ≤ j ≤ L, 1 ≤ k ≤M, 1 ≤ s ≤ njk,

Here, the parameters fjk, or the parameters µ, aj , bk, hjk, or the parameters µ, aj , bjk are un-
known, and the εjks are independent random errors with mean 0. The least squares estimators for
the fjk are given by the subsample means

f̂jk = Ȳjk· :=
1

njk

njk∑
s=1

Yjks.

One-way ANCOVA. Starting from Ci ∈ {1, . . . , L} and Wi ∈ R, let (Yj1,Wj1), (Yj2,Wj2),
. . . , (Yjnj ,Wjnj ) be those observation pairs (Yi,Wi) such that Ci = j. Then, we may write

Yjs = aj + bWjs + εjs, 1 ≤ j ≤ L, 1 ≤ s ≤ nj ,

with unknown parameters a1, . . . , aL, b and independent random errors εjs with mean 0. The least
squares estimators for the unknown parameters may be written as

âj = Ȳj· − b̂W̄j· and b̂ =

∑L
j=1

∑nj

s=1(Wjs − W̄j·)Yjs∑L
j=1

∑nj

s=1(Wjs − W̄j·)2
.



Chapter 3

Tests and Confidence Regions

Throughout this chapter, we study linear models under the assumption that the errors ε1, ε2, . . . , εn
are independent and normally distributed random variables with mean zero and standard deviation
σ > 0. In later chapters we shall discuss situations in which this assumption is violated. We also
hold on to our assumption that the design matrixD ∈ Rn×p has rank p < n.

3.1 Multivariate Gaussian Distributions

Recall first the definition of univariate Gaussian distributions: A random variable Z follows a
standard normal or standard Gaussian distribution if its distribution is given by the following
Lebesgue density:

φ(x) := (2π)−1/2 exp
(
−x

2

2

)
.

In particular, IE(Z) = 0 and Var(Z) = IE(Z2) = 1. This distribution is denoted by N(0, 1).

For µ ∈ R and σ ≥ 0, the Gaussian (or normal) distribution with mean µ and variance σ2 (or
standard deviation σ) is defined as the distribution of X := µ + σZ, where Z ∼ N(0, 1). This
distribution ist denoted by N(µ, σ2). In case of σ > 0 it has density function

φµ,σ2(x) := σ−1φ(σ−1(x− µ)) = (2πσ2)−1/2 exp
(
−(x− µ)2

2σ2

)
.

An essential property of Gaussian distributions is that the sum of independent random variables
with Gaussian distributions follows again a Gaussian distribution. This can be verified, for in-
stance, by means of characteristic functions (Fourier transform).

Now we consider a random vector X ∈ Rk. Its distribution is completely determined by the
distribution of b>X , if b is running through all unit vectors in Rk. This fact can also be verified
with characteristic functions.

Definition 3.1 (Multivariate Gaussian distributions). Let µ be a vector in Rk, and let Σ be a
symmetric, positive semidefinite matrix in Rk×k. A random vector X follows a Gaussian (or
normal) distribution with mean (vector) µ and covariance (matrix) Σ if

b>X ∼ N
(
b>µ, b>Σb

)
53
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for arbitrary vectors b ∈ Rk. The symbol for this distribution is Nk(µ,Σ).

The special distribution Nk(0, Ik) is called the k-variate standard Gaussian (or normal) distribu-
tion.

Remark 3.2 (Existence and simulation). For any vector µ ∈ Rk and any symmetric, positive
semidefinite matrix Σ ∈ Rk×k there exists a random vectorX with distribution Nk(µ,Σ), and

IE(X) = µ, Var(X) = Σ.

To see this, let Z = (Zi)
k
i=1 with stochastically independent components Zi ∼ N(0, 1). This

vector follows a standard Gaussian distribution. For if we fix b ∈ Rk, then b>Z = b1Z1 + · · ·+
bkZk is a sum of independent random variables with Gaussian distributions. Hence, b>Z has
Gaussian distribution with mean 0 and variance b21 + · · ·+ b2k = b>b.

Now we define
X := µ+ FZ

with a matrix F ∈ Rk×k such that FF> = Σ, for instance, F = Σ1/2. This random vector X
has the desired distribution, because for any vector b ∈ Rk,

b>X = b>µ+ (F>b)>Z

has Gaussian distribution with mean b>µ and variance ‖F>b‖2 = b>FF>b = b>Σb.

Since IE(Z) = 0 and Var(Z) = Ik, the general rules for expectations and covariances imply that
IE(X) = µ and Var(X) = Σ.

Remark 3.3 (Density functions). The k-variate standard Gaussian distribution has the following
Lebesgue density φ:

φ(x) =

k∏
i=1

φ(xi) = (2π)−k/2 exp
(
−‖x‖

2

2

)
.

For any vector µ ∈ Rk and any symmetric, positive definite matrix Σ ∈ Rk×k, the Gaussian
distribution Nk(µ,Σ) has Lebesgue density function φµ,Σ given by

φµ,Σ(x) = det(Σ)−1/2φ
(
Σ−1/2(x− µ)

)
= (2π)−k/2 det(Σ)−1/2 exp

(
−(x− µ)>Σ−1(x− µ)

2

)
.

This follows from the transformation formula for Lebesgue measure under diffeomorphisms.

An important fact is that the image of a Gaussian random vector under an affine mapping is again
Gaussian. With similar arguments as in Remark 3.2 one can prove the following result:

Lemma 3.4. Let X be a random vector with distribution Nk(µ,Σ). For any vector a ∈ R` and
any matrixB ∈ R`×k,

a+BX ∼ N`

(
a+Bµ,BΣB>

)
.

This lemma implies an essential property of standard Gaussian distributions, their so-called rota-
tional invariance.
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Corollary 3.5 (Rotational invariance of standard Gaussian distributions). Let X be a random
vector with k-variate standard Gaussian distribution, and let T ∈ Rk×k be an orthogonal matrix.
Then, TX follows a standard Gaussian distribution too.

Exercise 3.6. Prove Lemma 3.4.

Exercise 3.7 (Stochastic independence and normal distributions). Let X = [X>1 ,X
>
2 ]> be a

random vector with componentsXi ∈ Rk(i) such that[
X1

X2

]
∼ Nk(1)+k(2)

([
µ1

µ2

]
,

[
Σ11 Σ12

Σ21 Σ22

])
.

Show that the following assertions are equivalent:

(i) X1 andX2 are stochastically independent;
(ii) Σ12 = Σ>21 = 0.

Exercise 3.8. Let X be a random vector with distribution Nk(0,Σ), and let A be a symmet-
ric matrix in Rk×k. Show that the distribution of X>AX depends only on the eigenvalues of
Σ1/2AΣ1/2.

3.2 Special Univariate Distributions

In the subsequent sections, the following special distributions will recur frequently:

Definition 3.9 (Chi-squared, student and F distributions). Let Z0, Z1, Z2, . . . be stochastically
independent, standard Gaussian random variables.

(a) The Chi-squared distribution (χ2 distribution) with k degrees of freedom is defined as the
distribution of

k∑
i=1

Z2
i .

It is denoted by the symbol χ2
k, and its β-quantile is written as χ2

k;β .

(b) Student’s t distribution (student distribution, t distribution) with k degrees of freedom is
defined as the distribution of

Z0

S
with S :=

√√√√1

k

k∑
i=1

Z2
i .

It is denoted by the symbol tk, and its β-quantile is written as tk;β .

(c) Fisher’s F distribution (F distribution) with k and ` degrees of freedom is defined as the
distribution of

S2

T 2
with S2 :=

1

k

k∑
i=1

Z2
i , T 2 :=

1

`

k+∑̀
i=k+1

Z2
i .

It is denoted by the symbol Fk,`, and its β-quantile is written as Fk,`;β .

The next exercises imply that all distributions in Definition 3.9 have continuous distribution func-
tions.
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Exercise 3.10. Let k and ` be positive integers.

(a) Show by means of Fubini’s theorem that χ2
k, tk and Fk,` have continuous distribution function.

(b) Show that for 0 < β < 1,

tk;1−β = −tk;β and Fk,`;1−β =
1

F`,k;β
.

Remark 3.11 (Moment-generating functions). The next exercise uses the moment-generating
function of random variables Y ∈ R. It is defined as the mapping mY : R → (0,∞], mY (t) :=

IE exp(tY ). If mY < ∞ on a nondegenerate interval, then the distribution of Y is uniquely
determined by mY . That is, if Y ′ is another random variable such that mY ′ ≡ mY , then the
distributions of Y and Y ′ coincide. Moreover, for stochastically independent random variables Y
and Z,

mY+Z = mYmZ .

Exercise 3.12 (Chi-squared and gamma distributions). For a, b > 0 let Gamma(a, b) be the
gamma distribution with shape parameter a > 0 and scale parameter b > 0. That means,
Gamma(a, b) is a distribution on (0,∞) with Lebesgue density

fa,b(x) := b−1fa(b
−1x), fa(x) := Γ(a)−1xa−1e−x,

where Γ(a) :=
∫∞

0 xa−1e−x dx. In particular, if Y ∼ Gamma(a, 1), then bY ∼ Gamma(a, b).

(i) Show that for Y ∼ Gamma(a, b) and t ∈ R,

IE exp(tY ) =

{
(1− bt)−a if t < b−1,

∞ if t ≥ b−1.

(ii) Show that for Z ∼ N(0, 1),

IE exp(tZ2) =

{
(1− 2t)−1/2 if t < 2−1,

∞ if t ≥ 2−1.

(iii) Deduce from parts (i–ii) and Remark 3.11 that for any integer k > 0,

χ2
k = Gamma(k/2, 2).

Exercise 3.13 (Student type distributions). Let Z and S > 0 be stochastically independent ran-
dom variables, where Z ∼ N(0, 1) and IE(S2) = 1.

(a) Show by means of Fubini’s theorem that T := Z/S has distribution function

F (t) = IE Φ(tS)

and Lebesgue density
f(t) = IE(Sφ(tS)).

(b) Suppose that IP(S 6= 1) > 0. Show by means of Jensen’s inequality that

F (t)

{
> Φ(t) if t < 0,

< Φ(t) if t > 0.
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Deduce from that the inequalities

F−1(β)

{
< Φ−1(β) if β < 1/2,

> Φ−1(β) if β > 1/2.

(c) Suppose that S2 ∼ Gamma(a, 1/a) for some a > 0. Show that the density f in part (a) is
given by

f(t) = Ca

(
1 +

t2

2a

)−(a+1/2)

with Ca = (2πa)−1/2Γ(a + 1/2)/Γ(a). (Setting a = k/2 with an integer k > 0, we obtain the
density of tk.)

Chi-squared and F distributions play an important role in connection with confidence regions.
Behind that is the following basic result:

Lemma 3.14. Let X be a Gaussian random vector with mean vector µ ∈ Rk and nonsingular
covariance matrix Σ ∈ Rk×k. Then

(X − µ)>Σ−1(X − µ) ∼ χ2
k.

Proof of Lemma 3.14. We may writeX = µ+ Σ1/2Z with a standard Gaussian random vector
Z ∈ Rk. But then

(X − µ)>Σ−1(X − µ) =
∥∥Σ−1/2(X − µ)

∥∥2
= ‖Z‖2 =

k∑
i=1

Z2
i ∼ χ2

k.

3.3 The Joint Distribution of θ̂ and σ̂

To simplify the subsequent formulae, we set

Γ := D>D.

Recall thatD is assumed to have full rank, i.e. Γ is symmetric and positive definite.

Theorem 3.15. The estimators θ̂ and σ̂ are stochastically independent. Moreover,

θ̂ ∼ Np

(
θ, σ2Γ−1

)
, and (n− p) σ̂

2

σ2
∼ χ2

n−p.

Remark 3.16. This theorem generalizes the well-known result of Gosset–Fisher about the sam-
ple mean of a Gaussian sample: Let Y1, Y2, . . . , Yn be independent random variables with dis-
tribution N(µ, σ2). Then, the sample mean Ȳ = n−1

∑n
i=1 Yi and the sample variance S2 =

(n− 1)−1
∑n

i=1(Yi − Ȳ )2 are stochastically independent, where

Ȳ ∼ N(µ, σ2/n) and (n− 1)S2/σ2 ∼ χ2
n−1.

This follows from Theorem 3.15 whenD = 1 and θ = µ, leading to θ̂ = Ȳ .
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Proof of Theorem 3.15. As to the distribution of the LSE, recall that θ̂ is an affine function of
the Gaussian random vector ε ∼ Nn(0, σ2In). Hence, by Lemma 3.4 and Lemma 2.15,

θ̂ ∼ Np

(
IE(θ̂),Var(θ̂)

)
= Np

(
θ, σ2Γ−1

)
.

As to the remaining assertions, let t1, t2, . . . , tn be an orthonormal basis of Rn such that

M = DRp = span(t1, . . . , tp),

and thus M⊥ = span(tp+1, . . . , tn). Then, the matrix T := [t1, t2, . . . , tn] ∈ Rn×n is orthogo-
nal, and we may write

ε = σTZ = σ

n∑
i=1

Ziti

with the random vector Z := σ−1T>ε ∼ Nn(0, In); see Lemma 3.4. On the one hand, it follows
fromD>ti = 0 for i > p that

θ̂ = Γ−1D>(Dθ + ε) = θ + σΓ−1D>
n∑
i=1

Ziti = θ + σΓ−1D>
p∑
i=1

Ziti,

that means, θ̂ is a function of (Zi)
p
i=1. On the other hand, with H̄ = In −H , the orthogonal

projection of Y ontoM⊥ is given by

H̄(Dθ + ε) = H̄ε = σ

n∑
i=p+1

Ziti,

because H̄D = 0 and H̄ti = 0 for i ≤ p. Hence

σ̂2 =
‖H̄Y ‖2

n− p
=

σ2

n− p

∥∥∥ n∑
i=p+1

Ziti

∥∥∥2
=

σ2

n− p

n∑
i=p+1

Z2
i .

This shows that σ̂ is a function of (Zi)
n
i=p+1, whence θ̂ and σ̂ are stochastically independent.

Moreover, (n− p)σ̂2/σ2 =
∑n

i=p+1 Z
2
i follows a chi-squared distribution with n− p degrees of

freedom.

A first application: confidence intervals for σ. It follows from Theorem 3.15 that for arbitrary
0 ≤ β1 < β2 ≤ 1,

IP
(
χ2
n−p;β1 ≤ (n− p) σ̂

2

σ2
≤ χ2

n−p;β2

)
= β2 − β1,

where we set χ2
n−p;0 := 0 and χ2

n−p;1 :=∞. That means, with probability β2 − β1, the unknown
standard deviation σ is contained in the interval[

σ̂

√
n− p
χ2
n−p;β2

, σ̂

√
n− p
χ2
n−p;β1

]
.

If we fix a test level α ∈ (0, 1) and set β1 = 0, β2 = 1 − α, this leads to the lower (1 − α)-
confidence bound

σ̂

√
n− p

χ2
n−p;1−α
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for σ. The choice β1 = α and β2 = 1 leads to the upper (1− α)-confidence bound

σ̂

√
n− p
χ2
n−p;α

for σ. If we choose β1 ∈ (0, α) and β2 = 1 − α + β1, we obtain a bounded (1 − α)-confidence
interval for σ. A standard choice for β1 would be α/2, but this is not necessarily the best choice.

Exercise 3.17. Write a computer program that returns for a given integer k > 0 and test level
α ∈ (0, 1) a number β = β(k, α) ∈ (0, α) and the pair

(L,U) =

(√
k

χ2
k;1−α+β

,

√
k

χ2
k;β

)
such that the ratio U/L is approximately minimal.

3.4 Student Confidence Intervals and Tests

This section is about inference for a single linear function ψ>θ of θ with a given vector ψ ∈
Rp \ {0}. Particularly useful are confidence regions for ψ>θ. As a by-product one obtains a
p-value for the null hypothesis “ψ>θ = 0”, as explained later.

3.4.1 Student Confidence Regions

For the construction of confidence regions we consider the student statistic

Tψ :=
ψ>θ̂ −ψ>θ

σ̂ψ

with the standard error
σ̂ψ = σ̂

√
ψ>Γ−1ψ = σ̂‖aψ‖,

where aψ := DΓ−1ψ. This standard error is our substitute for the true standard deviation

σψ = σ

√
ψ>Γ−1ψ = σ‖aψ‖

of the GME ψ>θ̂.

Note that the random variable Tψ involves the data (via θ̂ and σ̂) as well as the unknown param-
eter θ. It is a pivotal statistic in the sense that its distribution does not depend on any unknown
parameters.

Corollary 3.18. For any vector ψ ∈ Rp \ {0}, the random variable Tψ follows a student distri-
bution with n− p degrees of freedom.

Proof of Corollary 3.18. It follows from Lemma 3.4 and Theorem 3.15 that

Z :=
ψ>θ̂ −ψ>θ

σψ
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has a standard Gaussian distribution and is stochastically independent from σ̂. Moreover, S2 :=

(n− p)σ̂2/σ2 ∼ χ2
n−p, so

Tψ =
Z√
σ̂2/σ2

=
Z√

(n− p)−1S2

follows the asserted student distribution.

A particular consequence of Corollary 3.18 is that for any test level α ∈ (0, 1),

IP
(
Tψ ≤ tn−p;1−α

)
IP
(
Tψ ≥ −tn−p;1−α

)
IP
(
|Tψ| ≤ tn−p;1−α/2

)
 = 1− α.

Converting the inequalities for Tψ into inequalities for ψ>θ leads to the following confidence
regions: The

• lower (1− α)-confidence bound ψ>θ̂ − σ̂ψtn−p;1−α,

• upper (1− α)-confidence bound ψ>θ̂ + σ̂ψtn−p;1−α,

• (1− α)-confidence interval
[
ψ>θ̂ ± σ̂ψtn−p;1−α/2

]
.

Which of these confidence regions is to be used, has to be agreed on prior to the data analysis.

Since student distributions are continuous, one could even interpret the one-sided bounds as strict
bounds and replace the closed with the open confidence interval

(
ψ>θ̂ ± σ̂ψtn−p;1−α/2

)
without

changing the exact confidence level 1− α.

Example 3.19 (Simple linear regression, Example 1.2). Here X ∈ R and f(x) = a + bx. With
the centered vector X̃ := (Xi − X̄)ni=1,

b̂ =
X̃
>
Y

‖X̃‖2
∼ N

(
b,

σ2

‖X̃‖2
)
.

Hence, a (1− α)-confidence interval for the slope parameter b is given by[
b̂ ± σ̂

‖X̃‖
tn−2;1−α/2

]
.

Next we consider the regression function at an arbitrary fixed point x ∈ R. Recall that

f̂(x) = â+ b̂x = Ȳ + b̂(x− X̄) ∼ N
(
f(x), σ(x)2

)
with

σ(x) := σ

√
1

n
+

(x− X̄)2

‖X̃‖2
.

If we replace the factor σ in σ(x) by σ̂, then we obtain the standard error σ̂(x) of f̂(x). A (1−α)-
confidence interval for f(x) is given by[

f̂(x) ± σ̂(x)tn−2;1−α/2
]
.
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As a function of x, the upper and lower bound are hyperbolas with asymptotes

x 7→ f̂(x) ± σ̂
|x− X̄|
‖X̃‖

tn−2;1−α/2.

Note that

lim inf
|x|→∞

min
{
|y| : y ∈

[
f̂(x) ± σ̂(x)tn−2;1−α/2

]}
= ∞

if and only if

|̂b| > σ̂

‖X̃‖
tn−2;1−α/2,

that means, the closed confidence interval for b does not contain 0.

Figure 3.1 shows a data set with n = 51 observations, together with the regression line f̂ and
the 95%-confidence bounds plus asymptotes. The corresponding student quantile is tn−2;1−α/2 =

t49;0.975 = 2.010 (rounded to three decimals).
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Figure 3.1: Regression line plus pointwise 95%-confidence intervals for f(x).

Example 3.20 (One-way ANCOVA, Example 1.4). We consider covariates C ∈ {1, 2, . . . , L}
and W ∈ R, and the model equation reads Y = a(C) + bW + ε. For 1 ≤ j < k ≤ L,

â(k)− â(j) = Ȳ (k)− Ȳ (j)− b̂
(
W̄ (k)− W̄ (j)

)
∼ N

(
a(k)− a(j), σ(j, k)2

)
with the standard deviation

σ(j, k) := σ

√√√√ 1

n(j)
+

1

n(k)
+

(W̄ (k)− W̄ (j)
)2

‖W̃ ‖2
,
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where W̃ :=
(
Wi− W̄ (Ci)

)n
i=1

. Again we replace σ with σ̂ and obtain the standard error σ̂(j, k)

of â(k)− â(j). Then [
â(k)− â(j) ± σ̂(j, k)tn−L−1;1−α/2

]
is a (1− α)-confidence interval for a(k)− a(j).

Exercise 3.21. Consider the data set ‘Trees.txt’ and the variables Y := log(volume), X(1) :=

log(height) and X(2) := log(diameter). Compute a 95%-confidence interval for each of the
parameters a, b1, b2 in the model equation

Y = a+ b1X(1) + b2X(2) + ε.

Which conclusion can you draw about the model equation Y = a+X(1) + 2X(2) + ε?

3.4.2 Student Tests

Instead of confidence bounds or intervals for the parameter ψ>θ one may test hypotheses about
it. For any fixed constant co, we introduce the test statistic

Tψ(co) :=
ψ>θ̂ − co

σ̂ψ
.

Moreover, let tcdfk(·) be the distribution function of tk.

One-sided tests. Suppose we want to test

Ho : ψ>θ ≤ co versus HA : ψ>θ > co.

Then, the null hypothesis Ho may be rejected at level α ∈ (0, 1) if

Tψ(co) ≥ tn−p;1−α.

This is equivalent to the right-sided p-value

1− tcdfn−p(Tψ(co)) = tcdfn−p(−Tψ(co))

being less than or equal to α.

The level of this test can be checked as follows:

IP(Ho is rejected) = IP
(
Tψ(co) ≥ tn−p;1−α

)
= IP

(
Tψ +

ψ>θ − co
σ̂ψ

≥ tn−p;1−α

)
.

Under the null hypothesis Ho, the right hand side is less than or equal to

IP
(
Tψ ≥ tn−p;1−α

)
= α,

with equality in case of ψ>θ = co.
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Analogously, if we want to test

Ho : ψ>θ ≥ co versus HA : ψ>θ < co,

then we may reject the null hypothesis Ho at level α ∈ (0, 1) if

Tψ(co) ≤ −tn−p;1−α,

which is equivalent to the left-sided p-value

tcdfn−p(Tψ(co))

being less than or equal to α.

Two-sided test. Now we consider the testing problem

Ho : ψ>θ = co versus HA : ψ>θ 6= co.

Here one may reject the null hypothesis at level α if

|Tψ(co)| ≥ tn−p;1−α/2.

The corresponding p-value is equal to

2 ·
(
1− tcdfn−p

(
|Tψ(co)|

))
= 2 · tcdfn−p

(
−|Tψ(co)|

)
.

In case of rejection, one may even claim with confidence 1− α that

ψ>θ

{
< co if ψ>θ̂ < co,

> co if ψ>θ̂ > co.

The reason for that is that the two-sided test rejects the null hypothesis if and only if co is not
contained in the open (1− α)-confidence interval

(
ψ>θ̂ ± σ̂ψtn−p;1−α/2

)
for ψ>θ.

Example 3.22 (Confidence region for a cusp). We consider the linear model of quadratic regres-
sion, that is, X ∈ R and Y = f(X) + ε with f(x) = a0 + a1x + a2x

2/2. (The factor 1/2 for
x2 will turn out to be convenient later.) Under the additional assumption that a2 < 0, we want to
determine a confidence region for the maximizer

x∗ =
−a1

a2

of f , which is the unique point x ∈ R such that f ′(x) = a1 + a2x equals 0.

A naive and conservative approach would be to compute both for a1 and a2 a (1−α/2)-confidence
interval, and to deduce from that bounds for the ratio x∗ = −a1/a2. A more elegant method is to
test the null hypothesis

Ho(x) : f ′(x) = 0

for each point x ∈ R at level α. Note that the GME of f ′(x) is given by

f̂ ′(x) = â1 + â2x
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Its standard error equals

σ̂(x) =

√
Σ̂11 + 2Σ̂12x+ Σ̂22x2,

where Σ̂00 Σ̂01 Σ̂02

Σ̂10 Σ̂11 Σ̂12

Σ̂20 Σ̂21 Σ̂22

 := σ̂2Γ−1

is the estimated covariance matrix of θ̂ = (â0, â1, â2)>. Now we set

Cα = Cα(X,Y ) :=
{
x ∈ R : Ho(x) is not rejected at level α

}
=
{
x ∈ R : |f̂ ′(x)| < σ̂(x)tn−3;1−α/2

}
.

This defines an exact (1− α)-confidence region for x∗, because

IP
(
Cα 3 x∗

)
= IP

(
|f̂ ′(x∗)| < σ̂(x∗)tn−3;1−α/2

)
= IP

(∣∣f̂ ′(x∗)− f ′(x∗)∣∣ < σ̂(x∗)tn−3;1−α/2
)

= 1− α.

The question is, whether Cα is really useful. With τα := tn−p;1−α/2 we may write

Cα =
{
x ∈ R : â2

1 + 2â1â2x+ â2
2x

2 < Σ̂11τ
2
α + 2Σ̂12τ

2
αx+ Σ̂22τ

2
αx

2
}

=
{
x ∈ R : (â2

2 − Σ̂22τ
2
α)x2 + 2(â1â2 − Σ̂12τ

2
α)x < Σ̂11τ

2
α − â2

1

}
.

In case of â2
2 > Σ̂22τ

2
α, this is a bounded open interval with midpoint

x̂∗ =
Σ̂12τ

2
α − â1â2

â2
2 − Σ̂22τ2

α

.

(The set Cα is certainly non-empty, because it contains the point −â1/â2 at which f̂ ′ = 0.) Note
that the condition â2

2 > Σ̂22τ
2
α is equivalent to

|ψ>θ| > σ̂ψtn−3;1−α/2 with ψ = (0, 0, 1)>.

In other words, the p-value for the null hypothesis “a2 = 0” is strictly smaller than α, and the
(closed) confidence interval for a2 does not contain the value 0.

Exercise 3.23. Complement and implement the procedure in Example 3.22.

Exercise 3.24. Consider simple linear regression, that means, X ∈ R and Y = f(X) + ε with an
unknown regression function f(x) = a+bx. Assuming that b 6= 0, construct a (1−α)-confidence
region for the unique point

x∗ := f−1(0) =
−a
b
.

Exercise 3.25 (A very small ANOVA). Suppose we observe Y1, Y2, Y3 ∈ R, and let us assume
that

Y1 = a+ ε1, Y2 = a+ ε2, Y3 = b+ ε3

with unknown parameters a, b ∈ R and unobserved independent random errors ε1, ε2, ε3 ∼
N(0, σ2), where σ > 0 is unknown too.

(a) Determine estimators â, b̂, σ̂ and describe their joint distribution.

(b) Determine a 90%-confidence interval for b− a.
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3.5 F Confidence Regions and Tests

So far we constructed confidence intervals for a single linear function ψ>θ of θ. Now our goal is
to construct a confidence region for the full vector θ or for a tuple

(
ψ>θ

)
ψ∈P with an arbitrary

subset P of Rp, finite or infinite.

3.5.1 F Tests and Confidence Ellipsoids

A possible measure of the distance between θ̂ and θ is given by the F statistic

F :=
(θ̂ − θ)>Γ(θ̂ − θ)

p σ̂2
.

Note that this random variable F involves the data as well as the unknown parameter θ. As
explained in the next corollary, it is a pivotal statistic in the sense that its distribution does not
depend on any unknown parameters.

Corollary 3.26. The random variable F has distribution Fp,n−p.

Proof of Corollary 3.26. Recall from Theorem 3.15 that θ̂ and σ̂ are stochastically independent,
where θ̂ ∼ Np(θ, σ

2Γ−1) and S2 := (n− p)σ̂2/σ2 ∼ χ2
n−p. This implies that

S2
o :=

(θ̂ − θ)>Γ(θ̂ − θ)

σ2
=
∥∥σ−1Γ1/2(θ̂ − θ)

∥∥2

has distribution χ2
p, because σ−1Γ1/2(θ̂−θ) is a standard Gaussian random vector. Moreover, S2

o

and S2 are stochastically independent. Consequently,

F =
S2
o

p σ̂2/σ2
=

S2
o/p

S2/(n− p)

follows an F distribution with p and n− p degrees of freedom.

Corollary 3.26 leads to two statistical procedures. On the one hand, let θo be a given candidate θo
for the unknown parameter vector θ. When testing

Ho : θ = θo versus HA : θ 6= θo,

we may reject the null hypothesis Ho at level α if the F test statistic

F (θo) :=
(θ̂ − θo)>Γ(θ̂ − θo)

p σ̂2

exceeds Fp,n−p;1−α. This is equivalent to the (right-sided) p-value

1− Fcdfp,n−p(F (θo))

being less than or equal to α, where Fcdfk,` denotes the distribution function of Fk,`.

This test has exact level α, because under Ho, the F test statistic F (θo) coincides with the pivotal
statistic F and has distribution Fp,n−p.
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On the other hand,

Cα = Cα(X,Y ) :=
{
η ∈ Rp : F (η) ≤ Fp,n−p;1−α

}
=
{
η ∈ Rp : (θ̂ − η)>Γ(θ̂ − η) ≤ σ̂2pFp,n−p;1−α

}
defines an exact (1− α)-confidence region for θ. That means,

IP(Cα 3 θ) = 1− α,

because Cα 3 θ if and only if F (θ) = F is not greater than Fp,n−p;1−α, and the latter event has
probability 1− α.

Concerning the shape ofCα, if Γ is the identity matrix Ip, thenCα is a closed ball in Rp with center
θ̂ and radius ĉ := σ̂

√
pFp,n−p;1−α. In general, let Γ =

∑p
j=1 λjuju

>
j with eigenvalues λ1 ≥

· · · ≥ λp > 0 and orthonormal eigenvectors u1, . . . ,up ∈ Rp. Then, Γ±1/2 =
∑p

j=1 λ
±1/2
j uju

>
j ,

and

Cα =
{
θ̂ + ĉv : v ∈ Rp,v>Γv ≤ 1

}
=
{
θ̂ + ĉΓ−1/2w : w ∈ Rp, ‖w‖ ≤ 1

} (
with w = Γ1/2v

)
=
{
θ̂ + ĉ

p∑
j=1

xj λ
−1/2
j uj : x ∈ Rp, ‖x‖ ≤ 1

} (
with xj = u>j w

)
.

That means, the closed unit ball in Rp with center 0 is rescaled in direction uj by the factor ĉλ−1/2
j

for j = 1, . . . , p. This leads to an ellipsoid centered at 0, and finally, the latter set is shifted by θ̂.

3.5.2 Simultaneous Confidence Intervals via F Tests

The confidence ellipsoid Cα for θ can be visualized in case of p ≤ 3, but it is not so clear what
to do with it in dimension p > 3. The following lemma and corollary provide a very useful
connection between the F and student test statistics.

Lemma 3.27 (Henry Scheffé). For any vector v ∈ Rp,

√
v>Γv = max

ψ∈Rp\{0}

|ψ>v|√
ψ>Γ−1ψ

.

In particular, for any constant c ≥ 0,
v>Γv ≤ c2;

if and only if

|ψ>v| ≤ c

√
ψ>Γ−1ψ for all ψ ∈ Rp.

This lemma is true for any symmetric and positive definite matrix Γ ∈ Rp×p. In our special case
of Γ = D>D, recall that√

ψ>Γ−1ψ =
σ̂ψ
σ̂

and (θ̂ − η)>Γ(θ̂ − η) = pσ̂2F (η).

Hence, applying Lemma 3.27 to v = θ̂ − η and c = σ̂
√
pFp,n−p;1−α yields the aforementioned

connection between F and student statistics:
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Corollary 3.28 (Henry Scheffé). For any vector η ∈ Rp,√
pF (η) = max

ψ∈Rp\{0}
|Tψ(ψ>η)|,

and thus, √
pF = max

ψ∈Rp\{0}
|Tψ|.

In particular, θ lies in the confidence ellipsoid Cα if and only if∣∣ψ>θ̂ −ψ>θ∣∣ ≤ σ̂ψ
√
pFp,n−p;1−α for all ψ ∈ Rp.

This corollary shows that the confidence region Cα yields simultaneous (1− α)-confidence inter-
vals for arbitrary linear functions ψ>θ of θ. Namely, we replace the student confidence intervals[

ψ>θ̂ ± σ̂ψtn−p;1−α/2
]

with the confidence intervals [
ψ>θ̂ ± σ̂ψ

√
pFp,n−p;1−α

]
,

i.e. we replace the student quantile tn−p;1−α/2 with the quantity
√
pFp,n−p;1−α. Since Cα 3 θ

with probability 1− α, we may claim with confidence 1− α that

ψ>θ ∈
[
ψ>θ̂ ± σ̂ψ

√
pFp,n−p;1−α

]
for all ψ ∈ Rp.

Proof of Lemma 3.27. Note first that v>Γv = ‖Γ1/2v‖2. It follows from the Cauchy-Schwarz
inequality that for any w ∈ Rp, ∣∣w>Γ1/2v

∣∣ ≤ ‖w‖‖Γ1/2v‖

with equality if w and Γ1/2v are collinear. Hence,

‖Γ1/2v‖ = max
w∈Rp\{0}

∣∣w>Γ1/2v
∣∣

‖w‖

= max
w∈Rp\{0}

∣∣(Γ1/2w)>v
∣∣∥∥Γ−1/2(Γ1/2w)
∥∥

= max
ψ∈Rp\{0}

|ψ>v|
‖Γ−1/2ψ‖

= max
ψ∈Rp\{0}

|ψ>v|√
ψ>Γ−1ψ

.

Example 3.19 (Simple linear regression, continued). As seen before, for any fixed x ∈ R, a
(1 − α)-confidence interval for the value f(x) is given by

[
f̂(x) ± σ̂(x)tn−2;1−α/2

]
. Now we

replace the student quantile tn−2;1−α/2 with
√

2F2,n−2;1−α and obtain the interval[
f̂(x) ± σ̂(x)

√
2F2,n−2;1−α

]
.
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We may claim with confidence 1 − α that f(x) lies within this interval, simultaneously for all
x ∈ R. This is a direct consequence of Corollary 3.28. One can even say that

IP
(
f(x) ∈

[
f̂(x) ± σ̂(x)

√
2F2,n−2;1−α

]
for all x ∈ R

)
= 1− α.

This follows from the fact that the set of all vectors λ(1, x)>, x ∈ R, λ ∈ R, is a dense subset of
R2; see also Subsection 3.5.3.

Figure 3.2 shows again the data from Figure 3.1 and the regression line f̂ , plus the pointwise and
simultaneous 95%-confidence bounds for f(x). For the pointwise bounds one needs tn−2;1−α/2 =

t49;0.975 = 2.010, while for the simultaneous bounds one needs
√

2F2,n−2;1−α =
√

2F2,49;0.95 =

2.525 (rounded to three decimals).
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Figure 3.2: Regression line, pointwise and simultaneous 95%-confidence intervals for f(x).

Example 3.29 (Polynomial regression). Let X ∈ R, and consider the model equation Y =

f(X) + ε, where the regression function f : R → R is an unknown polynomial of given order
d ≥ 1. For our purposes, it is convenient to work with orthonormal basis polynomials. That
means, for a given data vector X ∈ Rn with at least d + 1 different components, we construct
polynomials f0(x), f1(x), . . . , fd(x) of degree 0, 1, . . . , d, respectively, such that

fj(X)>fk(X) = 1[j=k] for j, k ∈ {0, 1, . . . , d}.

In other words, the resulting design matrix D =
[
f0(X), f1(X), . . . , fd(X)

]
satisfies Γ =

D>D = Id+1.

Suppose that

f(x) =

d∑
j=0

θj+1fj(x)
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with an unknown parameter θ ∈ Rd+1. The LSE for θ is given by

θ̂ = D>Y ∼ Nd+1(θ, σ2Id+1).

Hence, the GME for f(x) is given by

f̂(x) = ψ(x)>θ̂ ∼ N
(
f(x), σ2‖ψ(x)‖2

)
,

where

ψ(x) :=
(
f0(x), f1(x), . . . , fd(x)

)>
.

Moreover, for 1 ≤ ` ≤ d, the GME for the `-th derivative f (`)(x) of f at x is given by

f̂ (`)(x) = ψ(`)(x)>θ̂ ∼ N
(
f (`)(x), σ2‖ψ(`)(x)‖2

)
with

ψ(`)(x) :=
(
f

(`)
0 (x), f

(`)
1 (x), . . . , f

(`)
d (x)

)
.

We may claim with confidence 1− α, that

f(x) ∈
[
f̂(x) ± σ̂‖ψ(x)‖

√
(d+ 1)Fd+1,n−d−1;1−α

]
and

f (`)(x) ∈
[
f̂ (`)(x) ± σ̂‖ψ(`)(x)‖

√
(d+ 1)Fd+1,n−d−1;1−α

]
for any x ∈ R and ` ∈ {1, . . . , d}.

The upper panel of Figure 3.3 shows a scatter plot of simulated data vectors X,Y ∈ Rn with
sample size n = 201. In addition, one sees the polynomial fit f̂ of order d = 2, the pointwise
95%-confidence bounds

f̂(x) ± σ̂‖ψ(x)‖tn−3;0.975

and the simultaneous 95%-confidence bounds

f̂(x) ± σ̂‖ψ(x)‖
√

3F3,n−3,0.95.

This scatter plot shows some systematic differences between the observed vector Y and the fitted
vector Ŷ = f̂(X): There are certain regions for the values Xi in which the differences Yi − Ŷi
tend to be systematically less than 0 or systematically greater than 0. In the lower panel one sees
the data vectors and the simultaneous bounds for f , together with the true function f and its best
approximation f̌ by a polynomial of the given order d. That means,

f̌(x) =

d∑
j=0

θj+1fj(x) with θ := D>f(X).

Note that for many values x, the true value f(x) is not contained within the simultaneous bounds,
but the latter do enclose f̌(x). Here the estimated standard deviation turned out to be σ̂ ≈ 0.7952,
whereas the true standard deviation was σ = 0.5.
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Figure 3.3: Simulated data example for quadratic regression. Upper panel: Estimated regression
function (dashed blue), pointwise (blue) and simultaneous (red) 95%-confidence bounds. Lower
panel: Simultaneous 95%-confidence bounds (red), true function f (green) and its approximation
f̌ (cyan).
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Figure 3.4: Simulated data example for polynomial regression of order d = 6. Upper panel: Esti-
mated regression function (dashed blue), pointwise (blue) and simultaneous (red) 95%-confidence
bounds. Lower panel: Simultaneous 95%-confidence bounds (red), true function f (green) and its
approximation f̌ (cyan).
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Figure 3.5: Simulated data example for polynomial regression of order d = 6. Estimated deriva-
tive f̂ (`) (dashed blue) with simultaneous 95%-confidence bounds (red), and the true derivaties
f (`) (green), f̌ (`) (cyan). Here ` = 1 (upper panel) and ` = 2 (lower panel).
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For the same data, Figure 3.4 shows analogous plots for polynomial regression of order d =

6. Now the difference between f(x) and f̌(x) is rather small, as long as x is in the range[
min(X),max(X)

]
. For values x outside the latter range, the confidence intervals become very

wide. For the same data, Figure 3.5 shows the true and estimated first and second derivatives of
the regression function(s), together with simultaneous 95%-confidence bounds.

Exercise 3.30. Consider polynomials given by p0(x) = 1, p1(x) = x− b0 and

pk+1(x) = xpk(x)− bkpk(x)− ckpk−1(x),

for k ≥ 1 with given parameters b0, b1, b2, . . . and c1, c2, c3, . . .. Show that

p
(`)
k+1(x) = `p

(`−1)
k (x) + xp

(`)
k (x)− bkp

(`)
k (x)− ckp

(`)
k−1(x)

for k, ` ≥ 1.

Exercise 3.31. Consider the model of polynomial regression. Write a computer program which
computes and visualizes pointwise and simultaneous (1−α)-confidence intervals for f(x), x ∈ R.
The input arguments should be the data vectors X,Y ∈ Rn, the maximal degree d > 0 of the
polynomials, the test level α ∈ (0, 1) and a vector x of points at which f should be estimated and
narrowed down. Optionally, you could also compute and visualize pointwise and simultaneous
(1− α)-confidence intervals for f (`)(x), x ∈ R and ` ∈ {1, . . . , d}.

3.5.3 Generalizations

Inference about a vector-valued linear function of θ. Suppose we are interested in ψ>j θ,
1 ≤ j ≤ d, for given linearly independent vectors ψ1, . . . ,ψd ∈ Rp. In other words, we are
interested in the vector Ψ>θ ∈ Rd, where Ψ := [ψ1, . . . ,ψd] ∈ Rp×d has rank d ≤ p. (The
subsequent considerations are valid for any d ∈ {1, . . . , p}, but our main interest is in the case
1 < d < p.)

The F tests and confidence ellipsoid for θ can be modified as follows:

Ψ>θ̂ =
(
ψ>j θ̂

)d
j=1

is an estimator of Ψ>θ with distribution

Nd

(
Ψ>θ, σ2 Ψ>Γ−1Ψ

)
= Nd

(
Ψ>θ, σ2Γ−1

Ψ

)
,

where

ΓΨ := (Ψ>Γ−1Ψ)−1.

Moreover, it is stochastically independent from σ̂. This implies that

FΨ :=
(Ψ>θ̂ −Ψ>θ)>ΓΨ(Ψ>θ̂ −Ψ>θ)

d σ̂2

is a pivotal statistic with distribution Fd,n−p. Again, this leads to three statistical procedures.
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Tests of one-point hypotheses for Ψ>θ. For any given vector wo ∈ Rd, we can test

Ho : Ψ>θ = wo versus HA : Ψ>θ 6= wo,

by means of the test statistic

FΨ(wo) :=
(Ψ>θ̂ −wo)

>ΓΨ(Ψ>θ̂ −wo)

d σ̂2
.

We may reject the null hypothesis Ho at level α if FΨ(wo) is greater than or equal to Fd,n−p;1−α.
The latter condition is equivalent to the (right-sided) p-value

1− Fcdfd,n−p(FΨ(wo))

being less than or equal to α.

Exercise 3.32. Show that for any matrix Ψ ∈ Rp×d with rank d and any vectorwo ∈ Rd, testing
the null hypothesis “Ψ>θ = wo” with the data (X,Y ) is equivalent to testing the null hypothesis
“Ψ>θ = 0” with the modified data (X,Y −Dθo) for some suitable θo ∈ Rp. (Hint: One may
use θo = Ψvo for some vo ∈ Rd.)

Exercise 3.33. Consider once more the data set ‘Trees.txt’ and the modified variables Y :=

log(volume), X(1) := log(height) and X(2) := log(diameter). Assuming the model equation
Y = a+ b1X(1) + b2X(2) + ε, test the null hypothesis that b1 = 1 and b2 = 2 at level α = 5%.

Exercise 3.34. The oxygen saturation of blood (X , in percent) is an important physiological pa-
rameter. In particular, during surgery or in intensive care, this parameter has to be monitored
permanently. It can be measured with high precision by analyzing blood samples chemically.
Alternatively, one can measure the absorption of light when it passes through the skin of fin-
gertips. Pulse oxymeters are technical devices which produce a proxy Y for X , based on such
non-invasive, optical measurements. Ideally,

Y = X + ε

with a random measurement error ε such that IE(ε) = 0 and σ := Std(ε) is reasonably small.
From a doctor’s point of view, one should rather consider the undersaturations X̃ := 100−X and
Ỹ := 100 − Y , because saturations below 70 are highly critical and have to be avoided. Under
normal circumstances, the value X is way above 90. Hence, a pulse oxymeter should work with
high precision if X lies between 70 and 100, i.e. if X̃ lies between 0 and 30.

Suppose we want to test whether a particular device works properly for a given person. To this
end, one determines the actual saturation Xi and the device’s measurement Yi at n different time
points, where the ambient air is manipulated such that the true saturations vary to some extent.

(a) Suppose that
Ỹ = a+ bX̃ + ε

with unknown real constants a and b. Specify a suitable test for the null hypothesis that the device
works correctly, that means,

Ho : a = 0, b = 1.
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(b) Suppose that
Ỹ = a+ bX̃ + cX̃2 + ε

with unknown real constants a, b and c. Specify a suitable test for the null hypothesis that the
device works correctly, that means,

Ho : a = 0, b = 1, c = 0.

(c) Assuming the model of quadratic or cubic regression, specify a test of the null hypothesis that
Y is an affine function of X plus measurement error.

(d) Implement your tests and apply them to one or two subsets of the data set ‘Pulsoxymeter.txt’.

The latter data set consists of several columns. The test person (prob), the measurements of the
chemical analysis of blood samples (X) and the optical measurements by several pulse oxymeters
for each device (Y (1), Y (2), . . . , Y (11)). Now we restrict our attention to one particular test
person and compare the values of X with the values Y (k) of one particular pulse oxymeter.

Confidence ellipsoids for Ψ>θ. A (1 − α)-confidence region for Ψ>θ is given by the d-
dimensional ellipsoid

CΨ,α = CΨ,α(X,Y ) :=
{
w ∈ Rd : FΨ(w) ≤ Fd,n−p;1−α

}
=
{
w ∈ Rd : (Ψ>θ̂ −w)>ΓΨ(Ψ>θ̂ −w) ≤ σ̂2dFd,n−p;1−α

}
.

Simultaneous confidence intervals. Suppose we are interested in the valuesψ>θ for all vectors
ψ in a given finite or infinite family P ⊂ Rp \{0}. The next result provides simultaneous (1−α)-
confidence intervals for ψ>θ, ψ ∈ P .

Theorem 3.35 (Henry Scheffé). Let P be an arbitrary subset of Rp \ {0}, and let

d := dim(span(P)).

Then
sup
ψ∈P

|Tψ| ≤ max
ψ∈span(P)\{0}

|Tψ| =
√
dFP

with a random variable
FP ∼ Fd,n−p.

In particular,

IP
(∣∣ψ>θ̂ −ψ>θ∣∣ ≤ σ̂ψ√dFd,n−p;1−α for all ψ ∈ P

)
≥ 1− α.

Equality holds true if the set
{
λψ : ψ ∈ P, λ ∈ R

}
is a dense subset of span(P).

Proof of Theorem 3.35. By definition of d, there exist linearly independent vectorsψ1, . . . ,ψd ∈
P such that

span(P) = span(ψ1, . . . ,ψd) =
{
Ψλ : λ ∈ Rd

}
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with Ψ = [ψ1, . . . ,ψd]. Then, it follows from Lemma 3.27 that

√
dFΨ = max

λ∈Rd\{0}

∣∣λ>(Ψ>θ̂ −Ψ>θ)
∣∣

σ̂
√
λ>Γ−1

Ψ λ

= max
λ∈Rd\{0}

∣∣(Ψλ)>θ̂ − (Ψλ)>θ
∣∣

σ̂
√

(Ψλ)>Γ−1(Ψλ)

= max
ψ∈span(P)\{0}

|ψ>θ̂ −ψ>θ
∣∣

σ̂
√
ψ>Γ−1ψ

= max
ψ∈span(P)\{0}

|Tψ|

≥ sup
ψ∈P

|Tψ|.

Equality holds true, if the set {λψ : λ ∈ R,ψ ∈ P} is dense in span(P), because |Tψ| is
continuous in ψ ∈ Rp \ {0}, and |Tλψ| = |Tψ| for arbitrary λ 6= 0 and ψ 6= 0. Since FΨ ≤
Fd,n−p;1−α with probability 1− α, these considerations lead to the asserted (in)equality for

IP
(∣∣ψ>θ̂ −ψ>θ∣∣ ≤ σ̂ψ√dFd,n−p;1−α for all ψ ∈ P

)
.

Exercise 3.36. Consider polynomial regression of order d ≥ 2. That means, X ∈ R, and Y =

f(X) + ε with an unknown polynomial f(x) =
∑d

j=0 θj+1x
j .

(a) Define an appropriate family P of vectors ψ ∈ Rd+1 \ {0}, and determine span(P) as well
as dim(span(P)), in the following three situations:

(a.1) We are interested in f ′(x) for any x ∈ R.
(a.2) We are interested in f ′′(x) for any x ∈ R.
(a.3) We are interested in f(b)− f(a) for arbitrary different a, b ∈ R.

(b) Check in situations (a.1–3) whether

{λψ : ψ ∈ P, λ ∈ R}

is dense in span(P).

3.5.4 A Geometrical Approach to F Tests

In the previous sections, F tests appeared as a building block of confidence ellipsoids for linear
functions of θ. In the present section we shall develop a seemingly different, purely geometrical
approach.

Setting and testing problem. Our starting point is a linear model with n-dimensional observa-
tion vector

Y = µ+ ε.
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Figure 3.6: Geometry of an F test.

Here µ is an unknown parameter vector which is assumed to lie in a given p-dimensional model
spaceM ⊂ Rn, and ε is a random vector with distribution Nn(0, σ2In), where σ > 0 is unknown
as well. Now letM o be a linear subspace ofM with dimension po < p. We would like to test

Ho : µ ∈M o versus HA : µ 6∈M o.

Construction of a test. In addition to the hat matrix H , describing the orthogonal projection
onto M , there is a second matrix Ho for the orthogonal projection onto M o. With Ŷ := HY

and Ŷ o := HoY , the observation vectorY can be decomposed into three orthogonal components:

Y = HoY + (H −Ho)Y + (In −H)Y

= Ŷ o + (Ŷ − Ŷ o) + (Y − Ŷ ).

This corresponds to the representation of Rn as a direct sum of three orthogonal subspaces:

Rn = M o ⊕ (M ∩M⊥
o ) ⊕ M⊥.

Figure 3.6 illustrates these decompositions of Y and Rn.

Note that

Y − Ŷ = (In −H)ε because µ ∈M ,

Ŷ − Ŷ o =

{
(H −Ho)µ+ (H −Ho)ε in general,

(H −Ho)ε if µ ∈M o,

Ŷ o =

{
Hoµ+Hoε in general,
µ+Hoε if µ ∈M o.
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Consequently, under the null hypothesis Ho, both vectors Ŷ − Ŷ o and Y − Ŷ contain only parts
of the noise vector ε, whereas the signal vector µ is hidden entirely in Ŷ o.

If the null hypothesisHo is violated, the distance ‖Ŷ −Ŷ o‖ tends to be larger than ‖(H−Ho)ε‖.
This will be investigated in more detail in a later section, but a simple calculation shows that

IE
(
‖Ŷ − Ŷ o‖2

)
= (p− po)σ2 + ‖µ−Hoµ‖2,

whereas IE
(
‖Y − Ŷ ‖2

)
= (n− p)σ2. Hence, we introduce the test statistic

(3.1) F :=
‖Ŷ − Ŷ o‖2/(p− po)
‖Y − Ŷ ‖2/(n− p)

=
‖Ŷ − Ŷ o‖2/dim(M ∩M⊥

o )

‖Y − Ŷ ‖2/dim(M⊥)
.

The enumerator of F could also be written as

‖Ŷ − Ŷ o‖2/(p− po) =
(
‖Ŷ ‖2 − ‖Ŷ o‖2

)
/(p− po),

and its denominator is equal to

‖Y − Ŷ ‖2/(n− p) =
(
‖Y ‖2 − ‖Ŷ ‖2

)
/(n− p) = σ̂2.

Theorem 3.37. Under the null hypothesis that µ ∈M o, the test statistic F in (3.1) has distribu-
tion Fp−po,n−p.

Consequently, we may reject the null hypothesis Ho at level α if

F ≥ Fp−po,n−p;1−α.

The corresponding (right-sided) p-value is

1− Fcdfp−po,n−p(F ).

Proof of Theorem 3.37. Similarly as in the proof of Theorem 3.15, we consider a suitable or-
thonormal basis t1, t2, . . . , tn of Rn. This time we require that

M o = span(t1, . . . , tpo) and M = span(t1, . . . , tp).

Moreover, we write

ε = σ

n∑
i=1

Ziti

with the standard Gaussian random vector Z := σ−1(t>i ε)
n
i=1 ∼ Nn(0, In). Under the null

hypothesis Ho,

F =
(p− po)−1‖(H −Ho)ε‖2

(n− p)−1‖(I −H)ε‖2

=
(p− po)−1

∥∥σ∑p
i=po+1 Ziti

∥∥2

(n− p)−1
∥∥σ∑n

i=p+1 Ziti
∥∥2

=
(p− po)−1

∑p
i=po+1 Z

2
i

(n− p)−1
∑n

i=p+1 Z
2
i

.

By definition of F distributions, the latter ratio has the asserted distribution Fp−po,n−p.
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Exercise 3.38 (R-squared and F test). If F ⊃ Fo = {constant functions} with dim(F) > 1,
then the standard output of statistical software for the linear model F includes the value R2 as
well as the test statistic F and the corresponding p-value for the null hypothesis “f ∈ Fo” versus
“f ∈ F \ Fo”. What is the relationship between R2 and F ?

Exercise 3.39. Suppose you want to test whether a linear subspaceM o ⊂M (or a smaller linear
model Fo ⊂ F) fits a data vector Y sufficiently well, where po := dim(M o) < p := dim(M) <

n. Suppose you only know n, po, p and the variance estimators σ̂2
o for the simple as well as σ̂2 for

the full model. Write the test statistic F as a function of these quantities n, po, p, σ̂2
o and σ̂2.

Example 3.40 (One-way ANOVA). Starting from a covariate X ∈ {1, 2, . . . , L}, we use the
paper and blackboard notation and identify the response vector Y with an array (Yjs)j,s, where

Yjs = fj + εjs, 1 ≤ j ≤ L, 1 ≤ s ≤ nj ,

with unknown parameters f1, f2, . . . , fL and independent random variables εjs ∼ N (0, σ2).

To verify a true association between X and Y , one could test the following null hypothesis:

Ho : f1 = f2 = · · · = fL.

This null hypothesis corresponds to the space M o of all constant arrays, and its dimension is
po = 1. The full model space M consists of all arrays (gj)j,s with g1, . . . , gL ∈ R, and its
dimension is L.

Here Ŷ =
(
Ȳj·
)
j,s

and Ŷ o =
(
Ȳ
)
j,s

. Hence, the total sum of squares,

SStotal := ‖Y − Ȳ 1‖2 =
∑
j,s

(Yjs − Ȳ )2

may be written as the sum of squares within groups,

SSwithin := ‖Y − Ŷ ‖2 =
∑
j,s

(Yjs − Ȳj·)2,

plus the sum of squares between groups,

SSbetween := ‖Ŷ − Ŷ o‖2 =
∑
j,s

(Ȳj· − Ȳ )2 =
∑
j

nj(Ȳj· − Ȳ )2.

That means,

SStotal = SSwithin + SSbetween.

The null hypothesis Ho that all parameters fj are identical is rejected at level α if

F =
SSbetween/(L− 1)

SSwithin/(n− L)

is greater than or equal to FL−1,n−L;1−α.

The phrase “analysis of variance” refers to such decompositions of the total sum of squares into
different components.
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Example 3.41 (Michelson’s and Morley’s measurements of the speed of light). A famous data
example from physics are measurements of the speed of light (in vacuum) by Albert A. Michelson
and Edward Morley at the end of the nineteenth century. One particular data set, available in R as
‘morley’, comprises n = 100 measurements. These measurements are reported in kilometers per
second, and from each raw value the number 299′000 has been subtracted. The observations cor-
respond to L = 5 different experiments, and in each experiment they did no = 20 measurements.
Ideally,

Yjs = µ+ εjs, 1 ≤ j ≤ 5, 1 ≤ s ≤ 20,

where µ is the true value of the speed of light. Alternatively, one could think about the model

Yjs = fj + εjs, 1 ≤ j ≤ 5, 1 ≤ s ≤ 20,

with certain values f1, f2, . . . , f5 reflecting different circumstances of the experiment. In fact,
Michelson’s original goal was to prove the existence of ‘ether’, i.e. a medium for electromagnetic
waves. So he assumed that fj reflects the speed of the lab relative to the surrounding ether. But
there exist other, unintended, reasons for the fj to be different.

To test the null hypothesis that f1 = f2 = · · · = f5, we need the following sums of squares:

SSwithin = 523′510,

SSbetween = 94′514.

This leads to the F test statistic

F =
94′514/4

523′510/95
=

23′628.5

5′510.632
≈ 4.2878,

and the p-value for the null hypothesis equals

1− Fcdf4,95(F ) ≈ 0.003114.

Hence, one may conclude with high confidence that there have been systematic differences be-
tween the five different experiments.

Eventually, Michelson and his colleagues concluded from numerous high-precision measurements
that presumably there is no ether. Michelson got a Nobel award for his experimental methods, and
his findings inspired Albert Einstein to develop the special theory of relativity.

Example 3.42 (Nested function spaces). We consider a linear model F with basis functions
f1, . . . , fp : X → R. Now we want to test the null hypothesis that the unknown regression
function belongs to the smaller model Fo := span(f1, . . . , fpo), where 0 ≤ po < p. (In case of
po = 0, we just set Fo = {0}.) Under the assumption that the vectors f1(X), f2(X), . . . , fp(X)

are linearly independent, we are talking about the model space M := span
(
f1(X), . . . , fp(X)

)
and its po-dimensional subspaceM o := span

(
f1(X), . . . , fpo(X)

)
.

If we write f(x) =
∑p

j=1 θjfj(x), then the null hypothesis reads

Ho : (θj)j>po = 0.
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The corresponding F test statistic may be written in two ways. On the one hand,

F =
(θ̂j)

>
j>po

Γo(θ̂j)j>po
(p− po)σ̂2

,

where
Γo :=

(
(Γ−1)j,k>po

)−1
.

On the other hand, one may write

F =
(p− po)−1

∥∥f̂(X)− f̂o(X)
∥∥2

(n− p)−1
∥∥Y − f̂(X)

∥∥2 =

∥∥f̂(X)− f̂o(X)
∥∥2

(p− po) σ̂2
,

where f̂o and f̂ are the LSE of f in the smaller and the full model, respectively.

Warning: With the LSE θ̂ for the full model,

f̂o 6≡
po∑
j=1

θ̂jfj in general!

This is only guaranteed, if{
f1(X), . . . , fpo(X)

}
⊥
{
fpo+1(X), . . . , fp(X)

}
.

Exercise 3.43. In Exercise 2.7, conceptual problems of linear regression as a means to obtain
“adjusted data” have been discussed. In this exercise, these reflections are complemented by
analysing the specific data set “SozialdiensteBE.txt”. Each observation (row) corresponds to one
of the 67 social services in the Canton of Bern in the year 2012. The cantonal governement of
Bern (ab)used these data and a regression model to establish a bonus-malus system for the 67

social services in subsequent years. . .

(a) Try out different linear models for this data set and search for a set of covariates having a
significant effect on the response

Y := expenditures for social welfare per year and inhabitant (“Kosten”).

Note that Y is just the ratio of the net expenditures per year (“NettoSumme”) and the population
size (“Bevoelkerung”), so the former variable should not be included in a model. Note also that Y
is not specified for one of the 67 observations.

(b) The Canton of Bern used a standard multiple regression model with the covariates

X(1) = percentage of foreigners (“Auslaender”),

X(2) = percentage of refugees (“Fluechtlinge”),

X(3) = percentage of elderly people getting subsidies (“ELBezueger”),

X(4) = percentage of vacant apartments (“Leerwhg”).

Assuming that

Y = θ0 + θ1X(1) + θ2X(2) + θ3X(3) + θ4X(4) + ε
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(with ε being interpreted as noise rather than misperformance), calculate the LSE θ̂ for θ =

(θ0, θ1, . . . , θ4)> ∈ R5 and interpret your results.

(c) Now consider the more complex model

Y = θ0 +
4∑
j=1

θjX(j) +
∑

1≤`<k≤4

γ`kX(`)X(k) + ε

with θj ∈ R, 0 ≤ j ≤ 4, and γ`k ∈ R, 1 ≤ ` < k ≤ 4. Do you reach the same conclusions
as for the previous model? Compare the two models. Does the inclusion of interactions yield a
significantly better fit?

Example 3.44 (Polynomial regression). As in Example 3.29, let X ∈ R, and consider the model
equation Y = f(X) + ε, where the unknown regression function f : R → R is assumed to be a
polynomial of given order d ≥ 1. Again, suppose that X has at least d+ 1 different components,
and let f0(x), f1(x), . . . , fd(x) be polynomials of degree 0, 1, . . . , d, respectively, such that the
vectors f0(X), f1(X), . . . , fd(X) are orthonormal. With f(x) =

∑d
j=0 θj+1fj(x), the LSE of θ

is given by
θ̂ =

(
fj(X)>Y

)d
j=0
∼ Nd+1(θ, σ2Id+1).

For any order do ∈ {0, . . . , d}, the orthogonal projection of Y onto span
(
f0(X), . . . , fdo(X)

)
is

given by
do∑
j=0

θ̂j+1fj(X).

In case of do < d, the null hypothesis that f has order do is equivalent to the null hypothesis

Ho : f(X) ∈ span
(
f0(X), . . . , fdo(X)

)
.

The corresponding F test statistic is given by

Fdo :=

∑d
j=do+1 θ̂

2
j+1

(d− do)σ̂2

with distribution Fd−do,n−d−1 under Ho, and the corresponding p-value equals

πdo := 1− Fd−do,n−d−1(Fdo).

For the particular data we simulated in Example 3.29, let us start with the assumption that f is
a polynomial of order d = 10. This yields an estimated standard deviation σ̂ ≈ 0.4921. The
following table shows for do = 0, 1, . . . , 9, the value of the test statistic Fdo and the corresponding
p-value πdo (rounded to three decimals).

do 0 1 2 3 4 5 6 7 8 9

Fdo 41.753 43.501 48.104 46.491 41.060 11.550 2.992 0.900 1.220 2.286

πdo 0.000 0.000 0.000 0.000 0.000 0.001 0.021 0.443 0.298 0.133

This table shows that degrees smaller than 6 are inappropriate for the data, even d = 6 seems to
be too small.
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Exercise 3.45. In Exercise 3.34 we tested for a single test person and a single pulse oxymeter,
whether the device is working properly. Now consider all data for one pulse oxymeter and specify
one or several potential model equations for the measurement Y , the true oxygen saturation W
and the test person C. Fit this model or these models to the data. Specifically, how would you test
the null hypothesis that the device is working identically with each test person?

Example 3.46 (Additive model for two-way ANOVA). We consider X = (C,D) with factors
C ∈ {1, . . . , L} and D ∈ {1, . . . ,M}. Now we switch to paper and blackboard notation and
consider the observation array Y = (Yjks)j,k,s with

Yjks = µ+ aj + bk + εjks, 1 ≤ j ≤ L, 1 ≤ k ≤M, 1 ≤ s ≤ njk.

Here µ ∈ R, a ∈ RL and b ∈ RM are unknown parameters such that a+ :=
∑L

j=1 aj = 0 and
b+ :=

∑M
k=1 bk = 0, while the εjks are independent random variables with distribution N(0, σ2).

This model equation means that the influence of the two factors is purely additive. The corre-
sponding model spaceM consists of all arrays(

gj + hk
)
j,k,s

with arbitrary numbers gj and hk. It can be written as the direct sum of three subspaces:

M0 :=
{

(µ)j,k,s : µ ∈ R
}

with dim(M0) = 1,

M1 :=
{

(aj)j,k,s : a ∈ RL, a+ = 0
}

with dim(M1) = L− 1,

M2 :=
{

(bk)j,k,s : b ∈ RM , b+ = 0
}

with dim(M2) = M − 1.

To perform various F tests, we need the orthogonal projections Ŷ ` of Y ontoM ` (0 ≤ ` ≤ 2) and
Ŷ 0,` of Y ontoM0,` := M0 +M ` (` = 1, 2). Specifically,

M0,1 =
{

(gj)j,k,s : g ∈ RL
}
,

M0,2 =
{

(hk)j,k,s : h ∈ RM
}
.

(a) The null hypothesis that neither C nor D have any association with Y corresponds to the
assumption that

a = 0 and b = 0.

The corresponding null model space isM0, and the appropriate test statistic is

F =
‖Ŷ − Ŷ 0‖2

(M + L− 2) σ̂2
=
‖Ŷ ‖2 − ‖Ŷ 0‖2

(M + L− 2) σ̂2

with distribution FM+L−2,n−M−L+1 under the null hypothesis. Note also that Ŷ 0 = (Ȳ )j,k,s and
‖Ŷ 0‖2 = nȲ 2 with the usual average Ȳ = n−1

∑
j,k,s Yj,k,s.

(b) The null hypothesis that the factor C has no association with Y corresponds to the assumption
that

a = 0.
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The corresponding null model space isM0,2, and the appropriate test statistic is

F =
‖Ŷ − Ŷ 0,2‖2

(L− 1) σ̂2
=
‖Ŷ ‖2 − ‖Ŷ 0,2‖2

(L− 1) σ̂2

with distribution FL−1,n−L−M+1 under the null hypothesis.

(c) Analogously, one may test the null hypothesis that the factor D has no association with Y by
means of the test statistic

F =
‖Ŷ − Ŷ 0,1‖2

(M − 1) σ̂2
=
‖Ŷ ‖2 − ‖Ŷ 0,1‖2

(M − 1) σ̂2

with distribution FM−1,n−L−M+1 under the null hypothesis. The corresponding null model space
isM0,1.

Explicit computations for general design. For general design, i.e. arbitrary numbers njk,
there exist no simple formulae for the projection Ŷ . The only thing one can say is the fol-
lowing: Suppose that Y̌ = (ǧj + ȟk)j,k,s, where all terms ǧj , ȟk are linear combinations of
the averages Ȳj·· := n−1

j+

∑
k,s Yjks and Ȳ·k· := n−1

+k

∑
j,s Yjks. Here nj+ :=

∑M
k=1 njk and

n+k :=
∑L

j=1 njk. Note that each partial average Ȳjo·· is the inner product of Y with the array(
n−1
jo+1[j=jo]

)
j,k,s
∈ M0,1 ⊂ M , and each partial average Ȳ·ko· is the inner of Y with the array(

n−1
+ko

1[k=ko]

)
j,k,s
∈ M0,2 ⊂ M . Hence, if one can show that always IE(Y̌ ) = IE(Y ), then it

follows from the Gauss–Markov Theorem 2.27 that Y̌ = Ŷ .

The projections Ŷ 0,1 and Ŷ 0,2 are given by

Ŷ 0,1 = (Ȳj··)j,k,s and Ŷ 0,2 = (Ȳ·k·)j,k,s,

respectively. Again, this can be deduced from the Gauss–Markov Theorem 2.27: For 1 ≤ jo ≤ L,
Ȳjo·· is the inner product of Y with an array inM0,1, and one can easily verify that IE(Ȳjo··) = gjo
whenever IE(Y ) = (gj)j,k,s. For 1 ≤ ko ≤ M , Ȳ·ko· is the inner product of Y with an array in
M0,2, and IE(Ȳ·ko·) = hko whenever IE(Y ) = (hk)j,k,s.

Explicit computations for balanced design. An important special case is a balanced design, that
means, all group sizes njk are identical,

njk = no for 1 ≤ j ≤ L, 1 ≤ k ≤M.

This implies that the three spaces M0,M1,M2 are pairwise orthogonal: For arbitrary vectors
v = (aj)j,k,s ∈M1 and w = (bk)j,k,s ∈M2,

1>v =
∑
j,k,s

aj = a+Mno = 0,

1>w =
∑
j,k,s

bk = Lb+no = 0,

v>w =
∑
j,k,s

ajbk = a+b+no = 0.
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In case of a balanced design, the GMEs for the parameters µ, aj and bk are obtained easily. Note
first that nj+ = Mno for 1 ≤ j ≤ L and n+k = Lno for 1 ≤ k ≤M . Now one can write

Y = Ŷ + ε̂ and Ŷ = Ŷ 0 + Ŷ 1 + Ŷ 2,

where

Ŷ 0 := (Ȳ )j,k,s ∈ M0,

Ŷ 1 := (Ȳj·· − Ȳ )j,k,s ∈ M1,

Ŷ 2 := (Ȳ·k· − Ȳ )j,k,s ∈ M2,

and this leads to

ε̂ = (Yjks − Ȳj·· − Ȳ·k· + Ȳ )j,k,s ∈ M⊥.

The inclusions Ŷ 1 ∈ M1, Ŷ 2 ∈ M2 and ε̂ ∈ M⊥ follow essentially from the facts that Ȳ =

L−1
∑L

j=1 Ȳj·· = M−1
∑M

k=1 Ȳ·k·. In particular, since the decomposition of Y into a sum of
vectors inM0,M1,M2,M

⊥ is unique,

µ̂ = Ȳ , âj = Ȳj·· − Ȳ and b̂k = Ȳ·k· − Ȳ .

The F test statistics introduced before have now a simplified representation:

(a) For the null hypotheses that a = 0 and b = 0, we get

F =
‖Ŷ 1‖2 + ‖Ŷ 2‖2

(M + L− 2) σ̂2
.

(b) For the null hypothesis that a = 0, we get

F =
‖Ŷ 1‖2

(L− 1) σ̂2
.

(c) For the null hypothesis that b = 0, we get

F =
‖Ŷ 2‖2

(M − 1) σ̂2
.

Example 3.47 (Hearing tests). As a data example for the testing problems in Example 3.46, we
consider the data set ‘Hearing.txt’. Twenty-four test persons listened to recordings of four different
lists of words with some background noise. The measurements Y are the percentages of correctly
identified words, and the two factors were the person (C ∈ {1, 2, . . . , 24}) and the word list
(D ∈ {1, 2, 3, 4}). Here we have a balanced design with no = 1, and it turned out that

‖Ŷ 1‖2 = 3231.62, ‖Ŷ 2‖2 = 920.458 and ‖ε̂‖2 = 2506.54.

Moreover, n− L−M + 1 = LM − L−M + 1 = (L− 1)(M − 1) = 23 · 3 = 69, whence

σ̂2 = 2506.54/69 = 36.327.
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For the null hypotheses that neither C nor D has an association with Y , the test statistic turns out
to be

F =
3231.62 + 920.458

(24 + 4− 2) 36.327
= 4.940,

and the resulting p-value equals 1− Fcdf26,69(4.940) < 0.0001.

For the null hypothesis that the factor C (test person) is superfluous, the test statistic turns out to
be

F =
3231.62

(24− 1) 36.327
= 3.868,

and the corresponding p-value equals 1− Fcdf23,69(3.868) < 0.0001.

Finally, for the null hypothesis that the factor D (word list) is superfluous, the test statistic has the
value

F =
920.458

(4− 1) 36.327
= 8.446

and the p-value equals 1− Fcdf3,69(8.446) < 0.0001.

Exercise 3.48. Consider once more the data set ‘Exam.txt’. Convert this into a data set with three
variables, namely, exam score (Y ), student (C ∈ {1, 2, . . . , 88}) and subject (D ∈ {1, 2, 3, 4, 5}).
Analyze your data with a suitable linear model.

Exercise 3.49 (Incomplete designs). In Example 3.46 we tacitly assumed that all group sizes njk
are strictly positive, a so-called complete design. However, in case of an additive model for the
contributions of the two factors, one may also consider data sets in which some combinations of
C and D are not represented, a so-called incomplete design. The dimension of the corresponding
model spaceM ⊂ Rn depends on the incidence matrix

1[n11>0] 1[n12>0] · · · 1[n1M>0]

1[n21>0] 1[n22>0] · · · 1[n2M>0]
...

...
...

1[nL1>0] 1[nL2>0] · · · 1[nLM>0]

 .

(a) Determine the dimension of the model spaceM for the following three incidence matrices:1 1 0
1 1 0
0 0 1

 ,
1 1 0

0 1 1
0 0 1

 ,
1 0 0

0 1 0
0 0 1

 .
(b) Show that the dimension of the model spaceM equalsM+L−1, provided that the following
conditions are satisfied:

• Each row and each column of the incidence matrix contains at least one entry 1.

• Let (j0, k0) and (j̃, k̃) be two different elements of

D :=
{

(j, k) : njk > 0
}
.

Then, there exists a sequence (j1, k1), (j2, k2), . . . , (jm, km) inD such that (jm, km) = (j̃, k̃) and
for 1 ≤ ` ≤ m, either j`−1 = j` or k`−1 = k`.
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Example 3.50 (Balanced two-way ANOVA). We consider the same setting as in Example 3.46,
assuming a complete, balanced design with group size no > 1. But now the general model
equation is

Yjks = fjk + εjks = µ+ aj + bk + hjk + εjks, 1 ≤ j ≤ L, 1 ≤ k ≤M, 1 ≤ s ≤ no,

with parameters µ ∈ R, a ∈ RL and b ∈ RM as in Example 3.46 and an additional matrix
h ∈ RL×M of interactions such that

(3.2) hj+ = 0 for 1 ≤ j ≤ L, h+k = 0 for 1 ≤ k ≤M.

The corresponding model space is now

M :=
{

(fjk)j,k,s : f ∈ RL×M
}

with dimension LM . This space can be written as the sum of the spaces M0,M1,M2 and the
additional space

M3 :=
{

(hjk)j,k,s : h ∈ RL×M satisfies (3.2)
}
.

One can easily verify that the four spacesM0,M1,M2,M3 are pairwise orthogonal, whence

dim(M3) = LM − L−M + 1 = (L− 1)(M − 1).

With the partial averages

Ȳjk· :=
1

no

no∑
s=1

Yjks

one can write

Y = Ŷ 0 + Ŷ 1 + Ŷ 2 + Ŷ 3 + ε̂

with Ŷ 0 ∈M0, Ŷ 1 ∈M2, Ŷ 2 ∈M2 as before, and

Ŷ 3 :=
(
Ȳjk· − Ȳj·· − Ȳ·k· + Ȳ

)
j,k,s

∈ M3,

ε̂ :=
(
Yjks − Ȳjk·

)
j,k,s

∈ M⊥.

Suppose we want to test the null hypothesis Ho that the influence of the factors C and D on Y is
purely additive. This is equivalent to all interactions being 0, that is,

Ho : h = 0.

The corresponding test statistic is

F =
‖Ŷ 3‖2

(L− 1)(M − 1) σ̂2

with distribution F(L−1)(M−1),n−LM under Ho.
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The connection between the geometrical and the former description of F tests. Recall that
in Section 3.5.3, we considered the null hypothesis

Ho : Ψ>θ = wo

for a given matrix Ψ ∈ Rp×d with rank d and a given vector wo ∈ Rd. At first, we would like
to get rid of the vector wo. For that purpose, we use a trick treated in Exercise 3.32: We choose
an arbitrary vector θo ∈ Rp such that Ψ>θo = wo, for instance, θo = Ψ(Ψ>Ψ)−1wo. Then
Ỹ := Y −Dθo satisfies the model equation

Ỹ = Dθ̃ + ε

with θ̃ := θ − θo, and Ψ>θ = wo if and only if Ψ>θ̃ = 0. Hence, we may assume without loss
of generality that wo = 0 and consider the null hypothesis

Ho : Ψ>θ = 0.

With µ = Dθ one can write

Ψ>θ = Ψ>Γ−1D>Dθ = Ψ>Γ−1D>µ = A>µ

with the matrix

A = DΓ−1Ψ ∈ Rn×d.

That means, the null hypothesis Ho is equivalent to

Ho : µ ∈M o

with the linear subspace

M o :=
{
y ∈M : A>y = 0

}
=
{
y ∈M : y ⊥ ARd

}
of M . Note that the d columns of A are linearly independent vectors in M . Consequently, its
column spaceARd is a d-dimensional subspace ofM . Hence,M o is the orthogonal complement
of ARd within M and has dimension po = p− d. Likewise, ARd is the orthogonal complement
of M o within M , that means, ARd = M ∩M⊥

o . In particular, the orthogonal projection onto
that space is given by the matrix1

H1 := A(A>A)−1A>

= DΓ−1Ψ (Ψ>Γ−1D>DΓ−1Ψ)−1 Ψ>Γ−1D>

= DΓ−1Ψ (Ψ>Γ−1Ψ)−1 Ψ>Γ−1D>

= DΓ−1Ψ ΓΨ Ψ>Γ−1D>.

1Note the analogous formula for the hat matrix H = D(D>D)−1D> describing the orthogonal projection onto
DRp.
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Consequently, the geometrical approach leads to the F test statistic

F =
‖H1Y ‖2/d

σ̂2

=
Y >H1Y

dσ̂2

=
Y >DΓ−1Ψ ΓΨ Ψ>Γ−1D>Y

dσ̂2

=
(Ψ>θ̂)>ΓΨ(Ψ>θ̂)

dσ̂2

= FΨ(0).

3.6 Alternative Simultaneous Confidence Intervals

Scheffé’s method is just one of several possibilities to construct simultaneous confidence intervals
for linear functions ψ>θ of the parameter, where ψ is running through a given set P ⊂ Rp \ {0}.
The general goal is to find a critical value

cα = cα,P

such that

IP
(∣∣ψ>θ̂ −ψ>θ∣∣ ≤ σ̂ψcα for all ψ ∈ P

)
≥ 1− α.

In other words, we may claim with confidence 1− α that

ψ>θ ∈
[
ψ>θ̂ ± σ̂ψcα

]
for all ψ ∈ P.

Scheffé’s method yields the critical value

cα =
√
dFd,n−p;1−α with d := dim(span(P)).

In what follows, we shall discuss two alternative methods.

3.6.1 The Bonferroni Method

Suppose that P is a finite set, that is,

q := #P < ∞.

We know already that

P
(∣∣ψ>θ̂ −ψ>θ∣∣ > σ̂ψtn−p;1−γ/2

)
= γ

for any vector ψ ∈ P and arbitrary numbers γ ∈ (0, 1). Consequently, if we define

cα := tn−p;1−(α/q)/2,
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then the simple Bonferroni inequality implies that

IP
(∣∣ψ>θ̂ −ψ>θ∣∣ ≤ σ̂ψcα for all ψ ∈ P

)
= 1− IP

(∣∣ψ>θ̂ −ψ>θ∣∣ > σ̂ψcψcα for at least one ψ ∈ P
)

≥ 1−
∑
ψ∈P

IP
(∣∣ψ>θ̂ −ψ>θ∣∣ > σ̂ψcα

)
= 1−

∑
ψ∈P

α/q

= 1− α.

Exercise 3.51 (Comparing Bonferroni and Scheffé’s method). The Bonferroni method is at least
as accurate as Scheffé’s method if

tn−p;1−(α/q)/2 ≤
√
dFd,n−p;1−α,

where q = #(P) and d = dim(span(P)). Write a computer program that returns for given values
of α, m = n− p and d the maximal integer q = q(d) such that the inequality above is satisfied.

Plot for some values of α and m the pairs (d, log10 q(d)) for a whole interval of dimensions d.

3.6.2 Tukey’s Method

The Bonferroni method is certainly conservative. But numerical examples and asymptotic con-
siderations show that in special cases it is often not too far from an exact method which has been
introduced by John W. Tukey in special ANOVA settings. We present here a generalization of
Tukey’s approach. For an arbitrary set P ⊂ Rp \ {0}, one considers the random variable

TP := sup
ψ∈P

|Tψ| = sup
ψ∈P

∣∣ψ>θ̂ −ψ>θ∣∣
σ̂ψ

.

The next lemma shows that TP is a pivotal statistic with continuous distribution.

Lemma 3.52. The distribution of TP is continuous and does not depend on θ or σ. Rather, TP
has the same distribution as

supψ∈P |b>ψZ|√
S2/(n− p)

with stochastically independent random variablesZ ∼ Np(0, I), S2 ∼ χ2
n−p, and the unit vectors

bψ := ‖Γ−1/2ψ‖−1Γ−1/2ψ ∈ Rp, ψ ∈ P.

In general, the distribution of TP is not a standard distribution. But it can be simulated easily
by refined Monte Carlo methods as explained in the appendix. In some special cases it can be
determined exactly or numerically. The critical value

cα := (1− α)-quantile of TP

satisfies the equation

IP
(∣∣ψ>θ̂ −ψ>θ∣∣ ≤ σ̂ψcα for all ψ ∈ P

)
= 1− α.
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Proof of Lemma 3.52. It follows from Theorem 3.15 that Z := σ−1Γ1/2(θ̂ − θ) and S2 :=

(n− p)σ̂2/σ2 are stochastically independent with Z ∼ Np(0, I) and S2 ∼ χ2
n−p. Moreover,

ψ>θ̂ −ψ>θ = σ (Γ−1/2ψ)>Z = σ‖Γ−1/2ψ‖ b>ψZ,

σ̂ψ = σ̂

√
ψ>Γ−1ψ = σ‖Γ−1/2ψ‖

√
S2/(n− p),

whence

TP =
supψ∈P |b>ψZ|√
S2/(n− p)

.

The enumerator W := supψ∈P |b>ψZ| of TP is no larger than ‖Z‖, and for any fixed ψo ∈ P , it
is no smaller than |b>ψo

Z|, the modulus of a standard Gaussian random variable. This shows that
TP > 0 almost surely. But for any fixed x > 0,

IP
(
TP = x

)
= IE IP

(
S2 = (n− p)W 2/x2

∣∣Z) = 0,

because S2 has a continuous distribution function. Consequently, the distribution of TP is contin-
uous.

Remark 3.53. If P = {ψ1, . . . ,ψq}, then TP has the same distribution as

max{|W1|, . . . , |Wq|}√
S2/(n− p)

with independent random variablesW ∼ Nq(0,R) and S2 ∼ χ2
n−p, where

Rjk :=
ψ>j Γ−1ψk√

ψ>j Γ−1ψj ψ
>
k Γ−1ψk

= Corr(ψ>j θ̂,ψ
>
k θ̂).

3.6.3 Examples of Simultaneous Confidence Regions

Let us start with a general remark about the Bonferroni method and Tukey’s method. Both are ad-
visable if one is interested primarily in simultaneous confidence bounds for given linear functions
ψ>θ, ψ ∈ P , of the parameter θ. As illustrated subsequently, these simultanous bounds also im-
ply simultaneous bounds for arbitrary ψ>θ with ψ ∈ span(P), although Scheffé’s method may
provide more accurate results for ψ 6∈ P .

Example 3.54 (Simple linear regression). Recall that

f̂(x) = Ȳ + b̂(x− X̄), b̂ = ‖X̃‖−2X̃
>
Y

with X̃ = X − X̄1, and for arbitrary x1, x2 ∈ R,

Cov
(
f̂(x1), f̂(x2)

)
= σ2γ(x1, x2) with γ(x1, x2) :=

1

n
+

(x1 − X̄)(x2 − X̄)

‖X̃‖2
.

We first focus on two different potential values x1 < x2 of X . We know that

P
(
f(xj) ∈

[
f̂(xj)± dα(xj)

]
for j = 1, 2

)
≥ 1− α,
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provided that
dα(xj) := σ̂(xj)tn−2;1−α/4

with
σ̂(xj) := σ̂

√
γ(xj , xj).

Alternatively,
P
(
f(xj) ∈

[
f̂(xj)± dα(xj)

]
for j = 1, 2

)
= 1− α,

provided that
dα(xj) := σ̂(xj)cα

with the (1− α)-quantile cα of the following random variable:

(3.3)
max{|W1|, |W2|}

(n− 2)−1/2S

with independent random variables S2 ∼ χ2
n−2 and

W ∼ N2

(
0,

[
1 ρ
ρ 1

])
, ρ =

γ(x1, x2)√
γ(x1, x1)γ(x2, x2)

.

In both cases, the two inequalities |f̂(xj) − f(xj)| ≤ dα(xj) lead to inequalities for f(x) at
arbitrary positions x ∈ R: We write

f̂(x)− f(x) = λ1(x)
(
f̂(x1)− f(x1)

)
+ λ2(x)

(
f̂(x2)− f(x2)

)
with

λ1(x) :=
x2 − x
x2 − x1

and λ2(x) :=
x− x1

x2 − x1
.

Then ∣∣f̂(x)− f(x)
∣∣ ≤ |λ1(x)|dα(x1) + |λ2(x)|dα(x2).

Numerical example. We consider once more the n = 51 observation pairs from Example 3.19.
Figure 3.7 shows the data and the estimator f̂ , together with simultaneous 95%-confidence inter-
vals for f via Scheffé’s method and via Tukey’s method. The bounds from Scheffé’s method are
given by

f̂(x)± σ̂(x)
√

2F2,49;0.95 ≈ f̂(x)± σ̂(x)
√

2 · 3.1866 ≈ f̂(x)± σ̂(x) · 2.5245.

Tukey’s method yields piecewise linear bounds, namely,

f̂(x)± (|λ1(x)|σ̂(x1) + |λ2(x)|σ̂(x2)) · κ̂0.95,

where κ̂0.95 is a Monte Carlo estimator of the 0.95-quantile of the random variable (3.3) with
n = 51. In the upper panel of Figure 3.7,

x1 = −0.1, x2 = 1.1, ρ ≈ −0.6119, and κ̂0.95 = 2.259.

In the lower panel,

x1 = 0.333, x2 = 0.667, ρ ≈ 0.5131, and κ̂0.95 = 2.276.
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Note that the Bonferroni method would use tn−2;1−α/4 = t49;0.9875 ≈ 2.3124 in place of κ̂0.95.

Interestingly, Scheffé’s method performs rather well in comparison with Tukey’s method. As
expected, for x close to x1 or x2, the Tukey intervals are a bit shorter than the Scheffé intervals,
but at other locations x, the Scheffé intervals are clearly more narrow.

Remark 3.55 (Extending finitely many bounds). The confidence bands in the previous example
can be generalized as follows: Let F = span(f1, . . . , fp) with basis functions fj : X → R. Let
x = (xj)

p
j=1 be a fixed tuple in X p such that the matrix

B :=
[
f1(x), . . . , fp(x)

]
∈ Rp×p

has full rank. The Bonferroni method or Tukey’s method yield constants d̂(xj) = σ̂(xj)cα, 1 ≤
j ≤ p, such that with confidence 1− α we may assume that∣∣f̂(xj)− f(xj)

∣∣ ≤ d̂(xj) for 1 ≤ j ≤ p.

Now, any function g ∈ F may be written as g =
∑p

k=1 ηkfk for some η ∈ Rp. In particular,
g(x) = Bη, so η = B−1g(x). Consequently, for any x ∈ X ,

g(x) =

p∑
k=1

ηkfk(x) =

p∑
k=1

p∑
j=1

(B−1)kjg(xj)fk(x) =

p∑
j=1

λj(x)g(xj)

with

λj(x) :=

p∑
k=1

(B−1)kjfk(x).

Applying this to g := f̂ − f shows that for arbitrary x ∈ X ,

∣∣f̂(x)− f(x)
∣∣ ≤ ∣∣∣ p∑

j=1

λj(x)
(
f̂(xj)− f(xj)

)∣∣∣ ≤ p∑
j=1

|λj(x)|d̂(xj).

In some settings, Tukey’s method involves the following new type of distributions.

Definition 3.56 (Studentized range). Let Z ∼ Nk(0, I) and S2 ∼ χ2
` be stochastically indepen-

dent. The distribution of

max(Z1, . . . , Zk)−min(Z1, . . . , Zk)√
S2/`

is called the studentized range distribution with parameters k and `. It is denoted with Qk,`, and
its β-quantile is denoted with Qk,`;β .

In R, the distribution and quantile function of Qk,` are available as

ptukey(·, nmeans = k, df = `) and qtukey(·, nmeans = k, df = `),

respectively.
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Figure 3.7: Simultaneous 95%-confidence bounds for f(x) in simple linear regression: Scheffé’s
method (red) and Tukey’s method with two starting points (blue).
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Example 3.57 (One-way ANOVA, Example 1.1). We use the blackboard-and-paper notation
from Section 2.6.4. That means, we observe

Yjs = fj + εjs, 1 ≤ j ≤ L, 1 ≤ s ≤ n(j),

with unknown parameters f1, . . . , fL ∈ R and independent random errors εjs ∼ N(0, σ2). Often,
one is interested mainly in the differences fj − fk, where 1 ≤ j < k ≤ L. With θ = (fj)

L
j=1 and

the standard basis e1, . . . , eL of RL, this corresponds to the family

P :=
{
ej − ek : 1 ≤ j < k ≤ L

}
.

It consists of L(L − 1)/2 vectors spanning the (L − 1)-dimensional space of all vectors v ∈ RL

such that v+ = 0. It follows from Scheffé’s method that with probability 1− α,

fj − fk ∈
[
Ȳj· − Ȳk· ± σ̂jk

√
(L− 1)FL−1,n−L;1−α

]
for 1 ≤ j < k ≤ L, where σ̂jk := σ̂

√
n(j)−1 + n(k)−1.

The Bonferroni method leads to the simultaneous confidence intervals[
Ȳj· − Ȳk· ± σ̂jktn−L;1−α/(L(L−1))

]
.

Tukey’s method is particularly easy to apply in the special case of a balanced design with group
sizes

n(1) = n(2) = · · · = n(L) = no.

If we define Zj := n
1/2
o (Ȳj· − fj)/σ and S2 := (n − L)σ̂2/σ2, then the random variables

Z1, . . . , ZL, S
2 are stochastically independent, where Zj ∼ N(0, 1) and S2 ∼ χ2

n−L. Moreover,
σ̂jk = σ̂

√
2/no, and thus

TP = max
1≤j<k≤L

∣∣Ȳj· − Ȳk· − fj + fk
∣∣

σ̂jk

= 2−1/2 max
1≤j<k≤L

|Zj − Zk|√
S2/(n− L)

= 2−1/2 max(Z1, . . . , ZL)−min(Z1, . . . , ZL)√
S2/(n− L)

.

Hence
√

2TP has the distribution QL,n−L of a studentized range with parameters L and n − L.
Hence, one may claim with confidence 1− α that

fj − fk ∈
[
Ȳj· − Ȳk· ± σ̂jk2

−1/2QL,n−L;1−α
]

=
[
Ȳj· − Ȳk· ± σ̂

√
1/noQL,(no−1)L;1−α

]
for 1 ≤ j < k ≤ L, where QL,n−L;1−α is the (1− α)-quantile of QL,n−L.

Table 3.1 contains for α = 0.05 and various combinations of L, no the three critical values

cScheffe
α :=

√
(L− 1)FL−1,(no−1)L;1−α,

cBonf
α := t(no−1)L;1−α/(L(L−1)),

cTukey
α := 2−1/2QL,(no−1)L;1−α.
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L no cScheffe
0.05 cBonf

0.05 cTukey
0.05

3 10 2.5901 2.5525 2.4795

5 10 3.2117 2.9521 2.8415

10 10 4.2274 3.3693 3.2445

3 50 2.4730 2.4217 2.3677

5 50 3.1039 2.8327 2.7483

10 50 4.1342 3.2803 3.1784

3 100 2.4602 2.4077 2.3556

5 100 3.0919 2.8197 2.7379

10 100 4.1236 3.2704 3.1710

Table 3.1: Some critical values for group comparisons in balanced one-way ANOVA.

Exercise 3.58. Let v ∈ RL be an unknown vector in RL. Suppose we only know that for some
constant d > 0,

|vk − vj | ≤ d for 1 ≤ j < k ≤ L.

Which bound can be deduced for ∣∣∣ L∑
j=1

ψjvj

∣∣∣,
if ψ is a given vector in RL such that

∑L
j=1 ψj = 0 ?

Exercise 3.59. Consider a one-way ANOVA with balanced design, that is, we observe Yjs =

fj +εjs, 1 ≤ j ≤ L and 1 ≤ s ≤ no, with unknown parameters f1, . . . , fL and independent errors
εjs ∼ N(0, σ2). With Tukey’s or the Bonferroni method we find a constant d̂ = σ̂

√
2/nocα > 0

such that with confidence 1− α, we may claim that

fj − fk ∈
[
f̂j − f̂k ± d̂

]
for 1 ≤ j < k ≤ L.

What can you claim about the quantities

fj −
1

L− 1

∑
k : k 6=j

fk, fj − max
k : k 6=j

fk, rank of fj within (fk)
L
k=1

for 1 ≤ j ≤ L?

Exercise 3.60 (Additive two-way ANOVA with balanced design). Suppose that we observe

Yjks = fj + bk + εijs, 1 ≤ j ≤ L, 1 ≤ k ≤M, 1 ≤ s ≤ no,

with unknown real parameters f1, . . . , fL and b1, . . . , bM such that
∑M

k=1 bk = 0, and with inde-
pendent random errors εjks ∼ N(0, σ2), where σ > 0 is unknown. Show how to apply Tukey’s
method and studentized range distributions to obtain simultaneous confidence intervals for the
so-called main contrasts fj − fj′ , 1 ≤ j < j′ ≤ L.

3.6.4 Comparison of the Methods

A precise and general comparison of the previous methods is impossible. But at least in asymptotic
frameworks with n− p tending to infinity, some comparisons are possible.
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Lemma 3.61 (Asymptotics of various quantiles). The student quantiles admit the following ap-
proximation:

t`;1−δ√
2 log(1/δ)

→ 1 as δ ↓ 0, `→∞ and
log(1/δ)

`
→ 0.

For fixed γ ∈ (0, 1), the γ-quantiles of the F distribution and the studentized range with parameters
k and ` satisfy

Fk,`;γ → 1 and
Qk,`;γ

2
√

2 log(k)
→ 1 as k, `→∞.

Before proving this lemma, let us show how to apply it. In some special settings such as balanced
one-way ANOVA or balanced two-way ANOVA one encounters the following situation: The pa-
rameter vector θ containsL ≥ 3 parameters f1, . . . , fL such that the corresponding Gauss-Markov
estimators f̂1, . . . , f̂L are stochastically independent with f̂j ∼ N(fj , σ

2γ) for some known con-
stant γ > 0. Now we are interested in simultaneous (1− α)-confidence intervals for the so-called
main contrasts fj − fk, 1 ≤ j < k ≤ L. These confidence intervals have the form[

f̂j − f̂k ± σ̂
√

2γ cα
]

with

cα =


√

(L− 1)FL−1,n−p;1−α (Scheffé),

tn−p;1−α/[L(L−1)] (Bonferroni),

2−1/2QL,n−p;1−α (Tukey).

Now, the expansions in Lemma 3.61 imply that as L→∞ and n− p→∞,

cα =


√
L (1 + o(1)) (Scheffé)

2
√

logL (1 + o(1)) (Bonferroni)

2
√

logL (1 + o(1)) (Tukey)

(where the expansion for the Bonferroni method requires that log(L)/(n − p) → 0). This shows
that Scheffé’s method is rather conservative in comparison with the Bonferroni or Tukey’s method,
while the latter two yield similar results.

Proof of Lemma 3.61. We consider stochastically independent random variables Z ∼ N(0, 1),
Z ∼ Nk(0, Ik) and T 2

` ∼ χ2
` . Since IE(T 2

` /`) = 1 and Var(T 2
` /`) = 2/`, it follows from the

Tshebyshev inequality that for arbitrary fixed ε > 0,

IP
(
T 2
` /` 6∈ [1± ε]

)
≤ 2/(`ε2).

Hence T 2
` /` converges to 1 in probability as ` → ∞. The same consideration applies to S2

k :=

‖Z‖2 ∼ χ2
k, so the random variable

F :=
S2
k/k

T 2
` /`

∼ Fk,`

satisfies
F →p 1 as k, `→∞.
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But this is equivalent to the statement that for any fixed γ ∈ (0, 1),

Fk,`;γ → 1 as k, `→∞.

It follows from Exercise 3.63 that
max(Z)√

2 log(k)
→p 1 as k →∞.

For symmetry reasons, min(Z) has the same distribution as −max(Z). Consequently, the range
max(Z)−min(Z) is equal to 2

√
2 log(k)(1 + op(1)) as k →∞. As a consequence, the random

variable
Q :=

max(Z)−min(Z)√
T 2
` /`

∼ Qk,`

satisfies
Q

2
√

2 log(k)
→p 1 as k, `→∞.

In particular, for any fixed γ ∈ (0, 1),

Qk,`;γ

2
√

2 log(k)
→ 1 as k, `→∞.

For the student quantiles we have to work a bit harder. With Y` :=
√
T 2
` /`, the ratio Z/Y` has

distribution t`. As shown in Exercise 3.13,

t`;1−δ > Φ−1(1− δ) for arbitrary δ ∈ (0, 1/2),

and in Exercise 3.63 it is shown that
Φ−1(1− δ)√

2 log(1/δ)
→ 1 as δ ↓ 0.

On the other hand, Exercise 3.62 implies that Φ(−x) ≤ exp(−x2/2)/2 for arbitrary x ≥ 0.
Hence,

IP(Z/Y` > t) = IE IP(Z > tY` |Y`) = IE Φ(−tY`) ≤ IE exp(−t2Y 2
` /2)/2.

It follows from Exercise 3.12 that

IE exp(λT 2
` ) = (1− 2λ)−`/2 for arbitrary λ < 1/2.

Setting λ = −t2/(2`), this leads to the inequality

IP(Z/Y` > t) ≤
(

1 +
t2

`

)−`/2/
2.

Now we choose t > 0 such that the right hand side equals δ. This yields the inequality

t`;1−δ ≤
√
`
(
(2δ)−2/` − 1

)
=

√
`

(
exp
(2 log(1/δ)− log 4

`

)
− 1

)
=
√(

2 log(1/δ)− log 4
)
(1 + o(1))

=
√

2 log(1/δ) (1 + o(1)) as δ ↓ 0,
log(1/δ)

`
→ 0,

because exp(x)− 1 = x(1 + o(1)) as x→ 0.
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Exercise 3.62. Show that the standard Gaussian distribution function Φ satisfies

φ(x)√
1 + x2/4 + x/2

≤ 1− Φ(x) ≤ φ(x)√
2/π + x2/4 + x/2

for x ≥ 0.

In particular, 1− Φ(x) ≤ exp(−x2/2)/2 for all x ≥ 0.

Hint: Consider the function ∆ := 1 − Φ − φ/h, where h(x) := x/2 +
√
c+ x2/4 for some

constant c > 0. Show that
∆′ =

φ

h2
(h′ − c).

Now, verify and use the fact that ∆(0) = 1/2− 1/
√

2πc whereas limx→∞∆(x) = 0.

Exercise 3.63. Show by means of Exercise 3.62 that

Φ−1(1− δ)

{
≤
√

2 log(1/δ)− log 4 for 0 < δ ≤ 1/2,

=
√

2 log(1/δ) (1 + o(1)) for δ ↓ 0.

Further, show that for independent, standard Gaussian random variables Z1, Z2, . . . , Zn and fixed
constants c ∈ [0, 2],

lim
n→∞

IP
(

max
i=1,2,...,n

Zi ≤
√
c log n

)
=

{
1 if c = 2,

0 if c < 2.

3.7 Non-Central F Distributions and Approximation Errors

To compute the power of an F test, i.e. the probability that it rejects the null hypothesis, one needs
non-central F distributions.

Definition 3.64 (Non-central chi-squared and F distributions). Let Z1, Z2, Z3, . . . be a sequence
of stochastically independent, standard Gaussian random variables, and let δ, δ̃ ≥ 0 be fixed num-
bers.

(a) The non-central chi-squared distribution with k degrees of freedom and non-centrality param-
eter (NCP) δ2 is defined as the distribution of

(Z1 + δ)2 + Z2
2 + · · ·+ Z2

k .

It is denoted with χ2
k(δ

2).

(b) The non-central F distribution with k and ` degrees of freedom and non-centrality parameters
(NCPs) δ2 and δ̃2 is defined as the distribution of

k−1
(
(Z1 + δ)2 + Z2

2 + · · ·+ Z2
k

)
`−1
(
(Zk+1 + δ̃)2 + Z2

k+2 + · · ·+ Z2
k+`

) .
It is denoted with the symbol Fk,`(δ

2, δ̃2).

Remark 3.65 (Moments of χ2
k(δ

2)). For a random variable S2 ∼ χ2
k(δ

2),

IE(S2) = k + δ2 and Std(S2) =
√

2k + 4δ2.
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This follows from writing

(Z1 + δ)2 + Z2
2 + · · ·+ Z2

k = k + δ2 +

k∑
i=1

(Z2
i − 1) + 2δZ1

and noting that the k + 1 random variables Z2
1 − 1, . . . , Z2

k − 1 and 2δZ1 are centered and uncor-
related with variance Var(Z2

i − 1) = 2, Var(2δZ1) = 4δ2. In particular,

S2

k + δ2
→p 1 as k + δ2 →∞.

A first example. Let Y be a random vector with distribution Nn(µ, In). Then,

‖Y ‖2 ∼ χ2
n

(
‖µ‖2

)
.

In particular, Remark 3.65 implies that

‖Y ‖2

n+ ‖µ‖2
→p 1 as n+ ‖µ‖2 →∞.

To verify this claim, let t1, t2, . . . , tn be an orthonormal basis of Rn such that µ = ‖µ‖t1. Then
Y has the same distribution as

µ+

n∑
i=1

Ziti = (Z1 + ‖µ‖)t1 +

n∑
i=2

Ziti

with independent, standard Gaussian random variables Z1, Z2, . . . , Zn. Consequently, ‖Y ‖2 =∑n
i=1(t>i Y )2 has the same distribution as

(Z1 + ‖µ‖)2 +
n∑
i=2

Z2
i ∼ χ2

n

(
‖µ‖2

)
.

Remark 3.66 (Stochastic orders with respect to NCPs). The distributions χ2
k(δ

2) and Fk,`(δ2, δ̃2)

are continuous and strictly increasing (in the sense of stochastic order) in δ ≥ 0. Furthermore,
Fk,`(δ

2, δ̃2) is continuous and strictly decreasing (in the sense of stochastic order) in δ̃ ≥ 0.
More precisely, let Tδ and Uδ,δ̃ be the random variables described in Definition 3.64 (a) and (b),
respectively. For an arbitrary threshold c > 0, both probabilities IP(Tδ ≤ c) and IP(Uδ,δ̃ ≤ c)

are a continuous and strictly decreasing function of δ ≥ 0 with limit 0 as δ → ∞. Furthermore,
IP(Uδ,δ̃ ≤ c) is a continuous and strictly increasing function of δ̃ ≥ 0 with limit 1 as δ̃ →∞.

Exercise 3.67. Let Z be a standard Gaussian random variable. For δ ∈ R and r ≥ 0 let

h(δ, r) := IP
(
(Z + δ)2 ≤ r

)
.

Show that h : R× [0,∞) is a continuous function with h(·, 0) ≡ 0, where h(−δ, r) = h(δ, r) > 0

for r > 0. Further, show that for fixed r > 0, h(δ, r) is strictly decreasing in δ ≥ 0 with limit 0 as
δ →∞.

Prove Remark 3.66 by conditioning on all random variables Zi, except Z1 or Zk+1.
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Application to F tests. Now let us consider a random vector

Y = µ+ ε

with an unknown mean vector µ ∈ Rn an an unobserved random error ε ∼ Nn(0, σ2I). For given
linear spacesM o ⊂M ⊂ Rn with dimensions po < p < n, we want to test

Ho : µ ∈M o versus HA : µ ∈M \M o.

With the corresponding projection matricesHo andH , recall the F test statistic

F =
‖HY −HoY ‖2/(p− po)
‖Y −HY ‖2/(n− p)

.

Under the null hypothesis Ho, this test statistic has an F distribution with p− po and n− p degress
of freedom. The following theorem specifies its distribution in the general case, without any
assumptions on µ.

Theorem 3.68. The test statistic F has distribution Fp−po,n−p(δ
2, δ̃2), where

δ :=
‖Hµ−Hoµ‖

σ
and δ̃ :=

‖µ−Hµ‖
σ

.

Remark 3.69. Note that Theorem 3.68 does not assume that µ ∈ M . In fact, one may re-
interpret the F test as a test of

Ho : Hµ ∈M o versus HA : Hµ ∈M \M o.

Under this null hypothesis, F has distribution Fp−po,n−p(0, δ̃
2) with δ̃ = ‖µ−Hµ‖/σ. This fact

and Remark 3.66 imply that under Ho,

IP(Ho is rejected) = IP(F ≥ Fp−po,n−p;1−α) ≤ α,

with equality if and only if µ = Hµ, i.e. µ ∈M .

Remark 3.70 (Power of the F test). Under the usual assumption that µ ∈M (i.e. µ = Hµ), the
test statistic F follows Fp−po,n−p(δ

2, 0), where δ = ‖µ−Hoµ‖/σ. If we denote the distribution
function of Fp−po,n−p(δ

2, 0) temporarily with Gδ(·), then

IP(Ho is rejected) = IP(F ≥ Fp−po,n−p;1−α)

= 1−Gδ(Fp−po,n−p;1−α)


= α if δ = 0,

> α if δ > 0,

→ 1 as δ →∞.

Proof of Theorem 3.68. We just refine the proof of Theorem 3.37. We choose an orthonormal
basis t1, t2, . . . , tn of Rn such that

M o = span(t1, . . . , tpo),

M = span(t1, . . . , tp),

Hµ−Hoµ = ‖Hµ−Hoµ‖ tpo+1 = σδ tpo+1,

µ−Hµ = ‖µ−Hµ‖ tp+1 = σδ̃ tp+1.
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With the random vector Z := σ−1
(
t>i ε

)n
i=1
∼ Nn(0, In) we can write

Y = µ+ σ
n∑
i=1

Ziti

and may conclude that

σ−1(HY −HoY ) = (Zpo+1 + δ)tpo+1 + Zpo+2tpo+2 + · · ·+ Zptp,

σ−1(Y −HY ) = (Zp+1 + δ̃)tp+1 + Zp+2tp+2 + · · ·+ Zntn.

Hence,

F =

(
(Zpo+1 + δ)2 + Z2

po+2 + · · ·+ Z2
p

)
/(p− po)(

(Zp+1 + δ̃)2 + Z2
p+2 + · · ·+ Z2

n

)
/(n− p)

∼ Fp−po,n−p(δ
2, δ̃2),

by definition of the non-central F distributions.

Representing χ2
k(δ

2) and Fk,`(δ2, δ̃2) as Poisson mixtures. As shown in Exercise 3.71 below,
non-central chi-squared distributions may be represented as mixtures of ordinary chi-squared dis-
tributions. Precisely,

(3.4) χ2
k(δ

2) =

∞∑
j=0

e−λ
λj

j!
· χ2

k+2j with λ := δ2/2.

The probability weights e−λλj/j! on the right hand side are the weights of the Poisson distribution
Poiss(λ).

In other words, let N,Z1, Z2, Z3, . . . be stochastically independent random variables, where N ∼
Poiss(δ2/2) and Zi ∼ N(0, 1). Then χ2

k(δ
2) is the distribution of

k+2N∑
i=1

Z2
i .

Similarly, let N,Z1, Z2, Z3, . . . and Ñ , Z̃1, Z̃2, Z̃3, . . . be stochastically independent random vari-
ables such that N ∼ Poiss(δ2/2), Ñ ∼ Poiss(δ̃2/2) and Zi, Z̃i ∼ N(0, 1). Then Fk,`(δ2, δ̃2) is
the distribution of

k−1
∑k+2N

i=1 Z2
i

`−1
∑`+2Ñ

j=1 Z̃2
i

.

Exercise 3.71 (Non-central χ2 distributions). (a) We have verified in Exercise 3.12 that for Z ∼
N(0, 1) and t < 1/2,

IE exp(tZ2) = (1− 2t)−1/2.

Show that for arbitrary δ ∈ R and t < 1/2,

IE exp
(
t(Z + δ)2

)
= (1− 2t)−1/2e−λ exp

( λ

1− 2t

)
with λ := δ2/2.

(b) Deduce from part (a) and Remark 3.11 the Poisson representation in (3.4).
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Confidence bounds for approximation errors. In many applications, the conclusion that a
simplified model (M o) is not entirely correct is not very surprising. Nevertheless it is possible
that the distance between µ and M o is irrelevant for practical purposes. Moreover, even if the F
test does not reject the null hypothesis that µ ∈M o, there is no evidence for the null hypothesis to
be true. A potential remedy for both problems are confidence bounds for the standardized distance

δ =
‖µ−Hoµ‖

σ
.

Let us assume that µ ∈ M . Then our test statistic F has distribution Fp−po,n−p(δ
2, 0), and its

distribution function is denoted by Gδ. That means,

Gδ(r) = IP(F ≤ r).

According to Remark 3.66, for any fixed r > 0, Gη(r) is a continuous and strictly decreasing
function of η ≥ 0 with limit 0 as η → ∞. Moreover, Gδ(F ) is uniformly distributed on [0, 1].
Consequently, for α ∈ (0, 1),

1− α =


IP(Gδ(F ) ≤ 1− α),

IP(Gδ(F ) ≥ α),

IP
(
Gδ(F ) ∈ [α/2, 1− α/2]

)
.

Solving the inequalities for Gδ(F ) on the right hand side for δ ≥ 0, we obtain the following
confidence regions for δ:

• The lower (1− α)-confidence bound

aα(F ) := min
{
η ≥ 0 : Gη(F ) ≤ 1− α

}{
= 0 if G0(F ) ≤ 1− α,
= unique η > 0 such that Gη(F ) = 1− α if G0(F ) > 1− α,

• the upper (1− α)-confidence bound

bα(F ) := min
{
η ≥ 0 : Gη(F ) ≤ α

}{
= 0 if G0(F ) ≤ α,
= unique η > 0 such that Gη(F ) = α if G0(F ) > α,

• the (1− α)-confidence interval [
aα/2(F ), bα/2(F )

]
.

Note that 1−G0(F ) is our p-value for the null hypothesis “µ ∈M o”. Thus, the lower (1− α)-
confidence bound aα(F ) is strictly positive if and only if this p-value is strictly smaller than α.

Exercise 3.72. Consider a one-way ANOVA with balanced design. That is, we observe

Yjs = fj + εjs, 1 ≤ j ≤ L, 1 ≤ s ≤ no,

with unknown parameters f1, f2, . . . , fL and independent random errors εjs ∼ N(0, σ2).
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(a) Specify the distribution of the test statistic F for the null hypothesis

Ho : f1 = f2 = · · · = fL.

In particular, provide an explicit expression for the NCP δ2.

(b) Sketch the distribution function Gδ(·) = IP(F ≤ ·) for δ ∈ {0, 1, 2, 3}, L = 5 and no = 20.

(c) Sketch for L = 5, no = 20 and α = 0.05 the power function

δ 7→ IP(F > FL−1,L(no−1);1−α).

(d) Suppose you obtain F = 1.2 in the previous setting. Determine an upper 95%-confidence
bound for the parameter σ−1

√∑L
j=1(fj − f̄)2.

Exercise 3.73. How could one combine the confidence bounds for δ = ‖µ−Hµ‖/σ and for σ
to obtain confidence bounds for the approximation error ‖µ−Hµ‖?

Exercise 3.74. Suppose that we apply the confidence bound aα(Y ) or bα(Y ) for ‖µ−Hoµ‖/σ
to an observation vector Y ∼ Nn(µ, σ2In), where µ need not be in M . Is any of the two
bounds still a (1− α)-confidence bound for the modified parameter δ = ‖Hµ−Hoµ‖/σ, while
δ̃ = ‖µ−Hµ‖/σ is an unknown nuisance parameter?

3.8 Calibration

For the sake of simplicity, we discuss the calibration problem only in the context of simple linear
regression. That means, we consider generic observations (X,Y ) ∈ R× R such that

Y = a+ bX + ε

with unknown parameters a and b 6= 0 and a random measruement error ε. Here, we think about
X being a quantity of interest which may be measured exactly with an expensive method, while
Y is an indirect measurement which is relatively easy to obtain.

Data generation and analysis consists of two separate parts:

Calibration phase. In the first phase, calibration (or training) data D, consisting of (X1, Y1),
(X2, Y2), . . . , (Xn, Yn) are obtained. We assume that these n pairs are stochastically independent
and satisfy

Yi = a+Xi + εi, 1 ≤ i ≤ n,

with fixed values Xi and independent errors ε1, ε2, . . . , εn ∼ N(0, σ2). The calibration data are
used to estimate the unknown parameters a, b and σ > 0.

Prediction phase. Later on, we are dealing with one or several pairs (Xo, Yo), where only Yo
is observed. By means of D and Yo, we would like to estimate the value of Xo or compute a
confidence region for Xo, assuming that

Yo = a+ bXo + εo with εo ∼ N(0, λσ2).
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Here, λ ∈ (0, 1] is a given scaling factor. For instance, λ = 1/m, if Yo is the average of m
independent measurements for the same Xo.

Note that ε1, ε2, . . . , εn and εo are considered as independent random variables, while X1, X2,
. . . , Xn and Xo are treated as fixed numbers.

Point estimation. A natural estimator for Xo would be

X̂o =
Yo − â
b̂

= X̄ +
Yo − Ȳ
b̂

.

It results from solving the approximate equation Yo ≈ â+ b̂Xo = Ȳ + b̂(Xo − X̄) for Xo.

Instead of the point estimator X̂o we would like to compute a confidence interval C(D, Yo) for
Xo. A first and commonly used confidence interval is

C(D, Yo) :=
[Yo ± σ̂

√
λΦ−1(1− α/2)− â

b̂

]
=
[
X̄ +

Yo − Ȳ ± σ̂
√
λΦ−1(1− α/2)

b̂

]
.

It is motivated by the fact that with probability 1−α, the unknown value Xo satisfies the inequal-
ities

|Yo − a− bXo| = |εo| ≤
√
λσΦ−1(1− α/2).

Hence, we rely on (â, b̂, σ̂) being sufficiently close to the true triple (a, b, σ), so the uncertainty
about Xo is mainly due to the variability of Yo. However, if we want to take into account the
uncertainty of (â, b̂, σ̂), there are two different points of view.

Single-use confidence regions. Let us first consider only one pair (Xo, Yo). Our requirement is
that

IP
(
Xo ∈ C(D, Yo)

)
≥ 1− α

for arbitrary values of a, b, σ and Xo. Here, the randomness in D as well as in Yo is taken into
account.

The standard recipe, computing a point estimator for Xo plus or minus a certain constant times
a standard error, would only work approximately. Instead we resort to the inversion of tests,
similarly as in Example 3.22. To this end, we consider the random variable

Yo − â− b̂Xo = Yo − Ȳ − b̂(Xo − X̄)

= εo − ε̄− (̂b− b)(Xo − X̄).

With Q :=
∑n

i=1(Xi − X̄)2, the random variables εo, ε̄ and b̂ − b =
∑n

i=1 εi(Xi − X̄)/Q

are stochastically independent and Gaussian with mean 0 and variances λσ2, σ2/n and σ2/Q,
respectively. Consequently,

Yo − â− b̂Xo ∼ N

(
0, σ2

(
λ+

1

n
+

(Xo − X̄)2

Q

))
.
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Moreover, this random variable and σ̂ are stochastically independent. Hence for x ∈ R,

T (x) :=
Yo − â− b̂x

σ̂
√
λ+ 1/n+ (x− X̄)2/Q

=
Yo − Ȳ − b̂(x− X̄)

σ̂
√
λ+ 1/n+ (x− X̄)2/Q

defines a test statistic for the null hypothesis that Xo = x, and

T (Xo) ∼ tn−2.

Hence, a (1− α)-confidence region for Xo is given by

Cα(D, Yo) :=
{
x ∈ R : |T (x)| ≤ tn−2;1−α/2

}
.

Elementary algebra reveals that the inequality |T (x)| ≤ tn−2;1−α/2 is equivalent to the quadratic
inequality

(3.5) (̂b2 − c2/Q)(x− X̄)2 − 2b̂(Yo − Ȳ )(x− X̄) ≤ ĉ2
α(λ+ 1/n)− (Yo − Ȳ )2,

where
ĉα := σ̂ tn−2;1−α/2.

Typically, b̂2 > ĉ2
α/Q, which is equivalent to the student test of “b = 0” giving a p-value strictly

smaller than α. Then, the inequality (3.5) may be solved for x, and we obtain the following
(1− α)-confidence interval for Xo:

Cα(D, Yo) =

[
X̄ +

b̂(Yo − Ȳ )

b̂2 − ĉ2
α/Q

±
ĉα

√
(λ+ 1/n)(̂b2 − c2/Q) + (Yo − Ȳ )2/Q

b̂2 − c2/Q

]
.

Multiple-use confidence intervals. Often the calibration data D are used for inference about
many future pairs (Xo, Yo). In this case it is appropriate to consider the minimal conditional
coverage probability of a confidence region C(D, Yo) for Xo, given the calibration data D. That
means, we are wondering about the value of

(3.6) inf
Xo∈R

IP
(
Xo ∈ C(D, Yo)

∣∣D).
If the latter quantity is at least 1 − α, one can guarantee that, in the long run, for at most α ·
100 percent of future pairs (Xo, Yo), the resulting confidence region C(D, Yo) fails to cover Xo.
Unfortunately, the infimum (3.6) is a random variable, and we cannot exclude calibration data D
of low quality, resulting in poor estimators of a, b and σ.

However, it is feasible to construct confidence intervals C(D, Yo) such that with given confidence
1 − β, the minimal conditional coverage probability (3.6) is at least 1 − α. Here is an explicit
recipe to construct C(D, Yo):

Step 1: We start with an upper confidence bound for σ, namely,

σ := σ̂

√
n− 2

χ2
n−2;γ1
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for some γ1 ∈ (0, 1). That means,

IP (σ ≤ σ) = 1− γ1,

because the random variable (n− 2)σ̂2/σ2 has distribution χ2
n−2.

Step 2: Let us assume temporarily that σ > 0 was known. Then we could adapt Scheffé’ s method
and claim with confidence 1− γ2 that∣∣f̂(x)− f(x)

∣∣ ≤ σ
√

1/n+ (x− X̄)2/Q
√
χ2

2;1−γ2 for all x ∈ R.

Since f̂(·) and σ̂ are stochastically independent, we may conclude that

IP
(
σ ≤ σ and f(x) ∈

[̂̀(x), û(x)
]

for all x ∈ R
)
≥ (1− γ1)(1− γ2),

where [̂̀(x), û(x)
]

:=
[
f̂(x) ± σ

√
1/n+ (x− X̄)2/Q

√
χ2

2;1−γ2

]
.

For suitable parameters γ1, γ2, the bound (1−γ1)(1−γ2) equals 1−β, for instance, if γ1 = γ2 =

1−
√

1− β.

Step 3: Note that

IP
(
Yo ∈

[
f(Xo)± λ1/2σΦ−1(1− α/2)

])
= 1− α,

and with probability at least 1− β,[
f(x)± λ1/2σΦ−1(1− α/2)

]
⊂
[̂̀(x)− λ1/2σΦ−1(1− α/2), û(x) + λ1/2σΦ−1(1− α/2)

]
for any x ∈ R. Hence the confidence region

C(D, Yo) :=
{
x ∈ R : Yo ∈

[̂̀(x)− λ1/2σΦ−1(1− α/2), û(x) + λ1/2σΦ−1(1− α/2)
]}

has the desired properties. Its explicit computation amounts to solving two quadratic inequalities,
and it is a compact interval, provided that b̂2 > σ2χ2

2;1−γ2/Q.

3.9 Random Effects

In certain applications, it is appropriate to view some components of θ as random variables. In the
present section, we describe two particular examples of such models with random effects.

One-way ANOVA. Starting from X ∈ {1, 2, . . . , L}, our model equation (in blackboard-and-
paper notation) was:

Yjs = µ+ aj + εjs, 1 ≤ j ≤ L, 1 ≤ s ≤ n(j),

where a+ = 0, say.
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Specifically, one could think about L different test persons who participate in a certain perfor-
mance test once or several times. In the model equation above, Yjs would be the measure of
performance of the j-th test person in its s-th trial. The parameter aj describes the the average
performance of person j in comparison with the other L− 1 persons in this study. However, if we
view the L test persons as a random sample from a larger population of individuals, one should
rather consider the following model:

Yjs = µ+Aj + εjs, 1 ≤ j ≤ L, 1 ≤ s ≤ n(j),

with L+ n stochastically independent random variables Aj and εjs, where

Aj ∼ N(0, σ2
A) and εjs ∼ N(0, σ2).

Now, µ stands for the average performance of an individual from the population, σA quantifies
the person-to-person variation of performance, and σ quantifies the random fluctuations of one
person’s performance over time.

The null hypothesis that a = 0, corresponds now to the null hypothesis that σA = 0. But often,
the insight that σA > 0 is not very surprising. More interesting would be confidence bounds for
σA or σA/σ. At least in case of a balanced design, such bounds can be computed quite easily.
From now on we assume that

n(1) = n(2) = · · · = n(L) = no.

In this case,

Ȳj· = µ+Aj + ε̄j· and Ȳ = µ+ Ā+ ε̄

with Ā = L−1
∑L

j=1Aj . Here,

SSwithin =
∑
j,s

(Yjs − Ȳj·)2 =
∑
j,s

(εjs − ε̄j·)2

and

SSbetween =
∑
j,s

(Ȳj· − Ȳ )2 = no
∑
j

(Vj − V̄ )2

with

Vj := Aj + ε̄j· ∼ N
(
0, σ2

A + σ2/no
)
.

The random variables V1, V2, . . . , VL and (εjs − ε̄j·)j,s are centered, uncorrelated, and their joint
distribution is Gaussian. Thus they are independent, and this implies that SSbetween and SSwithin

are stochastically independent, where

SSbetween

noσ2
A + σ2

∼ χ2
L−1 and

SSwithin

σ2
∼ χ2

n−L.

This implies that the standard F test statistic

F =
SSbetween/(L− 1)

SSwithin/(n− L)
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satisfies the relation
F

no(σA/σ)2 + 1
∼ FL−1,n−L.

This implies confidence bounds for the ratio σA/σ. On the one hand, with probability 1− α,

F ≤ [no(σA/σ)2 + 1]FL−1,n−L;1−α,

and the latter inequality is equivalent to

σA/σ ≥

√( F

FL−1,n−L;1−α
− 1
)+/

no.

On the other hand, with probability 1− α,

F ≥ [no(σA/σ)2 + 1]FL−1,n−L;α,

and this leads to the upper (1− α)-confidence bound√( F

FL−1,n−L;α
− 1
)+/

no

for σA/σ.

Two-way ANOVA: Cross classification without interactions, balanced design. Starting from
covariables C ∈ {1, . . . , L} and D ∈ {1, . . . ,M}, we considered the model equation

Yjks = µ+ aj + bk + εjks, 1 ≤ j ≤ L, 1 ≤ k ≤M, 1 ≤ s ≤ no,

where a+ = b+ = 0.

In the specific Example 3.47, it might be appropriate to view the test persons as random sample
from a population. This leads to a mixed model with the random effect “test person” and the fixed
effect “word list”.

Generally, let

Yjks = µ+Aj + bk + εjks, 1 ≤ j ≤ L, 1 ≤ k ≤M, 1 ≤ s ≤ no,

with independent random variables Aj ∼ N(0, σ2
A), εjks ∼ N(0, σ2), and unknown parameters

µ ∈ R, b ∈ RM , where b+ = 0. Here,

Ȳj·· = µ+Aj + ε̄j··,

Ȳ·k· = µ+ Ā+ bk + ε̄·k·,

Ȳ = µ+ Ā+ ε̄.

This implies that the F test of the null hypothesis “b = 0” remains the same, because under the
null hypothesis, the residual array ε̂ as well as the array Ŷ 2 =

(
Ȳ·k· − Ȳ

)
j,k,s

depend only on ε.
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Now, let us investigate the F test statistic for the null hypothesis “a = 0” or “σA = 0”:

F =
(L− 1)−1

∑
j,k,s(Ȳj·· − Ȳ )2

(n− L−M + 1)−1
∑

j,k,s(Yjks − Ȳj·· − Ȳ·k· + Ȳ )2

=
(L− 1)−1Mno

∑
j(Vj − V̄ )2

(n− L−M + 1)−1
∑

j,k,s(εjks − ε̄j·· − ε̄·k· + ε̄)2

with Vj := Aj + ε̄j·· ∼ N(0, σ2
A + σ2/(Mno)). Here one can verify that

F

Mno(σA/σ)2 + 1
∼ FL−1,n−L−M+1.

Again, this fact leads to confidence bounds for the ratio σA/σ with given confidence level.

Exercise 3.75. Compute for Example 3.47 a lower 95%-confidence bound for σA/σ in the fol-
lowing mixed model:

Yjk = Aj + gk + εjk, 1 ≤ j ≤ 24, 1 ≤ k ≤ 4,

with independent random variables Aj ∼ N(0, σ2
A), εjk ∼ N(0, σ2), and unknown parameters

g ∈ R4 and σA ≥ 0, σ > 0.

3.10 A Data-Scientific Interpretation of F-Tests

We end this chapter with a somewhat unusual view towards linear least squares regression. This
part is based on a recent discussion paper of Dümbgen and Davies (2025). So far, we considered
the observed data as realisations of random variables with certain properties. In some settings,
however, it is not so clear whether such a model is justified. For instance, the Boston Housing Data
which we looked at earlier describe about five hundred houses that had been on the market in a
particular time period. Should these data be considered as a random subset of some population? If
yes, which population, and is it realistic to treat the given subset as if it had been drawn completely
at random?

Alternatively, one could use linear regression to describe ostensible associations between a certain
response vector Y ∈ Rn and a covariate vector X ∈ X n in a purely exploratory fashion, treating
the data Y and X as fixed. Specifically, let us review the F test in such a context. As in previous
sections, we describe the potential association betweenX and Y by means of a design matrix

D = [D1,D2, . . . ,Dp]

of full rank p < n, whereDj = fj(X) for certain functions f1, . . . , fp : X → R. The question is
whether the approximation of Y by

Ŷ = D(D>D)−1D>,

is “substantially better” than the the approximation by

Ŷ o = Do(D
>
oDo)

−1D>o , Do := [D1,D2, . . . ,Dpo ],
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where 0 ≤ po < p, and Ŷ o = 0 in case of po = 0. How could one specify “substantially
better” in case of fixed data? One possibility is to compare the approximation of Y via Ŷ with
the approximation via

Ŷ ∗ := D∗(D
>
∗D∗)

−1D>∗ ,

where

D∗ := [D1,D2, . . . ,Dpo , Z1, . . . ,Zp−po ]

with stochastically independent random vectorsZ1, . . . ,Zp−po ∼ Nn(0, In). Instead of standard
Gaussian distributions one could use other distributions for the Zj ; the only important feature is
that Zj 6= 0 almost surely and thatBZj

d
= Zj for any orthogonal matrixB ∈ Rn×n, where “ d=”

means “is distributed as”. Now we define a model-free p-value

IP
(
‖Y − Ŷ ∗‖ ≤ ‖Y − Ŷ ‖

)
.

Note that the only randomness comes from the artificial columns Zj of D∗. This p-value is
the probability that replacing the given colums Dpo+1, . . . ,Dp with Z1, . . . ,Zp−po leads to a
fit which is at least as good as the original one. The smaller it is, the higher is the relevance of
Dpo+1, . . . ,Dp.

In fact, one can compute this model-free p-value explicitly: If Y 6= Ŷ o, then

(3.7) IP
(
‖Y − Ŷ ∗‖ ≤ ‖Y − Ŷ ‖

)
= Bcdf(n−p)/2,(p−po)/2

( ‖Y − Ŷ ‖2
‖Y − Ŷ o‖2

)
,

where Bcdfa,b denotes the distribution function of the beta distribution with parameters a, b > 0.
(The precise definition will be given later.) Surprisingly, this p-value coincides with the model-
based p-value

(3.8) 1− Fcdfp−po,n−p

(‖Ŷ − Ŷ o‖2/(p− po)
σ̂2

)
which we derived earlier. Thus our model-based p-value has a new model-free interpretation
without the need to justify model assumptions such as homoscedastic, centered Gaussian errors!

Proof that (3.7) and (3.8) coincide. Let us first recall the definition of Beta(a, b), the beta dis-
tribution with parameters a, b > 0. This is a probability distribution on (0, 1) with density
fa,b(u) := B(a, b)−1ua−1(1 − u)b−1, where B(a, b) :=

∫ 1
0 u

a−1(1 − u)b−1 du. One can show
that Beta(a, b) describes the distribution ofGa/(Ga+Gb) with stochastically independent random
variables Ga ∼ Gamma(a, c) and Gb ∼ Gamma(b, c), where c > 0 is arbitrary. In particular,
since χ2

k = Gamma(k/2, 2), the distribution Beta
(
(n− p)/2, (p− po)/2

)
describes the distribu-

tion of T 2/(T 2 + S2) with independent random variables S2 ∼ χ2
p−po and T 2 ∼ χ2

n−p. But then
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it follows from the Pythagoras identity ‖Y − Ŷ o‖2 = ‖Y − Ŷ ‖2 + ‖Ŷ − Ŷ o‖2 that

Bcdf(n−p)/2,(p−po)/2

( ‖Y − Ŷ ‖2
‖Y − Ŷ o‖2

)
= IP

( T 2

T 2 + S2
≤ ‖Y − Ŷ ‖2

‖Y − Ŷ ‖2 + ‖Ŷ − Ŷ o‖2
)

= IP
( 1

1 + S2/T 2
≤ 1

1 + ‖Ŷ − Ŷ o‖2/‖Y − Ŷ ‖2
)

= IP
(S2

T 2
≥ ‖Ŷ − Ŷ o‖

2

‖Y − Ŷ ‖2
)

= IP
(S2/(p− po)
T 2/(n− p)

≥ ‖Ŷ − Ŷ o‖
2/(p− po)
σ̂2

)
= 1− Fcdfp−po,n−p

(‖Ŷ − Ŷ o‖2/(p− po)
σ̂2

)
,

by definition of F distributions.

Proof of (3.7). It suffices to show that

‖Y − Ŷ ∗‖2

‖Y − Ŷ o‖2
∼ Beta

(
(n− p)/2, (p− po)/2

)
.

It follows from the Pythagoras identity ‖Y − Ŷ o‖2 = ‖Y − Ŷ ∗‖2 + ‖Ŷ ∗ − Ŷ o‖2 that

‖Y − Ŷ ∗‖2

‖Y − Ŷ o‖2
= 1− ‖Ŷ ∗ − Ŷ o‖

2

‖Y − Ŷ o‖2
.

Consequently, since B ∼ Beta(a, b) is equivalent to 1−B ∼ Beta(b, a), it suffices to show that

‖Ŷ ∗ − Ŷ o‖2

‖Y − Ŷ o‖2
∼ Beta

(
(p− po)/2, (n− p)/2

)
.

Without loss of generality we may assume that po = 0 and Ŷ o = 0. Indeed, if po > 0, let Ho

describe the orthogonal projection from Rn onto the linear spanM o of the vectorsD1, . . . ,Dpo .
With Ỹ := Y −Ŷ o = Y −HoY and Z̃j := Zj−HoZj , the random vector Ŷ ∗ is the orthogonal
projection of Y onto

span(D1, . . . ,Dpo ,Z1, . . . ,Zp−po) = M o + span(Z̃1, . . . , Z̃p−po),

and the latter two spaces are orthogonal. Thus, Ŷ ∗ is equal to Ŷ o plus the orthogonal projection
of Ỹ ∈ M⊥

o onto the random linear subspace span(Z̃1, . . . , Z̃p−po) of M⊥
o . In other words,

Ŷ ∗ − Ŷ o coincides with the orthogonal projection of Ỹ onto span(Z̃1, . . . , Z̃p−po). But note
that Z̃1, . . . , Z̃p−po are independent with standard Gaussian distribution onM⊥

o , that is, ṽ>Z̃j ∼
N(0, ‖ṽ‖2) for arbitrary ṽ ∈M⊥

o . Thus we may replace Rn with its linear subspaceM⊥
o .

In the case of po = 0, the claim reads

‖Ŷ ∗‖2

‖Y ‖2
∼ Beta

(
p/2, (n− p)/2

)
.
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With the unit vector U := ‖Y ‖−1‖Y ‖, the left-hand side equals

T (U ,D∗) := U>D∗(D
>
∗D∗)

−1D>∗ U .

The distribution of T (U ,D∗) does not depend on U . Indeed, any other unit vector V ∈ Rn may
be written as V = B>U for some orthogonal matrix B. With D� := BD∗ it follows from
D>�D� = D>∗D∗ that

T (U ,D∗) = V >D�(D
>
∗D∗)

−1D>� U = T (V ,D�).

But D� has the same distribution as D∗ by spherical symmetry of the standard Gaussian dis-
tribution. Consequently, we may replace the fixed unit vector U with the random unit vector
‖Z‖−1Z, where Z follows a standard Gaussin distribution and is independent from the columns
ofD∗ = [Z1, . . . ,Zp]. Consequently, we want to show that

‖Z‖−2Z>D∗(D
>
∗D∗)

−1D>∗ Z ∼ Beta
(
p/2, (n− p)/2

)
.

To this end, we condition on the matrix D∗. Let b1, . . . , bn be an orthonormal basis of Rn such
that span(b1, . . . , bp) = span(Z1, . . . ,Zp). Then D∗(D

>
∗D∗)

−1D>∗ =
∑p

i=1 bib
>
i and In =∑n

k=1 bkb
>
k , whence

‖Z‖−2Z>D∗(D
>
∗D∗)

−1D>∗ Z =

p∑
i=1

(b>i Z)2
/ n∑
k=1

(b>k Z)2.

Conditional onD∗, the latter ratio has the same distribution as

p∑
i=1

Z2
i

/ n∑
k=1

Z2
k ∼ Beta

(
p/2, (n− p)/2

)
.

Since this conditional distribution is independent fromD∗, the unconditional distribution is also a
beta distribution with parameters p/2 and (n− p)/2.
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Chapter 4

Regression Diagnostics

In the previous chapter, we derived various statistical procedures under the strong assumption that
the errors εi are independent with distribution N(0, σ2). An obvious question is what happens if
the errors are independent and homoscedastic, but not necessarily Gaussian. As we shall see, this
question is linked to another one: Are there single design points Xi which are “outliers” in the
sense that the corresponding observation (Xi, Yi) has a strong influence on the estimator f̂ or the
fit Ŷ ? A second important question is how to check various model assumptions graphically.

4.1 Leverage

The results of a linear model fit are to be taken with a pinch of salt, if single observations have
a strong influence. We are not talking about outliers in Y but about special design matrices, i.e.
special configurations of the points Xi ∈ X . To identify potentially problematic observations, we
consider the vector Ŷ = Dθ̂ and the residual vector ε̂ = Y − Ŷ .

In case of Var(ε) = σ2I ,

IE(ε̂ε̂>) = σ2(I −H)(I −H)> = σ2(I −H).

In particular,

IE
(
(Yi − Ŷi)2

)
= σ2(1−Hii).

The number Hii is the so-called leverage of the i-th observation. It is a number between 0 and
1. The larger it is, the stronger the influence of observation (Xi, Yi) on the fitted vector Ŷ . As
mentioned before,

n∑
i=1

Hii = p.

Hence,

max
i=1,...,n

Hii ≥
p

n
.

Consequently, a necessary condition for the maximal leverage being small is that the number p of
parameters is small compared to the number n of observations.

115
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Example 4.1 (Simple linear regression, Example 1.2). With the sum Q :=
∑n

i=1(Xi − X̄)2 of
squared centered X-values, Ŷi is given by

Ȳ +

∑n
j=1(Xj − X̄)Yj

Q
(Xi − X̄) =

n∑
j=1

HijYj

with

Hij =
1

n
+

(Xi − X̄)(Xj − X̄)

Q
.

Hence, the leverage of the i-th observation is given by

Hii =
1

n
+

(Xi − X̄)2

Q
.

Figure 4.1 shows the regression line for a simulated data vector Y ∈ R20 and two different vectors
X ∈ R20. Below a bar plot of the respective leverages is displayed. To illustrate the influence
of the observation Xi with the largest X-value, we also show the resulting regression lines after
replacing the corresponding value Yi with Yi ± 10.

Exercise 4.2 (Leverages in simple linear regression). Consider simple linear regression withX ∈
R and Y = a + bX + ε. Suppose that the n ≥ 2 observations have been ordered such that
X1 ≤ X2 ≤ · · · ≤ Xn. When is Hnn = 1? And what is then the value of the remaining leverages
Hii, 1 ≤ i < n?

Exercise 4.3 (Leverages in One-way ANCOVA). Deduce a general formula for the leverages in
the model of one-way ANCOVA (Example 1.4).

4.2 An Application of the Central Limit Theorem

The essential message of Lindeberg’s Central Limit Theorem is that the sum of stochastically
independent random variables follows approximately a Gaussian distribution if each summand has
only little influence on the total sum. Theorem A.15 in Section A.6 provides precise formulations
of this statement.

Now, we apply this result to linear models. We consider stochastically independent random errors
ε1, ε2, . . . , εn, assuming only that for some constant K ≥ 1,

(4.1) Std(εi) = σ and IE(ε4
i ) ≤ Kσ4 for 1 ≤ i ≤ n.

The next theorem implies that our student tests and confidence regions are still approximately
valid, if the maximal leverage gets small. Precisely, as the maximal leverage converges to 0, all
standardized Gauss–Markov estimators

Zψ =
ψ>θ̂ −ψ>θ

σψ

and the corresponding student pivotal statistics

Tψ =
ψ>θ̂ −ψ>θ

σ̂ψ

are approximately standard Gaussian, even if the single errors are non-Gaussian.
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Figure 4.1: Illustrating leverage for simple linear regression.

Theorem 4.4. Under condition (4.1),

sup
ψ∈Rp\{0}, r∈R

{∣∣IP(Zψ ≤ r)− Φ(r)
∣∣∣∣IP(Tψ ≤ r)− Φ(r)
∣∣
}
→ 0 as max

i=1,...,n
Hii → 0.

Proof of Theorem 4.4. For ψ ∈ Rp \ {0} we define the unit vector

b = b(ψ) := (ψ>Γ−1ψ)−1/2DΓ−1ψ ∈ M

with Γ = D>D and the model spaceM = DRp. Then,

Zψ = b>ε/σ and Tψ = (σ/σ̂)Zψ.

We first focus on the random variables Zψ. With Yi := biεi/σ, the assumptions of Theorem A.15
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are satisfied, and

Λ = Λ(b) ≤
n∑
i=1

|bi|3 IE(|εi|3)/σ3 ≤
n∑
i=1

|bi|3(Kσ4)3/4/σ3 ≤ max
1≤i≤n

|bi|K3/4,

because of
∑

i b
2
i = 1. Hence, it suffices to show that

max
b∈M :‖b‖=1, 1≤i≤n

|bi| → 0 as max
i=1,...,n

Hii → 0.

But with the standard basis e1, . . . , en of Rn, the left hand side may be written as

max
b∈M :‖b‖=1, 1≤i≤n

|e>i b| = max
b∈M :‖b‖=1, 1≤i≤n

|e>i Hb|

= max
b∈M :‖b‖=1, 1≤i≤n

∣∣(Hei)>b|
= max

1≤i≤n
‖Hei‖

=
√

max
1≤i≤n

Hii.

The first step uses the fact that Hb = b for any b ∈ M , the second step used symmetry of H ,
the third step follows from the Cauchy–Schwarz inequality, and the last step uses H>H = H .
Consequently,

∆Z := sup
ψ∈Rp\{0}, r∈R

∣∣IP(Zψ ≤ r)− Φ(r)
∣∣ → 0 as max

1≤i≤n
Hii → 0.

It remains to prove the same conclusion for

∆T := sup
ψ∈Rp\{0}, r∈R

∣∣IP(Tψ ≤ r)− Φ(r)
∣∣.

But Tψ = Zψ/S with the ratio S := σ̂/σ, and it follows from Theorem 2.17 that

IE((S − 1)2) = IE
((S2 − 1

S + 1

)2)
≤ IE

(
(S2 − 1)2

)
≤ ∆S :=

(K − 3)+ + 2

n− p
→ 0 as max

1≤i≤n
Hii → 0.

Hence, for arbitrary δ ∈ (0, 1], Markov’s inequality implies that

IP(|S − 1| ≥ δ) ≤ IE((S − 1)2)/δ2 ≤ ∆S/δ
2,

Moreover, for any r ∈ R,

[Tψ ≤ r] = [Zψ ≤ Sr]

{
⊂ [Zψ ≤ r2δ] ∪ [|S − 1| > δ],

⊃ [Zψ ≤ r1δ] \ [|S − 1| > δ],

where r1δ and r2δ are the minimum and maximum of
{

(1 − δ)r, (1 + δ)r
}

, respectively. Conse-
quently,

IP(Tψ ≤ r)− Φ(r){
≤ IP(Zψ ≤ r2δ) + IP(|S − 1| > δ)− Φ(r) ≤ Φ(r2δ)− Φ(r) + ∆Z + ∆S/δ

2,

≥ IP(Zψ ≤ r1δ)− IP(|S − 1| > δ)− Φ(r) ≥ Φ(r1δ)− Φ(r)−∆Z −∆S/δ
2.
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These considerations show that

∆T ≤ sup
r∈R, ξ∈{−1,1}

∣∣Φ((1 + ξδ)r)− Φ(r)
∣∣+ ∆Z + ∆S/δ

2.

If we set δ := min{∆1/3
S , 1}, say, the right hand side converges to 0 as maxi=1,...,nHii → 0; see

also Exercise 4.6

Theorem 4.4 tells us that student confidence intervals or student tests are approximately valid if
the maximal leverage is small while the errors are homoscedastic and the ratios IE(ε4

i )/σ
4 are not

very large. The same conclusion is true for F confidence regions or F tests, provided that the first
degree of freedom is fixed. Recall our definition of an F statistic,

FΨ :=
(Ψ>θ̂ −Ψ>θ)>ΓΨ(Ψ>θ̂ −Ψ>θ)

kσ̂2

with a matrix Ψ ∈ Rp×k having rank k, where ΓΨ := (Ψ>Γ−1Ψ)−1. If the errors are indepen-
dent with distribution N(0, σ2), then FΨ follows the distribution function Fcdfk,n−p.

Corollary 4.5. For a fixed integer k ≥ 1, suppose that p ≥ k, and let Gk be the distribution
function of S2/k, where S2 ∼ χ2

k. Under condition (4.1),

sup
Ψ∈Rp×k:rank(Ψ)=k, r≥0

∣∣IP(FΨ ≤ r)−Gk(r)
∣∣ → 0 as max

i=1,...,n
Hii → 0.

Proof of Corollary 4.5. In the proof of Theorem 4.4, we showed that

∆T := sup
b∈M :‖b‖=1, r∈R

∣∣IP(b>ε/σ̂ ≤ r)− Φ(r)
∣∣ → 0 as max

i=1,...,n
Hii → 0.

Note that FΨ may be written as
FΨ = ‖TΨ‖2/k

with
TΨ := σ̂−1A>Ψε and AΨ := DΓ−1ΨΓ

1/2
Ψ ∈ Rn×k.

Note that the columns ofAΨ lie in the model spaceM . Moreover,A>ΨAΨ = Ik, so the columns
are even orthonormal. Consequently,

sup
v∈Rk:‖v‖=1, r∈R

∣∣IP(v>TΨ ≤ r)− Φ(r)
∣∣

= sup
v∈Rk:‖v‖=1, r∈R

∣∣IP((AΨv)>ε/σ̂ ≤ r
)
− Φ(r)

∣∣ ≤ ∆T ,

because AΨv is a unit vector in M whenever v is a unit vector in Rk. By means of the Cramér–
Wold theorem (Theorem A.14), these considerations show that the distribution of TΨ converges
weakly to the standard Gaussian distribution Nk(0, Ik) as maxi=1,...,nHii → 0, uniformly over
all Ψ ∈ Rp×k with rank k. But then the continuous mapping theorem, applied to the mapping
t 7→ ‖t‖2/k on Rk yields the assertion about the distribution function of FΨ.

Exercise 4.6. Let G : R → R be a bounded, continuous function such that the two limits
G(±∞) := limr→±∞G(r) exist. Show that for λ ∈ R,

sup
r∈R

∣∣G(λr)−G(r)
∣∣ → 0 as λ→ 1.
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4.3 Residual Analysis

4.3.1 Quantile-Quantile-Plots for Normality

To check the plausibility of our assumption that the errors εi have a Gaussian distribution, one
could employ a quantile-quantile-plot (Q-Q-plot) of the residuals. At first, we introduce this
method for samples of independent, identically distributed (i.i.d.) observations and general con-
tinuous distributions. Then, we modify the methods for our regression setting.

Q-Q-Plots for I.I.D. Observations

Suppose thatX1,X2, . . . ,Xn are stochastically independent with continuous distribution function
F . Then, F (X1), F (X2), . . . , F (Xn) are stochastically independent with uniform distribution on
[0, 1]. For the order statistics X(1) ≤ X(2) ≤ · · · ≤ X(n) this implies the following formulae:

IE(F (X(k))) = tnk :=
k

n+ 1
and Var(F (X(k))) =

tnk(1− tnk)
n+ 2

≤ 1

4(n+ 2)
,

see Exercise 4.7. Hence we may expect that F (X(k)) is rather close to tnk.

Exercise 4.7 (Uniform order statistics). Let U(1) ≤ U(2) ≤ · · · ≤ U(n) be the order statistics of
independent random variables U1, U2, . . . , Un with distribution Unif[0, 1].

(a) Show that U(k) has density function fk on [0, 1], where

fk(x) := n

(
n− 1

k − 1

)
xk−1(1− x)n−k.

Hint: For x ∈ [0, 1], U(k) ≤ x if and only if
∑n

i=1 1[Ui≤x] ≥ k, and the latter random sum follows
a binomial distribution.

(b) Show that part (a) implies the formula∫ 1

0
x`(1− x)m dx = (`+m+ 1)−1

(
`+m

`

)−1

for arbitrary integers `,m ≥ 0. Then, show that

IE(U(k)) = tnk =
k

n+ 1
and Var(U(k)) =

tnk(1− tnk)
n+ 2

≤ 1

4(n+ 2)
.

Q-Q-Plots. Let Fo be a given continuous distribution function. To check the assumption that
F ≡ Fo, one may generate a scatter plot of the pairs(

F−1
o (tnk), X(k)

)
∈ R× R

and check whether they are “sufficiently close” to the first diagonal (“y = x”). The rationale
behind this is that F ≡ Fo implies that Fo(X(k)) ≈ tnk, so X(k) ≈ F−1

o (tnk).

It depends on the sample size and the distribution function Fo what “sufficiently close” means. To
get an impression what a typical Q-Q-Plot would look like in case of F ≡ Fo, one should simulate
several samples from Fo and produce the corresponding Q-Q-Plots.
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Location and scale families. Suppose that

Xi ∼ Fo

( · − µ
σ

)
for a given continuous distribution function Fo and unknown parameters µ ∈ R, σ > 0. With
suitable estimators µ̂ and σ̂, there are two possible variants of a modified Q-Q-plot: One could
generate a scatter plot of the pairs (

F−1
o (tnk), X(k)

)
and check whether they are close to some straight line. Or one generates a scatter plot of the pairs(

F−1
o (tnk),

X(k) − µ̂
σ̂

)
and checks whether they are close to the main diagonal.

Example 4.8 (Q-Q-plots for Gaussian distributions). Suppose that the location-scale family is
driven by the standard Gaussian distribution function Fo ≡ Φ. Figure 4.2 shows typical Q-Q-
plots in four different settings with a sample of size n = 500 from a distribution P . In all four
cases we used µ̂ = median(X) and σ̂ = IQR(X). In the upper left panel, P was a Gaussian
distribution. In the upper right panel, P = t3. One sees clearly that P has heavier tails than a
Gaussian distribution, because the smallest sample quantiles are smaller and the largest sample
quantiles are larger than one would expect in a Gaussian sample. In the lower left panel, P
is a gamma distribution with shape parameter 3. Here the Q-Q-plot reveals clearly that P is a
right-skewed distribution, because the smallest sample quantiles tend to be closer and the largest
sample quantiles tend to be further away from the center, compared to a Gaussian sample. Finally,
the lower right panel shows the Q-Q-plot of a sample from Beta(2.5, 3), that is, a distribution on
(0, 1) with density proportional to x3/2(1−x)2. This distribution has lighter tails than a Gaussian
distribution, and this property is visible in the Q-Q-plot as well.

Exercise 4.9 (Q-Q-curves). Consider the Q-Q-plot for the standard Gaussian distribution: For
an observation vector X ∈ Rn one plots the pairs

(
Φ−1(tnk), X(k)

)
, 1 ≤ k ≤ n, with tnk :=

k/(n+1). If the components ofX are independent with distribution P and continuous distribution
function F , then for large n, this Q-Q-plot resembles the set{(

Φ−1(u), F−1(u)
)

: u ∈ (0, 1)
}
.

Depict this set in the following situations:

(i) P = Gamma(3, 1).

(ii) F (x) = ex/(1 + ex).

(iii) P = (1/3)N(−2, 1) + (2/3)N(1, 1).

Exercise 4.10 (Q-Q-Plots for t distributions). (a) Write a program which generates a Q-Q-plot
for an arbitrary data vector X and the distribution function Fo = Fν of tν for any given value
ν > 0. Use the sample median and a suitably standardized interquartile range as a location and
scale estimator.
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Figure 4.2: Some normal Q-Q-plots.
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(b) Find a data set with daily stock prices for some company or the daily values of a stock index
over a longer period of time. Convert these values K1,K2,K3, . . . into log-returns

Xt := log10(Kt+1/Kt).

Now use our program from part (a) to check the assumption that the log-returns follows a t distri-
bution up to an affine transformation.

Additional question: Is it a plausible assumption that the log-returns are stochastically indepen-
dent?

Q-Q-Plots for Linear Models

When fitting a linear model, one sorts the residuals ε̂i in ascending order and obtains ε̂(1) ≤ ε̂(2) ≤
· · · ≤ ε̂(n). Then one generates a scatter plot of the pairs(

Φ−1(tnk), ε̂(k)

)
or of the pairs

(4.2)
(
Φ−1(tnk), ε(k)/σ̂

)
.

Under the assumption that the errors are homoscedastic with centered Gaussian distribution, these
points should be close to the straight line through (0, 0) with slope σ or 1, respectively, at least if
the ratio p/n is small. This is explained in Exercise 4.11.

Obviously, the points being close to a straight line is rather vague. To get a feeling for the typical
appearance of a Q-Q-plot in case of homoscedastic Gaussian errors, one should compare the Q-
Q-plot for the original data with a scatter plot of the points(

Φ−1(tnk), Ẑ(k)

)
or

(4.3)
(

Φ−1(tnk),
Ẑ(k)

‖Ẑ‖/
√
n− p

)
,

where Z ∈ Rn is a simulated random vector with distribution Nn(0, In), Ẑ := (I −H)Z, and
Ẑ(1) ≤ Ẑ(2) ≤ · · · ≤ Ẑ(n) are the ordered components of Ẑ. Under the null hypothesis that
ε ∼ Nn(0, In), the scatter plot of the pairs (4.2) and the scatter plot of the pairs (4.3) have the
same distribution. Precisely, the two random vectors( ε̂(k)

σ̂

)n
k=1

and
( Ẑ(k)

‖Ẑ‖/
√
n− p

)n
k=1

have the same distribution.

This graphical comparison can be turned into an exact Monte Carlo test. Let T (D,Y ) be a test
statistic which quantifies the deviation of the points in the Q-Q-Plot (4.2) from the main diagonal,
for instance,

n∑
k=1

(
Φ−1(tnk)−

ε̂(k)

σ̂

)2
.
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Then one could simulate independent random vectors Z(1),Z(2), . . . ,Z(B), and compute the
Monte Carlo p-value

π̂(D,Y ) :=
#
{
s ∈ {1, . . . , B} : T (D,Z(s)) ≥ T (D,Y )

}
+ 1

B + 1
.

Under the null hypothesis that the errors εi are homoscedastic and centered Gaussian,

IP
(
π̂(D,Y ) ≤ α

)
≤ b(B + 1)αc

B + 1

for any α ∈ (0, 1).

Exercise 4.11 (Estimation of the error distribution). Suppose that the errors εi are stochastically
independent with distribution Q, where

∫
xQ(dx) = 0 and σ2 =

∫
x2Q(dx) < ∞. The empiri-

cal distribution Q̂ of the residuals ε̂i is given by

Q̂(B) :=
1

n

n∑
i=1

1[ε̂i∈B] for B ⊂ R.

Show that Q̂ is a consistent estimator of Q in the following sense: For any bounded, Lipschitz-
continuous function h : R→ R,

IE
∣∣∣∫ h(x) Q̂(dx)−

∫
h(x)Q(dx)

∣∣∣ → 0 as p/n→ 0,

where
∫
h(x) Q̂(dx) = n−1

∑n
i=1 f(ε̂i). (Hint: Consider first the empirical distribution Q̌ of the

errors εi.)

Exercise 4.12 (Approximation by Lipschitz-continuous functions). Let (X , d) be a metric space,
and let h : X → R be bounded. For L > 0 define

hL,1(x) := inf
y∈X

(
h(y) + Ld(x, y)

)
,

hL,2(x) := sup
y∈X

(
h(y)− Ld(x, y)

)
.

Prove the following claims:

(a) hL,1 and hL,2 are Lipschitz-continuous with constant L, and

inf
y∈X

h(y) ≤ hL,1 ≤ h ≤ hL,2 ≤ sup
y∈X

h(y).

(b) For any fixed x ∈ X , hL,1 and hL,2 are non-decreasing and non-increasing in L, respectively.
Moreover, if h is continuous at x, then

lim
L→∞

hL,j(x) = h(x) for j = 1, 2.

(By means of this exercise, one can replace the assumption of Lipschitz-continuity in Exercise 4.11
with continuity.)
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4.3.2 Plots of Residuals versus Functions of the Covariates or the Fit

Besides the assumption of normality, one should also check the linear model itself and the assump-
tion of homoscedastic errors. To this end, one searches for certain features of the residual vector
ε̂ which indicate a violation of those assumptions.

One possibility is the graphical display of the pairs

(Vi, ε̂i),

where V = (Vi)
n
i=1 ∈ Rn is a vector which may depend on X or Ŷ . Often one chooses Vi = Ŷi

or the values of a certain numerical covariate. When looking at such a scatter plot, one should
check it for two types of tendencies:

• Tendencies in the local mean: Suppose that the residuals tend to be negative in certain regions
determined by V and positive in other regions. This indicates that our linear model is incorrect,
i.e. IE(Y ) 6∈M .

• Tendencies in the local variability: Suppose that the local means of the residuals are approxi-
mately 0, but their moduli show some association with components of V . This indicates that the
errors are heteroscedastic.

Judging such a scatter plot may be difficult if the distribution of the components of V is very non-
uniform. This can often be ameliorated by replacing V with the vector of its ranks. If numerous
components of V are tied, one should not use the usual averaged ranks but ranks in {1, 2, . . . , n}
with random allocation amoung observations with equal values of Vi.

Example 4.13 (Baseball income data). We illustrate these methods with a data set about n = 263

professional baseball players. The response Y is the annual income (in kUSD), and we consider
just one numerical covariate X , the number of seasons (including the current) the player was on a
professional team. Since only a few values Xi are larger than 20, we replace X with min(X, 20).

The left panels of Figures 4.3, 4.4 and 4.5 show the data together with polynomial fits of order 2, 3

and 4, respectively. The right panels show a scatter plot of the corresponding residuals versus ranks
of X , where the latter have been assigned randomly in case of ties. Although R2

adj is largest for
quadratic regression, the scatter plot of the residuals indicates clearly that the model of quadratic
regression seems to be too simple. For d = 4, this effect is weaker at least, but homoscedasticity
is clearly questionable. Furthermore, Figure 4.6 shows a normal Q-Q-plot of the residuals and
a scatter plot of the leverages versus X . The Q-Q-plot indicates a strongly right-skewed error
distribution (if the errors were i.i.d.).

In view of the apparent strong deviation from homoscedasticiy and normality of the errors, we
repeated these analyses with the log-transformed incomes log10(Yi) in place of the incomes Yi.
The next section provides a more systematic treatment of such transformations. Figures 4.7 and
4.8 show results of polynomial regression of order d = 4 and d = 5, respectively, applied to the
log-transformed incomes. The residual plots look much better than before, and also the value of
R2

adj increased substantially. Since the residual plot in Figure 4.7 shows some structure for small
values of X , we increased the order from d = 4 to d = 5. Figure 4.9 shows the corresponding
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Figure 4.3: Baseball data: Data and quadratic fit (left panel, R2
adj = 0.259), plot of residuals

versus ranks of X (right panel).
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Figure 4.4: Baseball data: Data and cubic fit (left panel, R2
adj = 0.256), plot of residuals versus

ranks of X (right panel)
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Figure 4.5: Baseball data: Data and quartic fit (left panel, R2
adj = 0.258), plot of residuals versus

ranks of X (right panel)
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Figure 4.6: Baseball data: Normal Q-Q-plot of the rescaled residuals for quartic regression (left
panel) and plot of leverages versus X (right panel).
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Figure 4.7: Modified baseball data: Data and quartic fit (left panel,R2
adj = 0.483), plot of residuals

versus ranks of X (right panel).

normal Q-Q-plot of the residuals and a scatter plot of the leverages versus X . The Q-Q-plot looks
much better now, except for two rather large outliers (belonging to two young players with very
high incomes). But note that increasing d led also to an increase of the maximal leverage, while
the residual plot in Figure 4.8 shows still some structure for small values of X .

Note that even for order d = 5, the residual plot in Figure 4.8 indicates some unwanted tendencies
for small values of X . Moreover, the scatter plot of the pairs (Xi, log10 Yi) indicates that the
strongest changes occur for smaller values of X . Hence, we also tried polynomial regression
for the doubly log-transformed pairs (log10Xi, log10 Yi). Results of this analysis are shown in
Figure 4.10. The maximal leverage is now smaller than 0.065. The residual plot shows (still) the
two outliers and indicates that the variability is smaller for small values of X , but otherwise there
is no visible structure as before, and the value of R2

adj increased slightly.

Example 4.14 (Solar panel data). In the lecture, we saw a detailed analysis of a data set with
the following data for n = 761 days from October 2022 through October 2024. For each day, in
addition to the date the values of the following variables are available:

Prod: energy production of solar panels on a particular roof (kWh),
Sun: hours of sunshine,
Prec: precipitation, i.e. the amount of rain during the day (ml),
Temp: mean temperature between 8 am and 6 pm (◦C),
Humid: mean humidity between 8 am and 6 pm (percent),
Wind: average wind speed between 8 am and 6 pm (km/h).

The task was to predict Y := Prod from the other five covariates and an additional seasonality
variable

Season := cos(2π(Time− 0.471)),

where Time is a rescaling of the date such that 31/12/2022 equals 0, and 31/12/2023 equals 1. The
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Figure 4.8: Modified baseball data: Data and quintic fit (left panel,R2
adj = 0.489), plot of residuals

versus ranks of X (right panel)
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Figure 4.9: Modified baseball data: Normal Q-Q-plot of the rescaled residuals for quintic regres-
sion (left panel) and plot of leverages versus X (right panel).
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Figure 4.10: Doubly log-transformed Baseball data: Data and cubic fit (upper left panel, R2
adj =

0.495), plot of residuals versus ranks of X (upper right panel), normal Q-Q-plot of rescaled resid-
uals (lower left panel) and scatter plot of leverages versus X (lower right panel).
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value 0.471 corresponds to 21/06/2023, so Season describes a sine curve with maximal value 1

on June 21, and minimal value −1 around December 21. Figure 4.11 shows the values of Prod
versus Time. The vertical green lines correspond to 31/12/2022 and 31/12/2023, while the red
lines indicate 21/06/2023 and 21/06/2024.
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Mean production = 40.77  :  residual standard error = 25.35

Figure 4.11: Energy production of solar panels over time.

Eventually, the following regression model was favoured: Multiple linear regression with all pair-
wise interactions for the following variables:

X(1) = Season, X(2) = Sun, X(3) = (15− Sun)4,

X(4) = Temp, X(5) =
√

Prec, X(6) = Humid.

Interestingly, including the variable Wind did not improve the results substantially. This model
involves 1+6+

(
6
2

)
= 22 parameters. Figure 4.12 shows a scatter plot of Y versus Ŷ and a scatter

plot of the leverages versus Time, the maximal leverage being ≈ 0.19.

Figure 4.13 shows various residual plots: A normal Q-Q-plot of the rescaled residuals and plots
of ε̂i versus (the ranks of) Ŷ , Time, Sun, Temp and Wind. The Q-Q-plot indicates only slight
deviations from normality. (The very small residuals can be traced bach to days on which the roof
was covered completely or partly with snow.) The scatter plot of residuals versus Sun indicates a
slight heteroscedasticity, with reduced variability for very small or very high values of Sun. This is
not so surprising. On days with intermediate duration of sunshine, it plays an important role when
the sun is shining precisely, because sunshine close to noon yields more energy than sunshine in
the morning or afternoon. The scatter plot of the residuals versus the ranks of Wind shows no
structure at all, confirming our decision to exclude Wind from the regression analysis.
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Figure 4.12: Regression analysis of energy production data: Scatter plot of Y versus Ŷ (left panel)
and of leverage versus time (right panel).

Here is a final remark to this example which is related to the next chapter. Suppose that

Y = f(X) + ε

for some unknown continuous regression function f on R6 and a centered random error ε which
is independent from the covariate tuple

X =
(
Season,Sun, (15− Sun)4,Temp,

√
Prec,Humid

)
.

and has standard deviation σ. An estimated lower bound for σ can be obtained as follows: For a
suitable metric d(·, ·) on R6, let

σ̌ :=

√√√√ 1

n

n∑
i=1

(Yi − YJ(i))2/2,

where J(i) ∈ {1, . . . , n} \ {i} such that

d(Xi, XJ(i)) = min
j∈{1,...,n}\{i}

d(Xi, Xj).

This number σ̌ can be viewed as a rough lower bound for σ, because for large sample sizes we
expect that Xi is close to XJ(i) and, by continuity of f ,

Yi − YJ(i) ≈ εi − εJ(i),

so IE(σ̌2) ≈ σ2. For our particular data we used

d(x, x̃) :=

√√√√ 6∑
j=1

(
x(j)− x̃(j)

)2
/S(j)2,

where S(j) is the sample standard deviation of the values X1(j), . . . , Xn(j). This resulted in the
value σ̌ = 5.132. Since this value is close to (and even larger than) σ̂ = 5.098, it seems unlikely
that alternative regression models would yield substantially better approximations Ŷi of the Yi.
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Figure 4.13: Regression analysis of energy production data: Normal Q-Q-plot of scaled residuals
(upper left panel), and scatter plots of residuals versus (ranks of) Ŷ , Time, Sun, Temp and Wind.
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Exercise 4.15. Perform a residual analysis for the data set “Goats.txt”. Discuss your results.

Exercise 4.16 (Tukey’s F test). The scatter plots of pairs
(
Vi(Ŷ ), ε̂i

)
correspond to a variant

of F tests which has been proposed in some special settings by J. Tukey: Suppose we observe
Y ∼ Nn(µ, σ2In), and let M ⊂ Rn be a given p-dimensional model space. Now we would
like to test the null hypothesis that µ ∈ M . To this end, one could embed M into a larger
linear subspace M∗ with p < p∗ = dim(M∗) < n and perform an F test of “µ ∈ M” versus
“µ ∈M∗ \M”. Interestingly, we do not have to specify the space M∗ beforehand, but we may
chooseM∗ by means of Ŷ !

For x ∈M and p < j ≤ p∗ let bj(x) ∈M⊥ such that

bj(x)>bk(x) = 1[j=k] for p < j, k ≤ p∗.

Show that ∑p∗
j=p+1(bj(Ŷ )>ε̂)2/(p∗ − p)(

‖ε̂‖2 −
∑p∗

j=p+1(bj(Ŷ )>ε̂)2
)
/(n− p∗)

∼ Fp∗−p,n−p∗

in case of µ ∈M .

Exercise 4.17 (Tukey’s F test for non-additivity). Consider independent observations

Yjk ∼ N(µjk, σ
2), 1 ≤ j ≤ L, 1 ≤ k ≤M.

We assume that
µjk = µ+ aj + bk

with unknown parameters µ ∈ R, a ∈ RL and b ∈ RM , where a+ = 0 = b+. The corresponding
Gauss–Markov estimators are given by

µ̂ := Y , âj := Y j· − Y and b̂k := Y ·k − Y .

Now, we would like to test whether (µjk)j,k has indeed the additive structure above.

(a) Show by means of Exercise 4.16, that under the null hypothesis of an additive structure,

W 2(∑
j,k ε̂

2
jk −W 2

)
/(LM − L−M)

∼ F1,LM−L−M ,

where ε̂jk := Yjk − Y j· − Y ·k + Y , and

W :=
∑
j,k

âj b̂kε̂jk

/√∑
j

â2
j

∑
k

b̂2k.

(b) Apply this test to the data set “Hearing.txt”.

Exercise 4.18. For some d ∈ N, let f : Rd → R be twice continuously differentiable in an open
neighborhood of 0. With the standard basis e1, e2, . . . , ed of Rd we define

hj(x) := f(xej)− f(0) for 1 ≤ j ≤ d and x ∈ R.

Suppose that h′j(0) 6= 0 for 1 ≤ j ≤ d. Show that

f(x) = f(0) +
∑

1≤j≤d
hj(xj) +

∑
1≤j<k≤d

cjkhj(xj)hk(xk) + o(‖x‖2) as x→ 0

with suitable constants cjk ∈ R.
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4.4 Transformations

If the residual plots indicate heteroscedastic errors, an obvious question is how to proceed. Often
it is possible to enforce homoscedasticity by means of a simple non-linear transformation of the
raw response. In many applications with non-negative response Y , the standard deviation of Yi
seems to be proportional to (IEYi)

γ for some γ ∈ (0, 1]. In case of Poisson distributed variables,
this is true with γ = 1/2, see Exercise 4.19. This suggests to replace Yi with Tγ(Yi), where

Tγ(y) :=


y1−γ − 1

1− γ
if 0 < γ < 1,

log(y) if γ = 1.

Indeed, suppose that Y may be written as Y = µ+ µγZ with a real constant µ > 0 and a random
variable Z such that IE(Z) = 0 and µγ Std(Z) << µ. In case of 0 < γ < 1,

Tγ(Y ) =
µ1−γ(1 + µγ−1Z

)1−γ − 1

1− γ

≈
µ1−γ(1 + (1− γ)µγ−1Z

)
− 1

1− γ
= Tγ(µ) + Z.

Here, we utlilized the Taylor expansion (1 + x)1−γ = 1 + (1 − γ)x + O(x2) as x → 0. In case
of γ = 1, the Taylor expansion log(1 + x) = x+O(x2) as x→ 0 implies that

T1(Y ) = log(µ) + log(1 + Z) ≈ log(µ) + Z = T1(µ) + Z.

Analysis of variance or regression analysis with Poisson distributed response are quite frequent in
biology or medicine, for instance, when counting cells under the microscope. Another example is
the analysis of low-dose X-ray images. Here one often takes the transform

T̃ (y) := 2
√

1 + y

in place of T1/2(y) = 2
√
y, which improves the Gaussian approximation.

Exercise 4.19. Let Y be a random variable with distribution Poiss(λ).

(a) Show by means of the CLT and Slutsky’s lemma or with characteristic functions that the
standardized random variable (Y − λ)/

√
λ converges in distribution to N(0, 1).

(b) Show by means of part (a) and Slutsky’s lemma that for any fixed a ≥ 0, the distribution
of
√
a+ Y −

√
a+ λ converges weakly to a Gaussian distribution with mean 0 and standard

deviation 1/2 as λ→∞.
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Chapter 5

Nonparametric Regression

In this chapter, we consider the special case of a numerical covariate X . We have already seen the
models of simple linear and polynomial regression. But with increasing order of the polynomials,
the latter method becomes numerically and statistically unstable. For the general situation that

Y = f(X) + ε

with a sufficiently smooth, but unknown function f : R → R, there are numerous alternative
approaches under the general name nonparametric regression. We shall touch on three of them.
There is a rich literature about nonparametric regression. For the second method in this chapter,
local polynomials, we refer to the monograph of Fan and Gijbels (1996) and the literature cited
therein.

5.1 Spline Regression

5.1.1 Definition of Splines

A function f : [a, b]→ R is called spline of order d with knots a = t0 < t1 < · · · < tm = b if it
satisfies the following conditions:

(a) On each interval [tk−1, tk], f is a polynomial of order d.

(b) f is d− 1 times continuously differentiable.

(In case of d = 1, the latter requirement means that f is continuous.) In particular, we talk about

linear splines, if d = 1,

quadratic splines, if d = 2,

cubic splines, if d = 3.

In what follows we write

Sd(t0, t1, . . . , tm) :=
{

splines of order d with knots t0, t1, . . . , tm
}
.

137
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Remark. Some authors would talk about splines of order d + 1 here, because on each interval
[tk−1, tk] the polynomial function f is given by d+ 1 parameters.

5.1.2 Polynomial Representation and a First Basis

One can easily verify that the set Sd(t0, t1, . . . , tm) is a linear space of functions on [a, b]. But
what is the dimension, and what would be possible basis functions?

By assumption, for k = 1, . . . ,m, there exist coefficients bk,0, bk,1, . . . , bk,d such that

f(x) = Pk(x) :=
d∑
j=0

bk,j(x− tk−1)j for x ∈ [tk−1, tk].

With ∆k := tk − tk−1, one could also write

Pk(x) =

d∑
j=0

bk,j(x− tk + ∆k)
j

=

d∑
j=0

bk,j

j∑
i=0

(
j

i

)
∆j−i
k (x− tk)i

=

d∑
i=0

( d∑
j=i

(
j

i

)
∆j−i
k bk,j

)
(x− tk)i.

Hence,

bk+1,i =
P

(i)
k+1(tk)

i!
=

f (i)(tk +)

i!
=

f (i)(tk−)

i!
=

P
(i)
k (tk)

i!
(5.1)

=
d∑
j=i

(
j

i

)
∆j−i
k bk,j for 1 ≤ k < m, 0 ≤ i < d.

Consequently, if we specify the polynomials P1, P2, . . . , Pk one after another, we have d+ 1 free
parameters b1,0, . . . , b1,d for P1. Having specified P1, . . . , Pk for some k < m, the coefficients
bk+1,0, . . . , bk+1,d−1 are given by (5.1), and only the coefficient bk+1,d of Pk+1 can be chosen
arbitrarily. Precisely, bk+1,d − bk,d specifies the change of the d-th derivative of f at the point tk,
divided by d!,

bk+1,d − bk,d =
f (d)(tk +)− f (d)(tk−)

d!
.

These considerations show that

dim (Sd(t0, t1, . . . , tm)) = (d+ 1) + (m− 1) = d+m.

They also suggest a first basis for Sd(t0, t1, . . . , tm):

fi(x) := (x− t0)i−1 for i = 1, . . . , d+ 1,

fd+1+k(x) := (x− tk)d+ for k = 1, . . . ,m− 1,



5.1. SPLINE REGRESSION 139

where y+ := max(y, 0) denotes the positive part of a real number y. Writing an arbitrary function
f ∈ Sd(t0, t1, . . . , tm) as a linear combination

f =

d+m∑
i=1

θifi

of these basis functions, the connection between the coefficients θi and bk,j is:

θi = b1,i−1 for i = 1, . . . , d+ 1,

θd+1+k = bk+1,d − bk,d for k = 1, . . . ,m− 1.

That is, for 1 ≤ k < m, the value d! θd+1+k is the change of the d-th derivative of f at the point
tk.

In the special case of m + 1 = 4 knots, one could also choose any basis f1, f2, . . . , fd+1 for the
polynomials of order d, and then augment these by the two functions

fd+2(x) := (t1 − x)d+ and fd+3(x) := (x− t2)d+.

The advantage is that the latter two functions have disjoint support.

In the special case of m+ 1 = 5 knots, one could use, for instance, the following basis:

fi(x) := (x− t2)i−1 for 1 ≤ i ≤ d,

fd+1(x) := (t1 − x)d+,

fd+2(x) := (t2 − x)d+,

fd+3(x) := (x− t2)d+,

fd+4(x) := (x− t3)d+.

5.1.3 B Splines

A disadvantage of the basis functions defined in Section 5.1.2 is that the resulting design matrix is
often ill-conditioned. Indeed, two columns

(
(Xi− tk−1)d+

)n
i=1

can be nearly collinear. Hence, we
would like to construct basis functions f1, f2, . . . , fm+d such that the angles between the vectors
fj(X) are sufficiently large.

Precisely, we want to specify nonnegative basis functions B1, . . . , Bd+m such that

{x ∈ [a, b] : Bj(x) > 0} = (tj−1−d, tj) ∩ [a, b].

Here, we specify arbitrary additional knots t−d ≤ t1−d ≤ · · · < t0 = a and b = tm ≤ tm+1 ≤
· · · ≤ tm+d. For the general theory, we refer to de Boor (2002) or Schumaker (1981); see also
Section A.4 in the appendix for more details.

Special case: Linear Splines. A function f ∈ S1(t0, t1, . . . , tm) is uniquely defined by its
values at the m+ 1 knots. In particular, let Bi,1 ∈ S1(t0, t1, . . . , tm) be such that

Bi,1(tj) :=

{
1 if j = i− 1,

0 if j 6= i− 1.
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Figure 5.1 shows these basis functions in case of m = 5 and (t0, t1, . . . , tm) = (0, 1, 2, 4, 5, 6).

For this particular basis,
θi = f(ti−1)

for any f ∈ S1(t0, t1, . . . , tm) and i = 1, . . . ,m+ 1.
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Figure 5.1: Basis functions Bj,1 for S1(0, 1, 2, 4, 5, 6).

B splines of arbitrary order. The basis functions for linear splines appear within a general
recursive construction. For a given integer do ≥ 1, we start with the functions

Bz,0(x) := 1[tz−1≤x<tz ], 1− do ≤ z ≤ m+ do.

Then, for d = 1, 2, . . . , do, we define the auxiliary quantities ∆z,d := tz − tz−d and the functions

Bz,d(x) =
x− tz−1−d

∆z−1,d
Bz−1,d−1(x) +

tz − x
∆z,d

Bz,d−1(x)

for 1−do +d ≤ z ≤ m+do. As shown in Section A.4, for each d ∈ {1, 2, . . . , do}, the functions
Bj,d, 1 ≤ j ≤ m+ d, constitute a basis for Sd(t0, t1, . . . , tm) with the desired property that

(5.2) Bj,d

{
= 0 on R \ (tj−d, tj),

> 0 on (tj−d, tj).

Moreover,

(5.3)
m+d∑
j=1

Bj,d ≡ 1 on [a, b].

Figures 5.2 and 5.3 show these B spline basis functions for Sd(0, 1, 2, 4, 5, 6), d = 2, 3. In both
cases, we used tz := 0.1 · z for z < 0 and t5+z := 6 + 0.1 · z for z > 0.
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Figure 5.2: Basis functions Bj,2 for S2(0, 1, 2, 4, 5, 6).

Special case: Cubic splines with equidistant knots. Suppose that the knots tk are equidistant,
that is, tk − tk−1 = ∆ > 0 for 1 ≤ k ≤ m. Augmenting these knots by tz = a+ z∆ for z ∈ Z, a
basis of B splines for S3(t0, . . . , tm) is given by

Bk,3(x) := bo
(
(x− tk−2)/∆

)
,

where

bo(s) :=


2/3− s2 + |s|3/2 if |s| ≤ 1,

(2− |s|)3/6 if 1 ≤ |s| ≤ 2,

0 if |s| ≥ 2.

That these functions Bk,3, 1 ≤ k ≤ m+ 3, are cubic splines can be deduced from

b′o(s) =


−2s+ (3/2) sign(s)s2 if |s| ≤ 1,

− sign(s)(2− |s|)2/2 if 1 ≤ |s| ≤ 2,

0 if |s| ≥ 2,

b′′o(s) =


−2 + 3|s| if |s| ≤ 1,

2− |s| if 1 ≤ |s| ≤ 2,

0 if |s| ≥ 2,

b′′′o (s) =


3 sign(s) if 0 < |s| < 1,

− sign(s) if 1 < |s| < 2,

0 if |s| > 2.

That they satisfy the properties (5.2) and (5.3) can be verified with elementary calculations.
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Figure 5.3: Basis functions Bj,3 for S3(0, 1, 2, 4, 5, 6).

5.1.4 Precision in Case of Linear Splines

Suppose that all values Xi are in a compact interval [a, b], and we work with linear splines with
equidistant knots tm,j = a + (j/m)(b − a), 0 ≤ j ≤ m. This means, the estimated regression
function f̂ may be viewed as an estimator of the function

fn,m := arg min
g∈S1(tm,0,...,tm,m)

‖f − g‖n,

where

‖h‖n :=

√√√√n−1

n∑
i=1

h(Xi)2;

see also Section 2.5. In addition, let

Lip(h) := sup
a≤x1<x2≤b

|h(x2)− h(x1)|
x2 − x1

.

Theorem 5.1. In case of homoscedastic errors εi with variance σ2,

IE
(
‖f̂ − f‖2n

)
≤ ‖f − fn,m‖2n +

(m+ 1)σ2

n
.

If f is differentiable on [a, b] with Lip(f ′) <∞, then

‖f − fn,m‖2n ≤
Lip(f ′)2(b− a)4

64m4
.

If we choose m = m(n) = (C + o(1))n1/5 for some C > 0, then

IE
(
‖f̂ − f‖2n

)
= O(n−4/5).
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This theorem shows that by means of linear splines, one can estimate a Lipschitz-continuously
differentiable regression function up to an estimation error of order Op(n−2/5). In fact, one can
show that under these assumptions, no other estimator would exhibit a faster rate of convergence.
But proving the latter result is beyond the scope of the present course.

Proof of Theorem 5.1. With the hat matrixH , we may write

IE
(
‖f̂ − f‖2n

)
= IE

(
n−1‖HY − f(X)‖2

)
= IE

(
n−1‖Hf(X)− f(X) +Hε‖2

)
= ‖f − fn,m‖2n + IE

(
n−1‖Hε‖2

)
= ‖f − fn,m‖2n +

p(n,m)σ2

n
,

where p(n,m) is the dimension of the model space{
g(X) : g ∈ S1(tm,0, . . . , tm,m)

}
.

Now, the first part of Theorem 5.1 follows from the fact that p(n,m) ≤ m+ 1.

As a surrogate for fn,m, we consider the interpolation spline fm ∈ S1(tm,0, . . . , tm,m) with
fm(tm,i) = f(tm,i) for i = 0, . . . ,m. Then,

‖f − fn,m‖2n ≤ ‖f − fm‖2n
≤ max

x∈[a,b]
|f(x)− fm(x)|2

≤ L2(b− a)4

64m4
,

where L := Lip(f ′). The latter inequality is a consequence of Exercise 5.2. This proves the
second part of Theorem 5.1, and the last part follows from an elementary calculation.

Exercise 5.2 (Linear interpolation and extrapolation). Let f be differentiable on [a, b] such that
L := Lip(f ′) <∞. For fixed points a ≤ x0 < x1 ≤ b, set

g(x) := f(x0) +
x− x0

x1 − x0
(f(x1)− f(x0)).

That means, g is the unique affine function such that g(x0) = f(x0) and g(x1) = f(x1). Show
that

|f(x)− g(x)| ≤ L|x− x0||x− x1|/2

for arbitrary x ∈ [a, b]. Deduce from this inequality that

|f − g| ≤ L(x1 − x0)2/8 on [x0, x1].

5.2 Local Polynomials

If the regression function f is d times continuously differentiable, it follows from Taylor’s formula
that

f(x+ s) =

d∑
k=0

f (k)(x)
sk

k!
+ o(sd) as s→ 0.
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Thus, f may be approximated locally by a polynomial or order d. To estimate f(x), one could
choose a neighborhood U(x) of x and work with the model of polynomial regression for the
subsample of observations (Xi, Yi) such that Xi ∈ U(x).

Here is a more general description: For a fixed point x, we choose nonnegative weights wi(x),
1 ≤ i ≤ n, such that

#{Xi : wi(x) > 0} ≥ d+ 1.

Then we minimize the weighted sum of squares

n∑
i=1

wi(x)
(
Yi −

d∑
k=0

ak
(Xi − x)k

k!

)2

as a function of a = (ak)
d
k=0 ∈ Rd+1. Let â(x) := (âk(x))dk=0 be the unique minimizer. Then

âk(x) may be viewed as an estimator of f (k)(x).

5.2.1 Examples for the Weights wi(x)

Nearest neighbor method. We choose an integer k = k(n) between d+ 1 and n and define

wi(x) :=

{
1 if |x−Xi| ≤ Rk(x),

0 if |x−Xi| > Rk(x).

Here R1(x) ≤ R2(x) ≤ · · · ≤ Rn(x) are the distances |x − Xi| between the point x and the
observed X-values in nondecreasing order. The numbers k(n) should satisfy limn→∞ k(n) =∞
and limn→∞ k(n)/n = 0.

Kernel functions. Let K : R → R be a nonnegative function such that 0 <
∫
K(x) dx < ∞.

Then, we define

wi(x) := K
(x−Xi

h

)
with a suitable bandwidth h = h(x,X) > 0. In our explicit examples, we use the Epanechnikov
kernel

K(x) := max(1− x2, 0).

Alternatively, one could use K(z) = exp(−z2/2).

5.2.2 Explicit Computation

We may rewrite the weighted sum of squares as

n∑
i=1

wi(x)
(
Yi −

d∑
k=0

ak
(Xi − x)k

k!

)2
=
∥∥Y (x)−D(x)a

∥∥2

with

Y (x) :=
(√

wi(x)Yi
)n
i=1
∈ Rn
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and

D(x) :=
(√

wi(x)
(Xi − x)j−1

(j − 1)!

)
i≤n,j≤d+1

∈ Rn×(d+1).

Consequently,

â(x) = arg min
a∈Rd+1

∥∥Y (x)−D(x)a
∥∥2
.

The special cases d = 0 and d = 1. For an arbitrary vector v ∈ Rn, we define its weighted
mean

v̄(x) :=
n∑
i=1

πi(x)vi with πi(x) := wi(x)
/ n∑
j=1

wj(x).

In the special case d = 0, we end up with the estimator

f̂(x) = Ȳ (x).

In the special case d = 1, we may write

f̂(x) = Ȳ (x) + â1(x)(x− X̄(x))

with

â1(x) :=

n∑
i=1

πi(x)
(Xi − X̄(x))Yi

S(x)2
,

S(x)2 :=
n∑
i=1

πi(x)(Xi − X̄(x))2.

These formulae result from elementary calculations in the subsequent exercise.

Exercise 5.3. Let Xo and Yo be random variables on a common probability space such that
IE(X2

o ), IE(Y 2
o ) <∞ and Var(Xo) > 0. Show that

IE
(
(Yo − a− bXo)

2
)

is minimal in a, b ∈ R if and only if

a = IE(Yo)− b IE(Xo),

b =
Cov(Xo, Yo)

Var(Xo)
=

IE
(
(Xo − IE(Xo))Yo

)
Var(Xo)

.

Apply this result to two fixed vectors x,y ∈ Rn and the random variables Xo := xJ , Yo = yJ ,
where J is a random variable with values in {1, 2, . . . , n} and given weights πi = IP(J = i).

Example 5.4 (Baseball data). For the data in Example 4.13, Figure 5.4 shows a scatter plot of
the decimal logarithms of annual incomes (Y ) versus the number of years, truncated at 20 (X).
In addition, we show the the LSE f̂ for f , assuming that f belongs to S3(t0, t1, t2, t3, t4) with
tj = 0.5+5j. This is the curve in the center. The other four curves are pointwise and simultaneous
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(via Scheffé) 95%-confidence bounds for f . Precisely, the estimator and confidence bounds are
for the approximating function

fo := arg min
g∈S3(t0,t1,t2,t3,t4)

‖f − g‖n.

Figure 5.5 shows the same data and the locally linear estimators f̂ , based on the Epanechnikov
kernel and the global bandwidths h = 2 and h = 4.

0 5 10 15 20

2.
0

2.
5

3.
0

Figure 5.4: Spline estimator for f in Example 5.4.

Exercise 5.5. Implement the locally linear and locally quadratic estimators. Compare the meth-
ods by means of simulated data.

5.2.3 Precision of Locally Linear Estimators

In this section, we derive a rough bound for the precision of locally linear estimators. For more
precise and general results we refer to Fan and Gijbels (1996).

The locally linear estimator f̂(x) can be written as

f̂(x) =
n∑
i=1

πi(x)κ(x,Xi)Yi,

where

κ(x, t) := 1 +
(x− X̄(x))(t− X̄(x))

S(x)2
.

One can interpret X̄(x) and S(x) as mean and standard deviation of a discrete probability distri-
bution Qx,

Qx(B) :=

n∑
i=1

πi(x)1[Xi∈B].
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Figure 5.5: Locally linear estimator for f in Example 5.4, with bandwidths h = 2 (dashed line)
and h = 4 (continuous line).

Then, the expected value of f̂(x) may be represented as

n∑
i=1

πi(x)κ(x,Xi)f(Xi) =

∫
f(t)κ(x, t)Qx(dt).

One can easily verify that∫
κ(x, t)Qx(dt) = 1 and

∫
tκ(x, t)Qx(dt) = x.

Hence, IE f̂(x) = f(x), whenever f is an affine function. But now we want to assume only that f
is differentiable such that

Lip(f ′) ≤ L < ∞.

In this case,

f(t) = f(x) + f ′(x)(t− x) + r(x, t) with |r(x, t)| ≤ L(t− x)2

2
,

so

IE f̂(x) = f(x) +

∫
r(x, t)κ(x, t)Q(dt).

Introducing the absolute moments

Mr(x) :=

∫
|t− x|rQ(dt), r ≥ 1,
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of Qx, we may conclude that∣∣IE f̂(x)− f(x)
∣∣ ≤ ∫

|r(x, t)||κ(x, t)|Qx(dt)

≤ L

2

(
M2(x) +

|x− X̄(x)|
S(x)

∫
(t− x)2|t− X̄(x)|

S(x)
Qx(dt)

)
≤ L

2

(
M2(x) +

|x− X̄(x)|
S(x)

(
M4(x)

∫
|t− X̄(x)|2

S(x)2
Qx(dt)

)1/2)
≤ L

2
M4(x)1/2

(
1 +
|x− X̄(x)|
S(x)

)
,

where the last two steps follows from the Cauchy-Schwarz inequality and the definition of S(x).
On the other hand, with the local maximal variance

σ(x)2 := max
i:wi(x)>0

Var(εi),

the variance of f̂(x) may be bounded by

Var
(
f̂(x)

)
=

n∑
i=1

πi(x)2κ(x,Xi)
2 Var(εi)

≤ σ(x)2 max
i=1,...,n

πi(x)

∫
κ(x, t)2Qx(dt)

= σ(x)2 max
i=1,...,n

πi(x)
(

1 +
(x− X̄(x))2

S(x)2

∫
(t− X̄(x))2

S(x)2
Qx(dt)

)
= σ(x)2 max

i=1,...,n
πi(x)

(
1 +

(x− X̄(x))2

S(x)2

)
,

where the second last step follows from
∫

(t− X̄(x))Q(dt) = 0.

All in all, we obtain the following inequality:

Lemma 5.6 (Error bound for locally linear estimators). Under the previous conditions,

IE
((
f̂(x)− f(x)

)2)
=
(
IE f̂(x)− f(x)

)2
+ Var

(
f̂(x)

)
≤
(L2M4(x)

2
+ σ(x)2 max

i=1,...,n
πi(x)

)(
1 +

(x− X̄(x))2

S(x)2

)
.(5.4)

This lemma shows that M4(x) as well as σ(x)2 maxi πi(x) should be as small as possible, but
these goals can not be achieved simultaneously.

Example 5.7. Specifically, let Xi = i/n and Var(εi) ≤ σ2 for 1 ≤ i ≤ n. Suppose that the
weights have been defined via the nearest neighbor method with some number k(n) ≥ 2. For
any x ∈ [0, 1], Qx is the uniform distribution on the set {j/n : a(x) < j ≤ b(x)} with integers
0 ≤ a(x) < b(x) ≤ n such that k(n) ≤ b(x)−a(x) ≤ k(n)+1. Precisely, b(x)−a(x) = k(n)+1

can only occur if k(n) = 2m(n) + 1 for some integer m(n) ≥ 1 and x = (` − 0.5)/n for some
integer ` ∈ {m(n) + 2, . . . , n−m(n)}, so a(x) = `−m(n)−2 and b(x) = `+m(n). In general

X̄(x) =
a(x) + 1 + b(x)

2n
and S(x)2 =

(b(x)− a(x))2 − 1

12n2
≥ k(n)2 − 1

12n2
.
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Moreover, since (a(x) + 1)/n ≤ x ≤ b(x)/n, unless x < 1/n and a(x) = 0, b(x) = k(n), we
know that |j/n− x| ≤ k(n)/n for a(x) ≤ j ≤ b(x), whence

M4(x) ≤ (k(n)/n)4,

and
|x− X̄(x)| ≤ k(n) + 1

2n
.

Thus,

IE
((
f̂(x)− f(x)

)2) ≤ (L2k(n)4

2n4
+

σ2

k(n)

)(
1 +

3(k(n) + 1)

k(n)− 1

)
≤ 10

(L2k(n)4

2n4
+

σ2

k(n)

)
.

To obtain a minimal order of magnitude for this bound for fixed L and σ2, the quantities n−4k(n)4

and k(n)−1 should be of the same order. This is the case if k(n) is precisely of order O(n4/5),
and then,

IE
(
(f̂(x)− f(x))2

)
= O(n−4/5)

uniformly in x ∈ [0, 1]. In particular,

f̂(x)− f(x) = Op(n
−2/5).

The same orders of magnitude result with kernel-based weights, provided that the global band-
width h = h(n) is of order O(n−1/5).

5.3 Regularization

Finally, we describe a special case of smoothing methods which are known under the general
names regularization or penalization. Generally, we estimate the regression function f by mini-
mizing

n∑
i=1

(Yi − g(Xi))
2 + λPen(g)

over all functions g : R → R. Here, λ > 0 is a given penalty parameter, and Pen(·) is a
penalty function. The quantity Pen(g) ∈ [0,∞] measures “irregularity” of g. By means of this
penalty we prevent overfitting in the sense of choosing functions g which essentially interpolate
the observations (Xi, Yi). The parameter λ plays a similar role as k(n) and h(x,X) in connection
with local polynomials.

5.3.1 Smoothing Splines

For a function g : R→ R, let

Pen1(g) :=

∫
R
g′(x)2 dx,

provided that g is absolutely continuous; otherwise we set Pen1(g) := ∞. That g is absolutely
continuous means that g(t) − g(s) =

∫ t
s g
′(x) dx for some g′ ∈ L1

loc(R) and arbitrary s, t ∈ R.
Further, let

Pen2(g) :=

∫
R
g′′(x)2 dx,
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if g is differentiable with absolutely continuous derivative g′; otherwise we set Pen2(g) := ∞.
When minimizing Pen1(g) or Pen2(g) under certain constraints, functions of the following type
appear:

Definition 5.8 (Natural linear and cubic splines). Consider m ∈ N and real numbers t0 < t1 <

· · · < tm.

A continuous function f : R → R is called natural linear spline with knots t0, t1, . . . , tm, if f is
constant on (−∞, t0], constant on [tm,∞), and affine on each interval [tj−1, tj ], 1 ≤ j ≤ m. The
set of all such functions is denoted with Snat

1 (t0, t1, . . . , tm).

A function f : R → R is called natural cubic spline with knots t0, t1, . . . , tm, if f is twice
continuously differentiable, and if the second derivative f ′′ has the following properties: f ′′ = 0

on (−∞, t0]∪ [tm,∞), and f ′′ is affine on each interval [tj−1, tj ], 1 ≤ j ≤ m. The set of all such
functions is denoted with Snat

3 (t0, t1, . . . , tm).

Remark 5.9. Both function classes Snat
1 (t0, t1, . . . , tm) and Snat

3 (t0, t1, . . . , tm) are linear spaces
with dimension m+ 1.

In case of Snat
1 (t0, t1, . . . , tm), one can simply extend any function f in the usual spline space

S1(t0, t1, . . . , tm) to a constant function on (−∞, t0] and on [tm,∞). In particular, any basis f1,
f2, . . . , fm+1 of S1(t0, t1, . . . , tm) becomes thus a basis of Snat

1 (t0, t1, . . . , tm).

In case of Snat
3 (t0, t1, . . . , tm), the restriction of any function f ∈ Snat

3 (t0, t1, . . . , tm) to [t0, tm]

defines a function in S3(t0, t1, . . . , tm) with the additional property that

(5.5) f ′′(t0) = f ′′(tm) = 0.

On the other hand, any function f ∈ S3(t0, t1, . . . , tm) satisfying (5.5) (with f ′′(t0) and f ′′(tm)

interpreted as one-sided derivatives) may be extended to a function in Snat
3 (t0, t1, . . . , tm) via

(5.6) f(x) :=

{
f(t0) + f ′(t0)(x− t0) for x ≤ t0,
f(tm) + f ′(tm)(x− tm) for x ≥ tm.

To construct a specific basis of Snat
3 (t0, t1, . . . , tm), we start with an arbitrary basis f1, f2, . . . ,

fm+3 of S3(t0, t1, . . . , tm) such that fm+2(x) and fm+3(x) are proportional to (t1 − x)3
+ and

(x − tm−1)3
+, respectively. In particular, fm+2 = f ′m+2 = f ′′m+2 = 0 on [t1, tm], and fm+3 =

f ′m+3 = f ′′m+3 = 0 on [t0, tm−1]. Consequently,

f̃j(x) := fj(x)−
f ′′j (t0)

f ′′m+2(t0)
fm+2(x)−

f ′′j (tm)

f ′′m+3(tm)
fm+3(x)

= fj(x)−
f ′′j (t0)(t1 − x)3

+

6(t1 − t0)
−
f ′′j (tm)(x− tm−1)3

+

6(tm − tm−1)
, x ∈ [t0, tm],

defines linearly independent functions f̃1, f̃2, . . . , f̃m+1 in S3(t0, t1, . . . , tm) with the additional
property (5.5). By means of the extension (5.6), we obtain a basis of Snat

3 (t0, t1, . . . , tm).

The following lemma about smooth interpolation will be the key ingredient for our main result in
this section.
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Lemma 5.10. Consider m ∈ N and real numbers t0 < t1 < · · · < tm and z0, z1, . . . , zm.
Further, let g : R→ R be an arbitrary function with the property that

(5.7) g(tj) = zj for j = 0, 1, . . . ,m.

(a) There exists a unique function go ∈ Snat
1 (t0, t1, . . . , tm) which satisfes (5.7). This function

minimizes Pen1(g) among all functions g satisfying (5.7).

(b) There exists a unique function go ∈ Snat
3 (t0, t1, . . . , tm) which satisfes (5.7). This function

minimizes Pen2(g) among all functions g satisfying (5.7).

Proof of Lemma 5.10. The proof of part (a) is essentially a consequence of Exercise 5.11. Hence,
we focus on part (b). For x ∈ R define

λ0(x) :=
tm − x
tm − t0

and λm(x) :=
x− t0
tm − t0

.

Obviously, λ0(x) + λm(x) = 1, and in case of x ∈ [t0, tm], λ0(x), λm(x) ∈ [0, 1]. Now, for an
arbitrary function g with Pen2(g) <∞ and any point x ∈ [t0, tm], we investigate the difference

∆(x) := λ0(x)g(t0) + λm(x)g(tm)− g(x)

in more detail:

∆(x) = λ0(x)
(
g(t0)− g(x)

)
+ λm(x)

(
g(tm)− g(x)

)
= −λ0(x)

∫ x

t0

g′(s) ds+ λm(x)

∫ tm

x
g′(s) ds

= −λ0(x)

∫ x

t0

(
g′(s)− g′(x)

)
ds+ λm(x)

∫ tm

x

(
g′(s)− g′(x)

)
ds(

because λ0(x)(x− t0) = λm(x)(tm − x)
)

= λ0(x)

∫ x

t0

∫ x

s
g′′(t) dt ds+ λm(x)

∫ tm

x

∫ s

x
g′′(t) dt ds

= λ0(x)

∫ x

t0

(t− t0)g′′(t) dt+ λm(x)

∫ tm

x
(tm − t)g′′(t) dt.

Consequently, for x ∈ [t0, tm],

∆(x) =

∫
R
K(x, t)g′′(t) dt

with

K(x, t) :=


(t− t0)(tm − x)

tm − t0
for t0 ≤ t ≤ x,

(x− t0)(tm − t)
tm − t0

for x ≤ t ≤ tm,

0 else.

The constraints (5.7) on g are equivalent to

(5.8) g(t0) = z0, g(tm) = zm and
∫
R
K(tj , t)g

′′(t) dt = cj for 1 ≤ j < m,
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where cj := λ0(tj)z0 + λm(tj)zm − zj . The functions K(tj , ·), 1 ≤ j < m, are in the space
Snat

1 (t0, t1, . . . , tm), have compact support and are linearly independent. Hence, there exists a
unique linear combination h =

∑m−1
j=1 ajK(tj , ·) saytisfying the equations∫

R
K(tj , t)h(t) dt = cj , 1 ≤ j < m.

In particular, there exists a unique function go ∈ Snat
3 (t0, t1, . . . , tm) solving (5.7), and g′′o = h.

For any other function g satisfying (5.7) and Pen2(g) < ∞, we can write g′′ = h + r with a
function r ∈ L2(R) satisfying the equations∫

R
K(tj , t)r(t) dt = 0, 1 ≤ j < m.

In particular,
∫
R h(t)r(t) dt = 0, whence∫

R
g′′(t)2 dt =

∫
R
h(t)2 dt+

∫
R
r(t)2 dt ≥

∫
R
h(t)2 dt.

Equality holds if and only if r = 0 almost everywhere, which is equivalent to g ≡ go.

Exercise 5.11. Let g : [a, b]→ R be absolutely continuous, that means, there exists an integrable
function g′ : [a, b]→ R such that g(x) = g(a) +

∫ x
a g
′(t) dt for all x ∈ [a, b]. Show that∫ b

a
g′(t)2 dt ≥

(
g(b)− g(a)

)2
b− a

with equality if and only if g′ =
(
g(b)− g(a)

)
/(b− a) almost everywhere on [a, b].

Now we come back to our regularization estimator:

Theorem 5.12. Consider arbitrary data vectors X,Y ∈ Rn such that #{X1, . . . , Xn} ≥ 2. For
arbitrary numbers k ∈ {1, 2} and λ > 0, there exists a unique function f̂λ : R→ R minimizing

Hλ(g) :=

n∑
i=1

(Yi − g(Xi))
2 + λPenk(g)

among all functions g : R→ R. Denoting the different elements of {X1, . . . , Xn} with t0 < t1 <

. . . < tm, the function f̂λ belongs to Snat
2k−1(t0, t1, . . . , tm).

Proof of Theorem 5.12 and construction of f̂λ. The target functional Hλ(g) may be rewritten
as S2

0(X,Y ) + H̃λ(g) with

H̃λ(g) :=
m∑
i=0

wi(yi − g(ti))
2 + λPenk(g),

wi := #{` : X` = ti},

yi := w−1
i

∑
` :X`=ti

Y`

and S2
0(X,Y ) =

∑m
i=0

∑
` :X`=ti

(Y` − yi)2. Now let

F :=

{
Snat

1 (t0, t1, . . . , tm) if k = 1,

Snat
3 (t0, t1, . . . , tm) if k = 2.
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According to Lemma 5.10, for each function g : R → R there exists a unique function go ∈ F
such that go = g on {t0, t1, . . . , tm}. Moreover, Penk(go) ≤ Penk(g) with equality if and only if
g = go. Hence, it suffices to consider functions g ∈ F . Now, we choose a basis f1, f2, . . . , fm+1

of F and write g =
∑m+1

j=1 θjfj for some θ ∈ Rm+1. In this case,

H̃λ(g) = c− 2b>θ + θ>Aλθ

with c =
∑m

i=0wiy
2
i and

b :=
( m∑
i=0

wiyifj(ti)
)m+1

j=1
,

Aλ :=
( m∑
i=0

wifj(ti)f`(ti) + λ

∫ tm

t0

f
(k)
j (t)f

(k)
` (t) dt

)m+1

j,`=1
.

The latter matrix Aλ is symmetric and positive definite, because θ>Aλθ = 0 would imply that
g(k) ≡ 0 and g = 0 on {t0, . . . , tm}, whence g ≡ 0 and θ = 0. Consequently,

θ̂λ =
(
θ̂λ,j
)m+1

j=1
:= A−1

λ b

is the unique minimizer of H̃λ and yields the unique minimizer f̂λ :=
∑m+1

j=1 θ̂λ,jfj of Hλ.

Example 5.13. We illustrate the regularization paradigm with n = 800 simulated data pairs
(Xi, Yi) ∈ [−3.5, 3.5]× R, where f(x) = sin(2x) and εi ∼ N(0, 0.52).

Figure 5.6 shows the regularization estimator f̂λ with penalty Pen1(f) and six different values of
λ. Figure 5.7 shows the estimator f̂λ for one particular value of λ together with the true function
f (green and dotted line). The choice of λ will be explained later.

Figures 5.8 and 5.9 show analogous plots for the regularizetion estimator f̂λ with penalty Pen2(f).

5.3.2 A Related Approach

As in the previous section, let t0 < t1 < · · · < tm be the different elements of {X1, X2, . . . , Xn},
and write w = (wi)

m
i=0, y = (yi)

m
i=0 with

wi = #{` : X` = ti}, and yi = w−1
i

∑
` :X`=ti

Y`.

If we are only interested in estimating f on the set {t0, t1, . . . , tm} of observed X-values, there
exists a rather simple and general approach to regularization: One minimizes

Hλ(g) :=

m∑
i=0

wi(yi − gi)2 + λg>Ag

= y> diag(w)y − 2y> diag(w)g + g>(diag(w) + λA)g

with respect to g = (gi)
m
i=0 ∈ Rm+1, where A is a symmetric and positive semidefinite matrix

in R(m+1)×(m+1). The vector g corresponds to
(
g(ti)

)m
i=0

with g : R → R. Then, the unique
minimizer

f̂λ := (diag(w) + λA)−1 diag(w)y
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Figure 5.6: Different estimators of f via linear smoothing splines.
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Figure 5.7: One estimator of f via linear smoothing splines, plus true f .
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Figure 5.8: Different estimators of f via cubic smoothing splines.
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of Hλ is our estimator of
(
f(ti)

)m
i=0

.

Concerning A, there are many possibilities. Suppose we want to imitate the penalty functional∫ tm
t0

g′(t)2 dt. If g′ is approximately constant on [tj , tj+1] for some j ∈ {0, . . . ,m− 1}, then with
∆j := tj+1 − tj ,

g(tj+1)− g(tj)

∆j
≈ g′(t) for t ∈ [tj , tj+1].

Thus we replace
∫ tm
t0

g′(t)2 dt with

m−1∑
j=0

∆−1
j

(
g(tj+1)− g(tj)

)2
= g>A1 g,

where

A1 :=

m−1∑
j=0

∆−1
j vjv

>
j ,

vj := (1[i=j+1] − 1[i=j])
s
i=0.

Suppose we want to approximate the functional
∫ tm
t0

g′′(t)2 dt. If g′′ is approximately constant on
[tj , tj+2] for some j ∈ {0, . . . ,m− 2}, then

2

∆j + ∆j+1

(g(tj+2)− g(tj+1)

∆j+1
− g(tj+1)− g(tj)

∆j

)
≈ g′′(t) for t ∈ [tj , tj+2].

Indeed, the previous approximation is an exact equality if g(t) = a+ bt+ ct2/2 for t ∈ [tj , tj+2].
Note also that

2

∆j + ∆j+1

(g(tj+2)− g(tj+1)

∆j+1
− g(tj+1)− g(tj)

∆j

)
= v>j g

with
vj :=

2

∆j + ∆j+1

(1[i=j+2] − 1[i=j+1]

∆j+1
−

1[i=j+1] − 1[i=j]

∆j

)m
i=0
.

Thus we replace
∫ tm
t0

g′′(t)2 dt with g>A2 g, where

A2 :=
m−2∑
j=0

bj vjv
>
j

and

bj :=


∆0 + ∆1 if j = 0,m = 2,

∆0 + ∆1/2 if j = 0,m ≥ 3,

∆m−1/2 + ∆m if j = m− 2,m ≥ 3,

(∆j + ∆j+1)/2 if 1 ≤ j ≤ m− 3,m ≥ 4.

5.3.3 Choosing the Regularization Parameter

Regularization estimators as well as locally polynomial estimators and other nonparametric pro-
cedures depend often on certain tuning parameters. In what follows, we describe two possible
strategies for choosing the regularization parameter λ > 0 automatically. Similar ideas are appli-
cable to other nonparametric techniques.
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Cross validation. For i = 1, 2, . . . , n, let [X−i,Y −i] be the data matrix [X,Y ] without the
row (Xi, Yi). For given λ > 0, one estimates the regression function f from the reduced data
[X−i,Y −i] by f̂λ,−i. The overall quality of these n estimators is measured by the sum of squares
Q(λ),

Q(λ) :=

n∑
i=1

(Yi − f̂λ,−i(Xi))
2.

Now, one minimizes Q(λ) over all λ > 0 in a given set.

Comparing two variance estimators. For λ > 0, let f̂λ be the corresponding regularization
estimator of the regression function f . This yields an estimator of the standard deviation σ > 0 of
the (homoscedastic) errors, namely,

σ̂λ :=

(
1

n

n∑
i=1

(Yi − f̂λ(Xi))
2

)1/2

.

In addition, let σ̂∗ be an estimator for σ which does not depend on λ or f̂λ and is reliable for a large
class of regression functions f ; explicit examples will follow soon. As explained in Exercise 5.14,
the estimator σ̂λ is monotone increasing in λ > 0. Now, we compare σ̂λ with σ̂∗ and choose λ > 0

such that both are essentially identical.

Exercise 5.14. For an arbitrary set X , let Q : X → R and P : X → [0,∞] be two functions.
Suppose that for real parameters 0 ≤ λ < µ there exist minimizers xλ of Q + λP and xµ of
Q+ µP over X , where P (xλ), P (xµ) <∞. Show that

Q(xλ) ≤ Q(xµ) and P (xλ) ≥ P (xµ).

A first estimator of the noise level. In case of X1 ≤ X2 ≤ · · · ≤ Xn one could estimate σ by

(5.9) σ̂∗ :=

(
1

2(n− 1)

n−1∑
i=1

(Yi+1 − Yi)2

)1/2

,

as proposed by Rice (1981). The rationale behind this estimator is that Yi+1 − Yi ≈ εi+1 − εi,
provided that f(Xi) ≈ f(Xi+1), and IE

(
(εi+1 − εi)2

)
= 2σ2 in case of homoscedastic errors.

Exercise 5.15. Suppose thatX1 ≤ X2 ≤ · · · ≤ Xn, and let σ̂∗ be given by (5.9). Suppose further
that IE(ε2

i ) = σ2 and IE(ε4
i ) ≤ Kσ4 for 1 ≤ i ≤ n and some constant K ≥ 1.

(a) Show that

IE(σ̂2
∗) = σ2 + ρ2 with ρ2 :=

1

2(n− 1)

n−1∑
i=1

(f(Xi+1)− f(Xi))
2.

Show also that

ρ2 ≤ max1≤i<n(Xi+1 −Xi)

2(n− 1)

∫ Xn

X1

f ′(t)2 dt.
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(b) Show that the “estimator”

σ̌2
∗ :=

1

2(n− 1)

n−1∑
i=1

(εi+1 − εi)2

satisfies the following inequalities:

IE(σ̌2
∗) = σ2, Var(σ̌2

∗) ≤
Kσ4

n− 1
and IE

(
(σ̂2
∗ − σ̌2

∗ − ρ2)2
)
≤ 8σ2

n− 1
ρ2.

(c) Deduce the inequality

IE
(( σ̂2

∗
σ2 + ρ2

− 1
)2)

≤ 2K + 4

n− 1
.

A second estimator of the noise level. Let us assume that the errors have a variance depending
continuously on Xi, that is, Var(Yi) = Var(εi) = σ(Xi)

2 for some continuous function σ(·). The
quantity σ̂2

λ = n−1
∑n

i=1(Yi − f̂λ(Xi))
2 may be viewed as a proxy for n−1

∑n
i=1 ε

2
i and thus as

an estimator of

σ2
∗ :=

1

n

n∑
i=1

σ(Xi)
2.

Now, with t0 < t1 < · · · < tm, w0, w1, . . . , wm ≥ 1 and y0, y1, . . . , ym ∈ R as before, we
estimate σ(tj)

2 as follows, assuming that m ≥ 3:

For j ∈ {0,m}, if wj > 1, we set

σ̂(tj)
2 :=

1

wj − 1

∑
i : Xi=tj

(Yi − yj)2.

If wj = 1, we set σ̂(tj)
2 := σ̂(t1)2 if j = 0 and σ̂(tj)

2 := σ̂(tm−1)2 if j = m.

For 1 ≤ j ≤ m− 1 we set

σ̂(tj)
2 :=

∑
i:Xi=tj

(Yi − yj)2 +
(
yj − (1− λj)yj−1 − λjyj+1

)2
wj − 1 + 1/wk + (1− λj)2/wj−1 + λ2

j/wj+1

with λj := (tj − tj−1)/(tj+1 − tj−1). Then we set

(5.10) σ̂2
∗ :=

1

n

n∑
i=1

σ̂(Xi)
2 =

1

n

m∑
j=0

wj σ̂(tj)
2.

Exercise 5.16. Show that IE(σ̂(tj)
2) = σ(tj)

2 in the following two situations:

(i) j ∈ {0,m} and wj > 1.

(ii) j ∈ {1, . . . ,m− 1}, σ(tj−1) = σ(tj) = σ(tj+1), and f is affine on [tj−1, tj+1].

Example 5.13 (continued). Our particular choice of λ = 4 for Figure 5.7 and λ = 0.4 for
Figure 5.9 was based on approximate matching of σ̂λ (‘sh1’ in all plots) with σ̂∗ (‘sh0’ in all
plots). The latter was computed via (5.9) for the linear smoothing splines and via (5.10) for the
cubic smoothing splines.



Chapter 6

General Considerations about
Estimation

In this chapter, the estimation of regression functions is embedded into a rather general framework.
To do so, we are using concepts of statistical decision theory which are treated in more detail within
courses on mathematical statistics. In particular, we introduce so-called (log-)likelihood functions.

6.1 Means and Quantiles as Optimal Predictors

Suppose we want to predict the value of a yet unobserved random variable Y ∈ R by a fixed
real number v with maximal precision. For the time being, the distribution of Y is assumed to be
known. Depending on how we define “precision”, we obtain different solutions. In general, we
quantify the size of the prediction error v − Y by its prediction loss

ρ(v − Y )

for a given convex loss function ρ : R→ R. We also assume that ρ is coercive, that is,

ρ(t) → ∞ as |t| → ∞.

Our goal is to determine a prediction v ∈ R such that the mean prediction loss

IE ρ(v − Y )

is minimal. The next lemma provides explicit solutions for two and a half particular cases.

Lemma 6.1 (Optimal prediction).

(a) Mean squared prediction error: Suppose that IE(Y 2) <∞. In case of ρ(t) = t2,

IE ρ(v − Y ) = Var(Y ) + (v − IE(Y ))2.

Hence, the optimal prediction of Y is given by

v = IE(Y ).

161
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(b) Mean absolute prediction error: Suppose that IE |Y | <∞. Let ρ(t) = |t|. Then IE ρ(v−Y )

is minimal in v if and only if v is a median of L(Y ), that is,

IP(Y < v) ≤ 1/2 ≤ IP(Y ≤ v).

(c) Quantiles: Suppose that IE |Y | <∞. For a given number γ ∈ (0, 1) let

ρ(t) := (1− 2γ)t+ |t| =

{
2(1− γ)t if t ≥ 0,

2γ|t| if t ≤ 0.

Then IE ρ(v − Y ) is minimal in v if and only if v is a γ-quantile of L(Y ), that is,

IP(Y < v) ≤ γ ≤ IP(Y ≤ v).

Remark 6.2 (Existence of moments). The assumptions in Lemma 6.1 that IE(Y 2) or IE |Y | are fi-
nite, may be weakened as follows. For any convex loss function ρ, we could replace the prediction
loss ρ(v − Y ) by the difference

ρ(v − Y )− ρ(vo − Y )

with an arbitrary reference value vo. If IE ρ(v − Y ) is finite for all v ∈ R, then minimizing
v 7→ IE ρ(v − Y ) is equivalent to minimizing v 7→ IE

[
ρ(v − Y ) − ρ(vo − Y )

]
. The modified

prediction loss has the advantage that in case of ρ(t) = t2, it suffices to assume that IE |Y | < ∞,
and in case of ρ(t) = (1− 2γ)t+ |t|, we do not need any further moment assumption. The main
conclusions that IE(Y ) or any γ-quantile of L(Y ) are optimal, respectively, remain valid and may
be viewed as special cases of the more general Theorem 6.3 below.

In what follows, the left- and right-sided derivatives of a function h : R→ R are denoted by

h′(x−) := lim
y↗x

h(y)− h(x)

y − x
and h′(x+) := lim

y↘x

h(y)− h(x)

y − x
,

respectively. In what follows, we assume some basic knowledge about convex functions on the
real line as presented, for instance, in Section 3.1 of Dümbgen (2021). In particular, if ρ : R→ R
is convex, then for arbitrary points s < t < u,

(6.1)
ρ(t)− ρ(s)

t− s
≤ ρ′(t−) ≤ ρ′(t+) ≤ ρ(u)− ρ(t)

u− t
.

Theorem 6.3. Let ρ : R → R be convex, and suppose that for arbitrary v ∈ R, the expectations
IE ρ′((v − Y )±) exist in R. For arbitrary vo ∈ R,

R(v) := IE
[
ρ(v − Y )− ρ(vo − Y )

]
defines a convex function R : R→ R such that

R′(v±) = IE ρ′((v − Y )±).

If, in addition, ρ is coercive, then R is coercive too, that is, R(v) → ∞ as |v| → ∞. In this case,
the set V∗ := arg minv∈RR(v) is a compact real interval. It consists of all points v ∈ R such that
R′(v−) ≤ 0 ≤ R′(v+).
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The inequalities (6.1) imply that IE ρ′((v − Y )±) exists in R for arbitrary v ∈ R whenever
IE ρ(v − Y ) exists in R for arbitrary v ∈ R.

Proof of Lemma 6.1. The main statement in part (a) is a well-known identity from probability
theory. If we only assume that IE |Y | < ∞, optimality of v = IE(Y ) follows from the following
calculations:

IE
[
ρ(v − Y )− ρ(vo − Y )

]
= IE

[
−2vY + v2 + 2voY − v2

o

]
= −2v IE(Y ) + v2 + 2vo IE(Y )− v2

o

= (v − IE(Y ))2 − (vo − IE(Y ))2.

Part (b) is a special case of part (c) with γ = 1/2, and part (c) could be derived with elementary
calculations. But the arguing would be similar to the proof of Theorem 6.3. Thus we derive part (c)
from Theorem 6.3: The function R 3 t 7→ ρ(t) := (1− 2γ)t+ |t| is convex and coercive, and its
one-sided derivatives at t are given by

ρ′(t−) = 1− 2γ + 1[t>0] − 1[t≤0] = 2(1[t>0] − γ),

ρ′(t+) = 1− 2γ + 1[t≥0] − 1[t<0] = 2(1[t≥0] − γ).

Since the functions ρ′(· ±) are bounded, R(v) := IE
(
ρ(v − Y ) − ρ(vo − Y )

)
defines a convex

function R : R→ R with one-sided derivatives

R′(v−) = 2(IP(v − Y > 0)− γ) = 2(IP(Y < v)− γ),

R′(v+) = 2(IP(v − Y ≥ 0)− γ) = 2(IP(Y ≤ v)− γ).

As stated in Theorem 6.3, a point v minimizes R if and only if R′(v−) ≤ 0 ≤ R′(v+), and the
latter conditions are equivalent to the inequalities IP(Y < v) ≤ γ ≤ IP(Y ≤ v).

Proof of Theorem 6.3. For arbitrary real numbers a < b and two different points v, w ∈ [a, b], it
follows from (6.1) that

ρ′((a− Y ) +) ≤ ρ(w − Y )− ρ(v − Y )

w − v
≤ ρ′((b− Y )−).

In particular, if [a, b] 3 vo, we obtain the inequality∣∣ρ(v − Y )− ρ(vo − Y )
∣∣ ≤ |v − vo|max

{
−ρ′((a− Y ) +), ρ′((b− Y )−)

}
for any v ∈ [a, b], and the random variable on the right hand side has finite expectation. Hence
R(v) is well-defined in R. One can easily deduce from convexity of ρ and linearity of expectations
that R is convex, too.

As to the one-sided derivatives, for different points v, w ∈ (a, b),

R(w)−R(v)

w − v
= IE

ρ(w − Y )− ρ(v − Y )

w − v
,
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and ∣∣∣ρ(w − Y )− ρ(v − Y )

w − v

∣∣∣ ≤ max
{
−ρ′((a− Y ) +), ρ′((b− Y )−)

}
,

ρ(w − Y )− ρ(v − Y )

w − v
→

{
ρ′((v − Y ) +) as w ↘ v,

ρ′((v − Y )−) as w ↗ v.

Hence, by dominated convergence,

R(w)−R(v)

w − v
→

{
IE ρ′((v − Y ) +) as w ↘ v,

IE ρ′((v − Y )−) as w ↗ v.

Now suppose that ρ is convex and coercive. Coercivity of any convex function h : R → R
is equivalent to limt→∞ h

′(t±) ∈ (0,∞] and limt→−∞ h
′(t±) ∈ [−∞, 0). Convexity of ρ

implies that ρ′((v − Y )±) is monotone increasing in v ∈ R. Hence, by monotone convergence,
R′(v±) = IE ρ′((v − Y )±) → limt→∞ ρ

′(t±) > 0 as v → ∞, while R′(v±) = IE ρ′((v −
Y )±)→ limt→−∞ ρ

′(t±) < 0 as v → −∞. This proves coercivity of R.

If R is convex and coercive, the set V∗ of its minimizers has to be closed and nonempty (by
continuity and coercivity) and an interval (by convexity). In other words, V∗ is a compact interval.
That v ∈ V∗ is equivalent to R′(v−) ≤ 0 ≤ R′(v+) is a standard result of convex analysis:
On the one hand, if R′(v−) > 0, then R(w) < R(v) for w < v sufficiently close to v, and
R′(v+) < 0 would imply that R(w) < R(v) for w > v sufficiently close to v. On the other hand,
if R′(v−) ≤ 0 ≤ R′(v+), then (6.1) implies that R(w) ≥ R(v) + R′(v−)(w − v) ≥ R(v) for
all w < v, and R(w) ≥ R(v) +R′(v+)(w − v) ≥ R(v) for all w > v.

Empirical mean prediction error. In most applications, the distribution of Y is unknown and
has to be estimated from empirical data. Suppose we observe stochastically independent copies
Y1, Y2, . . . , Yn of Y . Then the empirical mean prediction error

R̂(v) :=
1

n

n∑
i=1

ρ(v − Yi)

suggests itself as a surrogate for R(v) := IE ρ(v − Y ). For the explicit examples in Lemma 6.1,
minimizing R̂(·) leads to the sample mean, a sample median or a sample γ-quantile, respectively.

Here is a general result showing that for large sample sizes n, any minimizer v̂ of the empirical
risk function R̂ has to be close to the set V∗ of minimizers of the theoretical risk function R.

Theorem 6.4. Let ρ : R → R be convex and coercive such that IE ρ′((v − Y )±) exists in R
for any v ∈ R. Let v̂ be any minimizer of the empirical risk function R̂, and let V∗ be the set of
minimizers v of R(v) = IE

[
ρ(v − Y )− ρ(vo − Y )

]
. Then for any fixed δ > 0,

lim
n→∞

IP
(
v̂ ≤ min(V∗)− δ or v̂ ≥ max(V∗) + δ

)
= 0.

Proof of Theorem 6.4. Note that R′(v±) and R̂′(v±) are monotone increasing in v ∈ R. By
definition of V∗, the points v1 := min(V∗) − δ and v2 := max(V∗) + δ satisfy the inequalities
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R′(v1 +) < 0 < R′(v2−). If v̂ ≤ v1, then

0 ≤ R̂′(v̂+) ≤ R̂′(v1 +) = Zn1 +R′(v1 +)

with

Zn1 := R̂′(v1 +)−R′(v1 +) =
1

n

n∑
i=1

[
ρ′((v1 − Yi) +)− IE ρ′((v1 − Y ) +)

]
.

Likewise, v̂ ≥ v2 implies that

0 ≥ R̂′(v̂−) ≥ R̂′(v2−) = Zn2 +R′(v2−)

with

Zn2 := R̂′(v2−)−R′(v2−) =
1

n

n∑
i=1

[
ρ′((v2 − Yi)−)− IE ρ′((v2 − Y )−)

]
.

By the weak law of large numbers, limn→∞ IP(|Znk| ≥ ε) = 0 for any fixed ε > 0 and k = 1, 2.
Consequently, with ε1 := −R′(v1 +) > 0 and ε2 := R′(v2−) > 0,

IP
(
v̂ ≤ v1 or v̂ ≥ v2

)
≤ IP

(
Zn1 ≥ ε1 or Zn2 ≤ −ε2

)
≤ IP(Zn1 ≥ ε1) + IP(Zn2 ≤ −ε2)

converges to 0 as n→∞.

6.2 Loss Functions and Risks

The considerations in the previous section may be generalized as follows: Let Y be a random
variable with values in a measurable space (Y,B). Now we want to make a “decision” v in a
“decision space” V about the yet unobserved value Y . For a given loss function L : V × Y →
(−∞,∞] which is measurable in the second argument, the quality of a decision v is quantified by
the loss of v,

L(v, Y ),

or the risk of v,

R(v) := IEL(v, Y ) =

∫
L(v, y)P (dy),

i.e. the mean loss of v.

In the previous section we encountered already two and a half important examples: In all cases,
Y = V = R, the “decision” was a prediction v of Y , and L(v, Y ) = ρ(v− Y ) for a given convex,
coercive function ρ : R→ R.

Exercise 6.5. Let Y ≥ 0 be the health costs which a randomly chosen customer of a health
insurance company will cause next year. Let e > 0 be the annual premium he or she has to pay,
and let v ≥ 0 be his or her retention. Hence, the net revenues of the insurance company for this
customer are given by

e−max(Y − v, 0) = e+ min(v − Y, 0).
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Now we would like to determine a retention v which is fair in the sense that

(∗) IE
(
e−max(Y − v, 0)

)
= 0.

(a) Show that there is a unique solution of (∗), provided that e ≤ IE(Y ) <∞.

(b) Determine a convex function ρ : R → R such that solving (∗) is equivalent to minimizing
IE ρ(v − Y ) or IE

(
ρ(v − Y )− ρ(−Y )

)
.

Exercise 6.6. Let Y be a real-valued random variable. We identify a value y ∈ R with the
indicator function R 3 t 7→ 1[y≤t] and would like to predict this function by some function
v : R→ R. Suppose that our loss function is given by

L(v, y) :=

∫ (
v(t)− 1[y≤t]

)2
M(dt)

for some finite measure M on R. Determine all functions v with minimal risk R(v) = IEL(v, Y ).

The special case of a finite set Y . Here, Y is a categorical random variable whose distribution
is determined by the probability weights

p(z) := IP(Y = z), z ∈ Y.

Now our decision space V is the set RY of all functions v : Y → R, and we consider three different
loss functions:

Example 6.7 (Least squares for categorical observations). We identify Y with the random indi-
cator function Y 3 z 7→ 1[z=Y ] which we would like to predict by a fixed function v ∈ V. Let the
loss of v be given by

L(v, Y ) :=
∑
z∈Y

(
v(z)− 1[z=Y ]

)2
.

Here one can show that R(v) = IEL(v, Y ) is minimal if and only if

v(z) = p(z) for z ∈ Y.

Exercise 6.8. Prove the optimality result in Example 6.7.

Example 6.9 (Likelihood for categorical observations). We present two different loss functions
whose definition is not so obvious at first glance. Both are related to likelihood methods as pre-
sented in the next section. We assume now that

p(z) > 0 for all z ∈ Y.

The two loss functions L1, L2 are given by

L1(v, y) :=
∑
z∈Y

ev(z) − v(y),

L2(v, y) := log
(∑
z∈Y

ev(z)
)
− v(y).
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The corresponding risks are

R1(v) := IEL1(v, Y ) =
∑
z∈Y

ev(z) −
∑
z∈Y

p(z)v(z),

R2(v) := IEL2(v, Y ) = log
(∑
z∈Y

ev(z)
)
−
∑
z∈Y

p(z)v(z).

In both cases, the sum
∑

z∈Y e
v(z) > 0 appears, and this is strictly increasing in each value v(z).

But the second sum
∑

z∈Y p(z)v(z) prevents us from letting v(z)→ −∞ for each z ∈ Y .

For R1, one can show that

R1(v) ≥ 1−
∑
z∈Y

p(z) log p(z)

with equality if and only if v(z) = log p(z) for all z ∈ Y .

The risk function R2(v) is minimal at v ∈ RY if and only if

ev(z)∑
y∈Y e

v(y)
= p(z) for all z ∈ Y.

In other words, for some constant c ∈ R,

v(z) = log p(z) + c for all z ∈ Y.

A unique solution can be enforced by additional constraints, e.g.

(i)
∑

y∈Y e
v(y) = 1 or

(ii) v(yo) = 0 for a reference category yo ∈ Y or
(iii)

∑
y∈Y v(y) = 0.

Variant (ii) will be used in the context of logistic regression.

Exercise 6.10. Prove the optimality results in Example 6.9.

Exercise 6.11 (Mean squared loss in general). We have seen that the mean of a random variable
Y ∈ R is an optimal predictor with respect to mean squared prediction error. This example as well
as the settings in Exercises 6.6 and 6.8 can be viewed as special cases of the following abstract
setting: We observe a random variable Y ∈ Y which can be mapped into a real Hilbert space
(H, 〈·, ·〉, ‖ · ‖) via a measurable mapping T : Y → H such that IE(‖T (Y )‖2) < ∞. If H is our
decision space, and if the loss of a decision h ∈ H is defined as

L(h, Y ) := ‖h− T (Y )‖2,

what is the unique minimizer h of R(h) := IEL(h, Y )?

Specify H and T for the three situations mentioned before.

How could you modify L(h, Y ) to obtain the same minimizer under the weaker assumption that
IE ‖T (Y )‖ <∞?
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Empirical risk. In case of stochastically independent copies Y1, Y2, . . . , Yn of Y with unknown
distribution, one can estimate R(v) by the empirical risk

R̂(v) :=
1

n

n∑
i=1

L(v, Yi).

Let P be the distribution of Y , and let P̂ be the empirical distribution of Y1, Y2, . . . , Yn. That is,
P̂ (B) := #{i : Yi ∈ B}/n for B ⊂ Y , and

∫
h dP̂ = n−1

∑n
i=1 h(Yi) for h : Y → R. Then we

may write

R(v) =

∫
L(v, y)P (dy) and R̂(v) =

∫
L(v, y) P̂ (dy).

6.3 Maximum Likelihood Estimation

Suppose that the distribution P of Y is unknown, but let (Pθ)θ∈Θ be a given family of probability
distributions Pθ on (Y,B) which contains P or at least a “good approximation” of P . Now our
goal is not a “decision” about Y but the definition and estimation of a “true parameter” θo ∈ Θ,
having observed Y .

More precisely, suppose that Pθ admits a density function pθ with respect to a measure M on
(Y,B). For instance, let Y = Rd, and let pθ be a (Lebesgue) probability density of Pθ in the usual
sense. Or let Y be a countable set, and let pθ be the weight function of Pθ, that is, pθ(z) = Pθ({z})
for z ∈ Y . Now one may try to estimate the “true parameter” θo ∈ Θ by means of the negative
log-likelihood

L(θ, Y ) := − log pθ(Y ).

The random functions θ 7→ pθ(Y ) and θ 7→ log pθ(Y ) on the parameter space Θ are the so-called
likelihood function and log-likelihood function, respectively.

Suppose that

(i) P = Pθo for some θo ∈ Θ,
(ii)

∫
| log pθ| dPθ <∞ for all θ ∈ Θ,

(iii) Pη 6= Pθ for all η, θ ∈ Θ with η 6= θ.

Then the parameter θo is the unique minimizer of

R(θ) := IEL(θ, Y ).

This follows immediately from the subsequent Lemma 6.12. If L(θ̂, Y ) = minθ∈Θ L(θ, Y ) for
some parameter θ̂ = θ̂(Y ) in Θ, we call θ̂ a maximum likelihood estimator for θo. If assumption (i)
is not satisfied, one may view θ̂ as an estimator of a minimizer of the risk R(·).

Lemma 6.12. Let P and Q be probability distributions on Y with density functions p and q,
respectively, with respect to some measure M . Further let

∫
| log p| dP <∞. Then,

−
∫

log(q) dP ≥ −
∫

log(p) dP

with equality if and only if P = Q.
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Proof of Lemma 6.12. The asserted inequality is equivalent to the claim that the so-called Kull-
back-Leibler divergence

∫
log(p/q) dP is greater than or equal to zero, with equality if and only

if P = Q. To verify this, we write∫
log(p/q) dP = −

∫
{p>0}

log(q/p) p dM

= −
∫
{p>0}

log
(

1 +
q − p
p

)
p dM

≥ −
∫
{p>0}

(q − p) dM

= 1−Q({p > 0})

≥ 0.

Here we used the inequality log(1 + t) ≤ t for all t ≥ −1, which is strict whenever t 6= 0. Hence
the equality

∫
log(p/q) dP = 0 implies that M

(
{p > 0} ∩ {p 6= q}

)
= 0. This implies already

that Q = P on the set {p > 0}. But since 1 = P ({p > 0}) and Q(Y) = 1, this implies that
Q({p = 0}) = 0, whence Q = P .

Independent, identically distributed random variables. Suppose we observe stochastically
independent copies Y1, Y2, . . . , Yn of Y . Under the assumption that the distribution of Y equals
Pθo for some unknown θo ∈ Θ, the distribution of the vector Y = (Yi)

n
i=1 is given by one of the

density functions

Yn 3 y 7→ pθ(y) :=
n∏
i=1

pθ(yi)

with respect to the product measure M⊗n on (Yn,B⊗n). The corresponding negative log-likeli-
hood function for Y is given by

L(θ,Y ) = −
n∑
i=1

log pθ(Yi).

In other words,

n−1L(θ,Y ) = R̂(θ) =

∫
L(θ, y) P̂ (dy),

and this may be viewed as an estimator for R(θ) =
∫
L(θ, y)P (dy). Hence, maximum likelihood

estimation of θo, based on the observation vector Y , is equivalent to minimization of the empirical
risk R̂(·) for the single observations.

Example 6.13 (Bernoulli variables and binomial distributions). Let Y = {0, 1}, and set p :=

IP(Y = 1), i.e. P = Bin(1, p). Further let Θ = [0, 1] and Pθ = Bin(1, θ). The weight function
pθ of Pθ is given by

pθ(0) = 1− θ and pθ(1) = θ.

Consequently,
L(θ, y) = −(1− y) log(1− θ)− y log θ

and
R(θ) = −(1− p) log(1− θ)− p log θ.
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Since

R′(θ) =
θ − p
θ(1− θ)

{
< 0 if 0 < θ < p,

> 0 if p < θ < 1,

the unique minimizer of R(·) is p.

If we observe independent copies Y1, Y2, . . . , Yn of Y , then p̂ := n−1
∑n

i=1 Yi is a natural esti-
mator for p. This is also the maximum likelihood estimator based on Y and the minimizer of the
empirical risk R̂(·), because

n−1L(θ,Y ) = R̂(θ) = −(1− p̂) log(1− θ)− p̂ log θ.

Exercise 6.14 (Hardy–Weinberg model). We consider a population of diploid organisms and a
particular gene with two potential alleles A and a. With respect to this gene, the individuals have a
genotype in Y := {AA, Aa, aa}.

For a randomly chosen individual from that population, let Y be its genotype and p(z) := IP(Y =

z) for z ∈ Y . Theoretical considerations (Hardy–Weinberg law) suggest that p(·) = pθo(·) for an
unknown parameter θo ∈ [0, 1], where

pθ(AA) := θ2, pθ(Aa) := 2θ(1− θ) and pθ(aa) := (1− θ)2.

Determine for this example the risk function R(θ) := − IE log pθ(Y ) and its minimizer for
arbitrary weight function p(·). That is, do not assume a priori that p(·) = pθo(·) for some
θo ∈ [0, 1]. Then determine the maximum likelihood estimator for θo, based on independent
copies Y1, Y2, . . . , Yn of Y .

Sample location parameters as maximum likelihood estimators. In Section 6.1, we repre-
sented the sample mean and sample quantiles as minimizers of empirical risk functions. They
may also be viewed as maximum likelihood estimators, if we choose appropriate statistical mod-
els (Pθ)θ∈R. In general, let p0 be a strictly positive probability density on R, and for θ ∈ R let Pθ
be the distribution with density function

pθ := p0(· − θ).

Then a maximum likelihood estimator θ̂ = θ̂(Y ) is a minimizer of

L(θ,Y ) = −
n∑
i=1

log p0(Yi − θ).

This is also a minimizer of R̂(θ) = n−1
∑n

i=1 ρ(θ − Yi) for a given convex, coercive function
ρ : R→ R, provided that

p0(y) = c1 exp(−c2ρ(−y))

for certain constants c1, c2 > 0.

In case of ρ(t) = t2, we obtain the density function p0 of a centered Gaussian distribution. In case
of ρ(t) = |t|, we are dealing with Laplace distributions, while in case of ρ(t) = (1 − 2γ)t + |t|,
we obtain non-symmetric Laplace distributions.
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Exercise 6.15. Show that the function

ρ(t) := log(1 + cosh(t))

is strictly convex with lim|t|→∞ ρ(t) = ∞. Show that the minimization of
∑n

i=1 ρ(θ − Yi) with
respect to θ ∈ R corresponds to maximum likelihood estimation for certain families of logistic
distributions. The logistic distribution with mean µ and scale parameter σ > 0 is given by the
density function pµ,σ(y) := p0,1((y − µ)/σ)/σ, where

p0,1(t) :=
et

(1 + et)2
=

1

et + e−t + 2
.

6.4 Application to Regression Problems

In regression settings, we consider observation pairs (X,Y ) ∈ X × Y and want to model and
estimate the conditional distributions L(Y |X = x), x ∈ X , or some aspects thereof. For a given
decision space V and a given loss function L : V × Y → R, we are looking for a regression
function fo : X → V such that

IEL(fo(X), Y )

is minimal.

Concerning the distribution of X , we do not want to restrict ourselves. It should be possible that
X or at least some components of X may be chosen arbitrarily by the experimenter. Thus we
focus on the conditional distributions L(Y |X = x), x ∈ X , and aim for functions fo satisfying

fo(x) ∈ arg min
v∈V

IE
(
L(v, Y )

∣∣X = x
)

for all x ∈ X .

For instance, in case of Y = V = R and L(v, y) = ρ(v − y),

fo(x) =

{
IE(Y |X = x) if ρ(t) = t2,

Median(Y |X = x) if ρ(t) = |t|.

Now we want to estimate this optimal regression function fo from independent observations
(X1, Y1), (X2, Y2), . . . , (Xn, Yn), where the Xi are treated as fixed points in X , and L(Yi) =

L(Y |X = Xi) for i = 1, . . . , n. Obviously, fo minimizes the risk

R(f) = R(f,X) :=

n∑
i=1

IEL(f(Xi), Yi)

among all functions f : X → V. Typically, this optimality property determines fo uniquely on the
set {X1, X2, . . . , Xn}, but at points x 6∈ {X1, . . . , Xn}, the value fo(x) is only specified under
additional model assumptions.

A naive estimator for fo is given by a minimizer of the empirical risk, i.e. the observed loss

R̂(f) = R̂(f,X,Y )
L(f) = L(f,X,Y )

}
:=

n∑
i=1

L(f(Xi), Yi)
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among all functions f : X → V. But the resulting estimator is often useless. For instance, suppose
that allXi are pairwise different, that Y = V = R and L(v, y) = ρ(v−y) with arg mint∈R ρ(t) =

{0}. Then f minimizes the empirical risk R̂(f) if and only if f(Xi) = Yi for 1 ≤ i ≤ n. Two
strategies with higher potential are:

(i) Restricting f to a particular family F of functions.

(ii) Minimizing
R̂(f) + Pen(f)

in place of R̂(f), where Pen(f) is a penalty term quantifying the “irregularity” of f .

Both strategies (i) and (ii) appeared already in the context of least squares estimation. Ap-
proach (ii) is called “regularization” or “penalization”; see Section 5.3.

Example 6.16 (Regression quantiles). We illustrate strategy (i) above with regression quantiles,
introduced by Koenker and Basset (1982), without going into computational details. We consider
observation pairs (X,Y ) ∈ [A,B]×R and want to estimate the γ-quantile fγ(x) of L(Y |X = x)

for various values of γ ∈ (0, 1) and x ∈ [A,B]. To this end, we assume that fγ is an element of a
given finite-dimensional vector space F of functions on [A,B]. Then we estimate fγ by

f̂γ ∈ arg min
f∈F

n∑
i=1

ργ(f(Xi)− Yi),

where ργ(t) := (1− 2γ)t+ |t|.

We applied this method to the baseball data from Example 4.13. Again, we consider the decimal
logarithms of the yearly salaries (Y ) and the number of seasons (X), where for one observation
the value X = 24 has been replaced with X = 20. Figure 6.1 shows regression quantiles f̂γ for
γ = 0.1, 0.25, 0.5, 0.75, 0.9, where F consists of all functions f(x) =

∑3
i=0 ai log10(x)i with

real parameters a0, a1, a2, a3. Figure 6.2 shows the resulting regression quantiles f̂γ in case of
F = S3(0.5, 4.0, 11.0, 20.5). Close to the boundaries 0.5 and 20.5 one sees a weakness of this
method: There is no guarantee that f̂γ ≤ f̂η for 0 < γ < η < 1.
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Figure 6.1: Regression quantiles for Baseball data in cubic model.
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Figure 6.2: Regression quantiles for Baseball data in spline model.
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Chapter 7

Logistic Regression and Related Models

In this chapter, we focus on categorical response variables Y with values in a finite set Y . The
goal is to model and estimate the conditional distributions L(Y |X = x), x ∈ X . Our starting
point will be a dichotomous variable Y .

7.1 Logistic Regression

Let Y = {0, 1}. Here are two explicit examples for a dichotomous response Y :

• Credit defaults: Let X ∈ X describe various properties of a potential customer of a bank, i.e.
a private person or some company, who is applying for a loan. This feature vector X may also
include details of the loan itself, e.g. its amount. Then let Y indicate whether this customer will
fail to pay the loan.

• Successes or failures of medical treatments: Let X be a vector of covariates containing features
of a patient as well as specific information about an upcoming medical treatment for him or her.
The response Y indicates whether the treatment will be successful or not.

The conditional distributionL(Y |X = x) is completely determined by the conditional probability

p(x) := IP(Y = 1 |X = x) = IE(Y |X = x).

Since this number is always within [0, 1], a linear model for p(·) doesn’t make sense. Note also
that the observations are heteroscedastic in general, because

Var(Y |X = x) = p(x)(1− p(x)).

A possible way out is to choose a monotone increasing, bijective mapping ` : R → (0, 1) and to
assume that

p(x) = `(f(x))

with a regression function f : X → R as before. That means, f is an element of a finite-
dimensional linear space F of real-valued functions on X .

Concerning the so-called inverse link function `, two choices are particularly popular:

175
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• Probit regression with the standard Gaussian distribution function,

`(v) = Φ(v).

• Logistic regression with the logistic function,

`(v) =
exp(v)

1 + exp(v)
=

1

exp(−v) + 1
.

Here

f(x) = logit(p(x)),

where

logit(u) := log
( u

1− u

)
, 0 < u < 1.

In the present section, we consider only logistic regression. A theoretical justification for this
particular model will be given later. The regression function f can be interpreted in terms of odds
and odds ratios: The odds of Y = 1, given that X = x, are equal to

IP(Y = 1 |X = x)

IP(Y = 0 |X = x)
=

p(x)

1− p(x)
= exp(f(x)).

For two different points x1, x2 ∈ X we obtain the odds ratio

p(x1)

1− p(x1)

/ p(x2)

1− p(x2)
=

p(x1) (1− p(x2))

(1− p(x1)) p(x2)
= exp

(
f(x1)− f(x2)

)
.

7.1.1 Maximum Likelihood Estimation

As in previous chapters, we consider stochastically independent observations (X1, Y1), (X2, Y2),
. . . , (Xn, Yn) inX×{0, 1}, where theXi are viewed as fixed points (via conditioning, if necessary)
while IP(Yi = 1) = p(Xi) for some unknown function p : X → [0, 1].

Log-likelihood function and maximum likelihood estimator. Under the assumption that p =

`◦f∗ for some unknown function f∗ ∈ F , we obtain the following negative log-likelihood function
L = L(· |X,Y ) : F → R:

L(f) := −
n∑
i=1

(
Yi log `(f(Xi)) + (1− Yi) log

(
1− `(f(Xi))

))
=

n∑
i=1

(
log
(
1 + exp(f(Xi))

)
− Yif(Xi)

)
.

A maximum likelihood estimator (MLE) for f∗ is any minimizer f̂ of the negative log-likelihood
function,

f̂ = f̂(· |X,Y ) ∈ arg min
f∈F

L(f).
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As we shall see later, f̂ is typically uniquely determined. The plausibility of this approach becomes
visible by considering the expected negative log-likelihood function R = R(· |X) : F → R:

R(f) := IEL(f)

= −
n∑
i=1

(
p(Xi) log `(f(Xi)) + (1− p(Xi)) log

(
1− `(f(Xi))

))
=

n∑
i=1

(
log
(
1 + exp(f(Xi))

)
− p(Xi)f(Xi)

)
.

Indeed, for fixed p ∈ [0, 1], the unique minimizer of [0, 1] 3 θ 7→ −p log θ− (1− p) log(1− θ) is
equal to p; see Chapter 6. Consequently, if indeed p = `◦f∗ for some f∗ ∈ F , thenR(f∗) ≤ R(f)

with equality if and only if f(X) = f∗(X).

Exercise 7.1. Verify that the negative log-likelihood function can be written as

L(f) =

n∑
i=1

h
(
(2Yi − 1)f(Xi)

)
with h(r) := − log `(r), r ∈ R. Show also that h is strictly decreasing and strictly convex with
limr→∞ h(r) = 0.

(Note that this representation is true for any link funktion ` : R → (0, 1) such that `(−v) =

1− `(v) for v ∈ R.)

Exercise 7.2. Suppose that the linear space F contains all constant functions. Show that an MLE
f̂ ∈ F satisfies necessarily the equation

n∑
i=1

`(f̂(Xi)) =
n∑
i=1

Yi.

Generalize this conclusion to other functions g ∈ F .

Existence and uniqueness of the MLE. Suppose we have chosen basis functions f1, . . . , fp of
F . Then any function f ∈ F may be written as f =

∑p
j=1 θjfj for some vector θ = (θj)

p
j=1 ∈

Rp, and f(Xi) = d>i θ, where
di := (fj(Xi))

p
j=1.

These vectors form the design matrix D = [d1,d2, . . . ,dn]> ∈ Rn×p. Now, both L and R may
be re-interpreted as functions on Rp and have the form

L̃(θ) = −
n∑
i=1

(
aid
>
i θ − log(1 + exp(d>i θ))

)
with certain numbers ai ∈ [0, 1], namely, ai = Yi if L̃ = L and ai = p(Xi) if L̃ = R. One
can easily verify that `(·) is the derivative of the function t 7→ log(1 + exp(t)). This implies that
gradient and Hessian matrix of L̃ are given by

∇L̃(θ) = −
n∑
i=1

(ai − `(d>i θ))di
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and

D2L̃(θ) =

n∑
i=1

`′(d>i θ)did
>
i ,

respectively. Here the derivative of ` equals

`′ = `(1− `) ∈ (0, 1/4].

Consequently, for arbitrary vectors v ∈ Rp,

v>D2L̃(θ)v =
n∑
i=1

`′(d>i θ)(v>di)
2 ≥ 0

with equality if and only if v is perpendicular to the space span(d1, . . . ,dn). Consequently, D2L̃

is always positive semidefinite, whence L̃ is a convex function.

Concerning strict convexity, suppose that span(d1, . . . ,dn) = Rp, that means, the design matrix
D has full column rank,

(7.1) rank(D) = p.

Then the Hessian matrixD2L̃(θ) is positive definite for any θ ∈ Rp, a sufficient condition for strict
convexity of L̃. If (7.1) is violated, there exists a nonzero vector v ∈ Rp such that v>D2L̃(θ)v =

0 for all θ ∈ Rp. But this implies that for any fixed η ∈ Rp, L̃(η + tv) is linear in t ∈ R, so L̃
fails to be strictly convex. Hence condition (7.1) is necessary and sufficient for strict convexity of
L̃.

Under the assumption (7.1), there exists a unique or no minimizer of L̃. As we shall see later in
Lemma 7.7, a minimizer exists if and only if

(7.2) lim
r→∞

∇L̃(ru)>u > 0 for any u ∈ Rp \ {0}.

But

∇L̃(ru)>u =
n∑
i=1

(`(rd>i u)− ai)d>i u →
n∑
i=1

(
1[d>i u≥0] − ai

)
d>i u (r →∞),

because limt→−∞ `(t) = 0 and limt→∞ `(t) = 1. Consequently, (7.2) is equivalent to the condi-
tion

(7.3)
n∑
i=1

(
1[d>i u≥0] − ai

)
d>i u > 0 for all u ∈ Rp \ {0}.

Since all summands
(
1[d>i u≥0] − ai

)
d>i u in (7.3) are non-negative, one may reformulate this

condition as follows: There exists no vector u ∈ Rp \ {0} such that

(7.4)

{
ai = 1 if d>i u > 0,

ai = 0 if d>i u < 0.

On the other hand, if (7.1) is satisfied and if there exists a vector u 6= 0 with property (7.4), then
there exists no minimizer of L̃.
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Special case: Non-degenerate p(·). Suppose that condition (7.1) is satisfied, and let 0 <

p(Xi) < 1 for all i. Then the function L̃ = R has a unique minimizer. Indeed, condition (7.4)
would imply that for some vector u 6= 0, d>i u = 0 for all i, a contradiction to condition (7.1).

Special case: Multiple logistic regression. Suppose we observe (Xi, Yi) ∈ Rd × {0, 1}, and
let F consist of all affine functions f . That means, f(x) = a+ b>x for certain parameters a ∈ R
and b ∈ Rd. With θ := [a, b>]> we obtain the design vectors di = [1,X>i ]>. Now one can show
that condition (7.1) is equivalent to the requirement that the vectorsX1, . . . ,Xn should not lie on
a hyperplane in Rd, see Exercise 7.4.

Under assumption (7.1), there exists a unique minimizer θ̂ ofL if and only if there is no hyperplane
in Rd separating the two sets {Xi : Yi = 0} and {Xi : Yi = 1} (weakly). That means, there may
not exist a pair (v, r) ∈ (Rd \ {0})× R such that

{Xi : Yi = 0} ⊂ {x ∈ Rd : v>x ≤ r} and {Xi : Yi = 1} ⊂ {x ∈ Rd : v>x ≥ r}.

In particular, the values Y1, Y2, . . . , Yn may not be identical.

Exercise 7.3. Let X = (Xi)
n
i=1 be a fixed vector with pairwise different components Xi ∈ R,

and let Y = (Yi)
n
i=1 be a vector of independent Bernoulli random variables with parameter p ∈

(0, 1). Compute the probability that the MLE for the standard model (all affine functions on R)
does not exist. What is its value in case of p = 1/2?

Exercise 7.4. Let x1,x2, . . . ,xn be vectors in Rd, and let D := [d1 d2 . . . dn]> with di :=

[1,x>i ]>. Show that the following four conditions are equivalent:

(i) rank(D) ≤ d.

(ii) span(x2 − x1,x3 − x1, . . . ,xn − x1) 6= Rd.

(iii) span(x1 − x̄,x2 − x̄,x3 − x̄, . . . ,xn − x̄) 6= Rd, where x̄ := n−1
∑n

i=1 xi.

(iv) The vectors x1,x2, . . . ,xn lie on a hyperplane in Rd.

Exercise 7.5 (Newton procedure and iteratively reweighted least squares). Recall that the nega-
tive log-likelihood L(·) for logistic regression has the following first and second derivatives:

∇L(θ) = −
n∑
i=1

(Yi − `(d>i θ))di, D2L(θ) =

n∑
i=1

`′(d>i θ)did
>
i .

(a) Determine the minimizer h∗ of the second order Taylor approximation

h 7→ L(θ) +∇L(θ)>h+
1

2
h>D2L(θ)h

of L(θ + h). This leads to the following algorithm: If θ is our current candidate for θ̂, then
ψ(θ) := θ + h∗ is the next and hopefully better candidate.

(b) Alternatively, one could consider the following target function: If θ is our current candidate
for θ̂, then we want to determine h such that

n∑
i=1

(
Yi − `(d>i (θ + h))

)2
`′(d>i θ)
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is minimal. (Note that `′(d>i θ) = Var(Yi) if IP(Yi = 1) = `(d>i θ).)

Suppose we replace `(d>i (θ+h)) with `(d>i θ)+`′(d>i θ)d>i h. Show that the resulting minimizer
h∗ is given by

arg min
h∈Rp

n∑
i=1

wi
(
Ỹi − d>i h

)2
where wi := `′(d>i θ) > 0 and Ỹi := (Yi − `(d>i θ))/wi.

(c) Show that the optimal vectors in (a) and (b) coincide.

(d) Verify that h∗ may be determined with the following R commands:

a ← D%∗%θ,

p ← 1/(1 + exp(−a)),

v ← 1/sqrt(2 + exp(a) + exp(−a)),

h∗ ← qr.solve
(
v ∗D, (Y − p)/v

)
,

whereD = [d1,d2, . . . ,dn]> and Y = (Yi)
n
i=1.

(e) Parts (b) and (d) yield an iterative scheme, in which each step involves the minimization of a
weighted sum of squares. (In the appendix, this approach is explained within a broader context.)
Write your own program to compute the MLE θ̂.

Exercise 7.6 (Logistic regression with mis-specified model). Simulate a sample X = (Xi)
100
i=1

from the standard Gaussian distribution. Then set Yi := F (Xi), where F : R→ [0, 1] is given by

(a) F (x) = `(x) = exp(x)
/

(1 + exp(x));

(b) F (x) = Φ(x) (standard Gaussian distribution function);

(c) F (x) = max(0, 1− exp(−x));

(d) F (x) = max
(
0,min

(
1, (x+ 1)/2

))
.

Fit a standard logistic model, i.e. F (x) = `(a + bx) for some real parameters a and b, to your
“data” with R. Note that for the R function glm, the response variable Y may take values in [0, 1];
just ignore the corresponding warning message. Then plot the true function F together with the
fitted logistic function `(â+ b̂ ·).

Lemma 7.7 (Coercivity of convex functions). Let f : Rp → R be a convex function. Then the
following three properties of f are equivalent:

(i) The function f is coercive, that is,

f(θ) → ∞ as ‖θ‖ → ∞.

(ii) For any fixed u ∈ Rp \ {0},

f(ru) > f(0) for sufficiently large r > 0.

(iii) The set of minimizers of f is a compact (and thus nonempty) set.
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If f is even differentiable, property (ii) is equivalent to the following one:

(ii’) For any fixed u ∈ Rp \ {0},

lim
r→∞

∇f(ru)>u ∈ (0,∞].

Proof of Lemma 7.7. Note first that f is necessarily continuous, which is a well-known fact from
convex analysis.

We first show that conditions (i) and (ii) are equivalent. Suppose that condition (i) is satisfied.
Then, for sufficiently large R > 0,

γ := inf
θ∈Rp : ‖θ‖≥R

(
f(θ)− f(0)

)
> 0.

In particular, for u ∈ Rp \ {0} the difference f(ru) − f(0) is at least γ whenever r ≥ R/‖u‖.
Thus, condition (ii) is satisfied too.

Suppose that condition (i) is violated. That means, there exist a real threshold γ and a sequence
(θn)n≥1 in Rp \ {0} such that limn→∞ ‖θn‖ = ∞ but f(θn) ≤ γ for all n ≥ 1. Since the
unit sphere in Rp is compact, we may even assume that un := ‖θn‖−1θn converges to a unit
vector u as n → ∞. But for arbitrary numbers r > 0, the numbers λn := r/‖θn‖ > 0 satisfy
limn→∞ λn = 0, so continuity and convexity of f imply that

f(ru)− f(0) = lim
n→∞

(
f(run)− f(0)

)
= lim

n→∞

(
f((1− λn)0 + λnθn)− f(0)

)
≤ lim

n→∞

(
(1− λn)f(0) + λnf(θn)− f(0)

)
≤ lim

n→∞
λn(γ − f(0))

= 0.

Hence, condition (ii) is violated too.

Now suppose for the moment that f is even differentiable. To prove equivalence of conditions (ii)
and (ii’), note that for any fixed u ∈ Rp \ {0}, the function r 7→ h(r) := f(ru) is convex on
R with derivative h′(r) = ∇f(ru)>u. Since h′ is nondecreasing, the limit limr→∞ h

′(r) exists
in (−∞,∞]. If condition (ii) is satisfied, then h(r) > h(0) for some r > 0, and convexity of h
implies that

∇f(ru)>u = h′(r) ≥ h(r)− h(0)

r
> 0,

which proves condition (ii’). If condition (ii’) is satisfied, then for sufficiently large r > 0, the
derivative h′(r) is strictly positive. But then convexity of h implies that for s > r,

f(su) = h(s) ≥ h(r) + h′(r)(s− r) → ∞ as s→∞,

so condition (ii) is satisfied too.

It remains to show that conditions (i) and (iii) are equivalent. Suppose that condition (i) is satisfied.
Let (θn)n≥1 be a sequence in Rp such that limn→∞ f(θn) = γ := inf{f(θ) : θ ∈ Rp}. By
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coercivity of f , this sequence is bounded, so we may replace it with a subsequence (if necessary)
such that θo := limn→∞ θn exists. Now, continuity of f implies that f(θo) = γ. In particular, the
set of minimizers of f may be written as {f = f(θo)}. This set is nonempty, closed by continuity
of f and bounded by coercivity of f . Hence condition (iii) is satisfied.

Suppose that condition (iii) is satisfied. Let θo be a minimizer of f . If R is strictly larger than the
maximum of ‖θ − θo‖ over all minimizers of f , it follows from continuity of f that

γ := min
u∈Rp : ‖u‖=R

(
f(θo + u)− f(θo)

)
> 0.

But then it follows from convexity of f that for any v ∈ Rp with ‖v‖ ≥ R and u := R‖v‖−1v,

f(θo + v)− f(θo) = f
(
θo +

‖v‖
R
u
)
− f(θo) ≥

‖v‖
R

(
f(θo + u)− f(θo)

)
≥ ‖v‖γ

R
.

This shows that f(θ) → ∞ as ‖θ − θo‖ → ∞. But since ‖θ − θo‖ and ‖θ‖ differ at most by
‖θo‖, this is equivalent to condition (i).

7.1.2 The Asymptotic Behavior of the Log-Likelihood Function

We consider a similar setting as at the end of the previous section, but embedded into a triangular
scheme: After conditioning on covariates, if necessary, for each n ∈ N we observe (dn1, Yn1),
(dn2, Yn2), . . . , (dnn, Ynn) with fixed vectors dni ∈ Rp and stochastically independent random
variables Yni ∈ {0, 1}, and we write

pni := IP(Yni = 1).

Now we investigate the asymptotic behaviour of the negative log-likelihood functionLn : Rp → R
and its pointwise expectation Rn, that means,

Ln(θ) = −
n∑
i=1

(
Ynid

>
niθ − log(1 + exp(d>niθ))

)
,

Rn(θ) = −
n∑
i=1

(
pnid

>
niθ − log(1 + exp(d>niθ))

)
.

Here and throughout the sequel, asymptotic statements refer to n → ∞. Two first assumptions
are:

(A.1) For sufficiently large n, the design matrixDn := [dn1 dn2 · · · dnn]> has rank p.

(A.2) For each n ∈ N, the function Rn has a minimizer θn ∈ Rp.

Assumption (A.1) implies that for sufficiently large n, both functions Ln and Rn are strictly con-
vex. Together with (A.2), this implies that θn is the unique minimizer of Rn. Here we emphasize
that we work with the model of logistic regression without assuming that it is correct. If yes,
assumption (A.2) is automatically fulfilled:

(A.2’) For each n ∈ N, there exists a vector θn ∈ Rp such that pni = `(d>niθn) for 1 ≤ i ≤ n.
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The next assumptions concern the gradient of Ln,

∇Ln(θ) = −
n∑
i=1

(Yni − `(d>niθ))dni,

more precisely, the matrix

Γ∗n := Var
(
n−1/2∇Ln(θn)

)
=

1

n

n∑
i=1

pni(1− pni)dnid>ni.

In addition, we consider the Hessian matrix of the functions Ln and Rn,

D2Ln(θ) = D2Rn(θ) = nΓn(θ) with Γn(θ) :=
1

n

n∑
i=1

`′(d>niθ)dnid
>
ni.

(A.3) There exist symmetric matrices Γ∗,Γ ∈ Rp×p, where the latter is positive definite, such
that

Γ∗n → Γ∗ and Γn(θn) → Γ.

(A.4) The design points dni fulfil the following Lindeberg type condition:

Λn :=
1

n

n∑
i=1

‖dni‖2 min
(‖dni‖√

n
, 1
)
→ 0.

If we replace assumption (A.2) with the stronger assumption (A.2’), then the matrices Γ∗n and
Γn(θn) in (A.3) coincide, whence Γ∗ = Γ.

Special setting: Independent, identically distributed observations. Consider the simple set-
ting with observations (dni, Yni) = (di, Yi) for all n ≥ 1 and 1 ≤ i ≤ n, where (d1, Y1), (d2, Y2),
(d3, Y3), . . . are independent copies of a random variable (d, Y ) ∈ Rp × {0, 1}. Suppose that for
some θo ∈ Rp, IP(Y = 1 |d = w) = `(w>θo) for all w ∈ Rp, that IE(‖d‖2) is finite and
IE(dd>) is positive definite. Then, conditional on (di)i≥1, Assumptions (A.1), (A.2’) and (A.3-4)
are satisfied almost surely with θn = θo and

Γ = Γ∗ = IE
(
`′(d>θo)dd

>) = IE
(
Var(Y |d)dd>

)
.

Indeed, Assumption (A.2’) is obvious. By the law of large numbers, with probability one,

n−1D>nDn =
1

n

n∑
i=1

did
>
i → IE(dd>).

Since the limit is positive definite, the matrix Dn has rank p for sufficiently large n, which yields
(A.1). Similary, with probability one,

Γ∗n = Γn(θo) =
1

n

n∑
i=1

`′(d>i θo)did
>
i → Γ = IE

(
`′(d>θo)dd

>),
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because `′ ≤ 1/4. This matrix is positive definite, because for any vector v ∈ Rp,

v>Γv = IE
(
`′(d>θo)(v

>d)2
)
.

Since `′ > 0, this is zero if and only if v>d = 0 almost surely, and by our assumption that
IE(dd>) is positive definite, this implies that v = 0.

Finally, Assumption (A.4) is satisfied almost surely, because

Λn ≤
(

max
1≤i≤n

‖di‖2

n

)1/2
· 1

n

n∑
i=1

‖di‖2 → 0 · IE(‖d‖2)

with probability one, see Exercise 7.8.

Exercise 7.8. Let Z1, Z2, Z3, . . . ≥ 0 be independent random variables such that IE(Z1) < ∞.
Show that with probability one,

n−1 max{Z1, . . . , Zn} → 0.

(Hint: One can deduce from the strong law of large numbers or by a direct calculation thatZn/n→
0 almost surely. From this one can deduce the assertion about max{Z1, . . . , Zn}.)

Assumptions (A.1-4), combined with the Central Limit Theorem, imply an essential asymptotic
property of the negative log-likelihood function Ln.

Theorem 7.9. For ∆ ∈ Rp let us write

Ln(θn + n−1/2∆)− Ln(θn) = −Z>n∆ + ∆>Γ∆/2 + rn(∆)

with the random vector Zn := n−1/2
∑n

i=1(Yni − pni)dni and a remainder rn(∆). Then, under
Assumptions (A.1-4),

Zn →L Np(0,Γ
∗)

and

sup
∆ : ‖∆‖≤C

|rn(∆)| → 0 for any fixed C > 0.

This theorem has various important consequences. The first one concerns the MLE of θn and its
asymptotic covariance matrix.

Theorem 7.10. Under Assumptions (A.1-4), the negative log-likelihood functionLn has a unique
minimizer θ̂n with asymptotic probability one, and

n1/2(θ̂n − θn) = Γ−1Zn + op(1) →L Np(0,Γ
−1Γ∗Γ−1),

2Ln(θn)− 2Ln(θ̂n) = Z>nΓ−1Zn + op(1)

with the random vector Zn from Theorem 7.9. Furthermore, Γn(θ̂n) is a consistent estimator of
Γn(θn), that means,

Γn(θ̂n)− Γn(θn) →p 0.
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Proof of Theorem 7.9. We start with the matrix-valued function Γn(·). For arbitrary vectors
θ, θ̃ ∈ Rp,

Γn(θ)− Γn(θ̃) =
1

n

n∑
i=1

(
`′(d>niθ)− `′(d>niθ̃)

)
dnid

>
ni.

But 0 < `′ = `(1 − `) ≤ 1/4 and `′′ = (1 − 2`)`′ = u(1 − u2)/4 with u := 1 − 2` ∈ (−1, 1)

satisfies the inequality |`′′| ≤ (6
√

3)−1 < 10−1. Hence, with the norm

‖A‖ := max
{
‖Av‖ : v ∈ Rp, ‖v‖ = 1

}
of a matrixA ∈ Rp×p, we may conclude that

∥∥Γn(θ)− Γn(θ̃)
∥∥ ≤ 1

n

n∑
i=1

min
(1

4
,

∣∣d>ni(θ − θ̃)
∣∣

10

)
‖dni‖2

≤ 1

n

n∑
i=1

min
(1

4
,
‖θ − θ̃‖‖dni‖

10

)
‖dni‖2

≤ max
(1

4
,
n1/2‖θ − θ̃‖

10

)
Λn.(7.5)

Now to the main assertions: The difference

(Ln −Rn)(θ) = −
n∑
i=1

(Yni − pni)d>niθ

is linear in θ ∈ Rp. Together with Taylor’s formula and the fact that ∇Rn(θn) = 0 according to
(A.2), this yields the representation

Ln(θn + n−1/2∆)− Ln(θn) = (Ln −Rn)(n−1/2∆) +Rn(θn + n−1/2∆)−Rn(θn)

= (Ln −Rn)(n−1/2∆) + n−1∆>D2Rn(θn + ξn,∆∆)∆/2

= −Z>n∆ + ∆>Γn(θn + ξn,∆∆)∆/2

= −Z>n∆ + ∆>Γ∆/2 + rn(∆)

with the random vector Zn = n−1/2
∑n

i=1(Yni − pni)dni, where

rn(∆) := ∆>
(
Γn(θn + ξn,∆∆)− Γ

)
∆/2

and 0 ≤ ξn,∆ ≤ n−1/2. Now it follows from (A.3-4) and (7.5) that for any fixed number C > 0,

sup
∆∈Rp : ‖∆‖≤C

|rn(∆)| ≤ C2

2

(
max

(1

4
,
C

10

)
Λn + ‖Γn(θn)− Γ‖

)
→ 0.

It remains to verify that Zn →L Np(0,Γ
∗). To this end we apply Lindeberg’s Central Limit

Theorem (Theorem A.17) for vector-valued random variables: One can write Zn =
∑n

i=1 Yni

with the stochastically independent summands Yni := n−1/2(Yni − pni)dni, where IE(Yni) = 0,
and

n∑
i=1

IE
(
YniY

>
ni

)
= Γ∗n → Γ∗
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by (A.3). Furthermore, the Lindeberg condition of Theorem A.17 is fulfilled: Since ‖Yni‖ ≤
n−1/2‖dni‖,

IE
(
‖Yni‖2 min(‖Yni‖, 1)

)
≤ n−1‖dni‖2 min

(
n−1/2‖dni‖, 1

)
,

so (A.4) implies that
n∑
i=1

IE
(
‖Yni‖2 min(1, ‖Yni‖)

)
≤ Λn → 0.

Proof of Theorem 7.10. The conclusions that the MLE θ̂n exists with asymptotic probability one,
that n1/2(θ̂n − θn) = Γ−1Zn + op(1) and that 2Ln(θn) − 2Ln(θ̂n) = Z>nΓ−1Zn + op(1)

follow from Theorem 7.9 and general considerations in Section 7.2. Here is a heuristic argument:
Suppose for the moment that

Ln(θn + n−1/2∆)− Ln(θn) = −Z>n∆ + 2−1∆>Γ∆

for all ∆ ∈ Rp. The right-hand side can be rewritten as

−Z>n∆ + 2−1∆>Γ∆ = 2−1(∆− Γ−1Zn)>Γ(∆− Γ−1Zn)− 2−1Z>nΓ−1Zn.

This would imply that ∆ 7→ Ln(θn + n−1/2∆) has the unique minimizer ∆̂n := Γ−1Zn, which
is equivalent to Ln having the unique minimizer θ̂n = θn + n−1/2∆̂n, and n1/2(θ̂n− θn) = ∆̂n.
Moreover, 2Ln(θn)− 2Ln(θ̂n) = ∆̂>nΓ∆̂n = Z>nΓ−1Zn.

The claim about Γn(θ̂n) is a consequence of inequality (7.5) in the proof of Theorem 7.9 and the
fact that n1/2‖θ̂n − θn‖ = Op(1):

∥∥Γn(θ̂n)− Γn(θn)
∥∥ ≤ max

(1

4
,
n1/2‖θ̂n − θn‖

10

)
Λn = Op(1)Λn = op(1).

7.1.3 Likelihood-Based Statistical Procedures

The asymptotic properties of the negative log-likelihood function Ln or the MLE θ̂n imply various
statistical procedures. In particular, one can construct tests and confidence regions for linear func-
tions of the true parameter θn. These procedures are similar to those for linear models by means
of student or F distributions. An important difference, however, is that in general we have only
asymptotic validity, and for that reason we stick to the triangular scheme and assume throughout
conditions (A.1), (A.2’) and (A.3-4).

Unfortunately, many users of statistical software don’t realize that albeit the output for logistic
regression and other generalized models is rather similar to the one of linear models, the reported
p-values and confidence intervals are based on asymptotics and thus should be taken with care.
Sometimes, but not always, the corresponding software issues a warning if the input data are such
that the asymptotic approximations are questionable.

In the following subsections, ψ is a given nonzero vector in Rp, and Ψ is a given matrix in Rp×k

with rank k ≤ p. (In case of k = p we tacitly assume that Ψ = Ip.)
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Wald’s Approach for Tests and Confidence Regions

We start with relatively simple procedures many of which are implemented in standard statistical
software. But later on, we shall consider alternatives which tend to be more reliable.

It follows from Theorem 7.10 that

θ̂n ∼appr. Np(θn,Σn)

with

Σn :=
( n∑
i=1

`′(d>niθn)dnid
>
ni

)−1
= n−1Γn(θn)−1.

The estimator

Σ̂n :=
( n∑
i=1

`′(d>niθ̂n)dnid
>
ni

)−1
= n−1Γn(θ̂n)−1

is consistent in the sense that

Σ−1
n Σ̂n ≈ Ip.

This may be utilized as follows:

Simple linear functions of θn. Suppose we are interested in the real numberψ>θn. On the one
hand,

ψ>θ̂n ∼appr. N(ψ>θn, σ
2
n,ψ)

with

σn,ψ :=

√
ψ>Σnψ.

On the other hand, the corresponding standard error

σ̂n,ψ :=

√
ψ>Σ̂nψ

satisfies
σ̂n,ψ
σn,ψ

≈ 1.

In particular,
ψ>θ̂n −ψ>θn

σ̂n,ψ
∼appr. N(0, 1).

For α ∈ (0, 1), this yields the approximate (1− α)-confidence interval[
ψ>θ̂n ± σ̂n,ψΦ−1(1− α/2)

]
for ψ>θn. Moreover, for any given ηo ∈ R,

2Φ
(
−|ψ

>θ̂n − ηo|
σ̂n,ψ

)
is an approximate p-value for the null hypothesis that ψ>θn = ηo.
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General linear functions of θn. Suppose we are interested in the vector Ψ>θn ∈ Rk. Here one
can say that

Ψ>θ̂n ∼appr. Nk

(
Ψ>θn,Ψ

>ΣnΨ
)
,

and

(Ψ>ΣnΨ)−1(Ψ>Σ̂nΨ) ≈ Ik.

Consequently, for any η ∈ Rk,

Tn(η) := (Ψ>θ̂n − η)>(Ψ>Σ̂nΨ)−1(Ψ>θ̂n − η)

is a test statistic such that

Tn(Ψ>θn) ∼appr. χ
2
k.

This implies that the confidence ellipsoid

C(W ) = C(W )(Yn,Dn,Ψ, α) :=
{
η ∈ Rk : Tn(η) ≤ χ2

k;1−α
}

for Ψ>θn has asymptotic confidence level 1 − α. Moreover, with the distribution function Fk(·)
of χ2

k, for any given ηo ∈ Rk,

1− Fk(Tn(ηo))

is an asymptotic p-value of the null hypothesis that Ψ>θn = ηo. That means, for arbitrary
α ∈ (0, 1),

IP
(
1− Fk(Tn(Ψ>θn)) ≤ α

)
≈ α.

Exercise 7.11 (Comparing two symmetric, positive definite matrices). Let A,B ∈ Rp×p be
symmetric and positive definite. For any matrixM ∈ Rp×p let ‖M‖F and ‖M‖ be its Frobenius
and operator norm, respectively,

‖M‖F := trace(M>M)1/2, ‖M‖ := max{‖Mv‖ : v ∈ Rp, ‖v‖ ≤ 1},

where ‖w‖ is the standard Euclidean norm of a vector w ∈ Rp.

(a) Show that

‖A−1B − Ip‖F ≥ ‖A−1/2BA−1/2 − Ip‖F .

Hint: Consider first a diagonal matrixA.

(b) Show that

‖A−1/2BA−1/2 − Ip‖ = max

{
max
v 6=0

v>Bv

v>Av
− 1, 1−min

v 6=0

v>Bv

v>Av

}
.

Profile Likelihood

One may interpret the log-likelihood −Ln(θ) as a measure of plausibility of the null hypothesis
that θn = θ. More precisely, it follows from Theorem 7.10 that

2Ln(θn)− 2Ln(θ̂n) = Z>nΓ−1Zn + op(1) →L χ2
p,
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because Z>nΓ−1Zn = ‖Γ−1/2Zn‖2 and Γ−1/2Zn →L Np(0, Ip) under (A.1), (A.2’) and (A.3-
4). Consequently,

C(L) = C(L)(Yn,Dn, α) :=
{
θ ∈ Rp : 2Ln(θ) ≤ 2Ln(θ̂n) + χ2

p;1−α
}

is a confidence region for θn with asymptotic confidence level (coverage probability) 1 − α. In
fact, one can show that this confidence region and Wald’s confidence ellipsoid (with Ψ = Ip) are
asymptotically identical. Numerical experiments, however, show that for small and moderately
large sample sizes, the present method is often more precise.

An obvious question is whether similar confidence regions may be constructed for Ψ>θn. To this
end, one needs sort of a negative log-likelihood function on Rk: the negative profile log-likelihood
at the point η ∈ Rk is defined as

PLn(η) := inf
θ∈Rp : Ψ>θ=η

Ln(θ).

It follows from Exercises 7.12 and 7.13 that the negative profile log-likelihood function PLn :

Rk → R is well-defined and convex. If Ln is coercive, PLn is coercive too, and the infimum in
the definition of PLn(η) is a minimum.

Exercise 7.12 (Profile functions, I). Let L : Rp → [−∞,∞] be an arbitrary function, and let Ψ

be a matrix in Rp×k with rank k ≤ p. Now let

PL : Rk → [−∞,∞], PL(η) := inf
{
L(θ) : θ ∈ Rp,Ψ>θ = η

}
.

Verify the following properties of PL:

(a) PL is bounded from below if L is bounded from below. Precisely,

inf
η∈Rk

PL(η) = inf
θ∈Rp

L(θ).

(b) PL is coercive if L is coercive.

(c) There exists a matrix A ∈ Rp×k such that Ψ>A = Ik. For any such matrix A, the profile
function PL may be written as

PL(η) = inf
v∈V

L(Aη + v),

where V := {v ∈ Rp : Ψ>v = 0}.

(d) If L is continuous and coercive, then PL is continuous too, and the infimum in the definition
of PL(η) is a minimum.

Exercise 7.13 (Profile functions, II). Let L : Rp → (−∞,∞] be a convex function which is
bounded from below. Let Ψ and PL be as in Exercise 7.12. Verify the following properties of
PL:

(a) PL is convex.

(b) Suppose that L is convex, continuous, coercive and even strictly convex on the set {L <∞}.
Then PL is strictly convex on the set {PL <∞}.
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Remark: In part (b) one can not dispense with coercivity of L. A counter-example is given by the
function L(θ) := exp

(√
1 + θ2

1 + θ2) on R2 and Ψ := (1, 0)>.

The next result shows that the negative profile log-likelihood function PLn has analogous proper-
ties as the negative log-likelihood function Ln.

Theorem 7.14. For w ∈ Rk let us write

PLn(Ψ>θn + n−1/2w)− PLn(Ψ>θn) = −Z>n,Ψw +w>ΓΨw/2 + rn,Ψ(w),

where

ΓΨ := (Ψ>Γ−1Ψ)−1 and Zn,Ψ := ΓΨΨ>Γ−1Zn

with the random vector Zn defined in Theorem 7.9. Then under conditions (A.1), (A.2’) and
(A.3-4),

sup
w : ‖w‖≤C

|rn,Ψ(w)| →p 0 for any fixed C > 0.

Furthermore, Zn,Ψ →L Nk(0,ΓΨ), and

2PLn(Ψ>θn)− 2Ln(θ̂n) = Z>n,ΨΓ−1
Ψ Zn,Ψ + op(1) →L χ2

k.

This theorem follows directly from Theorem 7.9 and the general results in Section 7.2. The last
part implies that

C(L) = C(L)(Yn,Dn, α) :=
{
η ∈ Rk : 2PLn(η) ≤ 2Ln(θ̂n) + χ2

k;1−α
}

defines a confidence region for Ψ>θn with asymptotic coverage probability 1− α. Furthermore,
for any η ∈ Rk,

1− Fk
(
2PLn(η)− 2Ln(θ̂n)

)
is an asymptotic p-value for the null hypothesis that Ψ>θn = η.

Special case: Tests of simplified models. We return temporarily to the original description of
logistic regression. Suppose we want to test the null hypothesis that the underlying regression
function f = logit p lies in a given linear subspace Fo of F , where dim(F)− dim(Fo) = k. Let
f̂ be the MLE of f in the full model, and let f̂o be the MLE under the null hypothesis. Then

1− Fk
(
2L(f̂o)− 2L(f̂)

)
is an approximate p-value of the null hypothesis that f ∈ Fo.

To verify this claim, suppose we have chosen a basis f1, . . . , fp of F such that f1, . . . , fpo span
the smaller space Fo. With the resulting design matrix D = [f1(X), . . . , fp(X)] and Ψ =

[0po×p−po , Ip−po ]> ∈ Rp×(p−po), one can rewrite the pair
(
L(f̂), L(f̂o)

)
as
(
L(θ̂), PL(0)

)
.



7.1. LOGISTIC REGRESSION 191

7.1.4 Returning from Asymptopia

The term “asymptopia” was presumably coined by the statistician David Freedman for statistical
inference justified by asymptotics, referring to the novels “Utopia” by Thomas Morus and “Eco-
topia” by Ernest Callenbach.

In specific applications there is no triangular array of observations, just one data set. An obvious
question is how to interpret the conditions (A.1), (A.2’) and (A.3-4) for a single data set with
observations (d1, Y1), (d2, Y2), . . . , (dn, Yn).

Condition (A.1) is no problem; we just assume that the design matrix D = [d1,d2, . . . ,dn]> has
rank p.

Condition (A.2’) is a model assumption the plausibility of which may be checked graphically at
least; see the subsequent data example. Hence we assume that for given design vectors di, the
observations Yi are independent with

IP(Yi = 1) = `(d>i θ∗)

for 1 ≤ i ≤ n with an unknown parameter θ∗ ∈ Rp.

Condition (A.3) is superfluous in principle. By means of a linear transformation of Rp we may
achieve that

Γ(θ∗) =
1

n

n∑
i=1

`′(d>i θ∗)did
>
i = Ip.

To this end, one could simply replace di with Γ(θ∗)
−1/2di and any potential parameter θ with

Γ(θ∗)
1/2θ.

But this trick for condition (A.3) necessitates a modification of condition (A.4). Now we require
that

Λ :=
1

n

n∑
i=1

‖Γ(θ∗)
−1/2di‖2 min

(‖Γ(θ∗)
−1/2di‖√
n

, 1
)

is “rather small”. Since we do not know θ∗, one could consider

Λ̂ :=
1

n

n∑
i=1

‖Γ(θ̂)−1/2di‖2 min
(‖Γ(θ̂)−1/2di‖√

n
, 1
)

as a diagnostic quantity, similar to the maximal leverage in Chapter 4.

7.1.5 A Data Example

A data set provided by PD Dr. Bürk (Lübeck), contains data of all heart surgeries that have been
performed at the University Hospital Lübeck in a certain time period. In particular, the data set
contains the variate Y = mortality which specifies whether the patient died within a certain time
window as a consequence of this intervention. Furthermore, the values of 21 covariates have been
reported. These describe properties of the patients or the circumstances of the surgery. Table 7.1
contains a list of all covariates involved. Most of them are dichotomous with yes/no coded as 1/0.
Numerical covariates are X(1) and X(17). Covariate X(3) has been treated as numerical as well,
although it is an ordinal feature with values in {1, 2, 3, 4, 5}.
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Variable Meaning
X(1) age in years
X(2) gender (1 = female, 0 = male)
X(3) ASA score (American Society of Anesthesiologists),

classifies the physical well-being
(1 = completely healthy, 2 = slightly sick, 3 = seriously sick,
4 = in life-threatening condition, 5 = about to die, 6 = brain dead)

X(4) risk factor: cerebral (yes/no)
X(5) risk factor: cardiovascular (yes/no)
X(6) risk factor: pulmonal (yes/no)
X(7) risk factor: renal (yes/no)
X(8) risk factor: hepatic (yes/no)
X(9) risk factor: immunological (yes/no)
X(10) risk factor: metabolic (yes/no)
X(11) risk factor: non-cooperative, unreliable (yes/no)
X(12) etiology: maligne (yes/no)
X(13) etiology: vascular (yes/no)
X(14) antibiotics (yes/no)
X(15) surgery indicated (yes/no)
X(16) emergency surgery (yes/no)
X(17) duration of operation (in minutes)
X(18) septic operation (yes/no)
X(19) experienced surgeon (yes/no)
X(20) blood transfusion (yes/no)
X(21) intensive care (yes/no)
Y mortality (1 = died, survived = 0)

Table 7.1: Variables for data example.

First analysis. The data set contains 21′556 observations, with Y = 1 in 662 cases. With these
observations, we estimated the parameters a and b(j) for the model

logit IP(Y = 1 |X = x) = a+ b>x = a+

21∑
j=1

b(j)x(j).

Table 7.2 contains the point estimates b̂(j) together with the standard errors and p-values via profile
log-likelihood. In addition, adjusted p-values via the Bonferroni-Holm method are reported.

A graphical presentation of the results. Figure 7.1 shows a rug plot of the pairs (Ẑi, Yi) with
Ẑi := â+ b̂

>
Xi. In addition, one sees the graph of a monotone function ̂̀ : R → R minimizing

the sum
∑n

i=1(Yi − ̂̀(Ẑi))2 (black step function) as well as the graph of the logistic function `
(smooth blue curve). The explicit computation of ̂̀ is discussed in Chapter 10. The fact that the
step function ̂̀coincides with the logistic function quite well indicates that the logistic model fits
the data reasonably well.

ROC curves. Logistic regression is often viewed as a means to determine a promising discrimi-
nant function x 7→ f̂(x) on X . In case of X = Rd and f̂(x) = â+ b̂

>
x, one also calls x 7→ b̂

>
x
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j b̂(j) (st.error) p-value adj. p-value
1 0.0382 (0.0041) < 0.0001 < 0.0001
2 0.1066 (0.0996) 0.2841 1.0000
3 1.3152 (0.0738) < 0.0001 < 0.0001
4 −0.1925 (0.1166) 0.0971 0.5823
5 0.0475 (0.1325) 0.7193 1.0000
6 0.2527 (0.1021) 0.0135 0.1485
7 0.4596 (0.1112) < 0.0001 0.0006
8 −0.1640 (0.1053) 0.1175 0.5877
9 −0.3265 (0.3021) 0.2652 1.0000

10 0.2701 (0.1226) 0.0297 0.2457
11 −0.2168 (0.1256) 0.0818 0.5727
12 0.3442 (0.1417) 0.0159 0.1590
13 0.3525 (0.1322) 0.0084 0.1003
14 0.7018 (0.1185) < 0.0001 < 0.0001
15 −1.6171 (0.2102) < 0.0001 < 0.0001
16 1.1675 (0.1368) < 0.0000 < 0.0000
17 0.0014 (0.0006) 0.0273 0.2457
18 1.2064 (0.1629) < 0.0000 < 0.0001
19 −0.0840 (0.1220) 0.4927 1.0000
20 0.7382 (0.1131) < 0.0001 < 0.0001
21 2.0286 (0.1345) < 0.0001 < 0.0001

Table 7.2: Logistic regression analysis, 1.

a discriminant function. Now this function f̂ is used like a test statistic: For a future case (X,Y )

of which only X is observed initially, one predicts that

Y =

{
1 if f̂(X) > c,

0 if f̂(X) ≤ c.

Here c is a threshold yet to be chosen. This is like a medical test with unknown sensitivity
Sens(c) := IP(f̂(X) > c |Y = 1) and unknown specificity Spec(c) := IP(f̂(X) ≤ c |Y = 0),
where the data (Xi, Yi), 1 ≤ i ≤ n, and thus f̂ are viewed as fixed. Now, these quantities are
estimated by

Ŝens(c) :=
#
{
i : Yi = 1, f̂(Xi) > c

}
#{i : Yi = 1}

,

Ŝpec(c) :=
#
{
i : Yi = 0, f̂(Xi) ≤ c

}
#{i : Yi = 0}

.

The empirical ROC curve (receiver operating characteristic) for this family of tests is the curve

c 7→
(
1− Ŝpec(c), Ŝens(c)

)
.

Figure 7.2 shows this curve for our specific data example. From this curve one can guess, for
instance, that for a suitable threshold (which is not visible from the curve), the estimated sensitivity
as well as the estimated specificity are between 0.879 and 0.880. Some people use the area under
the ROC curve as a measure for the discriminatory power of these tests.
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Figure 7.1: Logistic regression analysis, 2.

A likelihood ratio test. Sometimes there is a group of related covariates none of which has a
significant influence on the response individually, but the whole group is relevant. In the present
data example, this is not the case, but we illustrate this concept with the risk factors, i.e. the
covariates X(4), X(5), . . . , X(11): We compare the minimum of the negative log-likelihood
function for the full model with the corresponding minimum for the reduced model in which
b(4) = b(5) = · · · = b(11) = 0. In other words, we compare L(θ̂) with PL(0), where

Ψ =

 04×8

I8

010×8

 .
An approximate p-value for the null hypothesis that b(4) = b(5) = · · · = b(11) = 0 is then

1− F8

(
2PL(0)− 2L(θ̂)

)
,

where F8 stands for the distribution function of χ2
8. Our data yield 2L(θ̂) ≈ 3303.66 and

2PL(0) ≈ 3342.75. Hence the p-value equals

1− F8(39.09) ≈ 4.729 · 10−6.

Exercise 7.15. The ROC curve just described could be too optimistic, because one and the same
data set is used twice: To estimate the discriminant function f̂ , and to estimate sensitivity and
specificity of the predictor X 7→ 1

[f̂(X)>c]
for various values of the threshold c ∈ R.

Write a program to compute and display “cross-validated” ROC curves for multiple logistic regres-
sion. That is, for given data Y ∈ {0, 1}n and [X1,X2, . . . ,Xn]> ∈ Rn×d, it should compute the
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Figure 7.2: Empirical ROC curve for the data example.

estimators

Ŝens(c) :=
#
{
i ≤ n : Yi = 1, f̂−i(Xi) > c

}
#{i ≤ n : Yi = 1}

,

Ŝpec(c) :=
#
{
i ≤ n : Yi = 0, f̂−i(Xi) ≤ c

}
#{i ≤ n : Yi = 0}

for c in a sufficiently rich set of thresholds, and it should display the resulting ROC curve c 7→(
1− Ŝpec(c), Ŝens(c)

)
. Here f̂−i is computed as f̂ with the reduced data (Yk)k 6=i and (Xk)k 6=i.

Illustrate your program with the data set Buerk.txt used before.

Exercise 7.16. The data set IrishEd.txt lists various features of 435 Irish persons in the year 1967.
The features are:

sex: 1: male, 2: female
DVRT: achieved points in a personality test during primary school
edlevel: later achieved education level
lvcert: certificate when leaving secondary school:

1: passed, 2: failed
fathocc: score calculated based on the profession of the father
schltype: type of secondary school:

1: secondary school, 2: vocational school
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(a) Use a statistical software package of your choice to fit a logistic model with lvcert as response
and all other covariates, except edlevel. Interpret briefly the output.

(b) Repeat the analysis of part (a), this time with the additional covariate edlevel. Your software
should issue a warning. Why? Which condition for the existence of a unique MLE is violated?

(c) Perform a “residual” analysis as follows: Plot the pairs (f̂(Xi), Yi). Then add some non-
parametric least squares fit for these pairs, treating the numbers f̂(Xi) as values of a real covariate.
Compare this or these fits with the logistic function ` which interpolates the fitted probabilities
`(f̂(Xi)).

Exercise 7.17. Write a program that performs a logistic regression analysis for data given by
a design matrix D = [D1,D2, . . . ,Dp] and an observation vector Y ∈ {0, 1}n. Your program
should compute for each columnDj ofD the profile likelihood ratio p-value of the null hypothesis
that the parameter θj for Dj equals 0. In addition to these p single p-values, the program should
compute adjusted p-values.

Exercise 7.18 (Wald confidence bands). Consider the model of simple logistic regression with
regression functions f(x) = a+bx, x ∈ R. Start from observation vectorsX ∈ Rn, Y ∈ {0, 1}n

and the corresponding MLE θ̂ = (â, b̂)>.

(a) Determine Wald’s (1− α)-confidence ellipsoid for θ.

(b) Deduce from that a (1 − α)-confidence band for the true regression function f , that means,
simultaneous (1− α)-confidence intervals for f(x), x ∈ R. (Hint: Lemma 3.27.)

(c) Implement this confidence band in a computer program. Your program should have the data
vectorsX , Y and the confidence level 1−α as input arguments, and it should (enable to) plot the
fitted function ` ◦ f̂ as well as the (1− α)-confidence band for ` ◦ f .

(d) Apply your program to a simulated or real data set.

Exercise 7.19 (Comparison of Wald’s method and profile likelihood). As in Exercise 7.18, we
consider simple logistic regression with f(x) = a + bx, x ∈ R. Simulate the power function of
tests of the null hypothesis “b = 0” versus “b 6= 0” based on Wald’s method and based on profile
likelihood as follows:

Choose a vector X ∈ [−2, 2]n with equispaced components, symmetric around 0. Then generate
N times a vector Y ∈ {0, 1}n with independent components such that IP(Yi = 1) = `(bXi)

(logistic model with a = 0). Approximate the power function at b by the proportion of simulations
in which the tests rejected the null hypothesis at level α = 0.05. Plot these powers versus b.
Discuss your results briefly.

(Specifically, you could choose N = 1′000, b = 0, 0.5, 1.0, 1.5 and n = 25, 100. If you are more
patient, you could choose larger values of N , say, N = 5′000 or N = 10′000, and a finer grid of
values for b.)
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7.1.6 Case–Control Studies

In this section, we shall see that the model of logistic regression is applicable in a situation in which
the data do not follow that model. The starting point are observations (X, Y ) ∈ Rd × {0, 1}.

Considerations about the standard model. Suppose that X is a random vector with distribu-
tion Q, and for some parameters ao ∈ R, b ∈ Rd,

IP(Y = 1 |X = x) = `(ao + b>x)

for arbitrary x ∈ Rd. Then

IP(Y = 1) =

∫
`(ao + b>x)Q(dx),

IP(Y = 0) =

∫
(1− `(ao + b>x))Q(dx),

and the conditional distributions Qy := L(X |Y = y) are given by

Q1(B) =

∫
B

`(ao + b>x)

IP(Y = 1)
Q(dx),

Q0(B) =

∫
B

1− `(ao + b>x)

IP(Y = 0)
Q(dx).

Hence,

dQ1

dQ0
(x) =

`(ao + b>x)

1− `(ao + b>x)

IP(Y = 0)

IP(Y = 1)
= exp

(
ao − logit IP(Y = 1) + b>x

)
.

Since
∫

(dQ1/dQ0)(x)Q0(dx) = 1, the parameter ao is given by

ao = logit IP(Y = 1)− C(b) with C(b) := log

∫
exp(b>x)Q0(dx).

From cross-sectional to case–control studies. In many applications, X and Y describe an
individual from a population. If one draws a random sample from that population, the resulting
observations (X1, Y1), (X2, Y2), . . . , (Xn, Yn) are independent copies of a generic random pair
(X, Y ). In biomedical application, people talk about cross-sectional studies.

Sometimes the probability IP(Y = 1) is rather small, and it could happen that a simple random
sample contains too few observations with Yi = 1. A possible way out are case–control studies.
That means, for y = 0, 1 one draws a random sample of fixed size Ny from the subpopulation of
individuals with Y = y. This leads to observations (X1, Y1), (X2, Y2), . . . , (Xn, Yn) with fixed
values Yi and independent random vectors

Xi ∼

{
Q0 if Yi = 0,

Q1 if Yi = 1.

The observations with Yi = 1 are often referred to as “cases”, while observations with Yi = 0 are
the “controls”.
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Validity of logistic regression analysis. One may analyze the data from a case–control study
by means of logistic regression to do inference about the parameter vector b, although the model
assumptions are not fulfilled. This has been shown by Prentice and Pyke (1979). We dispense
with a complete formal proof, but present a simple heuristic argument:

Suppose we perform a case–control study, but the group size N1 is random with distribution
Bin(n, po) for a given po ∈ (0, 1), while N0 = n − N1. Then the resulting observations fol-
low the logistic regression model with parameter

(
logit po − C(b), b

)
in place of (ao, b). By

means of the negative log-likelihood function

L(a, b) := −
n∑
i=1

(
Yi(a+ b>Xi)− log

(
1 + exp(a+ b>Xi)

))
and the negative profile log-likelihood function

L(b) := min
a∈R

L(a, b)

one can construct asymptotically valid tests and confidence regions for b. By the way, â(b) :=

arg mina∈R L(a, b) is the unique solution a of the equation

1

n

n∑
i=1

`(a+ b>Xi) = Ȳn;

see also Exercise 7.2.

7.2 General Asymptotic Considerations

In this section we consider the following scenario: For n = 1, 2, 3, . . . let Ln : Rp → (−∞,∞] be
a random convex function which is bounded from below. We assume that for each n there exists a
fixed parameter θn ∈ Rp such that Ln(θn) <∞, and that for arbitrary ∆ ∈ Rp we can write

Ln(θn + n−1/2∆) = Ln(θn)−Z>n∆ + ∆>Γ∆/2 + rn(∆)

with
• a random vector Zn ∈ Rp such that Zn = Op(1),
• a fixed symmetric, positive definite matrix Γ ∈ Rp×p and
• a random remainder term rn(∆) such that

sup
∆∈Rp:‖∆‖≤C

∣∣rn(∆)
∣∣ →p 0 for any fixed C > 0.

(Again, asymptotic statements refer to n→∞, unless specified differently.)

These properties of Ln(·) imply various important consequences:

Theorem 7.20 (Asymptotics of M estimators). Under the conditions on (Ln)n just stated, the
function Ln has a minimizer θ̂n with asymptotic probability one. Furthermore, this minimizer
satisfies the equations

n1/2
(
θ̂n − θn

)
= Γ−1Zn + op(1),

2Ln(θn)− 2Ln(θ̂n) = Z>nΓ−1Zn + op(1).
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Theorem 7.21 (Asymptotics of profile functions). Let Ψ ∈ Rp×k be a fixed matrix with rank
k ≤ p, and for η ∈ Rk let

PLn(η) := inf
{
Ln(θ) : θ ∈ Rp,Ψ>θ = η

}
.

Under the conditions on (Ln)n just stated, this defines a random convex function PLn : Rk →
(−∞,∞] which is bounded from below, and PLn(Ψ>θn) <∞. Moreover, for w ∈ Rk we may
write

PLn(Ψ>θn + n−1/2w) = PLn(Ψ>θn)−Z>n,Ψw +w>ΓΨw/2 + rn,Ψ(w)

with the random vector Zn,Ψ := ΓΨΨ>Γ−1Zn = Op(1), the symmetric and positive definite
matrix ΓΨ := (Ψ>Γ−1Ψ)−1 and a random remainder term rn,Ψ(w) such that

sup
w∈Rk : ‖w‖≤C

∣∣rn,Ψ(w)
∣∣ →p 0 for any fixed C > 0.

Remark 7.22. Theorem 7.21 shows that PLn has similar properties as Ln. If we apply Theo-
rem 7.20 to PLn in place of Ln, then we obtain the representation

2PLn(Ψ>θn)− 2 inf
η∈Rk

PLn(η) = Z>n,ΨΓ−1
Ψ Zn,Ψ + op(1).

Moreover, the left hand side equals 2PLn(Ψ>θn)− 2Ln(θ̂n) whenever θ̂n exists.

Proof of Theorem 7.20. At first, we assume that Γ = Ip. To simplify our arguments, we look
through a

√
n-magnifying glass and define

Hn(∆) := Ln(θn + n−1/2∆)− Ln(θn),

Ȟn(∆) := −Z>n∆ + ‖∆‖2/2

for ∆ ∈ Rp. Then rn(∆) = Hn(∆)− Ȟn(∆), and we set

ρn(C) := max
‖∆‖≤C

∣∣rn(∆)
∣∣.

A vector ∆̂n ∈ Rp minimizes Hn if and only if θ̂n = θn + n−1/2∆̂n minimizes Ln. Hence, we
have to show that Hn has a minimizer ∆̂n with asymptotic probability one, and that

∆̂n = Zn + op(1), 2Hn(∆̂n) = −‖Zn‖2 + op(1).

The function Ȟn has the unique minimizer

arg min
∆∈Rp

Ȟn(∆) = Zn,

because
Ȟn(∆) = ‖∆−Zn‖2/2− ‖Zn‖2/2.

In addition,
min
∆∈Rp

Ȟn(∆) = Ȟn(Zn) = −‖Zn‖2/2,
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and for w ∈ Rp we get

(7.6) Ȟn(Zn +w)− Ȟn(Zn) = ‖w‖2/2.

By assumption, Zn = Op(1). For any fixed ε > 0 (small) and C > 0 (large) let

An,ε,C :=
{
‖Zn‖ < C and ρn(C + ε) < ε2/4

}
.

Now suppose that this event occurs. Then Hn is a real-valued, convex function on the open ball

U := {∆ : ‖∆‖ < C + ε} ⊃ {Zn +w : w ∈ Rp, ‖w‖ ≤ ε}.

In particular, Hn is continuous on U . Moreover, it follows from (7.6) that

min
‖w‖=ε

Hn(Zn +w) ≥ min
‖w‖=ε

Ȟn(Zn +w)− ρn(C + ε)

= Ȟn(Zn) + ε2/2− ρn(C + ε)

≥ Hn(Zn) + ε2/2− 2ρn(C + ε)

> Hn(Zn).

By convexity of Hn on Rp, this implies that even

inf
‖w‖≥ε

Hn(Zn +w) = min
‖w‖=ε

Hn(Zn +w) > Hn(Zn).

To verify the latter claim, note that for w = ru with a unit vector u ∈ Rp and a number r ≥ ε,

Hn(Zn + ru) = Hn(Zn) +
(
Hn(Zn + ru)−Hn(Zn + 0u)

)
≥ Hn(Zn) +

r

ε

(
Hn(Zn + εu)−Hn(Zn + 0u)

)
≥ Hn(Zn) +

(
Hn(Zn + εu)−Hn(Zn + 0u)

)
≥ min
‖w‖=ε

Hn(Zn +w).

Moreover,∣∣∣ inf
∆∈Rp

Hn(∆) + ‖Zn‖2/2
∣∣∣ =

∣∣∣ min
‖w‖≤ε

Hn(Zn +w)− min
‖w‖≤ε

Ȟn(Zn +w)
∣∣∣

≤ ρn(C + ε) < ε2/4.

Consequently, in case of the event An,ε,C occuring, the function Hn has a minimizer ∆̂n, and this
minimizer satisfies necessarily

‖∆̂n −Zn‖ ≤ ε and
∣∣2Hn(∆̂n) + ‖Zn‖2

∣∣ < ε2/2.

But note that

IP(An,ε,C) ≥ 1− IP(‖Zn‖ ≥ C)− IP
(
ρn(C + ε) ≥ ε2/4

)
≥ 1− sup

m≥n
IP(‖Zm‖ ≥ C)− o(1)

→ 1− lim sup
m→∞

IP(‖Zm‖ ≥ C),
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and the right hand side gets arbitrarily close to one as C → ∞. This proves the theorem in the
special case of Γ = Ip.

In the case of an arbitrary symmetric, positive definite matrix Γ, note that

−Z>n∆ + 2−1∆>Γ∆ = −(Γ−1/2Zn)>(Γ1/2∆) + ‖Γ1/2∆‖2/2.

Hence, for arbitrary θ,∆ ∈ Rp, we introduce

(θ̃n, θ̃, ∆̃) := (Γ1/2θn,Γ
1/2θ,Γ1/2∆),

Z̃n := Γ−1/2Zn,

and

L̃n(θ̃) := Ln(Γ−1/2θ̃) = Ln(θ),

r̃n(∆̃) := L̃n(θ̃n + n−1/2∆̃)− L̃n(θ̃n) + Z̃
>
n ∆̃− ‖∆̃‖2/2 = rn(∆).

Note that θ̃ is a minimizer of L̃n if and only if θ = Γ−1/2θ̃ is a minimizer of Ln, and the infima of
L̃n and of Ln over Rp coincide. The assumption that ‖Zn‖ = Op(1) implies that ‖Z̃n‖ = Op(1)

too. Moreover, for any fixed C > 0,

sup
∆̃:‖∆̃‖≤C

|r̃n(∆̃)| = sup
∆:‖Γ1/2∆‖≤C

|rn(∆)| ≤ sup
∆:‖∆‖≤λmin(Γ)−1/2C

|rn(∆)| →p 0,

where λmin(Γ) denotes the smallest eigenvalue of Γ. Hence, the previous considerations for
Γ = Ip imply that with asymptotic probability one, there exists a minimizer θ̂n of Ln such that

n1/2(θ̂n − θn) = Γ−1/2Z̃n + op(1) = Γ−1Zn + op(1),

2Ln(θn)− 2Ln(θ̂n) = ‖Z̃n‖2 + op(1) = Z>nΓ−1Zn + op(1).

Proof of Theorem 7.21. At first, we assume that Γ = Ip and Ψ>Ψ = Ik. As in the proof of
Theorem 7.20, we work with the local negative log-likelihood function Hn, its quadratic approxi-
mation Ȟn and the error bounds ρn(C). If we define the profile functions

PHn(w) := inf
{
Hn(∆) : ∆ ∈ Rp,Ψ>∆ = w

}
,

P Ȟn(w) := inf
{
Ȟn(∆) : ∆ ∈ Rp,Ψ>∆ = w

}
,

then
PLn(Ψ>θn + n−1/2w)− PLn(Ψ>θn) = PHn(w)− PHn(0).

Hence it suffices to show that

(7.7) sup
‖w‖≤C

∣∣PHn(w)− PȞn(w)
∣∣ →p 0

for any fixed C > 0, and

(7.8) PȞn(w)− PȞn(0) = −Z>n,Ψw + ‖w‖2/2
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for arbitrary w ∈ Rk, where Zn,Ψ := Ψ>Zn.

Let us start with (7.8). Note that Ψ>∆ = Ψ>∆′ if and only if Ψ>(∆ − ∆′) = 0. Thus we
represent the space Rp as the direct sum of the two orthogonal subspaces

V0 := {v ∈ Rp : Ψ>v = 0} and V1 := ΨRk.

Recall that
Ȟn(∆) = ‖∆−Zn‖2/2− ‖Zn‖2/2.

If we write ∆ = ∆0 + ∆1 and Zn = Zn0 + Zn1 with ∆0,Zn0 ∈ V0 and ∆1,Zn1 ∈ V1, then
Ψ>∆ = Ψ>∆1 = w if and only if

∆1 = Ψw.

Consequently, {∆ ∈ Rp : Ψ>∆ = w} = {Ψw+ ∆0 : ∆0 ∈ V0}, and Pythagoras’ equality leads
to

PȞn(w) = inf
∆0∈V0

(
‖∆0 −Zn0‖2/2 + ‖Ψw −Zn1‖2/2− ‖Zn‖2/2)

=

{
Ȟn(Ψw +Zn0),

‖Ψw −Zn1‖2/2− ‖Zn‖2/2.

Moreover, Zn1 is the orthogonal projection of Zn onto V1 which can be written as

Zn1 = ΨΨ>Zn = ΨZn,Ψ.

Hence,

PȞn(w) = ‖Ψw −ΨZn,Ψ‖2/2− ‖Zn‖2/2

= −Z>n,Ψw + ‖w‖2/2 + ‖Zn1‖2/2− ‖Zn‖2/2

= −Z>n,Ψw + ‖w‖2/2− ‖Zn0‖2/2.

In particular, PȞn(0) = −‖Zn0‖2/2, and this leads to (7.8).

To prove (7.7), note that for any v ∈ V0,

Ȟn(Ψw +Zn0 + v) = Ȟn(Ψw +Zn0) + ‖v‖2/2.

Thus, we fix arbitrary constants C > 0 (large) and ε > 0 (small) and consider the event

Bn,ε,C :=
{
‖Zn0‖ < C and ρn(2C + ε) < ε2/4

}
.

If this event Bn,ε,C occurs, then for w ∈ Rk with ‖w‖ ≤ C and v ∈ V0 with ‖v‖ = ε,

Hn(Ψw +Zn0 + v)−Hn(Ψw +Zn0)

≥ Ȟn(Ψw +Zn0 + v)− Ȟn(Ψw +Zn0)− 2ρn(2C + ε)

= ε2/2− 2ρn(2C + ε) > 0.

Together with convexity of Hn, this implies that

PHn(w) = min
v∈V0:‖v‖≤ε

Hn(Ψw +Zn0 + v),
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and thus, ∣∣PHn(w)− PȞn(w)
∣∣

=
∣∣∣ min
v∈V0:‖v‖≤ε

Hn(Ψw +Zn0 + v)− min
v∈V0:‖v‖≤ε

Ȟn(Ψw +Zn0 + v)
∣∣∣

≤ ρn(2C + ε) < ε2/4.

Since lim infn→∞ IP(Bn,ε,C) = lim infn→∞ IP(‖Zn0‖ < C) → 1, as C → ∞, these considera-
tions prove (7.7).

In case of arbitrary matrices Γ and Ψ, we proceed similarly as in the proof of Theorem 7.20: At
first, for arbitrary θ,∆ ∈ Rp, we introduce (θ̃n, θ̃, ∆̃) := (Γ1/2θn,Γ

1/2θ,Γ1/2∆), L̃n(θ̃) :=

Ln(Γ−1/2θ̃) = Ln(θ) and Z̃n := Γ−1/2Zn. This amounts to a linear transformation of Rp.
Furthermore, we introduce

Ψ̃ := Γ−1/2ΨΓ
1/2
Ψ = Γ−1/2Ψ(Ψ>Γ−1Ψ)−1/2,

and for arbitrary η,w ∈ Rk we define

η̃ := Γ
1/2
Ψ η and w̃ := Γ

1/2
Ψ w,

respectively. The rationale for the latter linear transformation of Rk is that Ψ̃
>

Ψ̃ = Ik, and the
equation Ψ>θ = η is equivalent to Ψ̃

>
θ̃ = η̃. Moreover, Z̃n,Ψ̃ := Ψ̃

>
Z̃n satisfies the equations

Z̃
>
n,Ψ̃w̃ = Z>n,Ψw and ‖Z̃n,Ψ̃‖

2 = Z>n,ΨΓ−1
Ψ Zn,Ψ, while ‖w̃‖2 = w>ΓΨw . . .

7.3 Methods for a Multicategorical Response

In this section, we treat two methods for the general case that Y = {0, 1, . . . ,K} for someK ≥ 1.

7.3.1 Multinomial Logit Models

A justification of logit models. A standard model of multivariate statistics is as follows: Sup-
pose that the joint distribution of random variables X ∈ Rd and Y ∈ Y := {0, 1, . . . ,K} with
K ≥ 1 is given by the weights

wy := IP(Y = y) > 0

and
L(X |Y = y) = Nd(µy,Σ)

with certain vectors µ0, . . . ,µK ∈ Rd and a symmetric, positive definite matrix Σ ∈ Rd×d. Then
one can easily verify that

IP(Y = y |X = x) =
wy exp

(
−(x− µy)>Σ−1(x− µy)/2

)∑K
z=0wz exp

(
−(x− µz)>Σ−1(x− µz)/2

)
=

exp(ay + b>y x)∑K
z=0 exp(az + b>z x)
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with ay := log(wy) − µ>y Σ−1µy/2 and by := Σ−1µy. These conditional probabilities remain
unchanged if we replace the pairs (ay, by) with (ay − a0, by − b0). For K = 1 we arrive at a
logistic regression model! For general K ≥ 1, we arrive at the multinomial logit model described
later.

The previous considerations render logit models plausible, but they also indicate potential starting
values for the parameters ay, by. Namely, we replace

wy with ŵy := Ny/n, where Ny := #{i ≤ n : Yi = y},

µy with µ̂y :=
1

Ny

∑
i:Yi=y

Xi,

Σ with Σ̂ :=
1

n−K − 1

K∑
y=0

∑
i:Yi=y

(Xi − µ̂y)(Xi − µ̂y)>.

The multinomial logit model. For a given finite-dimensional linear space F of functions f :

X → R, we assume that there exist functions f1, . . . , fK ∈ F such that

IP(Y = y |X = x) =
exp(fy(x))∑K
z=0 exp(fz(x))

for all x ∈ X , y ∈ {0, 1, . . . ,K},

where f0(x) := 0. The functions f1, . . . , fK or corresponding parameter vectors θ1, . . . ,θK in
Rdim(F) can be estimated via maximum likelihood, and all previous considerations for the negative
log-likelihood function may be adapted to the case K ≥ 1.

7.3.2 The Ordinal Logit Model

In the previous section, the elements 0, 1, . . . ,K of Y did not have a specific meaning, except
that 0 took the role of a reference category. But in some applications, Y is an ordinal covariate,
that means, the values 0, 1, . . . ,K represent a canonical order. For instance, in clinical studies
one could replace a dichotomous response with values 0 (‘healthy’) and 1 (‘ill’) with an ordinal
response taking the values 0 (‘healthy’), 1 (‘slightly ill’) and 2 (‘seriously ill’). Of course, one
could still work with the multinomial logit model, but there is an alternative approach.

Logistic regression via a ‘latent response’. Suppose that underlying our data is a linear model
with X ∈ X and Ỹ ∈ R, where

Ỹ = f(X) + Z

with a regression function f ∈ F and a random error Z which is stochastically independent from
X and follows the logistic distribution function `(·). Suppose that instead of Ỹ we only observe

Y := 1
[Ỹ≥0]

.

Then (X,Y ) ∈ X × {0, 1} adheres to a logistic regression model, because

IP(Y = 1 |X = x) = IP(f(x) + Z ≥ 0) = IP(Z ≥ −f(x)) = `(f(x)).
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Note that 1− `(−z) = `(z) for z ∈ R.

We may rewrite f ∈ F as f(x) = fo(x)− a, where a := −f(xo) and fo(x) := f(x)− f(xo) for
a fixed reference value xo ∈ X . Then

Y = 1[fo(X)+Z≥ a]

and

IP(Y = 1 |X = x) = `(fo(x)− a) = 1− `(a− fo(x)),

IP(Y = 0 |X = x) = 1− `(fo(x)− a) = `(a− fo(x)).

The general case. The previous construction may be generalized to observations (X,Y ) ∈ X ×
{0, 1, . . . ,K}: We assume that for certain thresholds

−∞ =: a0 < a1 < · · · < aK < aK+1 :=∞

and a function
fo ∈ Fo := {f − f(xo) : f ∈ F}

the conditional distribution of Y , given X , is given by

IP(Y = y |X = x) = `(ay+1 − fo(x))− `(ay − fo(x))

for y = 0, 1, . . . ,K. Again this corresponds to a latent response

fo(X) + Z,

and
Y = y if and only if ay ≤ fo(X) + Z < ay+1.

Figure 7.3 illustrates this construction in case of K = 2 and a1 = −1.5, a2 = 1.5. The horizontal
axis represents the potential values of fo(x). Vertically one can see for each value fo(x) the
intervals [0, `(a1−fo(x))] (light gray), [`(a1−fo(x)), `(a2−fo(x))] (gray) and [`(a2−fo(x)), 1]

(dark gray). The lengths of these intervals are the probabilities IP(Y = 0 |X = x), IP(Y =

1 |X = x) and IP(Y = 2 |X = x), respectively.

Again, one may estimate the parameters a = (ay)
K
y=1 and fo via maximum likelihood. The

corresponding negative log-likelihood function is given by

L(a, fo) = −
n∑
i=1

log
(
`(aYi+1 − fo(Xi))− `(aYi − fo(Xi))

)
.

Exercise 7.23 (Convexity of the negative log-likelihood function). (a) Show that

h(x) := − log(`(x2)− `(x1))

with log(z) := −∞ for z ≤ 0 defines a continuous, convex function h : R2 → (0,∞] which is
strictly convex on {h <∞} = {x ∈ R2 : x1 < x2}. Precisely, for x ∈ R2 with x1 < x2,

∇h(x) =
1

`(x2)− `(x1)

(
`′(x1)
−`′(x2)

)
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Figure 7.3: Illustration of the ordinal logit model for K = 2 and a1 = −1.5, a2 = 1.5.

and

D2h(x) =

(
`′(x1) 0

0 `′(x2)

)
+

`′(x1)`′(x2)(
`(x2)− `(x1)

)2 (−1
1

)(
−1
1

)>
.

(b) Show that

L(a, fo) := −
n∑
i=1

log
(
`(aYi+1 − fo(Xi))− `(aYi − fo(Xi))

)
defines a convex function L : RK ×Fo → (0,∞], where L(a, fo) <∞ if and only if a1 < a2 <

· · · < aK .

Exercise 7.24 (Ordinal logit model for a ternary response). Implement the MLE for a simple
ordinal logit model with covariate X ∈ R and Y ∈ {0, 1, 2}. That means, we assume that

IP(Y = y |X = x) = `(ay+1 − bx)− `(ay − bx)

with the parameter θ = (a1, a2, b)
>, where −∞ =: a0 < a1 < a2 < a3 := ∞. Write a

program which computes the MLE θ̂ for given observation vectors X ∈ Rn and Y ∈ {0, 1, 2}n.
For the minimization of the negative log-likelihood function, use your own implementation of a
Newton–Raphson method or the built-in function optim of R.

Apply your program to the data set USPresidential, where the response variable is party with the
order ‘Democrat’ < ‘Independent’ < ‘Republican’.
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7.4 Poisson Regression

Logistic regression is a special instance of the general class of generalized linear models, see
also Section 7.5. In the present section we present another member of this family. We consider
observations (X,Y ) ∈ X × N0 and assume that

L(Y |X = x) = Poiss
(
exp(f(x))

)
for all x ∈ X

with an unknown regression function f ∈ F . Here Poiss(λ) is the Poisson distribution with
parameter (= mean = variance) λ ≥ 0, that means,

IP(Y = k |X = x) = exp
(
− exp(f(x))

)exp(f(x))k

k!
= exp

(
kf(x)− exp(f(x))− log(k!)

)
for k ∈ N0.

Hence, the resulting negative log-likelihood function is given by

L(f) :=
n∑
i=1

(
exp(f(Xi))− Yif(Xi)

)
plus the additional term

∑n
i=1 log(Yi!) which does not depend on f . Since we are mainly inter-

ested in differences of the negative log-likelihood function, we ignore the latter term.

Specific examples for this model are:

• Insurance cases: An insurance company is dividing its customers into several groups by means
of certain features summarized asX , and for each group, Y is the number of cases in a future time
period.

• In a medical experiment with cancer cells, several cell cultures are treated with different kinds
or doses of therapeutic agents. Here X describes the treatment for one particular cell culture, and
Y could be the number (or concentration) of cells having survived this treatment.

Having specified a basis f1, . . . , fp for F , we may reinterpret L as a function on Rp,

L(θ) :=

n∑
i=1

(exp(d>i θ)− Yid>i θ),

whereD = [f1(X), . . . , fp(X)] = [d1, . . . ,dn]>, and the corresponding risk functionR := IEL

is given by

R(θ) =
n∑
i=1

(exp(d>i θ)− IE(Yi)d
>
i θ).

Exercise 7.25. For nonnegative numbers a1, a2, . . . , an and vectors d1,d2, . . . ,dn ∈ Rp, we
define the function L̃ : Rp → R via

L̃(θ) :=
n∑
i=1

(exp(d>i θ)− aid>i θ).

(a) Derive the gradient and Hessian matrix of this function.
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(b) Show that L̃ is convex, and that it is strictly convex if and only if the vectors d1, . . . ,dn span
Rp.

(c) Derive necessary and sufficient conditions for coercivity of L̃.

For the subsequent asymptotic considerations, we consider a triangular scheme of independent
observations (dni, Yni) ∈ Rp × N0, 1 ≤ i ≤ n, for each n ∈ N, where the design vectors dni are
viewed as fixed. The negative log-likelihood function Ln : Rp → R is given by

Ln(θ) :=
n∑
i=1

(
exp(d>niθ)− Ynid>niθ

)
,

and its first and second derivatives are given by

∇Ln(θ) =
n∑
i=1

(exp(d>niθ)− Yni)dni,

D2Ln(θ) = nΓn(θ) with Γn(θ) :=
1

n

n∑
i=1

exp(d>niθ)dnid
>
ni,

see Exercise 7.25. As shown in the latter exercise, Ln and Rn := IELn are strictly convex if and
only if the design matrix Dn = [dn1 dn2 . . . dnn]> has rank p. Similarly as in the setting of lo-
gistic regression, we formulate four regularity assumptions under which the asymptotic behaviour
of Ln and related objects can be derived:

(B.1) For sufficiently large n, the design matrixDn has rank p.

(B.2) For each n ∈ N, there exists a vector θn ∈ Rp such that Yni ∼ Poiss(λni) with λni =

exp(d>niθn) for 1 ≤ i ≤ n.

(B.3) Γn(θn) converges to a symmetric, positive definite matrix Γ ∈ Rp×p.

(B.4) There exists a constant ε > 0 such that

Λn(ε) :=
1

n

n∑
i=1

λni exp(ε‖dni‖) = O(1).

Assumptions (B.1-2) imply that for sufficiently large n, the risk function Rn = IELn,

Rn(θ) =

n∑
i=1

(
exp(d>niθ)− λnid>niθ

)
is strictly convex with unique minimizer θn.

Theorem 7.26. For ∆ ∈ Rp write

Ln(θn + n−1/2∆)− Ln(θn) = −Z>n∆ + ∆>Γ∆/2 + rn(∆)

with the random vector Zn := n−1/2
∑n

i=1(Yni − λni)dni and a remainder rn(∆). Then under
the assumptions (B.1-4),

Zn →L Np(0,Γ),
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and
sup

∆ : ‖∆‖≤C
|rn(∆)| → 0 for any fixed C > 0.

In particular, the negative log-likelihood function Ln has a unique minimizer θ̂n with asymptotic
probability one, and

n1/2(θ̂n − θn) = Γ−1Zn + op(1) →L Np(0,Γ
−1).

Moreover, Γn(θ̂n) is a consistent estimator of Γn(θn), i.e.

Γn(θ̂n)− Γn(θn) →p 0.

By means of this theorem and the general results in Section 7.2, one can adapt all tests and confi-
dence regions which we introduced for logistic regression to Poisson regression.

Proof of Theorem 7.26. Again, we start with the matrix-valued function Γn(·). Here,

∥∥Γn(θ)− Γn(θn)
∥∥ ≤ 1

n

n∑
i=1

‖dni‖2
∣∣exp(d>niθ)− exp(d>niθn)

∣∣
=

1

n

n∑
i=1

λni‖dni‖2
∣∣exp(d>ni(θ − θn))− 1

∣∣
≤ 1

n

n∑
i=1

λni‖dni‖2
(
exp
(
‖θ − θn‖‖dni‖

)
− 1
)
.

Now we use the inequality

∣∣z2(exp(δz)− 1)
∣∣ ≤ (3/e)3δ

(ε− δ)3
exp(ε|z|) for z ∈ C and 0 < δ < ε;

see Exercise 7.27. If we apply this inequality to z = ‖dni‖ and the constant ε in (B.4), then we
obtain for any δ ∈ (0, ε) the inequality

(7.9) sup
θ : ‖θ−θn‖≤δ

∥∥Γn(θ)− Γn(θn)
∥∥ ≤ (3/e)3δ

(ε− δ)3
Λn(ε).

For any fixed θ ∈ Rp, the expectation of Ln(θ) is equal to

Rn(θ) :=

n∑
i=1

(
exp(d>niθ)− λnid>niθ

)
,

and θn is the minimizer of Rn by assumption (B.2), so ∇Rn(θn) = 0. Moreover, the difference
(Ln −Rn)(θ) = −

∑n
i=1(Yni − λni)d>niθ is linear in θ, whence

Ln(θn + n−1/2∆)− Ln(θn) = −Z>n∆ +Rn(θn + n−1/2∆)−Rn(θn)

= −Z>n∆ + ∆>Γ∆/2 + rn(∆)

with
rn(∆) := ∆>

(
Γn(θn + ξn,∆∆)− Γ

)
∆/2
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and 0 ≤ ξn,∆ ≤ n−1/2. Consequently, conditions (B.3-4) entail that

sup
∆ : ‖∆‖≤C

|rn(∆)| ≤ C2

2

( 2n−1/2C

(ε− n−1/2C)3
+

Λn(ε) + ‖Γn(θn)− Γ‖
)
→ 0.

It remains to show that the asymptotic distribution of Zn equals Np(0,Γ). For this purpose we
use characteristic functions and show that

IE exp(it>Zn) → exp(−t>Γt/2) for each t ∈ Rp.

This is sufficient, because the limit on the right hand side equals
∫
Rp exp(it>z) Np(0,Γ)(dz).

Recall that

IE exp(z(Y − λ)) = exp
(
λ(exp(z)− 1− z)

)
for z ∈ C and Y ∼ Poiss(λ);

see Exercise 7.28. Applying this formula to Y = Yni, λ = λni and z = zni := n−1/2it>dni

yields the equation

IE exp(it>Zn) = exp
( n∑
i=1

λni(exp(zni)− 1− zni)
)

= exp
( n∑
i=1

λniz
2
ni/2 + ρn

)
= exp

(
−t>Γn(θn)t/2 + ρn

)
= exp

(
−t>Γt/2 + o(1) + ρn

)
,

where

ρn :=

n∑
i=1

λni
(
exp(zni)− 1− zni − z2

ni/2
)
.

Hence, it suffices to show that ρn → 0. Since Re zni = 0 and |zni| ≤ n−1/2‖t‖‖dni‖, it follows
from part (b) and part (a) of Exercise 7.27 that

∣∣exp(zni)− 1− zni − z2
ni/2

∣∣ ≤ |zni|3
6

≤ ‖t‖
3‖dni‖3

6n3/2
≤ c̃(ε)

n3/2
‖t‖3 exp(ε‖dni‖)

with c̃(ε) := ε−3(3/e)3/6, so

|ρn| ≤ c̃(ε)‖t‖3n−1/2Λn(ε) → 0.

Exercise 7.27. (a) Show that for arbitrary z ∈ C, k ∈ N0 and 0 ≤ δ < ε, the following
inequalities hold true: ∣∣zk exp(zδ)

∣∣ ≤ ck
(ε− δ)k

exp(ε|z|),

∣∣zk(exp(zδ)− 1)
∣∣ ≤ ck+1δ

(ε− δ)k+1
exp(ε|z|),

where cj := (j/e)j .
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(b) Show that ∣∣∣exp(z)−
k∑
j=0

zj

j!

∣∣∣ ≤ |z|k+1

(k + 1)!
exp
(
max{Re z, 0}

)
for arbitrary k ∈ N0. Proposal: Show at first that

exp(z)−
k∑
j=0

zj

j!
=

zk+1

k!

∫ 1

0
exp(tz)(1− t)k dt.

Exercise 7.28. Let Y have a Poisson distribution with parameter λ ≥ 0. Show that

IE exp
(
z(Y − λ)

)
= exp

(
λ(exp(z)− 1− z)

)
for arbitrary z ∈ C.

Exercise 7.29 (Poisson regression). Fit a Poisson regression model to the data set Blau.txt with
the function glm in R. The response Y should be the number of days a pupil missed school.
Interpret your results. Would you consider the Poisson model as plausible? In particular, what do
you think about the implicit assumption that Var(Y |X) = IE(Y |X)?

7.5 Complements

In the previous sections our main focus was on logistic regression and Poisson regression. Both
models are special cases of generalized linear models which will now be explained briefly.

For statistical inference, i.e. point estimators, tests and confidence regions, we considered mainly
likelihood methods. But for these tests and confidence regions we can only guarantee approximate
validity. There are at least two procedures with guaranteed finite sample validity which will be
described in the context of generalized linear models.

7.5.1 Generalized Linear Models

We consider a generic observation (X,Y ) and given observations (X1, Y1), . . . , (Xn, Yn) with
values in X × Y . We also writeX = (Xi)

n
i=1 and Y = (Yi)

n
i=1. Here we considerX (after con-

ditioning, if necessary) as a fixed vector and Y as a random vector with stochastically independent
components.

A generalized linear model has essentially two ingredients:

• A family (Qφ)φ∈RL of probability distributions Qφ on Y; here we assume that

L(Y |X = x) = Qf∗(x) and L(Yi) = Qf∗(Xi)

for an unknown regression function f∗ : X → RL.

• A finite-dimensional linear space F of functions f : X → RL; here we assume that f∗ belongs
to this space or may be approximated sufficiently well by some function in F .

Example 7.30 (Logistic regression). Here Y = {0, 1}, L = 1 and

Qφ = (1− `(φ))δ0 + `(φ)δ1 = Bin(1, `(φ)).
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Example 7.31 (Multinomial logit model). Here Y = {0, 1, . . . , L}, L ≥ 2, and for φ ∈ RL,

Qφ =
L∑
y=0

exp(φy)δy
/ L∑
z=0

exp(φz), φ0 := 0.

The unknown function f∗ is a tuple (f∗,y)
L
y=1 of functions f∗,y : X → R.

Example 7.32 (Poisson regression). Here Y = N0, L = 1 and

Qφ = Poiss(exp(φ)).

Example 7.33 (Linear models). Suppose that Y = R and

Y = f∗(X) + ε

with an unknown regression function f∗ ∈ F and a random error ε such that L(ε |X) ≡ N(0, σ2),
σ > 0 unknown.

With L = 2 and
Qφ = N(φ1, exp(φ2)2)

one could write
L(Y |X = x) = Qf̃∗(x)

where f̃∗(x) := (f∗(x), log σ).

Exercise 7.34. We consider fixed design vectors d1,d2, . . . ,dn ∈ Rp and stochastically indepen-
dent observations Y1, Y2, . . . , Yn with Yi ∼ N(d>i θ, σ

2). Here, θ ∈ Rp and σ > 0 are unknown
parameters. Determine the maximum likelihood estimator (θ̂, σ̂) of (θ, σ).

7.5.2 Exact Confidence Regions for f∗

For any f ∈ F , let T (f,X,Y ) be a test statistic for the null hypothesis that f∗ = f , larger values
indicating a violation. For instance let

T (f,X,Y ) := L(f)− inf
g∈F

L(g)

with the negative log-likelihood function L = L(·,X,Y ),

L(f) = L(f,X,Y ) := −
n∑
i=1

log pf(Xi)
(Yi),

where pφ is the density function of Qφ with respect to some measure M on Y .

Now let κα(f) be the (1 − α)-quantile of Lf (T (f,X,Y )), where the subscript f indicates that
we consider the distribution of Y in case of f∗ = f . Then

Cα(X,Y ) :=
{
f ∈ F : T (f,X,Y ) ≤ κα(f)

}
is a (1− α)-confidence region for f∗, because

IP(f∗ ∈ Cα(X,Y )) = IP
(
T (f∗,X,Y ) ≤ κα(f∗)

)
≥ 1− α
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by definition of κα(f).

The explicit computation of this confidence region is a nontrivial task in general. Already the
determination of single quantiles κα(f), f ∈ F , could be difficult and require Monte Carlo simu-
lations or approximations. Nevertheless, these confidence regions are worth being mentioned and
will be revisited in the chapter about bootstrap methods.

Exercise 7.35 (Getting rid of the constant term). We consider multiple logistic or Poisson regres-
sion, that means, we consider X = Rd and regression functions of the form f(x) = a + b>x,
x ∈ Rd. Suppose we observe a data matrix X = (Xi)

n
i=1 ∈ (Rd)n (viewed as fixed) and a

random vector Y = (Yi)
n
i=1 in {0, 1}n or Nn0 with stochastically independent components

Yi ∼

{
Bin(1, `(a+ b>Xi)) (logistic model),
Poiss(exp(a+ b>Xi)) (Poisson model).

(a) Let Y+ :=
∑n

i=1 Yi. Show that for arbitrary a ∈ R, b ∈ Rd and m ∈ N0,

La,b(Y |Y+ = m) = L0,b(Y |Y+ = m).

(b) Explain how to construct a confidence region for b with guaranteed confidence level 1− α.

7.5.3 Permutation Tests of Association

The null hypothesis that there is no true association between the X- and Y -values may be stated
precisely as follows:

Null hypothesis Ho: The distribution of (X,Y ) does not change if we replace Y with σY :=

(Yσ(i))
n
i=1 with an arbitrary fixed permutation σ ∈ Sn.1

An equivalent formulation of Ho is: For a random permutation S ∼ Unif(Sn) which is stochasti-
cally independent from (X,Y ),

L(X,Y ) = L(X, SY ).

Here are two special cases of the general null hypothesis Ho:

Null hypothesis H ′o: The pairs (Xi, Yi) are independent copies of a random variable (X,Y ),
where X and Y are stochastically independent.

Null hypothesis H ′′o : The points X1, . . . , Xn are fixed, and Y1, . . . , Yn are independent, identi-
cally distributed random variables.

Exact p-values for the null hypothesis Ho may be achieved via permutation tests: One chooses
a test statistic T : X n × Yn → R which quantifies the apparent association between X- and

1Sn is the set of all bijections σ : {1, . . . , n} → {1, . . . , n}.
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Y -values. Then, depending on the choice of T and the working hypothesis, one computes the
left-sided p-value

π`(X,Y ) := #
{
σ ∈ Sn : T (X, σY ) ≤ T (X,Y )

}/
n!

or the right-sided p-value

πr(X,Y ) := #
{
σ ∈ Sn : T (X, σY ) ≥ T (X,Y )

}/
n!

or the two-sided p-value

πt(X,Y ) := 2 ·min
{
π`(X,Y ), πr(X,Y )

}
.

Indeed, for arbitrary α ∈ (0, 1),

IP(π(X,Y ) ≤ α) ≤ α under Ho.

In special cases, such as Fisher’s exact test or Wilcoxon’s rank sum test, the p-values above may
be computed explicitly. Otherwise, one could replace them with Monte-Carlo versions: One sim-
ulates stochastically independent permutations S1, S2, . . . , SM with distribution Unif(Sn) which
are independent from (X,Y ) and computes

π̂`(X,Y ) :=
(

#
{
j ∈ {1, 2, . . . ,M} : T (X, SjY ) ≤ T (X,Y )

}
+ 1
)/

(M + 1),

π̂r(X,Y ) :=
(

#
{
j ∈ {1, 2, . . . ,M} : T (X, SjY ) ≥ T (X,Y )

}
+ 1
)/

(M + 1),

or π̂t(X,Y ) := 2 ·min
{
π̂`(X,Y ), π̂r(X,Y )

}
. For arbitrary α ∈ (0, 1),

IP
(
π̂`(X,Y ) ≤ α

)
IP
(
π̂r(X,Y ) ≤ α

)} ≤ b(M + 1)αc
M + 1

≤ α under Ho,

and this implies that
IP
(
π̂t(X,Y ) ≤ α

)
≤ α under Ho.

To explain the inequalities for π̂` and π̂r we introduce the permutation S0 := id and write

π̂` (r)(X,Y ) = #
{
j ∈ {0, 1, . . . ,M} : T (X, SjY ) ≤(≥)T (X, S0Y )

}/
(M + 1).

Then the asserted inequalities follow from the fact that under Ho, the tuple
(
T (X, SjY )

)M
j=0

is exchangeable. That means, its distribution remains invariant if its components are permuted
randomly.

Exercise 7.36 (Exact p-values for standard logistic or Poisson regression). We consider multi-
ple logistic or Poisson regression as in Exercise 7.35. Implement a permutation test of the null
hypothesis that b = 0, based on the log-likelihood ratio statistic

T (X,Y ) := 2L(θ̂o)− 2L(θ̂).

Here θ̂ denotes the MLE of θ = (a, b), while θ̂o denotes the MLE under the null hypothesis. In
case of logistic regression, θ̂o = (logit(Ȳ ),0), in case of Poisson regression, θ̂o = (log(Ȳ ),0).



Chapter 8

Bootstrap Methods

The name “bootstrap method” refers to the idiom that someone “drags himself up by his own
bootstraps” (similar to the Duke of Münchhausen, who got out of a swamp by pulling his own
hair). These procedures are applicable in many situations and yield tests and confidence regions
with given approximate confidence level. After the pioneering paper by Bradley Efron (1979),
numerous authors developed and analyzed bootstrap procedures. A good overview is provided by
the paper of Bickel and Freedman (1981) and the monograph of Beran and Ducharme (1991).

8.1 Bootstrap Methods for I.I.D. Observations

For n ∈ N let Yn1, Yn2, . . . , Ynn be stochastically independent random variables with unknown
distribution Pn on Y . Suppose we are interested in a certain parameter θ(Pn) ∈ Θ. To construct a
confidence region for θ(Pn), we choose a mapping Tn : Yn × Θ → (−∞,∞], where Tn(Yn, θ)

serves as a test statistic for the null hypothesis that θ(Pn) = θ, and Yn := (Yni)
n
i=1. Let κn,α(Pn)

be the (1− α)-quantile of L
(
Tn(Yn, θ(Pn))

)
. Suppose that an oracle would not tell us θ(Pn) but

the quantile κn,α(Pn). Then we could compute the confidence region

Coracle
n,α (Yn) :=

{
θ ∈ Θ : Tn(Yn, θ) ≤ κn,α(Pn)

}
.

Indeed,

IP
(
θ(Pn) ∈ Coracle

n,α (Yn)
)

= IP
(
Tn(Yn, θ(Pn)) ≤ κn,α(Pn)

)
≥ 1− α.

Classical statistical procedures such as, for instance, student confidence intervals for the mean of
a univariate distribution rely on the fact that a proper choice of the test statistic Tn and, if needed,
additional assumptions on Pn lead to a quantile κn,α(Pn) which does not depend on Pn. In this
case we do not need an oracle. In other situations, we rely on the fact that the unknown quantile
κn,α(Pn) converges to a known quantile κα. If we replace κn,α(Pn) in Coracle

n,α (Yn) with κα, we
obtain a confidence region with asymptotic confidence level 1− α.

At this point we should explain why we consider triangular arrays, i.e. let Pn depend on the sample
size. In the “older days”, many authors proved limit theorems for a fixed distribution P and sample

215
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size n tending to infinity. For instance, suppose that one can show that in case of Pn = P for all
n,

L
(
Tn(Yn, θ(P ))

)
→w R

for some continuous distribution R on the real line with unique (1 − α)-quantile κα. If the latter
quantile is known, then

Cclassical
n,α (Yn) :=

{
θ ∈ Θ : Tn(Yn, θ) ≤ κα

}
defines a confidence region for θ(P ) with asymptotic confidence level 1− α in the sense that

IP
(
θ(P ) ∈ Cclassical

n,α (Yn)
)

= IP
(
Tn(Yn, θ(P )) ≤ κα

)
→ 1− α.

At first glance this is wonderful. The problem is, however, that the minimal sample size n such
that the true coverage probability is sufficiently close to the nominal confidence level 1 − α may
depend very sensitively on P . A statistician is typically dealing with different distributions but
just one sample for each of them. The purpose of asymptotics is to show that certain procedures
work for sufficiently large sample size and a larger collection of distributions. In other words, it is
important to show that the weak convergence above is to some extent uniform in P .

The idea of bootstrap procedures is to replace the unknown quantile κn,α(Pn) with κn,α(P̂n),
where P̂n(·) = P̂n(· ;Yn) is an estimator for the distribution Pn. This approach is based on the
hope that κn,α(Pn) and κn,α(P̂n) are quite similar, so the coverage probability of

Cn,α(Yn) :=
{
θ ∈ Θ : Tn(Yn, θ) ≤ κn,α(P̂n)

}
is close to 1 − α or even larger. In other words, we replace κn,α(Pn) by the (1 − α)-quantile of
the random distribution L

(
Tn(Y ∗n , θ(P̂n))

∣∣Yn). Here Y ∗n = (Y ∗ni)
n
i=1 is a random sample such

that conditional on Yn, its elements Y ∗ni are independent with distribution P̂n.

Examples for θ(Pn) and Tn(Yn, θ). Let Y = Rd. We assume that
∫
‖y‖2 Pn(dy) < ∞. Now

we consider the mean vector and the covariance matrix of Pn,

µn = µ(Pn) :=

∫
y Pn(dy) and

Σn = Σ(Pn) :=

∫
(y − µn)(y − µn)> Pn(dy).

Natural estimators for µn and Σn are given by

µ̂n := Ȳn = n−1
n∑
i=1

Yni and

Σ̂n := (n− 1)−1
n∑
i=1

(Yni − Ȳn)(Yni − Ȳn)>,

respectively.
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Suppose we are interested primarily in θ(Pn) := µ(Pn) ∈ Θ := Rd. Possible test statistics would
be, for instance,

Tn1(Yn, µ) := ‖µ̂n − µ‖,

Tn2(Yn, µ) := (µ̂n − µ)>Σ̂−1
n (µ̂n − µ),

Tn3(Yn, µ) := max
j=1,...,d

Σ̂n(j, j)−1/2
∣∣µ̂n(j)− µ(j)

∣∣.
When working with Tn2, we assume that Σn is nonsingular and Σ̂n is nonsingular with high
probability. In connection with Tn3 we assume that Σn has strictly positive diagonal elements and
that Σ̂n shares this property with high probability. Confidence regions based on Tn1 are Euclidean
confidence balls, Tn2 leads to confidence ellipsoids, and Tn3 yields confidence rectangles.

Suppose we are interested primarily in θ(Pn) := Σ(Pn) and assume that the latter matrix is
positive definite. Then a potential test statistic would be, for instance,

Tn(Yn,Σ) := ‖Σ̂−1/2
n ΣΣ̂−1/2

n − Id‖.

Suppose we are interested in the correlation

θ(Pn) := ρ12(Pn) :=
Σn(1, 2)√

Σn(1, 1)Σn(2, 2)
.

If Σn is positive definite, ρ12(Pn) ∈ (−1, 1). A natural estimator for ρ12(Pn) is given by the

sample correlation coefficient ρ̂n := Σ̂n(1, 2)/

√
Σ̂n(1, 1)Σ̂n(2, 2), and potential test statistics

would be

Tn1(Yn, ρ) := |ρ̂n − ρ|,

Tn2(Yn, ρ) :=
∣∣artanh(ρ̂n)− artanh(ρ)

∣∣.
The latter proposal is suggested by certain considerations in multivariate statistics.

Examples for P̂n. The distribution Pn is often estimated by the empirical distribution P̂ emp
n of

the observations Yni, i.e.

P̂ emp
n (B) := #{i : Yni ∈ B}/n.

In this case, the principle of the bootstrap method may be described as follows: Imagine that the
distribution Pn describes a certain large “population” from which a random sample of size n has
been drawn. Now we want to estimate the relation between sample and population. To this end,
we treat the sample as an artificial population, and we draw artificial samples from this population,
with replacement.

To generate such a bootstrap sample Y ∗n = (Y ∗ni)
n
i=1 explicitly, we just simulate independent

indices I(1), I(2), . . . , I(n) ∼ Unif{1, 2, . . . , n}, independent from Yn, and then we set

Y ∗ni := Yn,I(i), 1 ≤ i ≤ n.
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In case of Y = Rd, there is a potential modification: The empirical distribution P̂ emp
n has the

property that µ(P̂ emp
n ) = µ̂n = Ȳn, but

Σ(P̂ emp
n ) =

n− 1

n
Σ̂n.

However, since Σ̂n is an unbiased estimator of Σ(Pn) (as known from multivariate statistics), we
consider

P̂n := P̂ emp
n ?Nd(0, n

−1Σ̂n).

That means, for given data Yn, P̂n is the distribution of

Y ∗ := Yn,I + n−1/2Σ̂1/2
n Z

with stochastically independent random variables I ∼ Unif{1, 2, . . . , n} and Z ∼ Nd(0, Id).

Monte Carlo variants of the bootstrap confidence regions. Typically, no explicit formulae
for the bootstrap quantile κn,α(P̂n) are available. Then one resorts to the following Monte Carlo
variant of Cn,α(Yn): For given data Yn, we simulate independent copies Y (1)

n ,Y
(2)
n , . . . ,Y

(M)
n

of Y ∗n . With these bootstrap samples we compute the values

Tn(Y (s)
n , θ(P̂n)), 1 ≤ s ≤M,

and sort them. This leads to the random values τn,1 ≤ τn,2 ≤ · · · ≤ τn,M . Then we define

κ̂n,α := τn,d(M+1)(1−α)e

and

Ĉn,α(Yn) :=
{
θ ∈ Θ : Tn(Yn, θ) ≤ κ̂n,α

}
.

The rationale behind the factor M + 1 of 1 − α is as follows: Suppose for the moment that the
M + 1 random variables

Tn(Yn, θ(Pn)), Tn(Y (1)
n , θ(P̂n)), . . . , Tn(Y (M)

n , θ(P̂n))

are independent and identically distributed. (At least asymptotically this is often true.) Then the
probability that Tn(Yn, θ(Pn)) ≤ τn,k is at least k/(M + 1); see Exercise 8.1.

Exercise 8.1 (Monte Carlo critical values). The following inequality is due to Jöckel (1986). Let
(T0, T1, T2, . . . , TM ) ∈ RM+1 be a random tuple which is exchangeable, that is, its distribution is
invariant under arbitrary permutations of its components. Further let T(1) ≤ T(2) ≤ · · · ≤ T(M)

be the order statistics of T1, T2, . . . , TM . (Note that T0 is excluded!) Show that for 1 ≤ k ≤M ,

IP(T0 ≤ T(k)) ≥
k

M + 1

with equality if T0, T1, . . . , TM are pairwise different almost surely.
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Validity of bootstrap methods. A standard strategy to verify validity of a bootstrap procedure
consists of two steps:

Step 1: One identifies conditions on the sequence (Pn)n under which L
(
Tn(Yn, θ(Pn))

)
con-

verges weakly to a continuous distribution R with unique (1− α)-quantile κα.

Step 2: One shows that the sequence (P̂n)n satisfies the conditions in Step 1 in probability. That
means, for each n there exists an event An in terms of Yn such that IP(An) → 1, and along this
sequence (An)n, the sequence (P̂n)n satisfies the same conditions as (Pn)n in Step 1.

Step 1 implies that κn,α(Pn)→ κα, whereas Step 2 leads to κn,α(P̂n)→p κα. Both steps together
imply that

IP
(
θ(Pn) ∈ Cn,α(Yn)

)
= IP

(
Tn(Yn, θ(Pn)) ≤ κn,α(P̂n)

)
= IP

(
Tn(Yn, θ(Pn)) + op(1) ≤ κα

)
→ 1− α.

Note that we do not show directly that Cn,α(Yn) and Coracle
n,α (Yn) behave similarly in some sense.

Instead we take a “detour via asymptopia”, showing that the true distribution L
(
Tn(Yn, θ(Pn))

)
converges weakly to a reasonable limit R and that its bootstrap estimator L

(
Tn(Y ∗n , θ(P̂n))

∣∣Yn)
converges weakly in probability to the same limit. In some special settings, people have been able
to show that the difference between L

(
Tn(Yn, θ(Pn))

)
and L

(
Tn(Y ∗n , θ(P̂n))

∣∣Yn) with respect
to a suitable distance measure is of smaller order than the difference between both distributions and
the limit R. This implies that the bootstrap quantile κn,α(P̂n) is a better surrogate for κn,α(Pn)

than κα. But such considerations are beyond the scope of this course.

Validity of bootstrap methods for the mean. Let us illustrate the standard strategy outlined
above in a special case. We consider distributions Pn on Rd and are interested in the mean vectors
µn = µ(Pn). The following lemma and corollary comprise Step 1 above:

Lemma 8.2. Suppose that the covariance matrix of Pn converges to a fixed nonzero matrix Σ,

(8.1) Σ(Pn) → Σ,

and suppose that the following Lindeberg condition is satisfied:

(8.2) Λn(Pn) := IE
(
‖Yn1 − µn‖2 min

(
n−1/2‖Yn1 − µn‖, 1

))
→ 0.

Then

Qn := L
(√
n(µ̂n − µn)

)
→w Nd(0,Σ)

and

IE ‖Σ̂n − Σ‖F → 0.

If Σ is nonsingular, then Σ̂n is nonsingular with asymptotic probability one, and

Q̃n := L
(√
n Σ̂−1/2

n (µ̂n − µn)
)
→w Nd(0, Id).
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The distribution Q̃n can be viewed as a distribution on the compactified space Rd ∪ {′∞′}, where
′∞′ is reserved for the (rare) event that Σ̂n is singular. Lemma 8.2 is essentially a consequence of
Lindeberg’s CLT (Theorem A.17). It has the following implication:

Corollary 8.3. Under the conditions of Lemma 8.2,

Rn1 := L
(√
n‖µ̂n − µn‖

)
→w R1 := L(‖Z‖),

where Z ∼ Nd(0,Σ). If Σ is nonsingular, then

Rn2 := L
(
n(µ̂n − µn)>Σ̂−1

n (µ̂n − µn)
)
→w R2 := χ2

d.

If Σ has strictly positive diagonal terms, then

Rn3 := L
(√

n max
j=1,...,d

Σ̂n(j, j)−1/2
∣∣µ̂n(j)− µn(j)

∣∣)
→w R3 := L

(
max
j=1,...,d

Σ(j, j)−1/2|Z(j)|
)
.

Note that the limiting distributions R1, R2, R3 in this corollary are continuous with unique quan-
tiles. It remains to perform Step 2. This is essentially accomplished with the next lemma:

Lemma 8.4. Let P̂n be the empirical distribution P̂ emp
n or the “smoothed” empirical distribution

P̂ emp
n ?Nd(0, n

−1Σ̂n). Under the conditions of Lemma 8.2,

IE
∥∥Σ(P̂n)− Σ

∥∥
F
→ 0 and IE Λn(P̂n) → 0.

This lemma implies that there exist numbers εn > 0 such that εn → 0 and

IP(An) → 1 with An :=
{∥∥Σ(P̂n)− Σ

∥∥
F
≤ εn and Λn(P̂n) ≤ εn

}
.

Proof of Lemma 8.2. We apply Theorem A.17 with Yni := n−1/2(Yni − µn). The assumptions
of Theorem A.17 are satisfied with Σn = Σn and Λn = Λn(Pn). In particular,

Zn :=
√
n(µ̂n − µn) =

n∑
i=1

Yni →L Nd(0,Σ),

IE(‖Zn‖2) = trace(Σn) → trace(Σ)

and

IE ‖Σ̌n − Σn‖F → 0

with Σ̌n :=
∑n

i=1 YniY
>
ni . But

Σ̂n =
1

n− 1

n∑
i=1

(Yni − µn)(Yni − µn)> − n

n− 1
(µ̂n − µn)(µ̂n − µn)>

=
n

n− 1
Σ̌n −

1

n− 1
ZnZ

>
n ,
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whence

IE ‖Σ̂n − Σn‖F ≤
n

n− 1
IE ‖Σ̌n − Σn‖F +

1

n− 1
‖Σn‖F +

1

n− 1
trace(Σn)

→ 0,

by the triangle inequality for ‖ · ‖F and the fact that ‖ZnZ>n ‖F = ‖Zn‖2. Consequently, the
distribution Qn = L(Zn) converges weakly to Nd(0,Σ), and Slutsky’s lemma (Exercise A.13)
implies that Q̃n = L(Σ̂

−1/2
n Zn) converges weakly to Nd(0, Id).

Proof of Lemma 8.4. Recall that

Σ
(
P̂ emp
n ?Nd(0, n

−1Σ̂n)
)
− Σn = Σ̂n − Σn

and
Σ(P̂ emp

n )− Σn =
n− 1

n
Σ̂n − Σn =

n− 1

n
(Σ̂n − Σn)− 1

n
Σn.

Thus, Lemma 8.2 implies that

IE ‖Σ(P̂n)− Σn‖F ≤ IE ‖Σ̂n − Σn‖F + n−1‖Σn‖F → 0.

For the claim about Λn(P̂n) we use a simple inequality which is provided in Exercise 8.5 below.
This implies that

Λn(P̂ emp
n ) =

1

n

n∑
i=1

‖Yni − µ̂n‖2 min
(
n−1/2‖Yni − µ̂n‖, 1

)
≤ 8

n

n∑
i=1

‖Yni − µn‖2 min
(
n−1/2‖Yni − µn‖, 1

)
+ 8‖µ̂n − µn‖2,

so
IE Λn(P̂ emp

n ) ≤ 8Λn(Pn) + 8n−1trace(Σn) → 0.

For the smoothed empirical distribution P̂n = P̂ emp
n ?Nd(0, n

−1Σ̂n), the inequality in Exercise 8.5
yields

Λn(P̂n) ≤ 8Λn(P̂ emp
n ) + 8n−1trace(Σ̂n),

and the expectation of the right-hand side equals

8 IE Λn(P̂ emp
n ) + 8n−1 trace Σn → 0.

Exercise 8.5. Show that for arbitrary vectors a, b ∈ Rd and numbers c > 0,

‖a+ b‖2 min(c‖a+ b‖, 1) ≤ 8‖a‖2 min(c‖a‖, 1) + 8‖b‖2 min(c‖b‖, 1).

Exercise 8.6 (Bootstrap confidence rectangles for the mean). Let Y = [Y1, Y2, . . . , Yn]> be a
data matrix consisting of independent, identically distributed observations Y1, Y2, . . . , Yn ∈ Rd

with unknown mean µ and covariance matrix Σ. We assume that the diagonal elements of Σ are
strictly positive and would like to determine a confidence rectangle for µ, based on the test statistic

T (Y , µ) := max
j=1,...,d

Σ̂(j, j)−1/2
∣∣Y (j)− µ(j)

∣∣.
Write a program performing this task. The input should be the data matrix Y , the confidence level
1− α (with default 95%) and the number M of Monte Carlo simulations (with default 1999).
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8.2 Bootstrap Methods for Regression Models

In the context of regression models, we consider observations (d1, Y1), (d2, Y2), . . . , (dn, Yn)

with fixed vectors di ∈ Rp and stochastically independent random variables Yi ∈ Y . We always
assume that the design matrix D = [d1,d2, . . . ,dn]> ∈ Rn×p has rank p. Moreover, we assume
that the distribution of the data vector Y = (Yi)

n
i=1 depends on a certain parameter vector θ ∈ Rp

and possibly further nuisance parameters. Now we are interested in

Ψ>θ ∈ Rk

for a given matrix Ψ ∈ Rp×k of rank k.

8.2.1 Logistic and Poisson Regression

In logistic and Poisson regression, the distribution of Y is completely characterized by θ, namely,

L(Yi) =

{
Bin(1, `(d>i θ)) if Y = {0, 1} (logistic regression),

Poiss(exp(d>i θ)) if Y = N0 (Poisson regression).

An obvious step is to replace the unknown parameter θ with its MLE θ̂. This leads to parametric
bootstrap procedures.

Bootstrap confidence regions. For arbitrary η ∈ Rk let T (·,η) : Yn → R be a test statistic for
the null hypothesis that Ψ>θ = η. For θo ∈ Rp, the (1 − α)-quantile of Lθo(T (Y ,Ψ>θo)) is
denoted with κα(θo). Here the subscript θo refers to the distribution in case of θ = θo. Now we
estimate the unknown quantile κα(θ) by κα(θ̂) and define the bootstrap confidence region

Cα(Y ) :=
{
η ∈ Rk : T (Y ,η) ≤ κα(θ̂)

}
.

This is our proxy for the ‘confidence region’

Coracle
α (Y ) :=

{
η ∈ Rk : T (Y ,η) ≤ κα(θ)

}
which would be available if we had access to an oracle revealing the value κα(θ).

Bootstrap tests. For a fixed η ∈ Rk, we would like to test whether Ψ>θ = η. To this end let

G(r |θo) := IPθo
(
T (Y ,Ψ>θo) < r

)
.

If an oracle would provide us with the distribution function G(· |θ) (but not with θ!), a valid
p-value would be given by

1−G
(
T (Y ,η)

∣∣θ).
As a surrogate we compute the p-value

1−G
(
T (Y ,η)

∣∣ θ̂)
or a Monte Carlo version of it. One could also replace the MLE θ̂ with the MLE θ̂(η) minimizing
the negative log-likelihood under the constraint Ψ>θ = η.
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Comparison with classical methods and asymptotic validity. To prove asymptotic validity of
the bootstrap methods, we resort to a triangular scheme of observations as in Chapter 7. Thus we
consider observation vectors Y = Yn = (Yni)

n
i=1, parameter vectors θ = θn ∈ Rp with fixed

dimension p, and we use the test statistic

Tn(Yn,η) := 2PLn(η)− 2Ln(θ̂n)

or
Tn(Yn,η) := n(Ψ>θ̂n − η)>(Ψ>Γn(θ̂n)−1Ψ)−1(Ψ>θ̂n − η).

Then, under conditions (A.1), (A.2’), (A.3-4) or (B.1-4),

Tn(Yn,Ψ
>θn) →L χ2

k.

Hence, the classical confidence regions via Wald’s method or profile likelihood are similar to the
bootstrap confidence regions. The former replace the unknown quantile κn,α(θn) with χ2

k;1−α and
the unknown distribution function Gn(· |θn) with the distribution function Fk(·) of χ2

k.

Conditions (A.1), (A.2’), (A.3-4) or (B.1-4) imply that the bootstrap methods work, too. The
reason is that these conditions remain valid if the parameters θn are replaced with θ̂n, where usual
convergence is replaced with convergence in probability. Precisely:

In case of logistic regression, suppose that conditions (A.1), (A.2’) and (A.3-4) are satisfied. Con-
ditions (A.1) and (A.4) concern only the design vectors, so they are valid in the bootstrap world,
too. By construction, condition (A.2’) is valid in the bootstrap world as well. Condition (A.3)
corresponds to the requirement that Γn(θ̂n) →p Γ. The latter is fulfilled, because Γn(θn) → Γ

by (A.3) and Γn(θ̂n)− Γn(θn)→p 0 by Theorem 7.10.

In case of Poisson regression, suppose that conditions (B.1-4) are satisfied. Then, conditions (B.1-
2) carry over to the bootstrap world, whereas condition (B.3) in the bootstrap world is a conse-
quence of the original condition (B.3) and Theorem 7.26. Concerning (B.4), we fix an arbitrary
number ε′ ∈ (0, ε). Then

Λ̂n :=
1

n

n∑
i=1

exp(d>niθ̂n) exp(ε′‖dni‖)

=
1

n

n∑
i=1

exp(d>niθn) exp
(
d>ni(θ̂n − θn) + ε′‖dni‖

)
≤ 1

n

n∑
i=1

exp(d>niθn) exp
((
ε′ + ‖θn − θ̂n‖

)
‖dni‖

)
≤ Λn if ‖θn − θ̂n‖ ≤ ε− ε′.

The latter inequality is satisfied with asymptotic probability one, whence condition (B.4) is satis-
fied in the bootstrap world, too.

Exercise 8.7 (Bootstrap confidence band for logistic regression). In Exercise 7.18, you imple-
mented a confidence band for the regression function f(x) = a+ bx in simple logistic regression,
using Wald’s method. Now implement a bootstrap version of this procedure, replacing the asymp-
totic quantile χ2

2;1−α with the bootstrap quantile κα(â, b̂,X). Here κα(a, b,X) is the (1 − α)-
quantile of the distribution of (θ̂ − θ)>Σ̂−1(θ̂ − θ) with θ = (a, b)>.
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Exercise 8.8 (Bootstrap test for logistic regression). We consider multiple logistic regression,
that means, we consider X = Rd and assume that the unknown regression function f is given
by f(x) = a + b>x with an unknown parameter (a, b) ∈ R × Rd. Suppose we observe X =

(X1, . . . , Xn)> with Xi ∈ Rd and Y = (Y1, . . . , Yn)> with Yi ∈ {0, 1}. Implement the (Monte
Carlo) bootstrap p-value for testing Ho : b = 0 versus H1 : b 6= 0 with the likelihood ratio statistic

T (X,Y ) := 2L(logit(Ȳ ),0)− 2L(â, b̂).

Here, (â, b̂) is the maximum likelihood estimator for (a, b), and (logit(Ȳ ), 0) is the MLE under
the null hypothesis Ho.

8.2.2 Bootstrap Methods for Linear Models

Now we discuss the classical linear model with observation vector

Y = Dθ + ε.

Here ε = (ε1, ε2, . . . , εn)> is a random vector with stochastically independent components such
that IE(ε) = 0. This implies that IE(Ψ>θ̂) = Ψ>θ. In case of Var(ε) = σ2In, one can write
Var(Ψ>θ̂) = σ2ΓΨ with

ΓΨ := Ψ>(D>D)−1Ψ =
(
ψ>i (D>D)−1ψj

)k
i,j=1

,

where ψ1,ψ2, . . . ,ψk denote the columns of Ψ. (Note that ΓΨ is equal to the inverse of ΓΨ in
Section 3.5.3.) Hence, for a hypothetical value η ∈ Rk of Ψ>θ, we consider the following test
statistics:

T1(Y ,η) :=

√
(Ψ>θ̂ − η)>Γ−1

Ψ (Ψ>θ̂ − η),

T2(Y ,η) := max
j=1,...,k

∣∣ψ>j θ̂ − ηj∣∣√
ΓΨ,jj

.

Eventually, T1(Y , ·) yields confidence ellipsoids while T2(Y , ·) leads to confidence rectangles for
Ψ>θ. In the sequel, T (Y , ·) stands for one of these two test statistics.

For given matrices D and Ψ, the distribution of T (Y ,Ψ>θ) depends only on the distribution of
ε, because

Ψ>θ̂ −Ψ>θ =
(
D(D>D)−1Ψ

)>
ε,

and

T1(Y ,Ψ>θ) = ‖A>ε‖, T2(Y ,Ψ>θ) = ‖B>ε‖∞

with the Euclidean norm ‖ · ‖, the maximum norm ‖ · ‖∞, and the matrices

A := D(D>D)−1ΨΓ
−1/2
Ψ ∈ Rn×k,

B := [b1 b2 . . . bk] ∈ Rn×k with bj := Γ
−1/2
Ψ,jj D(D>D)−1ψj .
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The precise definition of these matrices is irrelevant for our theoretical considerations. The only
properties which will be used later are that

ARk,BRk ⊂ DRp

and

trace(A>A) = trace(B>B) = k.

In connection with T2(Y ,η) we do not need the assumption that Ψ has rank k. Here, the condition
that all columns ψj are different from 0 is sufficient.

8.2.3 The Residual Bootstrap

Suppose that the components ε1, ε2, . . . , εn of ε are not only independent but even identically
distributed with an unknown distribution function F . We also assume that

µ(F ) = 0 and 0 < σ(F ) < ∞.

Here and throughout this section, we identify a distribution on the real line with its distribution
function. For simplicity, we also assume that the column space DRp contains the constant vector
1n.

For T = T1, T2, the distribution of T (Y ,Ψ>θ) depends only on the distribution function F .
Hence, let κα(F ) = κα(F,D,Ψ) be the (1− α)-quantile of

L
(
‖A>ε‖

)
or L

(
‖B>ε‖∞

)
.

Now this unknown quantile is estimated by κα(F̂ ), where F̂ = F̂ (·,Y ,D) is a suitable estimator
for F . The following lemma shows that κα(F̂ ) is a good surrogate for κα(F ), as soon as F̂ is
close to F . Here we quantify the distance between distributions or distribution functions with the
Mallows distances. The latter are treated in detail in Section A.8.

Lemma 8.9 (Bickel and Freedman, 1983). Let F and G be distribution functions on R such that
µ(F ) = µ(G) = 0 and σ(F ), σ(G) < ∞. Further, let δ and ε be random vectors in Rn with
distribution F⊗n and G⊗n, respectively. Then, for any fixed matrixA ∈ Rn×k,

dM,2

(
L
(
‖A>δ‖

)
,L
(
‖A>ε‖

))
dM,2

(
L
(
‖A>δ‖∞

)
,L
(
‖A>ε‖∞

))
 ≤

√
trace(A>A) dM,2(F,G).

Proof of Lemma 8.9. We consider a special coupling of F⊗n and G⊗n: Let U1, U2, . . . , Un be
stochastically independent and uniformly distributed on (0, 1). Then

δ :=
(
F−1(Ui)

)n
i=1

and ε :=
(
G−1(Ui)

)n
i=1

follow the intended distributions, and

IE
(
(δ − ε)(δ − ε)>

)
= dM,2(F,G)2 In.
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By definition of dM,2 and the triangle inequality for norms,

dM,2

(
L
(
‖A>δ‖(∞)

)
,L
(
‖A>ε‖(∞)

))2

≤ IE
[(
‖A>δ‖(∞) − ‖A>ε‖(∞)

)2] ≤ IE
[
‖A>(δ − ε)‖2(∞)

]
.

But

IE
[
‖A>(δ − ε)‖2∞

]
≤ IE

[
‖A>(δ − ε)‖2

]
= IE trace

(
A>(δ − ε)(δ − ε)>A

)
= trace(A>A) dM,2(F,G)2.

Estimation of the error distribution function F . We discuss this topic in a triangular array
setting. That means, we consider the random vector

Yn = Dnθn + εn

with a design matrix Dn ∈ Rn×p(n) of rank p(n) such that DnRp(n) contains 1n, an unknown
parameter vector θn ∈ Rp(n), and an error vector εn = (εni)

n
i=1 with distribution F⊗nn and an

unknown distribution function Fn. Again, we assume that µ(Fn) = 0 and σ(Fn) < ∞. Suppose
that our primary interest is in Ψ>n θn with a given matrix Ψn ∈ Rp(n)×k(n) of rank k(n). Under
the assumption that

k(n) = O(1),

it is only important that our estimator F̂n = F̂n(·,Yn,Dn) satisfies the following condition:

(8.3) dM,2(F̂n, Fn) →p 0.

With the LSE θ̂n and the corresponding residual vector ε̂n = Yn − Dnθ̂n, we estimate the
distribution function Fn by the empirical distribution function F̂n of the residuals, given by

F̂n(x) :=
1

n

n∑
i=1

1[ε̂ni≤x].

This estimator F̂n satisfies (8.3) as soon as p(n) is small in comparison to n:

Lemma 8.10 (Bickel and Freedman, 1983). Suppose that

p(n)/n → 0 and dM,2(Fn, F ) → 0

for a fixed distribution function F such that µ(F ) = 0 and σ(F ) < ∞. Then the empirical
distribution function F̂n of the residuals satisfies condition (8.3).

If we combine Lemmas 8.9 and 8.10, then we may conclude that the residual bootstrap works
well whenever the ratio p/n is small (and k stays bounded). Comparing this with the results in
Section 4.2, it is remarkable that we do not need any condition on the maximal leverage,

max
i=1,2,...,n

Hii with H = D(D>D)−1D>.
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Proof of Lemma 8.10. By the triangle inequality for dM,2,

dM,2(F̂n, Fn) ≤ dM,2(F̂n, F̌n) + dM,2(F̌n, F ) + dM,2(Fn, F ),

where F̌n is the empirical distribution (function) of the actual errors εni, 1 ≤ i ≤ n.

To get an upper bound for dM,2(F̂n, F̌n), we consider a very simple coupling of these two distri-
butions, namely,

Rn :=
1

n

n∑
i=1

δ(ε̂ni,εni)
.

This yields the bound

dM,2(F̂n, F̌n)2 ≤ 1

n

n∑
i=1

(ε̂ni − εni)2 =
1

n
‖ε̂n − εn‖2

=
1

n

∥∥(In −Hn)εn − εn
∥∥2

=
1

n
‖Hnεn‖2 =

1

n
trace(εnε

>
nHn).

Here Hn stands for the hat matrix Dn(D>nDn)−1D>n , and in the last step we used the fact that
H>n = Hn = H2

n. Together with the equality trace(Hn) = p(n), these considerations show
that

IE
[
dM,2(F̂n, F̌n)2

]
≤ 1

n
IE trace(εnε

>
nHn) =

σ(Fn)2p(n)

n
→ 0,

because σ(Fn)2 → σ(F )2.

Since dM,2(Fn, F ) → 0, it remains to show that dM,2(F̌n, F ) →p 0. The dimension p(n) is
irrelevant for F̌n. On the one hand, it is well-known that

IP
(
‖F̌n − Fn‖∞ ≥ η

)
≤ C1 exp(−C2nη

2) for all η ≥ 0

with universal constants C1 ≥ 2 and C2 > 0. On the other hand, we may apply Theorem A.17 to
Yni := n−1/2εni. Indeed, IE(Yni) = 0 for 1 ≤ i ≤ n, and

n∑
i=1

IE(Y 2
ni) = σ(Fn)2 → σ(F )2.

Furthermore,

lim sup
n→∞

n∑
i=1

IE
(
Y 2
ni min(|Yni|, 1)

)
= lim sup

n→∞

∫
x2 min(n−1/2|x|, 1)Fn(dx)

≤ inf
δ>0

lim sup
n→∞

∫
x2 min(δ|x|, 1)Fn(dx)

= inf
δ>0

∫
x2 min(δ|x|, 1)F (dx)

= 0.

Consequently, the second moment τ2(F̌n) :=
∫
x2 F̌n(dx) satisfies

IE
∣∣τ2(F̌n)− σ(Fn)2

∣∣ = IE
∣∣∣ n∑
i=1

Y 2
ni − σ(Fn)2

∣∣∣ → 0.



228 CHAPTER 8. BOOTSTRAP METHODS

(We work with τ2(·) instead of σ(·)2, because the mean of F̌n may differ from 0.) Hence, there
exists a sequence (δn)n of positive numbers tending to 0 such that the event

An :=
{
‖F̌n − Fn‖∞ +

∣∣τ2(F̌n)− σ(Fn)2
∣∣ ≤ δn}

has asymptotic probability 1. But along (An)n,∣∣F̌n(x)− F (x)
∣∣ ≤ ∣∣Fn(x)− F (x)

∣∣+ δn → 0

for any continuity point x of F , and∣∣τ2(F̌n)− σ(F )2
∣∣ ≤ ∣∣σ(Fn)2 − σ(F )2

∣∣+ δn → 0.

Hence, we can deduce from Theorem A.32 that dM,2(F̌n, F )→ 0 along (An)n.

Refinements. The deviation of the true coverage probabilities of the bootstrap confidence sets
just defined from the nominal level 1− α becomes typically smaller, if the test statistics T (Y ,η)

are divided by σ̂ = ‖ε̂‖/
√
n− p, a so-called studentization.

In addition, it can be beneficial to replace the empirical distribution F̂ of the residuals with

F̂ s := F̂ ?N
(

0,
p

n
σ̂2
)
.

For the variance of the latter distribution F̂ s is precisely the unbiased estimate σ̂2 of σ(F )2. That
means, for given data Y we simulate an error vector ε∗ ∼ (F̂ s)⊗n as follows:

ε∗ :=
(
ε̂Ji + (p/n)1/2σ̂Zi

)n
i=1

with independent random variables J1, . . . , Jn ∼ Unif{1, . . . , n} and Z1, . . . , Zn ∼ N(0, 1).

Exercise 8.11 (Estimation of the error distribution). Choose fixed numbers X1, . . . , Xn forming
a regular grid in [−3, 3], and then simulate random variables

Yi = 2Xi + 1 + εi, 1 ≤ i ≤ n,

where ε1, . . . , εn are independent random errors with distribution (function) F such that µ(F ) = 0

and σ(F ) = 1.

(a) Estimate F by the empirical distribution (function) F̂ of the residuals resulting from the model
Y = a+ bX + ε. Visualize F and F̂ . Do this for n ∈ {100, 1000} and the following distributions
F :

(a.1) Unif[−c1, c1],

(a.2) L(c2ξ) with ξ ∼ t3,

(a.3) centered Gamma distribution with shape parameter 2 and scale parameter c3.

The parameters c1, c2, c3 should be chosen such that σ(F ) = 1.

(b) Repeat part (a), but this time with the smoothed distribution (function) F̂ s in place of F̂ . Do
you see an improvement?
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8.2.4 Wild Bootstrap

It is remarkable that the residual bootstrap allows us to avoid the assumption of Gaussian errors or
of small leverages. But in numerous applications the assumption of homoscedastic errors is ques-
tionable, not to mention identically distributed errors. For such situations, Jeff Wu (1986), Rudolf
Beran (1986) and Regina Liu (1988) proposed a procedure which had been analyzed later by Enno
Mammen (1993) and is nowadays called “wild bootstrap”. This name refers to the ambitious idea
to estimate n different error distributions from n observations.

Precisely, one estimates the unknown distribution L(ε) by L(ε∗ |Y ), where ε∗ is constructed as
follows: Let ξ, ξ1, ξ2, ξ3, . . . be independent and identically distributed random variables with

IE(ξ) = 0 and Var(ξ) = 1,

also independent from Y . Then we define

ε∗ :=
(
ξiε̂i
)n
i=1
.

In other words, for each index i, the distribution of εi is estimated by L(ξ ε̂i |Y ). Of course, these
estimators are not very accurate for a single index i. But for our purposes it is only important that
L(A>ε∗ |Y ) is a good approximation for L(A>ε). HereA ∈ Rn×k is a given matrix such that

ARk ⊂ DRp and trace(A>A) = k.

Validity of wild bootstrap. Again, we consider a triangular scheme of observation vectorsYn =

Dnθn + εn. Here the design matrix Dn = [dn1,dn2, . . . ,dnn]> ∈ Rn×p(n) has rank p(n), and
εn has independent components such that

IE(εni) = 0 and σni := Std(εni) < ∞.

Now we are interested in the distributions

L(A>n εn) and L(A>n ε
∗
n |Yn)

with given matricesAn = [an1,an2, . . . ,ann]> ∈ Rn×k with fixed dimension k, whereAnRk ⊂
DnRp(n) and

trace(A>nAn) =
n∑
i=1

‖ani‖2 = k.

Furthermore, ε∗n = (ξiε̂ni)
n
i=1.

We use three conditions on ξ, εn,An and the hat matrix

Hn = (Hn,ij)
n
i,j=1 = Dn(D>nDn)−1D>n

resulting from the subsequent proof:

(W.0) IE(ξ) = 0, IE(ξ2) = 1 and IE(|ξ|3) <∞;
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(W.1) Σn :=
n∑
i=1

σ2
ni ania

>
ni = O(1) and

n∑
i=1

IE(|εni|3)‖ani‖3 → 0;

(W.2)
n∑
i=1

Hn,ii‖ani‖2
n∑
j=1

Hn,jjσ
2
nj → 0.

Theorem 8.12. Under conditions (W.0-2),

dM,2

(
L(A>n εn),Nk(0,Σn)

)
→ 0

and
dM,2

(
L(A>n εn),L(A>n ε

∗
n |Yn)

)
→p 0.

Remarks on (W.1-2). Condition (W.2) involves the leverages Hn,ii. The standardized design
matrix

D̃n := Dn(D>nDn)−1/2 = [d̃n1, d̃n2, . . . , d̃nn]>

has orthonormal columns, that means, D̃
>
n D̃n = Ip(n), and one may write

Hn = D̃nD̃
>
n , Hn,ij = d̃

>
nid̃nj .

By assumption, An = D̃nCn with a certain matrix Cn ∈ Rp(n)×k, and k = trace(A>nAn) =

trace(C>nCn). In particular, ani = C>n d̃ni, whence

‖ani‖ ≤
√
kHn,ii.

Thus, a sufficient condition for (W.1-2) is:

(W.3) κn := max
1≤i≤n

IE(|εni|3) = O(1) and λn := max
1≤i≤n

Hn,ii = o(p(n)−1).

To see this, note that by Jensen’s inequality, σni ≤ IE(|εni|3)1/3, whence

trace(Σn) ≤ κ2/3
n

n∑
i=1

‖ani‖2 = kκ2/3
n = O(1),

n∑
i=1

IE(|εni|3)‖ani‖3 ≤ κn

n∑
i=1

‖ani‖2 max
1≤j≤n

‖anj‖ ≤ k3/2κnλ
1/2
n = o(1),

n∑
i=1

Hn,ii‖ani‖2 ≤ λn

n∑
i=1

‖ani‖2 = kλn = o(p(n)−1),

n∑
j=1

Hn,jjσ
2
nj ≤ κ2/3

n

n∑
j=1

Hn,jj = κ2/3
n p(n) = O(p(n)).

Proof of Theorem 8.12. At first, we show that

dM,2

(
L(A>n ε

∗
n |Yn),L(A>n ε

∗∗
n |Yn)

)
→p 0,

where
ε∗∗n := (ξiεni)

n
i=1.



8.2. BOOTSTRAP METHODS FOR REGRESSION MODELS 231

On the one hand,

IE
(
dM,2

(
L(A>n ε

∗
n |Yn),L(A>n ε

∗∗
n |Yn)

)2) ≤ IE IE
(
‖A>n ε∗n −A>n ε∗∗n ‖2

∣∣Yn)
= IE

(
‖A>n ε∗n −A>n ε∗∗n ‖2

)
,

and

IE
(
‖A>n ε∗n −A>n ε∗∗n ‖2

)
= IE

(∥∥∥ n∑
i=1

ξi(ε̂ni − εni)ani
∥∥∥2)

=
n∑

i,j=1

IE
(
ξiξj(ε̂ni − εni)(ε̂nj − εnj)

)
a>nianj

=

n∑
i=1

IE
(
(ε̂ni − εni)2

)
‖ani‖2.

On the other hand,

ε̂ni − εni = −(Hnεn)i = −
n∑
j=1

d̃
>
nid̃njεnj ,

so

IE
(
(ε̂ni − εni)2

)
=

n∑
j=1

(d̃
>
nid̃nj)

2σ2
nj ≤ ‖d̃ni‖2

n∑
j=1

‖d̃nj‖2σ2
nj = Hn,ii

n∑
j=1

Hn,jjσ
2
nj .

Consequently,

IE
(
dM,2

(
L(A>n ε

∗
n |Yn),L(A>n ε

∗∗
n |Yn)

)2) ≤ n∑
i=1

Hn,ii‖ani‖2
n∑
j=1

Hn,jjσ
2
nj = o(1)

by assumption (W.2).

It remains to show that
dM,2

(
L(A>n ε

∗∗
n | εn),L(A>n εn)

)
→p 0,

and by the triangular inequality for dM,2(·, ·), this is a consequence of

dM,2

(
L(A>n εn),Nk(0,Σn)

)
→ 0,(8.4)

dM,2

(
L(A>n ε

∗∗
n | εn),Nk(0,Σn)

)
→p 0.(8.5)

But both claims are direct consequences of Corollary A.36. Note first that

A>n εn =

n∑
i=1

Yni with Yni := εniani ∈ Rk,

so IE(Yni) = 0 and

n∑
i=1

Var(Yni) =
n∑
i=1

σ2
ni ania

>
ni = Σn = O(1),

n∑
i=1

IE
(
‖Yni‖3

)
=

n∑
i=1

IE(|εni|3)‖ani‖3 → 0.
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This yields claim (8.4), and we also know that

IE
∥∥∥ n∑
i=1

ε2
ni ania

>
ni −Σn

∥∥∥
F
→ 0.

The latter conclusion is important for

A>n ε
∗∗
n =

n∑
i=1

Y ∗ni with Y ∗ni := ξiεniani.

Indeed, IE(Y ∗ni | εn) = 0 and

n∑
i=1

Var(Y ∗ni | εn) =
n∑
i=1

ε2
ni ania

>
ni = Σn + op(1),

n∑
i=1

IE
(
‖Y ∗ni‖3

∣∣ εn)) = IE(|ξ|3)
n∑
i=1

|εni|3‖ani‖3 →p 0.

Hence, Corollary A.36 yields claim (8.5).

Choosing L(ξ). To apply Theorem 8.12, we have to make sure that IE(ξ) = 0, IE(ξ2) = 1 and
IE(|ξ|3) <∞. Obvious choices of L(ξ) would be

N(0, 1) or Unif{−1, 1}.

But refined considerations indicate that one should also aim for the additional constraint

(8.6) IE(ξ3) = 1.

Examples for random variables ξ with these properties are constructed in Exercise 8.14.

To motivate (8.6), let us consider the special case that p(n) = 1 and dni = 1 = An for all n
and 1 ≤ i ≤ n. That means, we want to estimate the common mean θn of the random variables
Yn1, Yn2, . . . , Ynn:

Lemma 8.13. LetZn :=
√
n(Ȳn−θn) andZ∗n := n−1/2

∑n
i=1 ξi(Yni−Ȳn), where Yni = θn+εni

and IE
(
|εni|3+δ

)
≤ κ for 1 ≤ i ≤ n and certain constants κ, δ > 0. Then, IE(Zn) = 0 =

IE(Z∗n |Yn) and

IE(Z2
n) =

1

n

n∑
i=1

σ2
ni,

IE((Z∗n)2 |Yn) =
1

n

n∑
i=1

(εni − ε̄n)2 = IE(Z2
n) + op(1),

√
n IE(Z3

n) =
1

n

n∑
i=1

IE(ε3
ni),

√
n IE((Z∗n)3 |Yn) = IE(ξ3)

1

n

n∑
i=1

(εni − ε̄n)3 = IE(ξ3)
√
n IE(Z3

n) + op(1).
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Under the additional assumption that n−1
∑n

i=1 σ
2
ni and n−1

∑n
i=1 IE(ε3

ni) stay bounded away
from 0, this lemma implies that

skewness(Z∗n |Yn)

skewness(Zn)
→p IE(ξ3).

Here skewness(Z) := IE(Z3)/ Std(Z)3. Lemma 8.13 follows from elementary calculations and
Theorem A.37 in the appendix.

Exercise 8.14. Construct a random variable ξ satisfying

IE(ξ) = 0, IE(ξ2) = 1 and IE(ξ3) = 1

in three different ways:

(a) L(ξ) = (1− p)δa + pδb with suitable constants p ∈ (0, 1) and a < 0 < b.

(b) ξ = aZ1 + b(Z2
2 − 1) with independent random variables Z1, Z2 ∼ N(0, 1) and suitable

constants a, b.

(c) ξ = G− c with a random variable G ∼ Gamma(a, b) and suitable constants a, b, c > 0.

8.3 Exact Tests and Confidence Regions in the Linear Model

Similarly as in Section 7.5.2, we describe a procedure which is related to the wild bootstrap and
yields exact confidence regions for θ. It is a variation of sign tests as treated in the textbook
Dümbgen (2015). We assume that

Yi = d>i θ + εi

with independent random variables ε1, ε2, . . . , εn such that

(8.7) L(−εi) = L(εi).

For a hypothetical value η ∈ Rp of θ let T (Y ,D,η) be a test statistic of type

T (Y ,D,η) = T̃
(
(Yi − d>i η)ni=1,D

)
with some function T̃ (·,D) : Rn → R. For instance,

T (Y ,D,η) :=
∥∥∥n−1/2

n∑
i=1

(Yi − d>i η)di

∥∥∥.
can be written as T̃

(
(Yi − d>i η)ni=1,D

)
with

T̃ (z,D) :=
∥∥∥n−1/2

n∑
i=1

zi di

∥∥∥.
In general, large values of T (Y ,D,η) are considered as evidence against the null hypothesis that
θ = η. Further, let ξ1, ξ2, . . . , ξn and Y be stochastically independent with ξi ∼ Unif{−1, 1}.
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The random vector (Yi − d>i θ)ni=1 = (εi)
n
i=1 has the same distribution as (ξi(Yi − d>i θ))ni=1 =

(ξiεi)
n
i=1. With the left-continuous distribution function

G(r |Y ,D,η) := IP
(
T̃
(
(ξi(Yi − d>i η))ni=1,D

)
< r

∣∣∣Y ),
a p-value of the null hypothesis that θ = η is given by

1−G
(
T (Y ,D,η) |Y ,D,η

)
.

Furthermore, {
η ∈ Rp : G(T (Y ,D,η) |Y ,D,η) < 1− α

}
defines a (1−α)-confidence region for θ. The only problem with this approach is that the explicit
computation of the latter region is highly nontrivial.

Assumption (8.7) could be replaced with the weaker assumption that

(8.8) IP(εi < 0) = IP(εi > 0) = 1/2.

In this case, one could restrict one’s attention to test statistics of type

T (Y ,D,η) = T̃
((

sign(Yi − d>i η)
)n
i=1
,D
)
,

for instance,

T (Y ,D,η) :=
∥∥∥n−1/2

n∑
i=1

sign(Yi − d>i η)di

∥∥∥.
Then one could replace G(r |Y ,D,η) with

G(r |D) := IP
[
T̃
(
(ξi)

n
i=1,D

)
< r
]
,

and this would lead to p-values and confidence regions for θ, assuming only (8.8).

8.4 Bootstrap Failures and Subsampling

Soon after the bootstrap had been introduced, statisticians discovered some situations in which it
does not work. Some authors claimed that a variation of the original bootstrap, called subsampling
or m-out-of-n bootstrap, may solve the problem. In the present section we illustrate potential
failures of the bootstrap method in i.i.d. settings and show that subsampling is not a reliable
solution. The material in this section is mainly from Dümbgen (1993).

The general framework. As in Section 8.1, we consider a sequence (Pn)n of distributions
on Rd, and for each n we observe a sample Yn = (Yni)

n
i=1 of independent random variables

Yni ∼ Pn. We are mainly interested in functions of the mean vector µn = µ(Pn), and we assume
that

∫
‖x‖2 Pn(dx) is finite, so the covariance matrix Σn = Σ(Pn) is well-defined. As usual, the

parameters µn and Σn are estimated by the sample mean µ̂n = n−1
∑n

i=1 Yni and the sample
covariance Σ̂n := (n− 1)−1

∑n
i=1(Yni − Ȳn)(Yni − Ȳn)>. Now we consider the distributions

Qn := L
(√
n(µ̂n − µn)

)
,
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and

Rn := L
(√
n
(
g(µ̂n)− g(µn)

))
for a given function

g : Rd → R.

If an oracle would reveal the γ-quantile qn,γ of Rn for any γ ∈ (0, 1) we wish, we could compute
the lower (1− α)-confidence bound

g(µ̂n)− n−1/2qn,1−α

for g(µn), the upper (1− α)-confidence bound

g(µ̂n)− n−1/2qn,α

for g(µn), or we could combine the lower and upper (1−α/2)-confidence bounds to get a (1−α)-
confidence interval for g(µn).

Two versions of the bootstrap. Let P̂n be the empirical distribution P̂ emp
n of Yn or its smoothed

version P̂ emp
n ? Nd(0, n

−1Σ̂n). Now consider a random vector Y ∗n = (Y ∗ni)
mn
i=1 such that, condi-

tional on Yn, the mn components Y ∗ni are independent with distribution P̂n. Then we estimate Qn
by

Q̂n := L
(√
mn(µ̂∗n − µ̂n)

∣∣Yn)
and Rn by

R̂n := L
(√
mn

(
g(µ̂∗n)− g(µ̂n)

) ∣∣Yn),
where µ̂∗n := m−1

n

∑mn
i=1 Y

∗
ni.

As to the bootstrap sample size mn, the classical bootstrap (resampling) uses mn = n. On the
other hand, subsampling or m-out-of-n bootstrap means that mn ≤ n with

mn → ∞ but mn/n → 0.

If we think about Yn as a sample from a large population, i.e. a population size much larger than
the sample size n, it seems to be natural to work with bootstrap samples from the ‘population’ Yn
of size mn � n. At the end of the day, however, the main question is whether R̂n is a consistent
estimator of Rn.

Asymptotics for Qn and Q̂n. The following two facts follow from Lemmas 8.2 and 8.4 with
straightforward modifications: Suppose that for a fixed nonzero matrix Σ ∈ Rd×d,

(A.0) Σn → Σ and IE
(
‖Yn1 − µn‖2 min

{
m−1/2
n ‖Yn1 − µn‖, 1

})
→ 0.

Then,

Qn →w Nd(0,Σ),

Q̂n →w,p Nd(0,Σ).
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Note that the second part of assumption (A.0) is more restrictive in case of subsampling. So one
should have good reasons to use subsampling instead of resampling. As soon as dM,2(Pn, P )→ 0

for a fixed distribution P with finite second moments, (A.0) is satisfied with Σ = Σ(P ).

In the subsequent three scenarios we always assume (A.0) and consider different assumptions on
(µn)n and g.

Asymptotics I for Rn and R̂n. In addition to (A.0), suppose that for a fixed vector µ ∈ Rd,

(A.1) µn → µ, and g is continuously differentiable on a neighborhood of µ.

Then

Rn →w N
(
0,∇g(µ)>Σ∇g(µ)

)
,

R̂n →w,p N
(
0,∇g(µ)>Σ∇g(µ)

)
.

This follows essentially from the following observation: If g is continuously differentiable in a
convex neighborhood U of µ, then for vectors µ0, µ1 ∈ U ,

∣∣g(µ1)− g(µ0)−∇g(µ)>(µ1 − µ0)
∣∣ =

∣∣∣∫ 1

0

(
∇g((1− t)µ0 + tµ1)−∇g(µ)

)>
(µ1 − µ0) dt

∣∣∣
≤ sup

t∈[0,1]

∥∥∇g((1− t)µ0 + tµ1)−∇g(µ)
∥∥ ‖µ1 − µ0‖

= o
(
‖µ1 − µ0‖

)
as µ0, µ1 → µ.

Hence, with
Zn :=

√
n(µ̂n − µn) and Z∗n :=

√
mn(µ̂∗n − µ̂n)

we may write

√
n
(
g(µ̂n)− g(µn)

)
=
√
n
(
g(µn + n−1/2Zn)− g(µn)

)
= ∇g(µ)>Zn + op(1),

√
mn

(
g(µ̂∗n)− g(µ̂n)

)
=
√
mn

(
g(µ̂n +m−1/2

n Z∗n)− g(µ̂n)
)

= ∇g(µ)>Z∗n + op(1),

because µn → µ and Zn, Z∗n = Op(1).

Consequently, under conditions (A.0) and (A.1), both bootstrap versions yield asymptotically valid
confidence sets, provided that∇g(µ)>Σ∇g(µ) 6= 0.

Asymptotics II for Rn and R̂n. In addition to (A.0), suppose that for any fixed µ ∈ Rd, the
mapping g satisfies the following condition:

(A.2) There exists a continuous mapping Dg(µ, ·) : Rd → R such that for v ∈ Rd,

g(µ+ v) = g(µ) +Dg(µ, v) + o(‖v‖) as v → 0,

and
Dg(µ, tv) = tDg(µ, v) for all t ≥ 0.
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Assumption (A.2) is weaker than differentiability of g at µ. Indeed, g is differentiable at µ if and
only if Dg(µ, ·) is linear, see the two examples later.

Now suppose that for some fixed µ ∈ Rd,

µn = µ+ n−1/2∆n, where ∆n → ∆ ∈ Rd.

Then,

√
n
(
g(µ̂n)− g(µn)

)
=
√
n
(
g
(
µ+ n−1/2(∆n + Zn)

)
− g
(
µ+ n−1/2∆n

))
=
√
nDg

(
µ, n−1/2(∆n + Zn)

)
−
√
nDg

(
µ, n−1/2∆n

)
+ op(1)

= Dg(µ,∆n + Zn)−Dg(µ,∆n) + op(1).

The second last step follows from (A.2) together with the facts that n−1/2(∆n+Zn) = Op(n
−1/2)

and n−1/2∆n = O(n−1/2). In the last step we used the homogeneity property ofDg(µ, ·). Hence,

Rn →w L
(
Dg(µ,∆ + Z)−Dg(µ,∆)

)
,

where Z ∼ Nd(0,Σ). As to the bootstrap,

√
mn

(
g(µ̂∗n)− g(µ̂n)

)
=
√
mn

(
g
(
µ+ n−1/2(Zn + ∆n) +m−1/2

n Z∗n
)
− g
(
µ+ n−1/2(Zn + ∆n)

))
=
√
mnDg

(
µ, n−1/2(Zn + ∆n) +m−1/2

n Z∗n
)
−
√
mnDg

(
µ, n−1/2(Zn + ∆n)

)
+ op(1)

= Dg
(
µ,
√
mn/n(Zn + ∆n) + Z∗n

)
−Dg

(
µ,
√
mn/n(Zn + ∆n)

)
+ op(1).

Consequently, the usual bootstrap yields an estimated distribution R̂n which behaves asymptoti-
cally like the random measure

L
(
Dg(µ,∆ + Z + Z∗)−Dg(µ,∆ + Z)

∣∣Z),
where Z∗ is an independent copy of Z. The subsampling version yields an estimated distribution
R̂n converging weakly to the fixed distribution

L(Dg(µ,Z∗)).

If g is differentiable at µ, that is, Dg(µ, ·) is linear, then

Dg(µ,∆ + Z)−Dg(µ,∆) = Dg(µ,Z),

Dg(µ,∆ + Z + Z∗)−Dg(µ,∆ + Z) = Dg(µ,Z∗),

so the usual bootstrap and subsampling yield distributions R̂n converging weakly in probability
to the same limit as Rn. If Dg(µ, ·) is nonlinear, however, the usual bootstrap fails in general.
Subsampling fails too in general, unless ∆ = 0, that is, (µn)n is essentially constant.

Example 8.15. Let g(µ) := ‖µ − µo‖ for a given µo ∈ Rd. Then assumption (A.2) holds true
with

Dg(µ, v) =

{
‖µ− µo‖−1(µ− µo)>v if µ 6= µo,

‖v‖ if µ = µo.
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Thus g is continuously differentiable on Rd \ {µo}. Indeed, if µ 6= µo, then as Rd 3 v → 0,

g(µ+ v)− g(µ) =
‖µ− µo + v‖2 − ‖µ− µo‖2

‖µ− µo + v‖+ ‖µ− µo‖

=
2(µ− µo)>v + ‖v‖2

‖µ− µo + v‖+ ‖µ− µo‖

=
2(µ− µo)>v +O(‖v‖2)

2‖µ− µo‖+O(‖v‖)
= ‖µ− µo‖−1(µ− µo)>v +O(‖v‖2).

If µ = µo, then g(µ+ v)− g(µ) = ‖v‖ for all v ∈ Rd.

Example 8.16. Let g(µ) := max(µ1, . . . , µd). Here assumption (A.2) is satisfied with

Dg(µ, v) = max
j∈J(µ)

vj , J(µ) :=
{
j ∈ {1, . . . , d} : µj = g(µ)

}
.

This mapping Dg(µ, ·) is linear if and only if J(µ) consists of one index. Indeed, let δ := g(µ)−
maxk 6∈J(µ) µk > 0. If v ∈ Rd with ‖v‖ ≤ δ/2, then for arbitrary indices j ∈ J(µ) and k 6∈ J(µ),

(µ+ v)j − (µ+ v)k ≥ δ − 2‖v‖ ≥ 0,

whence
g(µ+ v) = max

j∈J(µ)
(µ+ v)j = g(µ) + max

j∈J(µ)
vj .

Asymptotics III for Rn and R̂n. Looking at Asymptotics I and II, it looks as if subsampling
works whenever the usual bootstrap works, and at least in some special scenarios, subsampling
works while the usual bootstrap does not. However, it may happen that the usual bootstrap works
while subsampling does not. Suppose that (A.0) and (A.2) are satisfied. In addition:

(A.3) Suppose that µn = µo + rn∆n with a point µo at which g is not differentiable, with a
sequence of numbers rn > 0 such that rn → 0 but rn

√
n → ∞, and with a sequence of unit

vectors ∆n converging to some unit vector ∆. Moreover, suppose that there exists a nonzero
vector γ(∆) ∈ Rd such that

g(µn + vn)− g(µn) = γ(∆)>vn + o(‖vn‖)

for arbitrary sequences (vn)n in Rd such that vn = o(rn).

On the one hand,

√
n
(
g(µ̂n)− g(µn)

)
=
√
n
(
g(µn + n−1/2Zn)− g(µn)

)
= γ(∆)>Zn + op(1),

because n−1/2Zn = Op(n
−1/2) = op(rn). On the other hand, if rn

√
mn →∞, then

√
mn

(
g(µ̂∗n)− g(µ̂n)

)
=
√
mn

(
g(µn + n−1/2Zn +m−1/2

n Z∗n)− g(µn + n−1/2Zn)
)

= γ(∆)>Z∗n + op(1),
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because n−1/2Zn + m
−1/2
n Z∗n = Op(m

−1/2
n ) = op(rn), whereas rn

√
mn → λ ∈ [0,∞) implies

that

√
mn

(
g(µ̂∗n)− g(µ̂n)

)
=
√
mn

(
g(µo + rn∆n + n−1/2Zn +m−1/2

n Z∗n)− g(µo + rn∆n + n−1/2Zn)
)

= Dg(µo, λ∆ + Z∗n)−Dg(µo, λ∆) + op(1),

because rn∆n = m
−1/2
n (λ∆ + o(1)), n−1/2Zn = op(m

−1/2
n ) and m−1/2

n Z∗n = Op(m
−1/2
n ). All

in all, we see that

Rn →w N
(
0, γ(∆)>Σγ(∆)

)
,

R̂n →w,p

{
N
(
0, γ(∆)>Σγ(∆)

)
if rn
√
mn →∞,

L
(
Dg(µo, λ∆ + Z)−Dg(µo, λ∆)

)
if rn
√
mn → λ ∈ [0,∞).

Consequently, subsampling fails in the present setting if mn → ∞ too slowly, whereas usual
resampling would work.

Concerning the assumptions about g in the present setting, they are satisfied in the first example,
when g(µ) = ‖µ− µo‖, with γ(∆) = ∆. Indeed,

g(µn + vn)− g(µn) =
‖µn + vn − µo‖2 − ‖µn − µo‖2

‖µn + vn − µo‖+ ‖µn − µo‖

=
2rn∆>n vn + ‖vn‖2

rn‖∆n + r−1
n vn‖+ rn

=
2∆>vn + o(‖vn‖)

2 + o(1)
= ∆>vn + o(‖vn‖),

provided that vn = o(rn).

In the second example, when g(µ) = max(µ1, . . . , µd), let µo ∈ Rd such that the set J(µo)

consists of at least 2 indices. Let ∆ ∈ Rd such that for some jo ∈ J(µo),

∆jo > ∆j for all j ∈ J(µo) \ {jo}.

Then (A.3) is satisfied with γ(∆) = (1[j=jo])
d
j=1. To see this, let (vn)n be any sequence in Rd

such that vn = o(rn). For any index j ∈ {1, . . . , d} \ J(µo),

(µn + vn)j − (µn + vn)jo = µoj − µojo +O(rn) < 0

for sufficiently large n, while for any index j ∈ J(µo) \ {jo},

(µn + vn)j − (µn + vn)jo = rn(∆nj −∆njo) + o(rn) = rn(∆j −∆jo + o(1)) < 0

for sufficiently large n. Applying the same reasoning to (0)n instead of (vn)n shows that for
sufficiently large n,

g(µn + vn)− g(µn) = γ(∆)>(µn + vn)− γ(∆)>µn = γ(∆)>vn.
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A possible, though conservative solution. The previous considerations show that neither the
usual resampling nor subsampling are reliable in connection with non-smooth functions g. Sup-
pose that g is at least Lipschitz-continuous on Rd. Now consider random samples Yn,Y ∗n and
Y

(1)
n , . . . ,Y

(b)
n with Yn and Y ∗n as before in the classical bootstrap, while conditional on Yn, the

samples Y (1)
n , . . . , Y (b)

n are just independent copies of Y ∗n . Let µ̂n, µ̂∗n and µ̂(1)
n , . . . , µ̂

(b)
n be the

corresponding sample means, and set

Zn =
√
n(µ̂n − µn), Z∗n =

√
n(µ̂∗n − µ̂n) and Z(s)

n :=
√
n(µ̂(s)

n − µ̂n)

for 1 ≤ s ≤ b. For γ ∈ (1/2, 1), we estimate the γ-quantile qn,γ of Rn by

q̂n,γ,b := max
1≤s≤b

q̂n,γ(2µ̂n − µ̂(s)
n ),

where q̂n,γ(x) denotes the γ-quantile of

L
(√

n
(
g(x+ n−1/2Z∗n)− g(x)

) ∣∣∣Yn).
Similarly, if γ ∈ (0, 1/2), we estimate the γ-quantile qn,γ of Rn by

q̂n,γ,b := min
1≤s≤b

q̂n,γ(2µ̂n − µ̂(s)
n ).

The rationale behind this is that

√
n min

1≤s≤b
‖2µ̂n − µ̂(s)

n − µn‖ = min
1≤s≤b

‖Zn − Z(s)
n ‖ →p 0 as n, b→∞.

This result is proved in Exercise 8.17. It implies that among the b random points 2µ̂n − µ̂
(s)
n ,

1 ≤ s ≤ b, there is one with distance op(n−1/2) to the unknown true parameter µn, provided that
n, b→∞. This fact, combined with the Lipschitz-continuity of g, implies that

q̂n,γ,b

{
≥ qn,γ + op(1) if γ > 1/2

≤ qn,γ + op(1) if γ < 1/2

as n, b → ∞. In that sense, the confidence bounds with q̂n,γ,b in place of qn,γ are asymptotically
conservative.

Exercise 8.17. For each integer n ≥ 1 let Zn, Z
(1)
n , Z

(2)
n , Z

(3)
n , . . . be random vectors in Rd such

that for any fixed integer b ≥ 1,

L(Zn, Z
(1)
n , . . . , Z(b)

n ) →w Q⊗(b+1) as n→∞,

where Q is an arbitrary probability distribution on Rd. Show that

min
1≤s≤b

‖Zn − Z(s)
n ‖ →p 0 as n, b→∞.



Chapter 9

Empirical Likelihood

Empirical likelihood methods, introduced by Art Owen (1990, 1991, 2001), are nonparametric
methods based on data-driven models.

9.1 Empirical Likelihood for I.I.D. Observations

Let Yn1, Yn2, . . . , Ynn be stochastically independent random variables with unknown distribution
Pn on Y . Suppose we are interested in a certain parameter θ(Pn) ∈ Θ. To construct a confidence
region for θ(Pn), we consider all discrete distributions

P̂n,p =
n∑
i=1

piδYni

with a weight vector p in the n-dimensional unit simplex

Πn :=
{
p ∈ [0,∞)n : p+ = 1

}
.

Here we use the notation b+ :=
∑n

i=1 bi for b ∈ Rn. The plausibility of such a distribution P̂n,p
is measured by the negative log-likelihood S(p), where for arbitrary vectors p ∈ Rn,

S(p) := −
n∑
i=1

log(pi) ∈ (−∞,∞]

with the convention that log(a) = −∞ for a ≤ 0. One can also write

S(p) = − log
( n∏
i=1

max(pi, 0)
)
.

The smaller S(p), the more plausible is P̂n,p. The uniquely most plausible distribution is the
empirical distribution

P̂n =
1

n

n∑
i=1

δYni
,

which is P̂n,p with p = (1/n)ni=1. This could be derived from Lemma 6.12, applied to the
distributions P and Q on {1, . . . , n} with P ({i}) = 1/n and Q({i}) = pi. Alternatively, for

241
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arbitrary scalars λ > 0,

arg min
p∈[0,∞)n

(
S(p) + λp+

)
= arg min

p∈[0,∞)n

n∑
i=1

(− log(pi) + λpi) = (1/λ)ni=1,

and for λ = n we obtain a vector in Πn (Optimization via Lagrange’s method).

Assuming that θ(P̂n,p) is well-defined for all p ∈ Πn, we define the negative empirical log-
likelihood function Ln : Θ→ [n log n,∞] by

Ln(η) := inf
{
S(p) : p ∈ Πn, θ(P̂n,p) = η

}
with the convention that inf(∅) = ∞. (Strictly speaking, Ln is a negative profile log-likelihood
function.) Under certain assumptions on θ(·), one can show that

2Ln(θ(Pn))− 2n log(n) →L χ2
d (n→∞)

for a certain integer d > 0. In this case,

Cn,α(Yn) :=
{
η ∈ Θ : Ln(η) ≤ n log(n) + χ2

d;1−α/2
}

defines a confidence region for θ(Pn) with asymptotic confidence level 1− α.

9.1.1 Analytical Properties of an Empirical Likelihood Function

In this section we consider a set M = {y1, . . . ,yn} with n ≥ 2 points y1, . . . ,yn ∈ Rd and
investigate the function L : Rd → [n log n,∞] with

L(η) := inf
{
S(p) : p ∈ Πn,

n∑
i=1

piyi = η
}
.

With the matrix
Y := [y1,y2, . . . ,yn]> ∈ Rn×d

one can write
L(η) = inf

{
S(p) : p ∈ Πn,Y

>p = η
}
.

Exercise 9.1. Show that L is a convex function on Rd.

Before presenting further properties of L, we collect a few geometric facts in the next lemma.

Lemma 9.2. (a) The convex hull ofM, i.e. the smallest convex set containingM, is equal to

conv(M) =
{
Y >p : p ∈ Πn

}
.

(b) For any point yo ∈ conv(M), the spaces

span(M− yo), span(M−M), span
(
conv(M)− conv(M)

)
and

V(M) :=
{
Y >b : b ∈ Rn, b+ = 0

}
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are identical.

(c) The linear space V(M) is equal to Rd if and only if

span

{(
y
1

)
: y ∈M

}
= Rd+1.

(d) For an arbitrary point η ∈ Rd, the following two statements are equivalent:

(d.1) For each v ∈ V(M) there exists a number t > 0 such that η + tv ∈ conv(M).

(d.2) There exists a vector p ∈ Πn ∩ (0, 1)n such that η = Y >p.

Remark. A point η with the properties (d.1-2) in Lemma 9.2 is called an internal point of
conv(M). In particular, the arithmetic mean ȳ = n−1

∑n
i=1 yi is always an internal point of

conv(M). In case of V(M) = Rd, a point η is an internal point of conv(M) if and only if it is
an interior point of conv(M).

Exercise 9.3. Prove parts (a) and (b) of Lemma 9.2.

Proof of Lemma 9.2 (c-d). According to part (b), V(M) = Rd if and only if there exist vectors
z0, z1, . . . ,zd inM such that

span(z1 − z0, z2 − z0, . . . ,zd − z0) = Rd.

This es equivalent to the inequality

det
[
z1 − z0, z2 − z0, . . . ,zd − z0

]
6= 0.

On the other hand,

span
{(y

1

)
: y ∈M

}
= Rd+1

if and only if there exist vectors z0, z1, . . . ,zd ∈M such that

det

[
z1, z2, . . . , zd, z0

1, 1, . . . , 1, 1

]
6= 0.

But

det
[
z1 − z0, z2 − z0, . . . ,zd − z0

]
= det

[
z1 − z0, z2 − z0, . . . , zd − z0, z0

0, 0, . . . , 0, 1

]
= det

[
z1, z2, . . . , zd, z0

1, 1, . . . , 1, 1

]
.

This proves part (c).

It remains to verify part (d). Suppose that η ∈ Rd satisfies condition (d.1). In particular, η ∈
conv(M), so η − ȳ ∈ V(M) by part (b). Consequently, there exists a number t > 0 such that
η + t(η − ȳ) ∈ conv(M). That means, η + t(η − ȳ) = Y >q for a suitable vector q ∈ Πn. But
then, η = Y >p with

p :=
(qi + t/n

1 + t

)n
i=1
∈ Πn ∩ (0, 1)n.
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Suppose that condition (d.2) is fulfilled, i.e. η = Y >p for some p ∈ Πn ∩ (0, 1)n. For arbitrary
vectors v = Y >b with b+ = 0 and numbers t, η+ tv = Y >(p+ tb), and p+ tb ∈ Πn, provided
that |t| is sufficiently small.

After these preparations, we are ready for an explicit representation of a negative empirical log-
likelihood function:

Theorem 9.4. (a) The function L is convex, and on conv(M) it is continuous. Its unique mini-
mizer is ȳ with L(ȳ) = n log n.

(b) For arbitrary η ∈ Rd,

L(η) = − inf
{
S
((
n+ λ>(yi − η)

)n
i=1

)
: λ ∈ Rd

}
.

The latter infimum is finite if and only if η is an internal point of conv(M). In this case, L(η) =

S(p) with

p =
( 1

n+ λ>(yi − η)

)n
i=1
∈ Πn and λ ∈ arg min

λ∈Rd

S
((
n+ λ>(yi − η)

)n
i=1

)
.

This representation is quite useful for the numerical computation ofL(η), particularly in situations
when n � d. For instead of minimizing S(·) on a subset of Πn, one has to minimize the convex
function λ 7→ S

((
n+ λ>(yi − η)

)n
i=1

)
on Rd.

Proof of Theorem 9.4. Convexity of L has been shown in Exercise 9.1. Concerning continuity
of L on conv(M), note first that L(η) is the minimum of S(·) on the set

{
p ∈ Πn : Y >p = η

}
,

because the latter set is compact, and S(·) is continuous. For η ∈ conv(M), let (η(m))m be a
sequence in conv(M) such that

lim
m→∞

η(m) = η and lim
m→∞

L(η(m)) = lim inf
conv(M)3γ→η

L(γ).

Now we write L(η(m)) = S(p(m)) for some p(m) ∈ Πn with Y >p(m) = η(m). Since Πn is
comapct, we may assume without loss of generality that (p(m))m converges to a vector p ∈ Πn.
But the latter vector fulfils automatically the equation Y >p = η. Hence,

L(η) ≤ S(p) = lim
m→∞

S(p(m)) = lim inf
conv(M)3γ→η

L(γ).

On the other hand, let L(η) = S(p) < ∞ for some p ∈ Πn with Y >p = η. In particular,
p ∈ (0, 1)n. Now let b(1), . . . , b(e) be basis vectors of V(M), and let us write b(j) = Y >β(j)

with β(j)
+ = 0. Then

lim sup
conv(M)3γ→η

L(γ) ≤ lim sup
c1,...,ce→0

L
(
η +

e∑
j=1

cjb
(j)
)

≤ lim sup
c1,...,ce→0

S
(
p+

e∑
j=1

cjβ
(j)
)

= S(p) = L(η).
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This proves continuity of L(·) on conv(M). Since S(p) ≥ n log n for all p ∈ Πn with equality if
and only if p = (1/n)ni=1, L(η) ≥ n log n with equality if and only if η = ȳ.

Now we turn to the special representation of L(η). Without loss of generality let η = 0, otherwise
we could replace each vector yi with yi − η.

Suppose that L(0) < ∞, that means, 0 is an internal point of conv(M). The definition of L(0)

and convexity of S(·) imply that the following properties of p ∈ Rn are equivalent:

(ELLF.1) p ∈ Πn ∩ (0, 1)n with Y >p = 0 and L(0) = S(p).

(ELLF.2) p ∈ Π ∩ (0, 1)n with Y >p = 0 and

d

dt

∣∣∣
t=0

S(p+ tδ) = 0 for all δ ∈ Rn with δ+ = 0,Y >δ = 0.

This follows from the fact that the linear space span
{
q − p : q ∈ Πn,Y

>q = 0
}

coincides with{
δ ∈ Rn : δ+ = 0,Y >δ = 0

}
. But

d

dt

∣∣∣
t=0

S(p+ tδ) =

n∑
i=1

δi
pi
.

Hence, (ELLF.2) is equivalent to

(ELLF.2’) p ∈ Π ∩ (0, 1)n with Y >p = 0 and

(1/pi)
n
i=1 ⊥ {1n,Y (1), . . . ,Y (d)}⊥.

Here Y (1),Y (2), . . . ,Y (d) denote the columns of Y . The condition on (1/pi)
n
i=1 in (ELLF.2’)

is equivalent to (1/pi)
n
i=1 being a linear combination of the vectors 1n, Y (1), . . . , Y (d), so

p =
(
(κ+ λ>yi)

−1
)n
i=1

for certain κ ∈ R and λ ∈ Rd. Together with
∑n

i=1 piyi = 0 and p+ = 1, we find out that

0 =
n∑
i=1

λ>yi
κ+ λ>yi

=
n∑
i=1

(
1− κ

κ+ λ>yi

)
= n− κ,

whence κ = n. Consequently,

p =
(
(n+ λ>yi)

−1
)n
i=1

for some λ ∈ Rd such that

(9.1) min
i=1,...,n

(n+ λ>yi) > 0 and
n∑
i=1

yi
n+ λ>yi

= 0.

On the other hand, let λ be a vector in Rd satisfying (9.1), and let p :=
(
(n+λ>yi)

−1
)n
i=1

. Then
p belongs automatically to Πn, because

n∑
i=1

pi =
1

n

n∑
i=1

n

n+ λ>yi
=

1

n

n∑
i=1

n+ λ>yi
n+ λ>yi

= 1.
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These considerations show that condition (ELLF.1) on p ∈ Rn is equivalent to the following
condition:

(ELLF.3) p =
(
(n+ λ>yi)

−1
)n
i=1

for some λ ∈ Rd satisfying (9.1).

Now we consider the function h : Rd → (−∞,∞] with

h(λ) = S
(
(n+ λ>yi)

n
i=1

)
.

This is a convex function on Rd, where h(λ) < ∞ if and only if n + λ>yi > 0 for all indices i.
For such vectors λ,

∇h(λ) = −
n∑
i=1

yi
n+ λ>yi

.

Consequently, λ ∈ Rd is a minimizer of h if and only if it satisfies condition (9.1). The corre-
sponding minimum equals

h(λ) = −S(p) with p :=
(
(n+ λ>yi)

−1
)n
i=1
.

It remains to show that inf
{
h(λ) : λ ∈ Rd

}
is equal to−∞ whenever 0 is not an internal point of

conv(M). At first, let 0 6∈ conv(M). Then yo := arg miny∈conv(M) ‖y‖ satisfies the inequality

min
y∈conv(M)

y>o y = ‖yo‖2 > 0.

Then, for t ≥ 0 we have the inequality

h(tyo) = −
n∑
i=1

log(n+ ty>o yi) ≤ −n log(n+ t‖yo‖2),

and the right-hand side tends to −∞ as t→∞.

Now let 0 be a point in conv(M), but not an internal point of conv(M). If we replace Rd with
V(M) = span(M− 0) = span(M), then conv(M) has nonempty interior, and 0 is a boundary
point of conv(M). It is known from convex analysis that there exists a vector yo ∈ V(M) such
that y>o y ≥ 0 for all y ∈ conv(M), and y>o yI > 0 for at least one index I ∈ {1, 2, . . . , n}.
Consequently, for t ≥ 0 we get the inequality

h(tyo) = −
n∑
i=1

log(n+ ty>o yi) ≤ −(n− 1) log(n)− log(n+ ty>o yI),

and the right-hand side converges to −∞ as t→∞.

The compact representation of L(η) in Theorem 9.4 leads to a rather short proof of the following
result:

Theorem 9.5. For η ∈ Rd let

Z :=
1√
n

n∑
i=1

(yi − η),

M :=
1√
n

max
i=1,...,n

‖yi − η‖,

Γ̂ :=
1

n

n∑
i=1

(yi − η)(yi − η)>.
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Then, for any constant κ > 0 and fixed symmetric, positive definite matrix Γ ∈ Rd×d,

2L(η)− 2n log(n) = Z>Γ−1Z + ρ(M,η,Γ),

where ρ(M,η,Γ)→ 0 as

M → 0, ‖Γ̂− Γ‖ → 0 and ‖Z‖ ≤ κ.

Proof of Theorem 9.5. Without loss of generality let η = 0. Otherwise we could just replace
each yi with yi − η. By means of Theorem 9.4 we obtain the representation

2L(0)− 2L(ȳ) = − inf
∆∈Rd

H(∆) with H(∆) := −2
n∑
i=1

log
(

1 +
y>i ∆√
n

)
.

Now we use the elementary inequality

∣∣log(1 + x)− x+ x2/2
∣∣ ≤ |x|3

3(1− |x|)+
for x ∈ R,

see Exercise 9.6. This implies that

H(∆) = − 2√
n

n∑
i=1

y>i ∆ +
1

n

n∑
i=1

(y>i ∆)2 + r1(∆)

= −2Z>∆ + ∆>Γ̂∆ + r1(∆)

= Ȟ(∆) + r1(∆) + r2(∆),

where

Ȟ(∆) := −2Z>∆ + ∆>Γ∆

and

|r1(∆)| ≤ 2M‖∆‖
3(1−M‖∆‖)+

1

n

n∑
i=1

(y>i ∆)2 =
2M‖∆‖∆>Γ̂∆

3(1−M‖∆‖)+
≤ 2M‖∆‖3λmax(Γ̂)

3(1−M‖∆‖)+
,

|r2(∆)| ≤ ‖Γ̂− Γ‖‖∆‖2.

Thus, under the stated conditions, sup‖∆‖≤C
∣∣r1(∆) + r2(∆)

∣∣ converges to 0 for any fixed C > 0.
This implies that

− inf
∆∈Rd

H(∆) = − min
∆∈Rd

Ȟ(∆) + o(1) = −Ȟ(Γ−1Z) + o(1) = Z>Γ−1Z + o(1),

by similar arguments as in the proof of Theorem 7.20.

Exercise 9.6. Show that

x− x2

2
≤ log(1 + x) ≤ x− x2

2
+
x3

3
for x ≥ 0

and

x− x2

2
+

x3

3(1 + x)
≤ log(1 + x) ≤ x− x2

2
for − 1 < x ≤ 0.
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9.1.2 Inference about the Mean

Now we discuss the special case that Y = Rd and θ(Pn) :=
∫
y Pn(dy) =: µn. In this case, the

previous results imply the following one:

Corollary 9.7. Suppose that the distributions Pn = L(Yn1) fulfil the following conditions:

Σn := Var(Yn1) → Σ with λmin(Σ) > 0,

Λn := IE
(
‖Yn1 − µn‖2 min

{
n−1/2‖Yn1 − µn‖, 1

})
→ 0.

Then,
2Ln(µn)− 2n log n →L χ2

d.

This result implies that the confidence set{
η ∈ Rd : Ln(η) ≤ n log n+ χ2

d;1−α/2
}

contains the unknown mean µn with asymptotic probability 1− α.

Proof of Corollary 9.7. This result follows directly from Theorem 9.5 and the Central Limit The-
orem (Theorem A.17), because

Zn :=
1√
n

n∑
i=1

(Yni − µn) →L Nd(0,Σ),

Mn :=
1√
n

max
1≤i≤n

‖Yni − µn‖ →p 0,

Σ̂n :=
1

n

n∑
i=1

(Yni − µn)(Yni − µn)> →p Σ.

Numerical example. The explicit computation and visualization of the confidence region

Cn,α :=
{
η ∈ Rd : Ln(η) ≤ n log n+ χ2

d;1−α/2
}

is a non-trivial task. But in dimensions d ≤ 2, one can approximate this set sufficiently well by
calculating Ln(η) for all vectors η in a fine grid. Figure 9.1 depicts a sample of size n = 50

from a bivariate Gaussian distribution with mean 0 ∈ R2 and covariances Σ(1, 1) = Σ(2, 2) = 1,
Σ(1, 2) = 0.7. In addition one sees the true mean (green star), the sample mean (solid black point)
and the boundary of Cn,α for α = 0.5, 0.1, 0.05, 0.01 (blue lines).

9.2 Empirical Likelihood for Linear Regression

Now we consider a linear regression setting with observations (dn1, Yn1), . . . , (dnn, Ynn), con-
sisting of fixed vectors dni ∈ Rp and random variables

Yni = d>niθn + εni
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Figure 9.1: Confidence regions for a mean via empirical likelihood.

with a fixed unknown parameter θn ∈ Rp and stochastically independent random errors εn1, εn2,
. . . , εnn, where

IE(εni) = 0 and σni := Std(εni) < ∞

for 1 ≤ i ≤ n. We also assume that the design matrix Dn = [dn1 dn2 . . . dnn]> has rank p for
sufficiently large n.

To motivate the definition of the negative empirical log-likelihood function, we first discuss a
particular estimation problem: For a probability weight vector p ∈ Πn ∩ (0, 1)n and any vector
θ ∈ Rp, we consider the sum of squares

Qp(θ) :=

n∑
i=1

pi(Yni − d>niθ)2.

This is a strictly convex function on θ with

∇Qp(θ) = −2
n∑
i=1

pi(Yni − d>niθ)dni and D2Qp(θ) = 2
n∑
i=1

pidnid
>
ni.

In particular, the unique minimizer of Qp(·) is given by the equation

n∑
i=1

piYni(θ) = 0

with the residual vectors
Yni(θ) := (Yni − d>niθ)dni ∈ Rp.
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An explicit formula for this minimizer is given by

θ̂p = (D>n diag(p)Dn)−1D>n diag(p)Yn,

and for the special weight vector p = (1/n)ni=1, we obtain the usual LSE θ̂n.

The residual vectors Yni(θ) play a particular role, because IEYni(θn) = 0, and

IE
( n∑
i=1

piYni(θ)
)

= (D>n diag(p)Dn)(θn − θ)

is equal to 0 if and only if θ = θn. Thus we define

Ln(θ) := inf
{
S(p) : p ∈ Πn,

n∑
i=1

piYni(θ) = 0
}
.

Theorem 9.4 provides us with the alternative representation

Ln(θ) = − inf
λ∈Rp

S
((
n+ λ>Yni(θ)

)n
i=1

)
,

and one can verify easily that Ln(·) is a convex function on Rp.

The subsequent results show that under certain conditions, likelihood-based procedures as intro-
duced in the context of logistic and Poisson regression are applicable with the empirical log-
likelihood function in place of a usual log-likelihood function. In particular, the wild bootstrap as
well as empirical likelihood are able to deal with heteroscedastic errors. Our asymptotic consider-
ations refer to the following conditions:

(E.1) For a fixed symmetric, positive definite matrix Γ ∈ Rp×p,

1

n

n∑
i=1

σ2
ni dnid

>
ni → Γ.

(E.2) 1

n

n∑
i=1

IE(|εni|3)‖dni‖3 = O(1).

(E.3) For a fixed symmetric, positive definite matrix Γo ∈ Rp×p,

1

n

n∑
i=1

dnid
>
ni → Γo.

(E.4) 1

n

n∑
i=1

‖dni‖4 = O(1).

Theorem 9.8. Under conditions (E.1–2),

2Ln(θn)− 2Ln(θ̂n) = Z>nΓ−1Zn + op(1) →L χ2
p,

where Zn := n−1/2
∑n

i=1 εnidni →L Np(0,Γ).
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Under conditions (E.1–4),

2Ln(θn + n−1/2∆)− 2Ln(θn) = −2Z>n∗∆ + ∆>Γ∗∆ + rn(∆)

for arbitrary ∆ ∈ Rp, where Γ∗ := ΓoΓ
−1Γo, Zn∗ := ΓoΓ

−1Zn →L Np(0,Γ∗), and

sup
∆ : ‖∆‖≤C

|rn(∆)| →p 0 for any fixed C > 0.

Proof of Theorem 9.8. For both parts, we apply Theorem 9.5 with p in place of d and Yni(θn) =

εnidni or Yni(θn + n−1/2∆) = εnidni + n−1/2dnid
>
ni∆ in place of yi − η.

Conditions (E.1–2) and Lindeberg’s CLT imply that

Zn =
1√
n

n∑
i=1

εnidni →L Np(0,Γ),

Mn :=
1√
n

max
1≤i≤n

‖εnidni‖ →p 0,

Γ̂n :=
1

n

n∑
i=1

ε2
nidnid

>
ni →p Γ.

Hence, Theorem 9.5 implies that

2Ln(θn)− 2Ln(θ̂n) = Z>nΓ−1Zn + op(1),

and Z>nΓ−1Zn = ‖Γ−1/2Zn‖2 →L χ2
p.

To verify the second part, we consider the auxiliary objects

Zn(∆) :=
1√
n

n∑
i=1

Yni(θn + n−1/2∆),

Mn(∆) :=
1√
n

max
1≤i≤n

‖Yni(θn + n−1/2∆)‖,

Γ̂n(∆) :=
1

n

n∑
i=1

Yni(θn + n−1/2∆)Yni(θn + n−1/2∆)>.

Note that Yni(θn + n−1/2∆) = εnidni − n−1/2dnid
>
ni∆, whence

Zn(∆) = Zn − Γno∆ with Γno :=
1

n

n∑
i=1

dnid
>
ni.

Thus, for any constant C > 0 and arbitrary vectors ∆ with ‖∆‖ ≤ C,

‖Zn(∆)−Zn‖ ≤ λmax(Γno)C = O(1),

‖Zn(∆)− (Zn − Γo∆)‖ ≤ ‖Γno − Γo‖C = o(1).

Moreover,

Mn(∆) ≤ Mn + Cn−1 max
1≤i≤n

‖dni‖2

≤ Mn + Cn−1/2
( 1

n

n∑
i=1

‖dni‖4
)1/2

= Mn +O(n−1/2) →p 0,
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and

∥∥Γ̂n(∆)− Γ̂n
∥∥ =

∥∥∥ 1

n

n∑
i=1

(
n−1(d>ni∆)2 − 2n−1/2εnid

>
ni∆

)
dnid

>
ni

∥∥∥
≤ C2

n2

n∑
i=1

‖dni‖4 +
2C

n3/2

n∑
i=1

|εni|‖dni‖3

≤ O(n−1) +
2C

n3/2

( n∑
i=1

|εni|3‖dni‖3
)1/3( n∑

j=1

‖dnj‖3
)2/3

= O(n−1) +
2C√
n

( 1

n

n∑
i=1

|εni|3‖dni‖3
)1/3( 1

n

n∑
j=1

‖dnj‖3
)2/3

≤ O(n−1) +
2C√
n

( 1

n

n∑
i=1

|εni|3‖dni‖3
)1/3( 1

n

n∑
j=1

‖dnj‖4
)1/2

= Op(n
−1/2).

Consequently, we can apply Theorem 9.5 simultaneously for all ∆ ∈ Rp with ‖∆‖ ≤ C, and this
leads to

2Ln(θn + n−1/2∆)− 2Ln(θn)

=
(
2Ln(θn + n−1/2∆)− 2Ln(θ̂n)

)
−
(
2Ln(θn)− 2Ln(θ̂n)

)
= (Zn − Γo∆)>Γ−1(Zn − Γo∆)−Z>nΓ−1Zn + rn(∆)

= −2(ΓoΓ
−1Zn)>∆ + ∆>ΓoΓ

−1Γo∆ + rn(∆)

= −2Z>n∗∆ + ∆>Γ∗∆ + rn(∆),

where sup
{
|rn(∆)| : ‖∆‖ ≤ C

}
→p 0.

Example 9.9 (Simple linear regression). In the left panel of Figure 9.2, one sees a scatter plot of
simulated data (Xi, Yi), 1 ≤ i ≤ n = 200 with Xi = i/n and

Yi = 1 +Xi + εi, εi ∼ N(0, X2
i ).

In addition, the true regression function f(x) = 1 + x (green line), the estimated regression
function f̂(x) = â+ b̂x (blue straight line) and simultaneous confidence intervals[

min{a+ bx : (a, b)> ∈ C0.05},max{a+ bx : (a, b)> ∈ C0.05}
]

for x ∈ R (blue curves) are depicted, where

Cα :=
{
θ ∈ R2 : L(θ) ≤ n log n+ χ2

2;1−α/2
}
.

The right panel of Figure 9.2 depicts the boundary of the confidence region Cα for the confidence
levels 1 − α = 0.5, 0.9, 0.95, 0.99 (blue curves), the LSE θ̂ (black dot) and the true parameter
θ = (1, 1)> (green star).
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Figure 9.2: Confidence regions for simple linear regression via empirical likelihood.

Example 9.10 (Quadratic regression). In the upper panel of Figure 9.3, one sees a scatter plot of
simulated data (Xi, Yi), 1 ≤ i ≤ n = 200 with Xi = i/n and

Yi = 1 +Xi −X2
i + εi, εi ∼ N(0, (Xi/4)2).

In addition, the true regression function f(x) = 1+x−x2 (green curve), the estimated regression
function f̂(x) = â0 + â1x+ â2x

2 (central blue curve) and simultaneous confidence intervals[
min{a0 + a1x+ a2x

2 : (a0, a1, a2)> ∈ C0.05},max{a0 + a1x+ a2x
2 : (a0, a1, a2)> ∈ C0.05}

]
for x ∈ R (outer blue curves) are depicted, where

Cα :=
{
θ ∈ R3 : L(θ) ≤ n log n+ χ2

3;1−α/2
}
.

The lower panel of Figure 9.3 depicts the true first derivative f ′(x) = 1 − 2x (green line), the
estimated first derivative f̂ ′(x) = â1−2â2x (blue line) and simultaneous 95%-confidence intervals
for f ′(x) (outer blue curves). In particular, the 95%-confidence interval for the unique point
x∗ = 0.5 with f ′(x∗) = 0 is equal to [0.440, 0.572].
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Figure 9.3: Confidence regions for quadratic regression via empirical likelihood.



Chapter 10

Isotonic Regression

In the context of checking the output of logistic regression graphically, we touched upon so-called
isotonic regression. The material in this chapter provides a brief introduction to this topic. For
a broader view on the field of statistical inference under qualitative constraints, we refer to the
monographs of Robertson et al. (1988) and Groeneboom and Jongbloed (2014).

The general setting are observations (X1, Y1), . . . , (Xn, Yn) with values in X × Y ⊂ R × R.
After conditioning, if necessary, we assume that X1, . . . , Xn are fixed values, and the Yi are
independent random variables with distributions Q(· |Xi). Here

(
Q(· |x)

)
x∈X is an unknown

family of distributions on Y . Now we want to estimate a certain real-valued feature f(x) of
Q(· |x). Instead of assuming that f belongs to a finite-dimensional space of functions, we only
assume that f belongs to

F↑ :=
{
f : X → R isotonic

}
,

where ‘isotonic’ is a synonym for ‘monotone increasing’.

Example 10.1 (Isotonic means). If our goal is to estimate the conditional mean function µ, given
by µ(x) :=

∫
y Q(dy |x), we could aim for a function µ̂ in

arg min
f∈F↑

n∑
i=1

(Yi − f(Xi))
2.

Example 10.2 (Isotonic quantiles). If our goal is to estimate a conditional γ-quantile function qγ
for a given γ ∈ (0, 1), that is,

Q
(
(−∞, qγ(x))

∣∣x) ≤ γ ≤ Q
(
(−∞, qγ(x)]

∣∣x),
we could aim for a function q̂γ in

arg min
f∈F↑

n∑
i=1

ργ(f(Xi)− Yi),

where ργ(t) := (1− 2γ)t+ |t| for t ∈ R.

Example 10.3 (Isotonic binary regression). Suppose that Y = {0, 1}. Then Q(· |x) is uniquely
determined by the mean function p(x) := Q({1} |x), and it could be estimated by a minimizer p̂

255
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of the negative log-likelihood, that is, a function in

arg min
f∈F↑ : 0≤f≤1

n∑
i=1

[
−Yi log(f(Xi))− (1− Yi) log(1− f(Xi))

]
,

where log(0) := −∞ and 0 · log(0) := 0.

Example 10.4 (Isotonic Poisson regression). Suppose that Y = N0 and Q(· |x) = Poiss(λ(x))

for some unknown function λ : X → [0,∞). Again, this could be estimated by a minimizer of
the negative log-likelihood, i.e. a function λ̂ in

arg min
f∈F↑ : f≥0

n∑
i=1

[
f(Xi)− Yi log(f(Xi))

]
.

10.1 The Pool-Adjacent-Violators Algorithm (PAVA)

In all examples we have seen so far, the goal is to find a function in the set

arg min
f∈F↑

L(f)

for some target function L = L(·,X,Y ). Typically, the set of minimizers of L over F↑ is not
a singleton. Indeed, in our examples, L(f) depends only on f(X). Thus we reparametrize the
problem as follows: Let x1 < · · · < xm be the different elements of {X1, . . . , Xn}. On the one
hand, if f ∈ F↑, then the vector f := (f(xj))

m
j=1 belongs to the convex cone

Rm↑ :=
{
f ∈ Rm : f1 ≤ · · · ≤ fm

}
.

On the other hand, for any vector f ∈ Rm↑ there exists a (non-unique) function f ∈ F↑ such that
f(xj) = fj for 1 ≤ j ≤ m.

Now we aim for a vector f̂ in the set

arg min
f∈Rm

↑

L(f),

where

L(f) :=
m∑
j=1

Lj(fj)

with certain functions Lj = Lj(·,X,Y ) : R → (−∞,∞]. Here is our general assumption on
these functions Lj :

(L) For any nonvoid set S ⊂ {1, . . . ,m} let LS(t) :=
∑

j∈S Lj(t). There exists a number ξS ∈ R
such that LS is decreasing on (−∞, ξS ] and increasing on [ξS ,∞).

Let us review the explicit examples we have seen before:
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Example 10.1 (continued). For f ∈ F↑ and f := (f(xj))
m
j=1 ∈ Rm↑ ,

n∑
i=1

(Yi − f(Xi))
2 =

m∑
j=1

∑
i:Xi=xj

(Yi − fj)2 =
m∑
j=1

wj(fj − ȳj)2 + ‖Y ‖2 −
m∑
j=1

wj ȳ
2
j ,

where

wj := #{i : Xi = xj} and ȳj :=
1

wj

∑
i:Xi=xj

Yj .

Thus estimating isotonic means amounts to minimizing L(f) =
∑m

j=1 Lj(fj) over all f ∈ Rm↑ ,
where Lj(t) := wj(t− ȳj)2. For any nonvoid set S ⊂ {1, . . . ,m},

LS(t) = wS(t− ȳS)2 +
∑
j∈S

wj ȳ
2
j − wS ȳ2

S ,

where wS =
∑

j∈S wj and

ȳS = w−1
S

∑
j∈S

wj ȳj = sample mean of
(
Yi : Xi = xj for some j ∈ S

)
.

Thus condition (L) is satisfied with ξS = ȳS .

Example 10.2 (continued). With f ∈ F↑ and the corresponding f ∈ Rm↑ ,

n∑
i=1

ργ(f(Xi)− Yi) =
m∑
j=1

Lj(fj)

with

Lj(t) :=
∑

i:Xi=xj

ργ(t− Yi).

Condition (L) is satisfied with ξS being any sample γ-quantile of
(
Yi : Xi = xj for some j ∈ S

)
,

see Lemma 6.1.

Example 10.3 (continued). With f ∈ F↑ with 0 ≤ f ≤ 1, f ∈ Rm↑ , wj and ȳj as before,

n∑
i=1

[
−Yi log(f(Xi))− (1− Yi) log(1− f(Xi))

]
=

m∑
j=1

Lj(fj)

with Lj(t) := −wj
[
ȳj log(t) + (1 − ȳj) log(1 − t)

]
for t ∈ [0, 1] and Lj(t) := ∞ for t 6∈ [0, 1].

This leads to

LS(t) = −wS
[
ȳS log(t) + (1− ȳS) log(1− t)

]
for t ∈ [0, 1], and LS(t) =∞ for t 6∈ [0, 1]. Since

d

dt
LS(t) = wS

t− ȳS
t(1− t)

for t ∈ (0, 1), condition (L) holds true with ξS = ȳS .
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Example 10.4 (continued). With f ∈ F↑ with f ≥ 0, f ∈ Rm↑ , wj and ȳj as before,

n∑
i=1

[
f(Xi)− Yi log(f(Xi))

]
=

m∑
j=1

Lj(fj)

with Lj(t) := wj [t− ȳj log(t)] for t ≥ 0 and Lj(t) :=∞ for t < 0. This leads to

LS(t) = wS [t− ȳS log(t)]

for t ≥ 0 and LS(t) =∞ for t < 0. Here,

d

dt
LS(t) = wS(1− ȳS/t)

for t > 0. Thus, condition (L) holds true with ξS = ȳS .

Abstract description of the PAVA

The idea is to work with piecewise constant vectors in Rm. Precisely, let S be a partition of
{1, . . . ,m} into index intervals S = {a, . . . , b} with 1 ≤ a ≤ b ≤ m. Then we consider the linear
space

RmS :=
{
f ∈ Rm : fi = fj whenever i, j ∈ S for some S ∈ S

}
.

Note that for f ∈ RmS , one can write

L(f) =
∑
S∈S

LS(fj(S)),

where j(S) denotes any index in S. In particular,

L(f) ≥ L(f̂S),

where f̂S = (f̂S,j)
m
j=1 is given by

f̂S,j := ξS for j ∈ S, S ∈ S.

Now the algorithm works as follows:

Start. We start with the finest partition S =
{
{1}, {2}, . . . , {m}

}
.

Induction step. Let S be our current partition. Suppose there exist two sets S = {a, . . . , b}
and T = {b + 1, . . . , c} in S such that ξS ≥ ξT (“adjacent violators”). Then we replace S with
a coarser partition by replacing the two sets S and T with the one set S ∪ T (pool the adjacent
violators).

Termination. If S satisfies ξS < ξT whenever S, T ∈ S with S < T element-wise, the algorithm
stops and returns f̂ := f̂S .

Note that #S equals m in the beginning, and #S decreases by one in each induction step. Hence,
the algorithm terminates after at most m−1 repetitions of the induction step. By construction, the
resulting vector f̂ = f̂S belongs to Rm↑ ∩ RmS . That it minimizes L(f) over all f ∈ Rm↑ is not so
obvious. This fact follows from the next lemma.
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Lemma 10.5. Suppose that S is a partition of {1, . . . ,m} such that ξS ≥ ξT for two sets S =

{a, . . . , b} and T = {b + 1, . . . , c} in S. Let S̃ be the partition resulting from replacing S and T
with S ∪ T . Then, for any vector f ∈ Rm↑ ∩ RmS , there exists a vector f̃ ∈ Rm↑ ∩ RmS̃ such that
L(f̃) ≤ L(f).

This lemma shows that the minimum of L(f) over all f ∈ Rm↑ ∩RmS remains unchanged whenever
we pool two adjacent violators in S. We start with the finest partition S =

{
{1}, . . . , {m}

}
, so

Rm↑ ∩RmS = Rm↑ , and we continue this pooling until eventually the minimizer f̂S over all f ∈ RmS
belongs also to Rm↑ . This implies that the final vector f̂S minimizes L(f) among all f ∈ Rm↑ .

Proof of Lemma 10.5. Let f ∈ Rm↑ ∩ RmS . Now let f̃ be given by

f̃j :=

{
fj for j ∈ {1, . . . ,m} \ {a, . . . , c},
θ for j ∈ {a, . . . , c},

where fa ≤ θ ≤ fc. Then, f̃ ∈ Rm↑ ∩ RmS̃ , and

L(f)− L(f̃) = LS(fa)− LS(θ) + LT (fc)− LT (θ).

If fa ≤ ξT , then ξT ≤ ξS implies that LS is decreasing on [fa,min(ξT , fc)], and LT is increasing
on [min(fc, ξT ), fc]. Thus, choosing θ = min(fc, ξT ) leads to a vector f̃ such that L(f̃) ≤ L(f).

If fa ≥ ξT , then LT is increasing on [fa, fc]. Hence, the choice θ = fa leads to a vector f̃ such
that L(f̃) ≤ L(f).

Refinement. Suppose that the minimizers ξS , ∅ 6= S ⊂ {1, . . . ,m}, fulfill the Cauchy mean
value condition. That is, for arbitrary disjoint nonvoid sets S, T ⊂ {1, . . . ,m},

min{ξS , ξT } ≤ ξS∪T ≤ max{ξS , ξT }.

This condition is satisfied, for instance, if the minimizer ξS of LS is unique for any nonvoid set
S. It is also satisfied if each function Lj is convex and lower semicontinuous with Lj(t)→∞ as
|t| → ∞, and if ξS is always the smallest (or always the largest) minimizer of LS .

Here one can start the PAVA with the partition of all maximal index intervals S on which j 7→ ξ{j}

is non-increasing, because the singletons {j}, j ∈ S, can be pooled initially.

Explicit versions of the PAVA

The general description of the PAVA is rather vague about where to look for adjacent violators.
Here is a more explicit description. Instead of the partition S we consider a tuple s = (s1, . . . , sm)

and an integer variable b ∈ {1, . . . ,m} such that 0 < s1 < · · · < sb ≤ m. With s0 := 0, this tuple
s corresponds to the partition S consisting of the sets Sa := {sa−1 + 1, . . . , sa}, 1 ≤ a ≤ b, and
the singletons {j}, sb < j ≤ m. Moreover, let g = (g1, . . . , gm) be a tuple such that ga = ξSa

for 1 ≤ a ≤ b. Note that the components sj and gj are irrelevant for b < j ≤ m, but it is more
economical to initialize the vectors s and g just once with a given length m and to keep track
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b← 1
s← (1)mj=1 % start with S1 = {1}
g ← (ξ{1})

m
j=1

for k ← 2 to m do
b← b+ 1
sb ← k % add new set {k}
gb ← ξ{k}
while b > 1 and gb ≤ gb−1 do

sb−1 ← k % pool Sb−1 and Sb
gb−1 ← ξSb−1∪Sb

b← b− 1
end while

end for

f̂ ← (0)mj=1 % initialize f̂ and
for a← 1 to b do % assign values to it

for j ← sa−1 + 1 to sa do
f̂j ← ga

end for
end for

Table 10.1: Schematic pseudo-code for the PAVA.

of the number b of relevant entries. Table 10.1 contains pseudo-code for the PAVA in terms of
these auxiliary objects. Each run of the inner while-loop corresponds to a pooling of two adjacent
violators.

Specifically, if ξS = ȳS as in Examples 10.1, 10.3 and 10.4, there should be another auxiliary
vector v = (v1, . . . , vm) such that va = wSa for 1 ≤ a ≤ b. Moreover, here one can use the
refined version of the PAVA and start with the partition consisting of all maximal index intervals
S on which j 7→ ȳj is non-increasing. Then the PAVA reads as in Table 10.2. Note that increasing
b and generating the new set Sb requires only O(#Sb) operations, whereas the pooling of two
adjacent violators requires only a fixed number of operations. Consequently, the total running
time of the PAVA is of order O(m).

Example 10.6. Figure 10.1 shows a simulated data set with n = 200 pairs (Xi, Yi). In addition
to these data points, one sees an isotonic least squares fit µ̂ as a blue line. It is obtained from f̂

by linear interpolation on [xj , xj+1], 1 ≤ j < m, and constant extrapolation on (−∞, x1] and on
[xm,∞). The data have been generated as Yi = µ(Xi) + εi with independent standard Gaussian
errors εi, and µ(x) = min(max(x,−1), 1). The latter function µ is depicted as a green and dotted
line too.

10.2 Further Considerations for Isotonic Least Squares

We consider the minimization of L(f) =
∑m

j=1 Lj(fj) over all f ∈ Rm↑ , where Lj(t) = wj(t −
ȳj)

2. Here the mapping L : Rm → R is strictly convex, so the PAVA yields the unique minimizer



10.2. FURTHER CONSIDERATIONS FOR ISOTONIC LEAST SQUARES 261

k ← 0
b← 0
s← (0)mj=1

g ← (0)mj=1

v ← (0)mj=1

while k < m do
k ← k + 1
vnew ← wk % start a new set with {k}
Gnew ← wkȳk
while k < m and ȳk+1 ≤ ȳk do

k ← k + 1
vnew ← vnew + wk % extend the new set
Gnew ← Gnew + wkȳk

end while
b← b+ 1
sb ← k % add the new set to S
gb ← Gnew/vnew

vb ← vnew

while b > 1 and gb ≤ gb−1 do
sb−1 ← k % pool Sb−1 and Sb
vtemp ← vb−1 + vb
gb−1 ← (vb−1gb−1 + vbgb)/vtemp

vb−1 ← vtemp

b← b− 1
end while

end while

f̂ ← (0)mj=1 % initialize f̂ and
for a← 1 to b do % assign values to it

for j ← sa−1 + 1 to sa do
f̂j ← ga

end for
end for

Table 10.2: Pseudo-code for the PAVA with weighted averages.
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Figure 10.1: Example for isotonic means based on n = 200 simulated data.

f̂ of L over Rm↑ . In this section we derive various properties and characterizations of f̂ .

For notational convenience, for indices 1 ≤ a ≤ b ≤ m we use the subscript ‘a, b’ instead of
‘{a, . . . , b}’, so wa,b =

∑b
j=awj , and ȳa,b = w−1

a,b

∑b
j=awj ȳj . In addition we consider the local

weighted average

f̂a,b := w−1
a,b

b∑
j=a

wj f̂j

of f̂ . Note that by isotonicity of j 7→ f̂j ,

f̂a ≤ f̂a,b ≤ f̂b.

Lemma 10.7 (Inequalities for local weighted averages). For arbitrary indices 1 ≤ k ≤ ` ≤ m,

f̂k,` ≥ ȳk,` if f̂` < f̂`+1,(10.1)

f̂k,` ≤ ȳk,` if f̂k−1 < f̂k,(10.2)

where f̂0 := −∞ and f̂m+1 :=∞.

Proof. For any t ∈ R let f(t) be given by

fj(t) := f̂j + t 1[k≤j≤`].
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Note that f(0) = f̂ . If f̂` < f̂`+1, then f(t) ∈ Rm↑ whenever 0 ≤ t ≤ f̂`+1 − f̂`. Consequently,
optimality of f̂ implies that

0 ≤ d

dt

∣∣∣
t=0

L(f(t)) = 2
∑̀
j=k

wj(f̂j − ȳj) = 2wk,`(f̂k,` − ȳk,`).

If f̂k−1 < f̂k, then f(t) ∈ Rm↑ whenever f̂k−1 − f̂k ≤ t ≤ 0. Consequently,

0 ≥ d

dt

∣∣∣
t=0

L(f(t)) = 2wk,`(f̂k,` − ȳk,`).

The inequalities in Lemma 10.7 lead to an explicit representation of f̂ which is useless algorith-
mically but very useful for geometrical and theoretical considerations.

Lemma 10.8 (Min-max and max-min formulae). For any k ∈ {1, . . . ,m},

f̂k = max
a≤k

min
b≥k

ȳa,b = min
b≥k

max
a≤k

ȳa,b.

Proof. To verify these formulae, let 1 ≤ a(k) ≤ k ≤ b(k) ≤ m such that f̂a(k)−1 < f̂a(k) =

f̂b(k) < f̂b(k)+1.

Proof of the max-min formula. If a ≤ k and b(k) < b ≤ m, then

ȳa,b =
wa,b(k)ȳa,b(k) + wb(k)+1,bȳb(k)+1,b

wa,b
> ȳa,b(k),

because

ȳa,b(k) ≤ f̂a,b(k) ≤ f̂b(k) = f̂k and ȳb(k)+1,b ≥ f̂b(k)+1,b ≥ f̂b(k)+1 > f̂k,

by (10.1) and (10.2), respectively. Consequently,

max
a≤k

min
b≥k

ȳa,b = max
a≤k

min
b=k,...,b(k)

ȳa,b ≤ max
a≤k

ȳa,b(k) ≤ f̂k,

and a second application of (10.2) leads to

max
a≤k

min
b≥k

ȳa,b = max
a≤k

min
b=k,...,b(k)

ȳa,b ≥ min
b=k,...,b(k)

ȳa(k),b ≥ min
b=k,...,b(k)

f̂a(k),b = f̂k.

Proof of the min-max formula. In principle, this formula follows from the max-min formula after
replacing (wj , ȳj) with (wm+1−j ,−ȳm+1−j) for 1 ≤ j ≤ m and noting that the resulting vector
f̂ for the modified data corresponds to the vector (−f̂m+1−j)

m
j=1 for the original data. But here is

a direct argument: If 1 ≤ a < a(k) and b ≥ k, then

ȳa,b =
wa,a(k)−1ȳa,a(k)−1 + wa(k),bȳa(k),b

wa,b
< ȳa(k),b,

because

ȳa,a(k)−1 ≤ f̂a,a(k)−1 ≤ f̂a(k)−1 < f̂k and ȳa(k),b ≥ f̂a(k),b ≥ f̂a(k) = f̂k,
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by (10.1) and (10.2), respectively. Consequently,

min
b≥k

max
a≤k

ȳa,b = min
b≥k

max
a=a(k),...,k

ȳa,b ≥ min
b≥k

ȳa(k),b ≥ f̂k,

and a second application of (10.1) leads to

min
b≥k

max
a≤k

ȳa,b = min
b≥k

max
a=a(k),...,k

ȳa,b ≤ max
a=a(k),...,k

ȳa,b(k) ≤ max
a=a(k),...,k

f̂a,b(k) = f̂k.

Our next result provides a characterization of f̂ in terms of weighted partial sum functions. Let

T = {t0, t1, . . . , tm}

with t0 := 0 and tk :=
∑k

j=1wj = w1,k for 1 ≤ k ≤ m. Now we define weighted partial sum
functions S, F̂ : T → R of y and f̂ , respectively, via S(0) := 0, F̂ (0) := 0 and

S(tk) :=
k∑
j=1

wj ȳj = w1,kȳ1,k,

F̂ (tk) :=
k∑
j=1

wj f̂j = w1,kf̂1,k.

Lemma 10.9 (Greatest convex minorant). The function F̂ is a convex function on T such that
F̂ ≤ S. For any convex function F on T , F ≤ S implies that F ≤ F̂ .

Proof. By construction of F̂ , the slope

F̂ (tk)− F̂ (tk−1)

tk − tk−1
= f̂k

is isotonic in k ∈ {1, . . . ,m}, whence F̂ is convex. Note also that F̂ (0) = S(0) = 0, and (10.2)
implies that F̂ (tk) ≤ S(tk) for k = 1, . . . ,m. Moreover, combining this with (10.1) shows that
F̂ (tk) = S(tk) whenever f̂k < f̂k+1.

For fixed k ∈ {1, . . . ,m}, let 0 ≤ α(k) < k ≤ β(k) ≤ m such that f̂α(k) < f̂α(k)+1 = f̂β(k) <

f̂β(k)+1. Since f̂j = f̂k for α(k) < j ≤ β(k) and F̂ (tα(k)) = S(tα(k)), F̂ (tβ(k)) = S(tβ(k)),

F̂ (tk) = F̂ (tα(k)) + (tk − tα(k))f̂k

= F̂ (tα(k)) + (tk − tα(k))
F̂ (tβ(k))− F̂ (tα(k))

tβ(k) − tα(k)

= (1− λk)S(tα(k)) + λkS(tβ(k)),

where λk := (tk − tα(k))/(tβ(k) − tα(k)) ∈ (0, 1]. But for a convex function F : T → R with
F ≤ S,

F (tk) = F
(
(1− λk)tα(k) + λktβ(k)

)
≤ (1− λk)F (tα(k)) + λkF (tβ(k))

≤ (1− λk)S(tα(k)) + λkS(tβ(k)) = F̂ (tk).
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Figure 10.2: Partial sum functions for the data in Figure 10.1.

Example 10.6 (continued). Figure 10.2 shows for the data in Figure 10.1 the corresponding
partial sum function t 7→ S(t) as a black line and the function t 7→ F̂ (t) as a blue line. (We used
linear interpolation between neighboring points tk−1 and tk, 1 ≤ k ≤ m.)

Consistency. The min-max and max-min formulae for f̂ imply consistency properties of f̂ . We
present two such results, where for simplicity we restrict our attention to the special setting when
Xi = i/n. Moreover, we assume that

Yi = µ(i/n) + εi

with independent random errors ε1, . . . , εn such that IE(εi) = 0 and IE(ε2
i ) ≤ σ2 for some fixed

σ > 0.

Theorem 10.10. Let µ̂ ∈ F↑ minimize L(f) =
∑n

i=1(Yi − f(Xi))
2 over all f ∈ F↑.

(a) Suppose that the true mean function µ is Lipschitz-continuous on some nondegenerate interval
[z0, z1] ⊂ [0, 1]. Then for each fixed x ∈ (z0, z1),

∣∣µ̂(x)− µ(x)
∣∣ = Op(n

−1/3).

(b) Suppose that the true mean function µ is constant on some nondegenerate interval [z0, z1] ⊂
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[0, 1]. Then for any fixed δ ∈ (0, z1 − z0),

sup
x∈[z0,z1−δ]

(
µ̂(x)− µ(x)

)+
= Op(n

−1/2),

sup
x∈[z0+δ,z1]

(
µ(x)− µ̂(x)

)+
= Op(n

−1/2).

Proof of Theorem 10.10. Note that m = n and xj = Xj , wj,k = k + 1− j for 1 ≤ j ≤ k ≤ n.
In addition to the averages ȳj,k we use the averages ε̄j,k := (k + 1− j)−1

∑k
i=j εi.

Suppose that µ is Lipschitz-continuous on [z0, z1] with Lipschitz constant L. With δn := n−1/3,
for sufficiently large n, [x− δn, x] ⊂ [z0, x] and {i : Xi ∈ [x− δn, x]} is nonvoid. Precisely, the
indices jn := min{i : Xi ≥ x− n−1/3} and kn := max{i : Xi ≤ x} satisfy

kn + 1− jn = nδn(1 + o(1)) = n2/3(1 + o(1)).

According to the max-min formula,

µ̂(x) ≥ f̂kn = max
a≤kn

min
b≥kn

ȳa,b ≥ min
b≥kn

ȳjn,b.

But with the Lipschitz constant L of µ on [z0, z1],

ȳjn,b = (b+ 1− jn)−1
b∑

i=jn

(µ(i/n) + εi) ≥ µ(x)− Lδn + ε̄jn,b,

whence

µ(x)− µ̂(x) ≤ Lδn + max
b≥kn

|ε̄jn,b|.

Now, a well-known inequality of Kolmogorov states that for any η > 0,

IP
(

max
b≥kn

|ε̄jn,b| ≥ η
)
≤ 4σ2

η2(kn + 1− jn)
.

Consequently, for any fixed C > 0,

IP
(
µ(x)− µ̂(x) ≥ (L+ C)δn

)
≤ 4σ2

C2δ2
n(kn + 1− jn)

=
4σ2(1 + o(1))

C2
,

because δ2
n(kn+1−jn) = 1+o(1). This shows that

(
µ(x)− µ̂(x)

)+
= Op(n

−1/3). Analogously
one can show that

(
µ̂(x)− µ(x)

)+
= Op(n

−1/3). This proves part (a).

Now suppose that µ is constant on [z0, z1]. For sufficiently large n, the index set {i : Xi ∈
[z0, z0 + δ]} is nonvoid. Precisely, jn := min{i : Xi ≥ z0} and kn := max{i : Xi ≤ z0 + δ}
satisfy

kn + 1− jn = nδ(1 + o(1)).

Now, since µ ≡ µ(z0) and µ̂ is isotonic on [z0, z1],

sup
x∈[z0+δ,z1]

(
µ(x)− µ̂(x)

)
≤
(
µ(z0)− f̂kn

)
,
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and by means of the max-min formula,

f̂kn ≥ min
b≥kn

ȳjn,b ≥ µ(z0) + min
b≥k

ε̄jn,b.

Another application of Kolmogorov’s inequality leads to

IP
(

sup
x∈[z0+δ,z1]

(
µ(x)− µ̂(x)

)
≥ Cn−1/2

)
≤ IP

(
max
b≥kn

|ε̄jn,b| ≥ Cn−1/2
)
≤ 4σ2

C2n−1(kn + 1− jn)
=

4σ2(1 + o(1))

C2δ
.

Consequently, supx∈[z0+δ,z1]

(
µ(x) − µ̂(x)

)+ is of order Op(n−1/2). Analogously one can show
that supx∈[z0,z1−δ]

(
µ̂(x)−µ(x)

)+ is of orderOp(n−1/2). This concludes the proof of part (b).

10.3 Isotonic Distributional Regression

The methods mentioned in this section are described and analyzed in detail by Mösching and
Dümbgen (2020). Suppose we are interested in the complete distributions Q(· |x), x ∈ X , rather
than just a specific feature of them. Equivalently, we would like to estimate the entire distribution
function G(· |x) or quantile function G−1(· |x) of Q(· |x) for each x ∈ X . This is possible under
the following assumption:

(SO) The mapping x 7→ Q(· |x) is isotonic on X with respect to stochastic order.

This constraint can be reformulated in two equivalent ways:

(SO’) For any fixed y ∈ R, x 7→ G(y |x) is antitonic (monotone decreasing) on X ;

(SO”) For any fixed γ ∈ (0, 1), x 7→ G−1(γ |x) is isotonic on X .

In view of (SO”) one could think about estimating x 7→ G−1(γ |x) for any γ in a sufficiently large
finite subset of (0, 1) via a suitable variant of the PAVA. But characterization (SO’) leads to a more
elegant solution: Since G(yo |x) =

∫
1[y≤yo]Q(dy |x), we estimate G(yo |x) by Ĝ(yo |x) :=

f̂(x), where f̂ = f̂yo is a function in

arg min
f∈F↓

n∑
i=1

(
1[Yi≤yo] − f(Xi)

)2
,

and F↓ denotes the family of all antitonic functions on X . The good news is that it suffices to
consider all yo ∈ {Y(1), Y(2), . . . , Y(n−1)}, where Y(1) ≤ Y(2) ≤ · · · ≤ Y(n) are the order statistics
of Y1, . . . , Yn. Hence, the estimation ofG(· | ·) amounts to applying a suitable version of the PAVA
at most n − 1 times. Thus, the running time of the whole procedure is only O(n2). For further
details and refinements, we refer also to Henzi et al. (2022).

Example 10.11. In a survey of UK households in 1973, the annual income (X) and the annual
expenditures for various commodities such as food or housing (Y ) have been determined for sev-
eral thousand households. Figures 10.3 and 10.4 depict the log-transformed observation pairs
(log10(Xi), log10(Yi)) and estimated γ-quantile curves for γ ∈ {0.1, 0.25, 0.5, 0.75, 0.9}, result-
ing from the isotonic estimators Ĝ(· |x). (The observations with the five smallest or largest X- or
Y -values are not shown.)
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Figure 10.3: Log-transformed annual incomes (X) and expenditures for food (Y ) for n = 7125
UK households in 1973.
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Figure 10.4: Log-transformed annual incomes (X) and expenditures for housing (Y ) for n = 7110
UK households in 1973.



Appendix A

Miscellaneous Auxiliary Results

A.1 The QR Decomposition

Consider a matrixA ∈ Rn×p such that its first min(n, p) columns are linearly independent. Then
there exists an orthogonal matrix Q ∈ Rn×n and an upper triangular matrix R ∈ Rn×p with
nonzero diagonal entries such that

A = QR.

The conditions onQ andR mean that

Q>Q = In and Rij

{
6= 0 if i = j,

= 0 if i > j.

In case of n ≥ p, one could also write

(A.1) A = Q̃R̃

with Q̃ ∈ Rn×p containing the first p columns of Q and R̃ ∈ Rp×p consisting of the first p rows
of R. Then, Q̃

>
Q̃ = Ip, meaning that the columns of Q̃ are orthonormal vectors in Rn, and the

square matrix R̃ is upper triangular with nonzero diagonal terms, too. In this setting, suppose we
want to compute for y ∈ Rn the vector

x := arg min
v∈Rp

‖y −Av‖ = (A>A)−1A>y.

Then, the reduced QR decomposition (A.1) ofA yields the equivalent representation

x = R̃
−1
Q̃
>
y.

Hence, computing x amounts to solving the linear equation system

R̃x = Q̃
>
y.

Due to R̃ being upper triangular, the latter task can be accomplished easily via back substitution.

Now, the main question is how to obtain a QR decomposition. In case of n ≥ p, one could
construct a reduced QR decomposition (A.1) by means of the Gram–Schmidt method. A faster
and numerically more stable procedure is based on Householder transformations:

269
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Consideration 1 (Householder matrices) If b ∈ Rn is a unit vector, then

H := In − 2bb>

describes the reflection at the hyperplane b⊥. That means,

Hx =

{
−x if x ∈ span(b),

x if x ∈ b⊥.

In particular,H is a symmetric orthogonal matrix, that means,

H = H> and H2 = In.

If a, r are two different vectors in Rn with ‖a‖ = ‖r‖ > 0, then

(A.2) H = In −
2

‖a− r‖2
(a− r)(a− r)>

describes a reflection at the the hyperplane (a− r)⊥, and

Ha = r, Hr = a.

Consideration 2 (Start of algorithm) Let a be the first column ofA, and let

r :=

{
(−‖a‖, 0, . . . , 0)> if a1 ≥ 0,

(+‖a‖, 0, . . . , 0)> if a1 < 0.

If we defineH as in (A.2), then

A = QR,

where

Q := H and R := HA =

[
±‖a‖ R12

0 Ao

]
with matricesR12 ∈ R1×(p−1) andAo ∈ R(n−1)×(p−1) such that rank(Ao) = min(n− 1, p− 1).

Consideration 3 (Induction step) Suppose that after k < min(n−1, p) steps, we have obtained
a decomposition

A = QR

with an orthogonal matrixQ ∈ Rn×n and a matrixR ∈ Rn×p of the following form:

R =

[
R11 R12

0 Ao

]
with an upper triangular matrix R11 ∈ Rk×k, some matrix R12 ∈ Rk×(p−k) and a matrix Ao ∈
R(n−k)×(p−k) with rank min(n− k, p− k). Now we constructHo asH in Consideration 2 with
Ao in place of A, that means Ho ∈ R(n−k)×(n−k) is orthogonal such that the first column of
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HoAo is of the form (ro, 0, . . . , 0)> ∈ Rn−k for some ro 6= 0. Then the equation A = QR

remains valid if we replaceQ = [q1, q2, . . . , qn] with

Q

[
Ik 0
0 Ho

]
=
[
q1, . . . , qk, [qk+1, . . . , qn]Ho

]
andR with [

Ik 0
0 Ho

]
R =

[
R11 R12

0 HoAo

]
=

R11 R12

0

[
ro ∗
0 ∗

] .
The new matrix Q is orthogonal, too, and the first k + 1 columns of the new matrix R constitute
an upper triangular matrix.

Remark. To multiply a matrix C from the left or from the right with a Householder matrix
H = I − 2bb>, there is no need to generate the matrix H explicitly. Instead one can compute
CH = C − 2(Cb)b> orHC = C − 2b(b>C), which is substantially faster.

Remark. In R, the QR decomposition is at the core of the procedure qr.solve(A,B) with input
arguments A ∈ Rn×p such that rank(A) = p and B = [b1, . . . , bq] ∈ Rp×q. It returns a matrix
C = [c1, . . . , cq] ∈ Rp×q such that

ck = arg min
v∈Rp

‖Av − bk‖.

To do so, the first p steps of the QR algorithm are applied to the matrix [A,B] ∈ Rn×(p+q) in
place ofA, yielding

[A,B] = QR

withQ ∈ Rn×n orthogonal and

R =


[R11,D] if n = p,[
R11 D

0 R22

]
if n > p.

Here R11 ∈ Rp×p is upper triangular with nonzero diagonal, R22 ∈ R(n−p)×q, and D =

[d1, . . . ,dq] ∈ Rp×q. Then the desired matrix C solves the linear equation system

R11C = D

and is computed via backsubstitution.

A.2 Expected Values and Covariances

The distribution of a real-valued random variables X is roughly characterized by its expected
value IE(X) and its variance Var(X) = Cov(X,X). Recall the definition of the covariance of
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two real-valued random variables X,Y with IE(X2), IE(Y 2) <∞:

Cov(X,Y ) := IE
(
(X − IE(X))(Y − IE(Y ))

)
= IE(XY )− IE(X) IE(Y )

= Cov(Y,X).

For an additional random variable Z with IE(Z2) <∞ and fixed numbers α, β ∈ R the following
rules are useful:

IE(α+ βX) = α+ β IE(X),

Cov(α+ βX, Y ) = β Cov(X,Y ),

Cov(X + Y,Z) = Cov(X,Z) + Cov(Y, Z).

Furthermore,

Cov(X,Y ) = 0 if X and Y are stochastically independent.

Now we generalize these quantities to random matrices and vectors.

Definition A.1. (a) LetQ = (Qij)i≤p,j≤q ∈ Rp×q be a random matrix. The expected value ofQ
is defined componentwise,

IE(Q) :=

IE(Q11) · · · IE(Q1q)
...

...
IE(Qp1) · · · IE(Qpq)

 ∈ Rp×q.

Here we assume that all expected values IE |Qij | are finite.

(b) LetX = (Xi)
p
i=1 ∈ Rp and Y = (Yj)

q
j=1 ∈ Rq be random vectors with finite expected values

IE(‖X‖2) and IE(‖Y ‖2). The covariance (matrix) ofX and Y is defined to be the matrix

Cov(X,Y ) := IE
(
(X − IE(X))(Y − IE(Y ))>

)
= IE(XY >)− IE(X) IE(Y )>

=
(
Cov(Xi, Yj)

)
i≤p,j≤q ∈ Rp×q,

and the covariance (matrix) ofX is the symmetric matrix

Var(X) := Cov(X,X) ∈ Rp×p.

Its diagonal contains the variances Var(X1), . . . ,Var(Xp).

To what extend are these definitions of IE(X), Var(X) and Cov(X,Y ) meaningful? On the one
hand, for arbitrary fised numbers a ∈ R and vectors b ∈ Rp one can express expected value and
variance of a+ b>X as follows:

IE(a+ b>X) = IE
(
a+

p∑
i=1

biXi

)
= a+

p∑
i=1

bi IE(Xi)

= a+ b> IE(X),

Var(a+ b>X) = Var
(
a+

k∑
i=1

biXi

)
=

p∑
i,j=1

bibj Cov(Xi, Xj)

= b>Var(X)b.
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Since Var(a+ b>X) is always non-negative, this representation proves the following property:

Var(X) is symmetric and positive semidefinite.

In case of a unit vector b, the vector (b>X)b is the orthogonal projection of X onto the line
span(b); see the left panel of Figure A.1. Then Var(b>X) quantifies the random fluctuations of
X in the direction of b. The matrix Var(X) is singular if and only if b>Var(X)b = Var(b>X)

equals 0 for some unit vector b. But this means thatX lies almost surely on the hyperplane

H :=
{
x ∈ Rp : b>x = b> IE(X)

}
.

This hyperplane contains the vector IE(X) and is perpendicular to the vector b; see the right panel
of Figure A.1.

Figure A.1: Geometric interpretation of b>X (left panel). Support H of X in case of
b>Var(X)b = 0 (right panel).

The aforementioned formulae for the expected value and variance of affine functions of X may
be generalized to arbitrary affine mappings. The proof of the following lemma is left to the reader
as an exercise.

Lemma A.2. (a) Let Q, Q̃ ∈ Rp×q be random matrices with finite expected values IE |Qij | and
IE |Q̃ij |. Then

IE(Q>) = IE(Q)> and IE(Q+ Q̃) = IE(Q) + IE(Q̃).

Moreover, for fixed matricesA ∈ Rs×t,B ∈ Rs×p and C ∈ Rq×t,

IE(A+BQC) = A+B IE(Q)C.

(b) Let R ∈ Rq×r be an additional random matrix with finite expected values IE |Rjk|. If Q and
R are stochastically independent, then

IE(QR) = IE(Q) IE(R).
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(c) Let X, X̃ ∈ Rp and Y ∈ Rq be random vectors with finite expected values IE(‖X‖2),
IE(‖X̃‖2) and IE(‖Y ‖2). Then

Cov(Y ,X) = Cov(X,Y )> and Cov(X + X̃,Y ) = Cov(X,Y ) + Cov(X̃,Y ).

Moreover, for fixed vectors a ∈ Rs and matricesB ∈ Rs×p,

IE(a+BX) = a+B IE(X),

Cov(a+BX,Y ) = BCov(X,Y ),

Var(a+BX) = BVar(X)B>.

A.3 Monte Carlo Estimators for Tukey’s Method

In Section 3.6 we considered random variables of the following type: For a given set B of unit
vectors b ∈ Rp,

T :=
W√
S2/`

with W := supb∈B |b>Z|, where Z ∼ Np(0, I) and S2 ∼ χ2
` are stochastically independent.

Now our goal is to estimate the survival function F̄ : [0,∞)→ [0, 1] of T , i.e.

F̄ (x) := IP(T ≥ x).

An obvious way to approximate the unknown (1− α)-quantile κ1−α of T is to simulate indepen-
dent copies T1, T2, . . . , TB of T and to set

κ̂1−α := T(m) with m := d(B + 1)(1− α)e,

where T(1), T(2), . . . , T(B) are the order statistics of T1, T2, . . . , TB . The choice of m is justified
in Exercise A.3 below. However, in the present setting one can generate a refined Monte Carlo
approximation of the survival function F̄ .

Integrating out S2. We may write

F̄ (x) = IP
(
W ≥ x

√
S2/`

)
= IE IP

(
S2 ≤ `W 2/x2

∣∣M)
= IEG`(`W

2/x2)

for arbitrary x ≥ 0, where G` stands for the distribution function of χ2
` . Hence a Monte Carlo

estimator of F̄ (x) may be constructed as follows: We simulate a large number of stochastically
independent copies W1,W2, . . . ,WB of W . Then we estimate F̄ (x) by

̂̄F (x) :=
1

B

B∑
s=1

G`(`W
2
s /x

2).
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Efficient simulation of W . In the special case B = {b1, b2}, note that

W ∼ N2

(
0,

[
1 ρ
ρ 1

])
with ρ := b>1 b2 ∈ [−1, 1]. Here W has the same distribution as

max
{
|Z1|, |ρZ1 + ρ̄Z2|

}
with ρ̄ :=

√
1− ρ2 and Z ∼ N2(0, I2).

In the general setting, we considered B =
{
‖Γ−1/2ψ‖−1Γ−1/2ψ : ψ ∈ P

}
for some set P ⊂

Rp \ {0}, where Γ = D>D. If we determine a QR decomposition of D, that is, D = QR with
a matrix Q ∈ Rn×p such that Q>Q = Ip and a nonsingular, upper triangular matrix R, then
Γ = R>R. Now letR = ULV > with orthogonal matrices U ,V ∈ Rp×p and a diagonal matrix
L with strictly positive diagonal entries (SVD decomposition). Then

Γ = R>Q>QR = R>R = V L2V >,

whence Γ−1/2 = V L−1V > = TR−> with the orthogonal matrix T := V U>, and R−> :=

(R>)−1 = (R−1)>. Consequently,

W = sup
b∈B
|b>Z|

= sup
ψ∈P
‖Γ−1/2ψ‖−1

∣∣(Γ−1/2ψ)>Z
∣∣

= sup
ψ∈P
‖R−>ψ‖−1

∣∣(R−>ψ)>T>Z
∣∣

has the same distribution as

sup
ψ∈P
‖R−>ψ‖−1

∣∣(R−>ψ)>Z
∣∣.

Exercise A.3 (Monte Carlo confidence bounds with pivotal statistics). Let Y ∈ Y be a random
variable with distribution depending on an unknown parameter θ ∈ Θ. Furthermore, let T : Y ×
Θ→ R be measurable in its first argument such that T (Y, θ) has a known continuous distribution
Po. Next, let T1, T2, . . . , TB be stochastically independent random variables with distribution Po,
also independent from Y , and let T(1) < T(2) < · · · < T(B) be their order statistics. Show that for
for any m ∈ {1, 2, . . . , B},

Cm = Cm(Y, T1, . . . , TB) :=
{
η ∈ Θ : T (Y, η) ≤ T(m)

}
satisfies the equation

IP(Cm 3 θ) =
m

B + 1
.

A.4 B Splines

For m, d ∈ N and real numbers t0 < t1 < . . . < tm, let Sd(t0, t1, . . . , tm) be the set of all splines
of order d with knots t0, t1, . . . , tm, as introduced in Section 5.1. We have seen already that it is a
real vector space of dimension m+ d.
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Now we consider temporarily an infinite-dimensional variant. Namely, let t = (tz)z∈Z ∈ RZ be a
double sequence such that

· · · < t−2 < t−1 < t0 < t1 < t2 < · · · and lim
z→±∞

tz = ±∞.

With Sd(t) we denote the set of all functions f : R→ R with the following properties:

• On each interval [tz−1, tz], z ∈ Z, f is a polynomial of order d;

• f is d− 1 times continuously differentiable.

Each function f ∈ Sd(t) may be represented as

f(x) =
d∑
j=0

aj(x− t0)j +
∑
k≥1

bk max(x− tk, 0)d +
∑
`≤0

c` max(t` − x, 0)d

with unique real coefficients aj (0 ≤ j ≤ d), bk (k ≥ 1) and c` (` ≤ 0). If x is restricted to
[t−(m+1), tm+1] for some integer m ≥ 1, one may write

f(x) =
d∑
j=0

aj(x− t0)j +
m∑
k=1

bk max(x− tk, 0)d −
0∑

`=−m
c` max(t` − x, 0)d

For various reasons, the basis functions (· − t0)j , max(· − tk, 0)d and max(t` − ·, 0)d are prob-
lematic, and one would rather use basis functions with compact support. To this end, there exists
a special construction due to Carl de Boor:

Definition A.4 (B Splines). For z ∈ Z let

bz,0(x) := 1[tz≤x<tz+1].

For d = 1, 2, 3, . . . define recursively

(A.3) bz,d(x) :=
x− tz
δz,d

bz,d−1(x) +
tz+1+d − x
δz+1,d

bz+1,d−1(x),

where δy,d := ty+d − ty.

Remark A.5 (The special case d = 1). The space S1(t) consists of all continuous functions
f : R→ R such that f is affine on each interval [tz, tz+1], z ∈ Z. The basis functions bz,1 belong
to this space and are given by

bz,1(ty) = 1[y=z+1] for y, z ∈ Z.

In particular, bz,1 > 0 on (tz, tz+2) and bz,1 ≡ 0 on (−∞, tz] ∪ [tz+2,∞), and

b′z,1 =
bz,0
δz,1
− bz+1,0

δz+1,1
on R \ {tz, tz+1, tz+2}.

Moreover, ∫
R
bz,1(x) dx =

δz,2
2
.

An arbitrary function f ∈ S1(t) may be written as

f(x) =
∑
z∈Z

bz,1(x)f(tz+1).

In particular,
∑

z∈Z bz,1 ≡ 1.
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Theorem A.6. For d ≥ 1, the functions bz,d, z ∈ Z, have the following properties:

(i)
bz,d

{
> 0 on (tz, tz+d+1),

= 0 on (−∞, tz] ∪ [tz+d+1,∞).

(ii) ∑
z∈Z

bz,d ≡ 1.

(iii) bz,d ∈ Sd(t), and

b′z,d = d
(bz,d−1

δz,d
−
bz+1,d−1

δz+1,d

)
on

{
R \ {tz : z ∈ Z} if d = 1,

R if d ≥ 2.

(iv) ∫
R
bz,d(x) dx =

δz,d+1

d+ 1
.

(v) The set Sd(t) coincides with the set of all functions

f =
∑
z∈Z

λzbz,d

with λ = (λz)z∈Z ∈ RZ. The parameter sequence λ is uniquely determined by the function
f =

∑
z λzbz,d.

Proof of Theorem A.6. In case of d = 1, properties (i–v) follow directly from Remark A.5. Now
we assume that properties (i–v) are satisfied for a fixed d ≥ 1, and we verify them for e := d+ 1

in place of d. We write “property (·)(e)” to indicate this replacement.

First of all, let us rewrite the recursion formula (A.3) as

(A.4) bz,e(x) =
x− tz
δz,e

bz,d(x) +
tz+e+1 − x
δz+1,e

bz+1,d(x).

Property (i) implies that for any z ∈ Z and y ∈ {z − 1, z}, by,d > 0 on (tz, ty+d+1) and by,d = 0

on (−∞, ty] ∪ [ty+d+1,∞). Since

(tz, tz+d+1) ∪ (tz+1, tz+1+d+1) = (tz, tz+e+1),

property (i) and (A.4) imply property (i)(e): Outside of the interval (tz, tz+e+1), both functions
bz,d and bz+1,d vanish. And for x within this interval, both factors x − tz and tz+e+1 − x are
strictly positive, both factors bz,d(x) and bz+1,d(x) are nonnegative with at least one of them being
strictly positive.

Property (ii)(e) is also a consequence of property (ii) and (A.4). For any x ∈ R,∑
z∈Z

bz,e(x) =
∑
z∈Z

(x− tz
δz,e

bz,d(x) +
tz+e+1 − x
δz+1,e

bz+1,d(x)
)

=
∑
z∈Z

x− tz
δz,e

bz,d(x) +
∑
y∈Z

ty+e − x
δy,e

by,d(x)

=
∑
z∈Z

(x− tz
δz,e

+
tz+e − x
δz,e

)
bz,d(x)

=
∑
z∈Z

bz,d(x) = 1.
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Note that in the previous manipulations of infinite sums we rely on property (i), implying that
bz,d(x) 6= 0 for only finitely many z ∈ Z.

Property (iii) implies that all functions bz,d, z ∈ Z, belong to Sd(t) and satisfy

b′z,d = d
(bz,d−1

δz,d
−
bz+1,d−1

δz+1,d

)
on U := R \ {tz : z ∈ Z}.

Then for x ∈ U ,

b′z,e(x) =
∂

∂x

(x− tz
δz,e

bz,d(x) +
tz+e+1 − x
δz+1,e

bz+1,d(x)
)

=
bz,e−1(x)

δz,e
− bz+1,e−1(x)

δz+1,e
+
x− tz
δz,e

b′z−1,d(x) +
tz+e+1 − x
δz+1,e

b′z+1,d(x).(A.5)

The latter two summands may be written as

x− tz
δz,e

b′z,d(x) =
x− tz
δz,e

d
(bz,d−1(x)

δz,d
−
bz+1,d−1(x)

δz+1,d

)
= d

1

δz,e

(x− tz
δz,d

bz,d−1(x) +
tz − x
δz+1,d

bz+1,d−1(x)
)

= d
1

δz,e

(x− tz
δz,d

bz,d−1(x)− tz+d+1 − x
δz+1,d

bz+1,d−1(x)
)

− d
δz,d+1

δz,eδz+1,d
bz+1,d−1(x)

= d
bz,d(x)

δz,e
− d

bz+1,d−1(x)

δz+1,d
,

and

tz+e+1 − x
δz+1,e

b′z+1,d(x) =
tz+e+1 − x
δz+1,e

d
(bz+1,d−1(x)

δz+1,d
−
bz+2,d−1(x)

δz+2,d

)
= − d 1

δz+1,e

(x− tz+d+2

δz+1,d
bz+1,d−1(x) +

tz+d+2 − x
δz+2,d

bz+2,d−1(x)
)

= − d 1

δz+1,e

(x− tz+1

δz+1,d
bz+1,d−1(x) +

tz+d+2 − x
δz+2,d

bz+2,d−1(x)
)

+ d
δz+1,d+1

δz+1,eδz+1,d
bz+1,d−1(x)

= − d
bz+1,d(x)

δz,e
+ d

bz+1,d−1(x)

δz+1,d
.

Plugging-in these two equations in (A.5) shows that

b′z,e =
e

δz−1,e
bz−1,d −

e

δz,e
bz,d on U.

But both sides of the latter equation are continuous functions on R, and bz,e is continuous by (A.4).
Hence one can deduce from the mean value theorem that even

b′z,e =
e

δz,e
bz,d −

e

δz+1,e
bz+1,d on R.

In particular, b′z,e ∈ Sd(t), so the function bz,e itself is a spline function in Sd+1(t) = Se(t). This
concludes the proof of property (iii)(e).



A.4. B SPLINES 279

As to property (iv)(e), by partial integration, bz,e(±∞) = 0 and property (iii)(e),∫
R
bz,e(x) dx = −

∫
R
xb′z,e(x) dx = −e

∫
R
x
(bz,d(x)

δz,e
−
bz+1,d(x)

δz+1,e

)
dx.

The integrand may be rewritten as

x
(bz,d(x)

δz,e
−
bz+1,d(x)

δz+1,e

)
=
x− tz
δz,e

bz,d(x) +
tz+d+1 − x
δz+1,e

bz+1,d(x)

+
tz
δz,e

bz,d(x)− tz+d+1

δz+1,e
bz+1,d(x)

= bz,e(x) +
tz

δz−1,e
bz,d(x)− tz+d+1

δz+1,e
bz+1,d(x).

Hence property (iv) implies that∫
R
bz,e(x) dx = −e

∫
R
bz,e(x) dx− etz

δz,e

∫
R
bz,d(x) dx+

etz+d+1

δz+1,e

∫
R
bz+1,d(x) dx

= −e
∫
R
bz,e(x) dx− tz + tz+d+1

= −e
∫
R
bz,e(x) dx+ δz,e+1,

which implies property (iv)(e).

It remains to verify property (v)(e). Any function f ∈ Se(t) satisfies f ′ ∈ Sd(t). Hence, there
exists a double sequence λ ∈ RZ such that f ′ =

∑
z∈Z λzbz,d. Now let

µz :=
δz,eλz
e

, hz :=
e

δz,e
bz,d

and

νz :=


∑z

k=1 µk if z > 0,

0 if z = 0,

−
∑0

k=z+1 µk if z < 0.

Then it follows from property (iii)(e) that

f ′ =
∑
z∈Z

µzhz =
∑
z∈Z

(νz − νz−1)hz =
∑
z∈Z

νz(hz − hz+1) =
∑
z∈Z

νzb
′
z,e.

Consequently,

f = C +
∑
z∈Z

νzbz,e =
∑
z∈Z

(C + νz)bz,e,

because of property (ii)(e). Finally, to verify uniqueness of the series representation of functions
in Se(t), let λ ∈ RZ such that ∑

z∈Z
λzbz,e ≡ 0.
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Then, by property (iii)(e),

0 ≡
∑
z∈Z

λzb
′
z,e

≡
∑
z∈Z

λz

( e

δz,e
bz,d −

e

δz+1,e
bz+1,d

)
≡
∑
z∈Z

λz
e

δz,e
bz,d −

∑
z∈Z

λz−1
e

δz,e
bz,d

≡
∑
z∈Z

(λz − λz−1)
e

δz,e
bz,d.

By property (v), λ = (c)z∈Z for some constant c ∈ R. But then property (ii)(e) implies that

0 ≡
∑
z∈Z

λzbz,e ≡ c
∑
z∈Z

bz,e ≡ c,

whence λ = 0.

Remark A.7 (B-Splines for Sd(t0, t1, . . . , tm)). It follows from Theorem A.6 that the func-
tions b−d,d, b−d+1,d, . . . , bm−1,d constitute a basis of Sd(t0, t1, . . . , tm). Indeed, any function
f : [t0, tm]→ R in the latter space may by extended to a function f ∈ Sd(t) as follows:

f(x) :=


∑d

i=0

f (i)(t0 +)

i!
(x− t0)i for x < t0,∑d

i=0

f (i)(tm−)

i!
(x− tm)i for x > tm.

Then f ≡
∑

z∈Z λzbz,d with certain coefficients λz ∈ R, z ∈ Z. But bz,d ≡ 0 on [t0, tm] whenever
z < −d or z ≥ m. Hence

f ≡
m−1∑
z=−d

λzbz,d on [t0, tm].

If one is only interested in the functions b−d,d, . . . , bm−1,d as a basis for Sd(t0, t1, . . . , tm), they
may be computed via the following recursion: For x ∈ [t0, tm],

bz,d(x) =



t1 − x
δ−d+1,d

b−d+1,d−1(x) if z = −d,

x− tz
δz,d

bz,d−1(x) +
tz+d+1 − x
δz+1,d

bz+1,d−1(x) if − d < z < m− 1,

x− tm−1

δm−1,d
bm−1,d−1(x) if z = m− 1.

Moreover,

b′z,d = d



b−d+1,d−1

δ−d+1,d
if z = 1

bz,d−1

δz,d
−
bz+1,d−1

δz+1,d
if − d < z < m− 1

bm−1,d−1

δm−1,d
if z = m− 1



A.5. WEAK CONVERGENCE OF DISTRIBUTIONS 281

on {
[t0, tm] \ {t1, . . . , tm−1} if d = 1,

[t0, tm] if d ≥ 2,

Here, one may even set tz = t0 for−d ≤ z < 0 and tz = tm form < z ≤ m+d: If we let tz → t0

for −d ≤ z < 0 and tz → tm for m < z ≤ m + d, the basis functions by,c, 1 ≤ y ≤ m + c,
0 ≤ c ≤ d, converge to basis functions satisfying the same recursion formulae with

δy,c := tmin(y+c,m) − tmax(y,0).

That means, we don’t have to specify tz for z 6∈ {0, 1, . . . ,m}. And with that modification,∫ tm

t0

bz,d(x) dx =
δz,d+1

d+ 1
for − d ≤ z < m.

A.5 Weak Convergence of Distributions

For n = 1, 2, 3, . . . let Xn be a random variable with distribution Pn on a metric space (X , d)

(equipped with the σ-field of its Borel sets). Let X be an additional random variable with distri-
bution P on X . In what follows, asymptotic statements refer to n→∞, unless stated otherwise.

Convergence in distribution. One says that Xn converges in distribution to X and writes

Xn →L X,

if

lim
n→∞

IE f(Xn) = IE f(X)

for arbitrary bounded and continuous functions f : X → R.

In statistics, people often rephrase this statement as “Xn is asymptotically distributed as X” or
“Xn has asymptotic distribution P ”. Sometimes we abuse notation slightly and write

Xn →L P.

Weak convergence. Convergence in distribution in the sense above is equivalent to the following
statement about the distributions Pn: One says that Pn converges weakly to P and writes

Pn →w P,

if

lim
n→∞

∫
f dPn =

∫
f dP

for arbitrary bounded and continuous functions f : X → R.
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Theorem A.8 (Portmanteau-Theorem). The following statements about P and (Pn)n are equiv-
alent:

(i) Pn converges weakly to P .
(ii) For arbitrary bounded and Lipschitz-continuous functions f : (X , d)→ [0, 1],

lim
n→∞

∫
f dPn =

∫
f dP.

(iiia) For arbitrary open sets U ⊂ X ,

lim inf
n→∞

Pn(U) ≥ P (U).

(iiib) For arbitrary closed sets A ⊂ X ,

lim sup
n→∞

Pn(A) ≤ P (A).

(iv) For arbitrary Borel sets B ⊂ X ,

lim
n→∞

Pn(B) = P (B) whenever P (∂B) = 0.

For the reader’s convenience, a proof of the Portmanteau-Theorem is given at the end of this
subsection.

The fact that the second statement implies both the first and third statements may be verified by
means of the following exercise, a variation of Exercise 4.12.

Exercise A.9 (Approximation by Lipschitz-continuous functions). Let f be a function on a metric
space (X , d) with values in [a,∞) for some a ∈ R. For L > 0 and x ∈ X let

fL(x) := inf
y∈X

(
f(y) + Ld(x, y)

)
.

Show that fL(x) has the following properties:

(i) a ≤ fL(x) ≤ f(x).

(ii)
∣∣fL(x)− fL(x′)

∣∣ ≤ Ld(x, x′) for arbitrary x, x′ ∈ X .

(iii) fL(x) is non-decreasing in L ≥ 0, and

f∞(x) := lim
L↑∞

fL(x) = lim inf
x′→x

f(x′).

(iv) Show that f̃L := min(fL, a+ L) also has the properties (i-iii).

Exercise A.10 (Continuous Mapping Theorem). Let X and Xn (n ∈ N) be random variables
with values in a metric space (X , dX ) such that Xn →L X as n → ∞. Further let H be a
continuous mapping from (X , dX ) into another metric space (Y, dY). Show that

H(Xn) →L H(X) as n→∞.
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Exercise A.11 (Fatou’s Lemma and Scheffé’s Theorem for weak convergence). Let P and Pn
(n ∈ N) be probability distributions on a metric space (X , d) such that Pn →w P as n→∞.

(a) Let h : X → [0,∞) be lower semicontinuous. That means, f(x) = lim infx′→x f(x′) for
arbitrary x ∈ X . Show that ∫

h dP ≤ lim inf
n→∞

∫
h dPn.

Hint: Exercise A.9.

(b) Let h : X → [0,∞) be a lower semicontinuous and unbounded functions. Suppose that

lim sup
n→∞

∫
h dPn ≤

∫
h dP < ∞.

Show that

lim
n→∞

∫
g dPn =

∫
g dP

for any continuous functions g : X → [0,∞) such that supx∈X |g(x)|/(1 + h(x)) <∞.

Exercise A.12 (Cartesian products). Let (X , dX ) and (Y, dY) be metric spaces. Further, let ‖ · ‖
be an arbitrary norm on R× R such that ‖(v1, v2)‖ is non-decreasing in |v1| and |v2|. Show that

d
(
(x1, y1), (x2, y2)

)
:=
∥∥(dX (x1, x2), dY(y1, y2)

)∥∥
defines a metric on X × Y , and that that the resulting topology does not depend on the particular
norm ‖ · ‖.

Exercise A.13 (Slutsky’s Lemma).

(a) Consider metric spaces (X , dX ) and (Y, dY). The Cartesian product X × Y is equipped with
the metric d

(
(x, y), (x′, y′)

)
:= max

{
dX (x, x′), dY(y, y′)

}
. For n = 1, 2, 3, . . . let (Xn, Yn) be a

random variable with values in X × Y such that

Xn →L X and Yn →p yo

for a random variable X ∈ X and a fixed point yo ∈ Y . Show that

(Xn, Yn) →L (X, yo).

(b) For n = 1, 2, 3, . . . let (An, Bn, Xn) be a random variable with values in Rq × Rq×p × Rp

such that

An →p a, Bn →p B and Xn →L X

for a fixed vector a ∈ Rq, a fixed Matrix B ∈ Rq×p and a random variable X ∈ Rp. Show that

An +BnXn →L a+BX.
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Weak convergence in Rd. In the important special case of X = Rd with standard Euclidean
distance, the following statements are equivalent:

• The sequence (Pn)n converges weakly to P .
• For arbitrary infinitely often differentiable functions f : Rd → R such that f and all its partial
derivatives are bounded,

lim
n→∞

∫
f dPn =

∫
f dP.

• For arbitrary t ∈ Rd,

lim
n→∞

∫
exp(it>x)Pn(dx) =

∫
exp(it>x)P (dx).

To verify equivalence of the first two statements, note that if f : Rd → R is bounded and Lipschitz-
continuous, then supx∈Rd

∣∣fε(x)− f(x)
∣∣→ 0 as ε ↓ 0, where

fε(x) := IE f(x+ εZ), Z ∼ Nd(0, I).

Indeed, if L is the Lipschitz constant of f , then∣∣fε(x)− f(x)
∣∣ ≤ Lε IE ‖Z‖ ≤ Lε

√
d.

On the other hand, with Cd := (2π)−d/2,

fε(x) = Cd

∫
Rd

f(x+ εz) exp(−‖z‖2/2) dz

= Cdε
−d
∫
Rd

f(y) exp
(
−‖x− y‖2/(2ε2)

)
dy.

By induction, one can show that for any tuple α ∈ Nd0, there exists a d-variate polynomial pε,α :

Rd → R of degree α1 + · · ·+ αd such that

∂α1+···+αd

∂xα1
1 · · · ∂x

αd
d

exp
(
−‖x− y‖2/(2ε2)

)
= pε,α(x− y) exp

(
−‖x− y‖2/(2ε2)

)
,

and since the latter function is integrable, dominated convergence and an induction argument show
that

∂α1+···+αd

∂xα1
1 · · · ∂x

αd
d

fε(x) = Cdε
−d
∫
Rd

f(y)pε,α(x− y) exp
(
−‖x− y‖2/(2ε2)

)
dy

= Cdε
−d
∫
Rd

f(x− v)pε,α(v) exp
(
−‖v‖2/(2ε2)

)
dv,

obviously a bounded function of x.

From the equivalence of the first and third statement one can deduce another useful result about
weak convergence:

Theorem A.14 (Cramér–Wold). Let X and Xn, n ≥ 1, be random vectors in Rd. Then the
following two statements are equivalent:

(i) Xn →L X .

(ii) u>Xn →L u>X for any fixed unit vector u ∈ Rd.
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Weak convergence in R. In case of X = R, convergence in distribution and weak convergence
may be characterized in terms of the distribution functions Fn and F of Xn and X , respectively:
For arbitrary x ∈ R,

(A.6) lim
n→∞

Fn(x) = F (x) if F (x−) = F (x).

If the limiting distribution function F is continuous, statement (A.6) is even equivalent to a uni-
form convergence:

lim
n→∞

sup
intervals B⊂R

∣∣Pn(B)− P (B)
∣∣ = 0.

Proof of Theorem A.8. Obviously, statement (i) implies (ii).

To show that (ii) implies (iiia), let U ⊂ X be an open set, and for L > 0 let

fL(x) := min{Ld(x,X \ U), 1}

with d(x,X \ U) := infy∈X\U d(x, y). Then 0 ≤ fL ↑ 1U as L ↑ ∞, and fL is Lipschitz-
continuous with constant L. Hence, (ii) implies that for any fixed L,

lim inf
n→∞

Pn(U) ≥ lim inf
n→∞

∫
fL dPn =

∫
fL dP.

But
∫
fL dP ↑ P (U) as L ↑ ∞, so (iiia) is satisfied as well.

That (iiia) and (iiib) are equivalent follows from the fact that the complement of an open set is
closed and the complement of a closed set is open.

Suppose that (iiia) and (iiib) are satisfied. For any Borel set B ⊂ X , note that its interior Bo, its
closure B and its boundary ∂B satisfy the relations Bo ⊂ B ⊂ B = Bo ∪ ∂B. Consequently, if
P (∂B) = 0, then

lim inf
n→∞

Pn(B) ≥ lim inf
n→∞

Pn(Bo)
(iiia)

≥ P (Bo) = P (B)

and

lim sup
n→∞

Pn(B) ≤ lim inf
n→∞

Pn(B)
(iiib)

≤ P (B) = P (B),

whence (iv) is satisfied as well.

Finally suppose that property (iv) is satisfied. For a continuous function f : X → [a, b],∫
f dP(n) a+

∫ b

a
P(n)({f ≥ t}) dt.

Continuity of f implies that {f ≥ t} is closed and ∂{f ≥ t} ⊂ {f = t}. But P ({f = t}) > 0 for
at most countably many t ∈ [a, b]. Consequently, Pn({f ≥ t}) ∈ [0, 1] converges to P ({f ≥ t})
for all but at most countably many t ∈ [a, b]. Hence, by dominated convergence,∫

f dPn = a+

∫ b

a
Pn({f ≥ t}) dt → a+

∫ b

a
P ({f ≥ t}) dt =

∫
f dP.

Thus, (i) is satisfied too.
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A.6 Lindeberg’s Central Limit Theorem

The key message of Lindeberg’s Central Limit Theorem is that the distribution of a sum of stochas-
tically independent random variables is approximately Gaussian, if each summand has only little
impact on the total sum. In what follows we provide precise statements in this vein.

A.6.1 The Univariate Case

Theorem A.15. Let Y1, Y2, . . . , Yn be stochastically independent random variables with mean 0

and
∑n

i=1 IE(Y 2
i ) = 1. Then

sup
x∈R

∣∣∣IP{ n∑
i=1

Yi ≤ x
}
− Φ(x)

∣∣∣ ≤ CΛ1/2.

Here, C is a universal constant, and

Λ :=
n∑
i=1

IE
(
Y 2
i min(|Yi|, 1)

)
.

The quantity Λ measures the influence of the single summands Yi on the total sum. Obviously,
Λ ≤ 1. If, for instance, the modulus of each summand Yi is bounded from above by some constant
κ ≤ 1, then

Λ ≤
n∑
i=1

IE
(
|Yi|3

)
≤

n∑
i=1

IE
(
κY 2

i

)
= κ.

Example A.16 (Binomial distributions). Let X ∼ Bin(n, p) for some n ∈ N and p ∈ (0, 1).
Then X has the same distribution as

∑n
i=1Xi with independent random variables X1, . . . , Xn ∈

{0, 1} such that IE(Xi) = IP(Xi = 1) = p. Here

X − np√
np(1− p)

=L
∑
i=1

Yi with Yi :=
Xi − p√
np(1− p)

,

and the summands Y1, . . . , Yn satisfy the assumptions of Theorem A.15. In particular,

|Yi| ≤
1√

np(1− p)
,

whence
Λ ≤ 1√

np(1− p)
.

Consequently, the distribution of X is approximately Gaussian if its variance, Var(X) = np(1−
p), is large.

A proof of Theorem A.15 is given, for instance, in the monograph of Barbour and Chen (2005),
utilizing a very intriguing technique of Charles Stein. As shown later, the original proof of Linde-
berg leads to the bound CΛ1/4 instead of CΛ1/2. Lindeberg’s idea is to replace the summands Yi
successively by independent, Gaussian summands. Roughly saying, IE

(
Y 2
i min(1, |Yi|)

)
bounds

the approximation error resulting from replacing Yi with a random variable with distribution
N(0,Var(Yi)).
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A.6.2 The Multivariate Case

For the multivariate case we need a so-called triangular scheme of random vectors Yni ∈ Rd,
n ∈ N, 1 ≤ i ≤ n. Again, asymptotic statements are meant as n→∞.

Theorem A.17. For n ∈ N let Yn1,Yn2, . . . ,Ynn be stochastically independent random vectors
in Rd such that

IE(Yni) = 0 and IE(‖Yni‖2) < ∞.

Further, suppose that

Σn :=
n∑
i=1

IE
(
YniY

>
ni

)
→ Σ,

Λn :=
n∑
i=1

IE
(
‖Yni‖2 min(1, ‖Yni‖)

)
→ 0.

This implies that
n∑
i=1

Yni →L Nd(0,Σ).

Moreover,

IE
∥∥∥ n∑
i=1

YniY
>
ni −Σn

∥∥∥
F
→ 0 and IE

(
max

i=1,2,...,n
‖Yni‖2

)
→ 0.

Here ‖A‖F denotes the Frobenius norm
√

trace(A>A) of a matrix A.

Again, Λn measures the influence of the single summands Yni on their sum. For instance, if

‖Yni‖ ≤ κn for 1 ≤ i ≤ n,

then

Λn ≤ κn

n∑
i=1

IE
(
‖Yni‖2

)
= κn trace(Σn) = κn ·O(1).

Exercise A.18. For n ∈ N letWn1, . . . ,Wnn be random variables with values in [0,∞) such that

n∑
i=1

IE(Wni) = O(1).

Show that the following three conditions are equivalent:

lim
n→∞

n∑
i=1

IE
(
Wni min(Wni, 1)

)
= 0; (i)

lim
n→∞

n∑
i=1

IE
(
Wni min(W δ

ni, 1)
)

= 0 for any fixed δ > 0; (ii)

lim
n→∞

n∑
i=1

IE(Wni1[Wni≥ε]) = 0 for any fixed ε > 0. (iii)
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Example A.19 (Multinomial distributions). For n ∈ N letHn ∼ Mult(n,pn) with a probability
vector pn = (pn(j))Kj=1 ∈ (0, 1)K . Suppose that

pn → p and min
j=1,...,K

npn(j) → ∞

for a fixed probability vector p ∈ [0, 1]K . It is possible that some components of p are zero,
as long as the corresponding components of pn converge sufficiently slowly to zero. These two
assumptions imply that

n−1/2(Hn − npn) →L NK

(
0, diag(p)− pp>

)
and

n−1/2 diag(pn)−1/2(Hn − npn) →L NK

(
0, I −√p√p>

)
.

To verify this, we representHn as
∑n

i=1Hni with random vectorsHni ∈ {0, 1}K , where

Hni =


(1, 0, . . . , 0, 0)> with prob. pn(1),

(0, 1, 0, . . . , 0)> with prob. pn(2),
...(
0, 0, . . . , 0, 1)> with prob. pn(K).

But then n−1/2An(Hn − npn) =
∑n

i=1 Yni with

Yni := n−1/2An(Hni − pn),

where An = I or An = diag(pn)−1/2. One can easily verify that the assumptions of Theo-
rem A.17 are satisfied with Σ = diag(p)−pp> or Σ = I −√p√p>, respectively. In particular,

‖Yni‖ ≤
√

2/n or ‖Yni‖ ≤
(

min
j=1,...,K

npn(j)
)−1/2

,

because ‖Hni − pn‖2 = 2− 2H>nipn ≤ 2 and∥∥diag(pn)−1/2(Hni − pn)
∥∥2

=
K∑
j=1

(Hni(j)
2

pn(j)
− 2Hni(j) + pn(j)

)
=

K∑
j=1

Hni(j)

pn(j)
− 1 ≤

(
min

j=1,...,K
pn(j)

)−1
.

Exercise A.20. Let p and p1,p2,p3, . . . be probability vectors in RK (i.e. vectors with nonneg-
ative entries summing to one). Further let (Mn)n∈N be a sequence of random vectors such that
Mn ∼ Mult(n,pn), where

pn → p and min
1≤j≤K

npn(j)→∞.

(a) Consider Pearson’s chi-squared statistic

Tn := n

K∑
j=1

(p̂n(j)− pn(j))2

pn(j)
.
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Show that
Tn →L χ2

K−1.

(b) We define the Hellinger statistic as Hn := 4n
∥∥√p̂n −√pn∥∥2. Show that

(b.1)
max

1≤j≤K

∣∣∣∣ p̂n(j)

pn(j)
− 1

∣∣∣∣ →p 0;

(b.2)
Hn − Tn →p 0;

(b.3)
2
√
n
(√
p̂n −

√
pn
)
→L NK(0, I −√p√p>).

Interpret the result (b.3) geometrically: Show that
{√
p : p ∈ [0, 1]K ,

∑K
j=1 p(j) = 1

}
is a

certain subset of the unit sphere RK , and determine a linear subspace of RK on which the limiting
distribution NK(0, I −√p√p>) is concentrated.

Example A.21 (Sample means). Let X1,X2,X3, . . . be independent, identically distributed
random vectors in Rd such that IE(‖X1‖2) < ∞. Let µ := IE(X1) and Σ := Var(X1). Then
the sample means X̄n := n−1

∑n
i=1Xi satisfy the following limit theorem:

√
n(X̄n − µ) →L Nd(0,Σ).

The reason is that
√
n(X̄n − µ) =

∑n
i=1 Yni with

Yni := n−1/2(Xi − µ),

so IE(Yni) = 0, Σn = Σ, and

Λn = IE
(
‖X1 − µ‖2 min(n−1/2‖X1 − µ‖, 1)

)
→ 0

by dominated convergence.

Proof of Theorem A.17. Let G be the family of all twice differentiable functions g : Rd →
R such that its second derivative (Hessian matrix) D2g satisfies the following conditions: For
arbitrary x,y ∈ Rd,

‖D2g(x)‖ ≤ 1 and ‖D2g(x)−D2g(y)‖ ≤ 6‖x− y‖.

Furthermore, we extend the underlying probability space(s) for each n such that in addition to
the random vectors Yni there exist random vectors Zn1, . . . , Znn with distribution L(Zni) =

Nd(0,Var(Yni)) such that all 2n random vectors Yni and Zni are stochastically independent.
With these 2n random vectors we define the random sums

Sn :=
n∑
i=1

Yni and Tn :=

n∑
i=1

Zni ∼ Nd(0,Σn).

In what follows, we shall prove that

(A.7)
∣∣IE g(Sn)− IE g(Tn)

∣∣ ≤ K(d)Λn for all g ∈ G, if Λn ≤ 1,
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whereK(d) := 23/2(d2 +2d)3/4 +1. This finding, together with our general considerations about
weak convergence, show that Sn converges in distribution to Nd(0,Σ).

To verify (A.7), we utilize Lindeberg’s trick and define

Unk :=
∑
i<k

Zni +
∑
i>k

Yni

for 1 ≤ k ≤ n. Then

Sn = Un1 + Yn1,

Unk +Znk = Un,k+1 + Yn,k+1 for 1 ≤ k < n,

Tn = Unn +Znn.

Consequently,

g(Sn)− g(Tn) =
(
g(Un1 + Yn1)− g(Un1 +Zn1)

)
+ g(Un2 + Yn2)− g(Unn +Znn)

=

2∑
k=1

(
g(Unk + Ynk)− g(Unk +Znk)

)
+ g(Un3 + Yn3)− g(Unn +Znn)

= . . .

=

n∑
k=1

(
g(Unk + Ynk)− g(Unk +Znk)

)
,

and it suffices to show that for 1 ≤ k ≤ n,

(A.8)
∣∣IE(g(Unk + Ynk)− g(Unk +Znk)

)∣∣ ≤ K(d) IE
(
‖Ynk‖2 min(1, ‖Ynk‖)

)
,

provided that Λn ≤ 1. To this end, we employ the following Taylor expansion of g: For arbitrary
u,x ∈ Rd,

g(u+ x) = g(u) +∇g(u)>x+ 2−1x>D2g(u)x+ r(u,x)

with

|r(u,x)| =
∣∣∣∫ 1

0
(1− t)x>

(
D2g(u+ tx)−D2g(u)

)
x dt

∣∣∣
≤ ‖x‖2

∫ 1

0
(1− t)

∥∥D2g(u+ tx)−D2g(u)
∥∥ dt

≤ ‖x‖2
∫ 1

0
(1− t) min(2, 6t‖x‖) dt

≤ ‖x‖2 min(1, ‖x‖).

Combining this expansion with stochastic independence of Unk and (Ynk,Znk), we obtain the
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equation

IE
(
g(Unk + Ynk)− g(Unk +Znk)

)
= IE

(
∇g(Unk)

>(Ynk −Znk)
)

+ 2−1trace
(
IE
(
D2g(Unk)(YnkY

>
nk −ZnkZ

>
nk)
))

+ IE r(Unk,Ynk) + IE r(Unk,Znk)

= IE
(
∇g(Unk)

)>
IE(Ynk −Znk)︸ ︷︷ ︸

=0

+2−1trace
(
IE
(
D2g(Unk)

)
IE(YnkY

>
nk −ZnkZ

>
nk)︸ ︷︷ ︸

=0

)
+ IE r(Unk,Ynk) + IE r(Unk,Znk)

= IE r(Unk,Ynk) + IE r(Unk,Znk).

Consequently,∣∣IE(g(Unk + Ynk)− g(Unk +Znk)
)∣∣ ≤ IE

(
‖Ynk‖2 min(1, ‖Ynk‖)

)
+ IE

(
‖Znk‖3

)
,

and it suffices to show that

IE
(
‖Znk‖3

)
≤ 23/2(d2 + 2d)3/4 IE

(
‖Ynk‖2 min(1, ‖Ynk‖)

)
.

With Σnk := Var(Ynk) = Var(Znk) and Z ∼ Nd(0, I),

IE
(
‖Znk‖3

)
= IE

(
‖Σ1/2

nk Z‖
3
)
≤ ‖Σnk‖3/2 IE

(
‖Z‖3

)
≤ ‖Σnk‖3/2 IE

(
‖Z‖4

)3/4
= ‖Σnk‖3/2(d2 + 2d)3/4.

Moreover, ‖Σnk‖ =
∥∥IE(YnkY

>
nk)
∥∥ ≤ IE

(
‖Ynk‖2

)
, and for arbitrary ε ∈ (0, 1], the latter expec-

tation is not greater than

ε2 + IE
(
‖Ynk‖21[‖Ynk‖>ε]

)
≤ ε2 + IE

(
‖Ynk‖2 min(1, ‖Ynk‖)

)
/ε.

Setting ε := IE
(
‖Ynk‖2 min(1, ‖Ynk‖)

)1/3 ≤ Λ
1/2
n , then we obtain the upper bound

2 IE
(
‖Ynk‖2 min(1, ‖Ynk‖)

)2/3
for ‖Σnk‖, provided that Λn ≤ 1.

Now we show that the expected value of
∥∥∑n

i=1(Mni − IEMni)
∥∥
F

converges to 0, where
Mni := YniY

>
ni . For this purpose we writeMni = M ′

ni +M ′′
ni with

M ′
ni := max(1− ‖Yni‖, 0)Mni and M ′′

ni := min(‖Yni‖, 1)Mni.

Then

IE
∥∥∥ n∑
i=1

(Mni − IEMni)
∥∥∥
F
≤ IE

∥∥∥ n∑
i=1

(M ′
ni − IEM ′

ni)
∥∥∥
F

+ IE
∥∥∥ n∑
i=1

(M ′′
ni − IEM ′′

ni)
∥∥∥
F

≤
(

IE
(∥∥∥ n∑

i=1

(M ′
ni − IEM ′

ni)
∥∥∥2

F

))1/2

+ 2

n∑
i=1

IE ‖M ′′
ni‖F

≤
( n∑
i=1

IE
(
‖M ′

ni‖2F
))1/2

+ 2

n∑
i=1

IE ‖M ′′
ni‖F .
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But

‖M ′
ni‖2F = max(1− ‖Yni‖, 0)2‖Yni‖4 ≤ min(‖Yni‖, 1)‖Yni‖2/4,

‖M ′′
ni‖F = min(‖Yni‖, 1)‖Yni‖2,

whence IE
∥∥∑n

i=1(Mni − IEMni)
∥∥
F
≤ Λ

1/2
n /2 + 2Λn → 0.

It remains to show that that the expected value of maxi=1,...,n ‖Yni‖2 converges to 0. To this end,
we choose an arbitrary number εn ∈ (0, 1] and write

IE
(

max
i=1,...,n

‖Yni‖2
)
≤ IE

(
ε2
n +

n∑
i=1

‖Yni‖2 min(‖Yni‖, 1)/εn

)
= ε2

n + Λn/εn.

Setting εn = Λ
1/3
n in case of Λn ≤ 1 leads to the bound 2Λ

2/3
n for the expected value in question.

Proof of a weaker version of Theorem A.15. The proof of Theorem A.17 reveals that in the set-
ting of Theorem A.15,

(A.9)
∣∣IE g(S)− IE g(Z)

∣∣ ≤ K(1)Λ for all g ∈ G,

where S :=
∑n

i=1 Yi, Z ∼ N(0, 1), and G is the set of all twice differentiable functions g : R→ R
such that for arbitrary x, y ∈ R,

|g(x)| ≤ 1 and
∣∣g′′(x)− g′′(y)

∣∣ ≤ 6|x− y|.

Now let H : R → [0, 1] be three times differentiable with bounded third derivative such that
H = 1 on (−∞, 0] and H = 0 on [1,∞). Then cH ∈ G for a suitable constant c > 0. For x ∈ R
and ε > 0,

IP(S ≤ x) ≤ IEH((S − x)/ε)

≤
∣∣IEH((S − x)/ε)− IEH((Z − x)/ε)

∣∣+ IP(Z ≤ x+ ε)

≤ c−1ε−3K(1)Λ + Φ(x+ ε)

≤ c−1ε−3K(1)Λ + (2π)−1/2ε+ Φ(x),

and

IP(S ≤ x) ≥ IEH((S + ε− x)/ε)

≥ −
∣∣IEH((S + ε− x)/ε)− IEH((Z + ε− x)/ε)

∣∣+ IP(Z ≤ x− ε)

≥ −c−1ε−3K(1)ΛΦ(x− ε)

≥ −c−1ε−3K(1)Λ− (2π)−1/2ε+ Φ(x),

because cε3H((· − a)/ε) ∈ G for arbitrary a ∈ R, and 0 < Φ′ ≤ Φ′(0) = (2π)−1/2. Conse-
quently,

sup
x∈R

∣∣IP(S ≤ x)− Φ(x)
∣∣ ≤ c−1ε−3K(1)Λ + (2π)−1/2ε.

If we set ε := Dλ1/4 for some D > 0, the latter bound equals CΛ1/4 for some C > 0.
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Exercise A.22. Let Z be a real-valued random variable with IE(Z) = 0 and IE(Z2) = 1. Show
that for any constant σ ≥ 0 and any twice differentiable function f : R→ R with bounded second
derivative f ′′, ∣∣IE f(σZ)− IE f(Z)

∣∣ ≤ |σ2 − 1|‖f ′′‖∞/2.

A.7 Iteratively Reweighted Least Squares

The QR decomposition and least squares methods are essential ingredients in various regres-
sion methods. The general framework is as follows: Let D = [d1,d2, . . . ,dn]> ∈ Rn×p with
rank(D) = p. For i = 1, 2, . . . , n let Hi : R→ R be a twice continuously differentiable function
such that H ′′i > 0. Now we consider the target function L : Rp → R given by

(A.10) L(θ) :=
n∑
i=1

Hi(d
>
i θ).

Example A.23 (Least squares). For a vector Y ∈ Rn let

Hi(x) := (Yi − x)2.

Then

H ′i(x) = 2(x− Yi) and H ′′i (x) = 2.

Example A.24 (Logistic regression). For a vector Y ∈ [0, 1]n let

Hi(x) := −Yix+ log(1 + ex).

Then

H ′i(x) = `(x)− Yi and H ′′i (x) = `(x)(1− `(x))

with the logistic function

`(x) :=
ex

1 + ex
=

1

e−x + 1
∈ (0, 1).

The target function L in (A.10) is twice continuously differentiable with gradient

∇L(θ) =

n∑
i=1

H ′i(d
>
i θ)di,

and Hessian matrix

D2L(θ) =
n∑
i=1

H ′′i (d>i θ)did
>
i .
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Hence, the second order Taylor expansion of L(θ + ·) reads

L(θ + v) ≈ L(θ) +∇L(θ)>v +
1

2
v>D2L(θ)v

= L(θ) +
n∑
i=1

(
H ′i(d

>
i θ)d>i v +

1

2
H ′′i (d>i θ)(d>i v)2

)
= L(θ)− 1

2

n∑
i=1

H ′i(d
>
i θ)2

H ′′i (d>i θ)
+

1

2

n∑
i=1

(
H ′i(d

>
i θ)√

H ′′i (d>i θ)
+

√
H ′′i (d>i θ)d>i v

)2

= c(θ) +
1

2

∥∥Y (θ)−D(θ)v
∥∥2
,

where

Y (θ) :=

(
−H ′1(d>1 θ)√
H ′′1 (d>1 θ)

,
−H ′2(d>2 θ)√
H ′′2 (d>2 θ)

, . . . ,
−H ′n(d>n θ)√
H ′′n(d>n θ)

)>
∈ Rn,

D(θ) :=
[√

H ′′1 (d>1 θ)d1,

√
H ′′2 (d>2 θ)d2, . . . ,

√
H ′′n(d>n θ)dn

]>
∈ Rn×p.

Consequently, one step of the Newton–Raphson procedure is given by

θ 7→ θ + v(θ) with v(θ) := arg min
v∈Rp

∥∥Y (θ)−D(θ)v
∥∥2
,

and v(θ) may be computed by means of the QR decomposition. Furthermore, the directional
derivative ∇L(θ)>v(θ) equals

∇L(θ)>v(θ) = −Y (θ)>D(θ)v(θ) = −‖D(θ)v(θ)‖2.

A.8 Couplings and Mallows Distances

In the context of bootstrap procedures and elsewhere, measures of distance between probability
distributions are useful. In the present section we consider a general class of such distance mea-
sures which are based on couplings and related to weak convergence. Throughout this section let
(X , d) be a complete and separable metric space, equipped with its Borel σ-field.

A.8.1 Optimal Transport

We use repeatedly the fact that X ×X is also a complete, separable metric space if equipped with
the metric

d
(
(x1, y1), (x2, y2)

)
:= max

(
d(x1, x2), d(y1, y2)

)
or

d
(
(x1, y1), (x2, y2)

)
:=
√
d(x1, x2)2 + d(y1, y2)2,

for instance. And then

Borel(X × X ) = Borel(X )⊗ Borel(X ).
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Exercise A.25 (Cartesian products). As in Exercise A.12, let (X , dX ) and (Y, dY) be metric
spaces, and for (x1, y1), (x2, y2) ∈ X × Y set

d
(
(x1, y1), (x2, y2)

)
:=
∥∥(dX (x1, x2), dY(y1, y2)

)∥∥
with an arbitrary norm ‖ · ‖ on R× R such that ‖(v1, v2)‖ is non-decreasing in |v1| and |v2|.

(a) Suppose that both spaces (X , dX ) and (Y, dY) are separable. Show that (X ×Y, d) is separa-
ble, too, and that

Borel(X × X , d) = Borel(X , dX )⊗ Borel(Y, dY).

(b) Show that (X × Y, d) is complete, provided that both spaces (X , dX ) and (Y, dY) are com-
plete.

For two probability distributions P and Q on X , letR(P,Q) be the set of all probability distribu-
tions R on X × X such that for (X,Y ) ∼ R,

X ∼ P and Y ∼ Q.

A distribution R ∈ R(P,Q) is a coupling of P and Q. A simple but not too useful coupling is the
product measure

P ⊗Q.

Now we consider a continuous cost function C : X × X → [0,∞) and seek to minimize
∫
C dR

over all couplings R ∈ R(P,Q). This is a so-called transport problem: We may interpret P and
Q as mass distributions on X , and C(x, y) are the costs of transferring a unit mass from point x
to point y. A distribution R ∈ R(P,Q) may be interpreted as a transport plan: For Borel sets
A,B ⊂ X , R(A × B) specifies which part of the mass P (A) is transported from the set A into
the set B.

The following theorem shows that there is always an optimal coupling of P and Q:

Theorem A.26 (Optimal transport). There exists a distribution Ro ∈ R(P,Q) such that∫
C dRo = inf

R∈R(P,Q)

∫
C dR.

To prove Theorem A.26, we use Prohorov’s Theorem:

Theorem A.27 (Prohorov).

(i) Let P be a probability measure on X . Then for any ε > 0 there exists a compact set K ⊂ X
such that P (K) ≥ 1− ε.

(ii) Let (Pn)n be a sequence of probability distributions on X . Suppose that for any ε > 0

there exists a compact set K ⊂ X such that Pn(K) ≥ 1 − ε for all n ∈ N. Then there exists a
subsequence (Pn(k))k of (Pn)n which converges weakly to some probability distribution on X .

Proof of Theorem A.26. Let c∗ be the infimum of
∫
C dR over all R ∈ R(P,Q). In case of

c∗ = ∞, the assertion is trivial; we could just choose Ro = P ⊗ Q. Hence let c∗ < ∞, and let
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(Rn)n be a sequence of distributions in R(P,Q) such that
∫
C dRn → c∗. According to part (i)

of Theorem A.27, for any ε > 0 there exist compact setsK1,K2 ⊂ X such that P (K1), Q(K2) ≥
1− ε/2. But then, K := K1 ×K2 is a compact subset of X × X such that

R(K) ≥ 1− P (X \K1)−Q(X \K2) ≥ 1− ε

for all R ∈ R(P,Q). According to part (ii) of Theorem A.27 (applied to X ×X instead of X ), we
may replace the sequence (Rn)n with a subsequence, if necessary, such that it converges weakly
to some distribution Ro on X ×X . The Continuous Mapping Theorem, applied to the continuous
projections X ×X 3 (x, y) 7→ x ∈ X and X ×X 3 (x, y) 7→ y ∈ X , implies thatRo ∈ R(P,Q),
too. Moreover, Exercise A.11 implies that∫

C dRo ≤ lim inf
n→∞

∫
C dRn = c∗,

whence c∗ =
∫
C dRo.

A.8.2 Optimal Transport on the Real Line

The proof of Theorem A.26 does not provide an explicit optimal coupling. Indeed, the determi-
nation of optimal couplings is still an active area of research. But in the special case of X = R
and

C(x, y) = φ(x− y)

with a convex function φ : R→ [0,∞), there is an explicit version of the optimal coupling based
on quantile functions:

Theorem A.28 (Optimal coupling in R). Let P and Q be probability measures on R with distri-
bution functions F and G, respectively. Then∫

φ(x− y)R(dx, dy) ≥
∫ 1

0
φ
(
F−1(u)−G−1(u)

)
du

for arbitrary couplings R ∈ R(P,Q). Here, F−1 and G−1 are the quantile functions of P and Q,
respectively.

Theorem A.28 shows that an optimal coupling of the distributions P and Q is given by

Ro := L
(
F−1(U), G−1(U)

)
with U ∼ Unif(0, 1).

As a preparation of the proof of Theorem A.28, we pose two exercises:

Exercise A.29. Let φ : R→ R be a convex function.

(a) Show that for arbitrary numbers a1 < a2 and b1 < b2,

φ(a1 − b2) + φ(a2 − b1) ≥ φ(a1 − b1) + φ(a2 − b2).

(b) Show that for arbitrary integers n ≥ 2, real numbers a1 ≤ · · · ≤ an and b1 ≤ · · · ≤ bn, and
permutations σ of {1, 2, . . . , n},

n∑
i=1

φ(ai − bσ(i)) ≥
n∑
i=1

φ(ai − bi).
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Exercise A.30. Let F be a distribution function on the real line. Show that F−1 is continuous at
u ∈ (0, 1) if and only if F < u on (−∞, F−1(u)) and F > u on (F−1(u),∞).

Proof of Theorem A.28. Let R be an arbitrary coupling of P and Q such that
∫
C dR < ∞.

Now consider a probability space (Ω,A, IP) with independent random variables

(X1, Y1), (X2, Y2), (X3, Y3), . . . ∼ R and U ∼ Unif((0, 1)).

For any integer n ≥ 2, consider the order statistics Xn:1 ≤ · · · ≤ Xn:n of X1, . . . , Xn, and
Yn:1 ≤ · · · ≤ Yn:n of Y1, . . . , Yn. Then it follows from Exercise A.29, Fubini’s theorem and
Fatou’s lemma that∫

C dR = lim
n→∞

IE
( 1

n

n∑
i=1

φ(Xi − Yi)
)
≥ lim inf

n→∞
IE
( 1

n

n∑
i=1

φ(Xn:i − Yn:i)
)

= lim inf
n→∞

IE
(
φ(Xn:dnUe − Yn:dnUe)

)
≥ IE

(
lim inf
n→∞

φ
(
Xn:dnUe − Yn:dnUe)

)
.

Hence, since φ is continuous, it suffices to show that

lim
n→∞

Xn:dnUe = F−1(U) and lim
n→∞

Yn:dnUe = G−1(U)

almost surely. It suffices to verify the former statement; the latter one follows analogously. Since
F−1 is monotone increasing on (0, 1), the set of points u ∈ (0, 1) at which F−1 is discontinuous
is at most countably infinite. Hence, with probability one, U is a continuity point of F−1. This is
equivalent to saying that with probability one,

F

{
< U on (−∞, F−1(U)),

> U on (F−1(U),∞).

Moreover, if F̂n denotes the empirical distribution function of X1, . . . , Xn, it is well-known that

lim
n→∞

‖F̂n − F‖∞ = 0

almost surely. Thus, with probability one, for any ε > 0 there exists a random index N(ε) such
that

F̂n(F−1(U)− ε) < U < F̂n(F−1(U) + ε) for all n ≥ N(ε).

But with K := dnUe,

F̂n(Xn:K −) ≤ (K − 1)/n < U and F̂n(Xn:K) ≥ K/n ≥ U,

so the inequalites F̂n(F−1(U)− ε) < U < F̂n(F−1(U) + ε) imply that

F−1(U)− ε < Xn:dnUe ≤ F−1(U) + ε.
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A.8.3 Mallows Distances

An important special case of the cost function C : X × X → [0,∞) is

C(x, y) := d(x, y)k

for some k ≥ 1.

Theorem A.31 (Mallows distance). Let P and Q be probability measures on X . For k ≥ 1, the
minimum

dM,k(P,Q) := min
R∈R(P,Q)

(∫
d(x, y)k R(dx, dy)

)1/k
∈ [0,∞]

exists. It defines a metric dM,k(·, ·), the Mallows distance with exponent k, on the space of all
probability measures on X .

In case of X = R and d(x, y) := |x − y|, one can apply Theorem A.28 and obtains the explicit
formula

dM,k(P,Q) =

(∫ 1

0

∣∣F−1(u)−G−1(u)
∣∣k du)1/k

,

where F and G are the distribution functions of P and Q, respectively.

The next theorem establishes for two special cases a connection between weak convergence and
convergence with respect to Mallows distances.

Theorem A.32. Let P1, P2, P3, . . . and P be probability distributions on (X , d) and k an arbitrary
number in [1,∞).

(a) In case of a bounded metric d(·, ·),

lim
n→∞

dM,k(Pn, P ) = 0

if and only if
Pn →w P.

(b) Let (X , ‖ · ‖) be a separable Banach space with corresponding metric d(x, y) := ‖x − y‖.
Further let

∫
‖x‖k P (dx) < ∞ and

∫
‖x‖k Pn(dx) < ∞ for all n ≥ 1. Then the following three

statements are equivalent:
lim
n→∞

dM,k(Pn, P ) = 0; (b.1)

Pn →w P and
∫
‖x‖k Pn(dx) →

∫
‖x‖k P (dx); (b.2)

lim
n→∞

∫
f dPn =

∫
f dP for all f ∈ C(X ) such that sup

x∈X

|f(x)|
1 + ‖x‖k

<∞. (b.3)

Remark. The function (x, y) 7→ min(d(x, y), 1) defines another metric on X , and the topolo-
gies generated by these metrics coincide; see Exercise A.33. Hence, part (a) of Theorem A.32
shows that weak convergence of probability measures is equivalent to convergence with respect to
the metric

(P,Q) 7→ min
R∈R(P,Q)

(∫
min(d(x, y), 1)k R(dx, dy)

)1/k
.
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Exercise A.33. Let (X , d) be a metric space, and let τ : [0,∞]→ [0,∞] be a monotone increas-
ing function such that limr→0 τ(r) = 0, but τ(r) > 0 for arbitrary r > 0. Furthermore, let τ be
subadditive, i.e.

τ(r + s) ≤ τ(r) + τ(s) for arbitrary r, s ≥ 0.

Show that τ ◦ d defines a metric on X which induces the same topology as d. That means, a set
U ⊂ X is open with respect to d if and only if it is open with respect to τ ◦ d.

Proof of Theorem A.31. The existence of an optimal coupling of P and Q is a consequence of
Theorem A.26. It remains to show that dM,k(·, ·) is a metric.

Obviously, dM,k(P,Q) = dM,k(Q,P ) ≥ 0. And it follows from dM,k(P,Q) = 0 that there exists
a random variable (X,Y ) ∈ X ×X such that X ∼ P , Y ∼ Q and X = Y almost surely. But this
implies that P = Q. Hence, it remains to show that dM,k(·, ·) satisfies the triangle inequality, i.e.

dM,k(P1, P2) ≤ dM,k(P1, P0) + dM,k(P2, P0)

for arbitrary probability distributions P0, P1, P2 on X . To this end, let R1 ∈ R(P0, P1) and
R2 ∈ R(P0, P2) such that∫

d(x, y)k Rj(dx, dy) = dM,k(P0, Pj)
k for j = 1, 2.

Now we choose Markov kernels Kj : X × Borel(X )→ [0, 1] such that

Rj(B × C) =

∫
B
Kj(x,C)P0(dx) for all B,C ∈ Borel(X ).

Then we define a probability distribution R̄ on X × X × X via

R̄(B0 ×B1 ×B2) :=

∫
B0

K1(x,B1)K2(x,B2)P0(dx).

With the random variablesXs(ω0, ω1, ω2) := ωs onX ×X×X , the pair (X0, Xj) has distribution
Rj . Then the triangle inequalities for d(·, ·) and for Lk-spaces yield that

dM,k(P1, P2) ≤
(

IE
[
d(X1, X2)k

])1/k

≤
(

IE
[(
d(X0, X1) + d(X0, X2)

)k])1/k

≤
(

IE
[
d(X0, X1)k

])1/k
+
(

IE
[
d(X0, X2)k

])1/k

= dM,k(P0, P1) + dM,k(P0, P2).

Proof of Theorem A.32. The proof uses Skorohod’s Theorem: The sequence (Pn)n converges
weakly to P if and only if there exists a probability space (Ω,A, IP) carrying X -valued random
variables X1, X2, X3, . . . and X such that X ∼ P , Xn ∼ Pn for all n, and

lim
n→∞

Xn = X almost surely.
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In the special case of X = R with the usual topology, one may work with X := F−1(U) and
Xn := F−1

n (U), where F and Fn are the distribution functions of P and Pn, respectively, while
U ∼ Unif(0, 1).

Proof of Part (a). Let 0 ≤ d(·, ·) ≤ do < ∞. Suppose that (Pn)n converges weakly to P . With
the random variables X and Xn above,

lim sup
n→∞

dM,k(Pn, P )k ≤ lim sup
n→∞

IE
[
d(Xn, X)k

]
= 0

by dominated convergence, because 0 ≤ d(Xn, X)k ≤ dko and d(Xn, X)k → 0 almost surely.

Suppose that dM,k(Pn, P )→ 0. For each n ≥ 1 let Rn ∈ R(Pn, P ) be an optimal coupling of Pn
and P . Then for arbitrary bounded and Lipschitz-continuous functions f : X → R with Lipschitz
constant L, ∣∣∣∫ f dPn −

∫
f dP

∣∣∣ =
∣∣∣∫ (f(x)− f(y)

)
Rn(dx, dy)

∣∣∣
≤
∫ ∣∣f(x)− f(y)

∣∣Rn(dx, dy)

≤ L

∫
d(x, y)Rn(dx, dy)

≤ L
(∫

d(x, y)k Rn(dx, dy)
)1/k

= LdM,k(Pn, P ) → 0.

Hence, (Pn)n converges weakly to P .

Proof of Part (b). Suppose that (b.1) holds true. For each n ≥ 1 let Rn ∈ R(Pn, P ) be an
optimal coupling of Pn and P . Then one can argue as above that

lim
n→∞

∫
f dPn =

∫
f dP

for bounded, Lipschitz-continuous functions f : X → R. Furthermore, since ‖x‖ ≤ ‖x−y‖+‖y‖
for arbitrary x, y ∈ Rk,(∫

‖x‖k Pn(dx)
)1/k

=
(∫
‖x‖k Rn(dx, dy)

)1/k

≤
(∫
‖x− y‖k Rn(dx, dy)

)1/k
+
(∫
‖y‖k Rn(dx, dy)

)1/k

= dM,k(Pn, P ) +
(∫
‖x‖k P (dx)

)1/k
,

and interchanging the roles of Pn and P leads to the inequality∣∣∣(∫ ‖x‖k Pn(dx)
)1/k

−
(∫
‖x‖k P (dx)

)1/k∣∣∣ ≤ dM,k(Pn, P ).

Hence, limn→∞
∫
‖x‖k Pn(dx) =

∫
‖x‖k P (dx). Thus, (b.2) is satisfied as well.
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Suppose that (b.2) holds true. We resort to the random variables X and Xn on (Ω,A, IP) again.
Obviously,

dM,k(Pn, P )k ≤
∫
‖Xn −X‖k d IP,

and now we show that the expected value on the right hand side converges to 0. For this purpose,
we write Xn = ‖Xn‖ · Un with a random unit vector Un ∈ X and define

X̃n := min(‖Xn‖, ‖X‖) · Un.

Then(∫
‖Xn −X‖k d IP

)1/k
≤
(∫ (

‖X̃n −X‖+ ‖Xn − X̃n‖
)k
d IP
)1/k

≤
(∫
‖X̃n −X‖k d IP

)1/k
+
(∫
‖Xn − X̃n‖k d IP

)1/k
.

The construction of X̃n implies that ‖X̃n‖ ≤ ‖X‖ and limn→∞ X̃n = X almost surely. Con-
sequently, limn→∞ ‖X̃n − X‖k = 0 almost surely, and ‖X̃n − X‖k is bounded from above by
2k‖X‖k with

∫
2k‖X‖k d IP <∞. Thus, by dominated convergence,

(A.11) lim
n→∞

∫
‖X̃n −X‖k d IP = 0.

In particular,

lim
n→∞

∫
‖X̃n‖k d IP =

∫
‖X‖k d IP .

Another implication of the construction of X̃n is that ‖Xn − X̃n‖ = ‖Xn‖ − ‖X̃n‖. Since
f(t) := tk is convex in t ≥ 0, ‖Xn − X̃n‖k = f(‖Xn‖ − ‖X̃n‖) − f(0) is not larger than
f(‖Xn‖)− f(‖X̃n‖) = ‖Xn‖k − ‖X̃n‖k. Consequently,∫

‖Xn − X̃n‖k d IP ≤
∫
‖Xn‖k d IP−

∫
‖X̃n‖k d IP → 0.

The equivalence of (b.2) and (b.3) results from Exercise A.11.

Exercise A.34. (a) Show that for arbitrary distribution functions F and G on the real line,

dM,1(F,G) =

∫
R

∣∣F (x)−G(x)
∣∣ dx.

(b) Let Y1, . . . , Yn be independent random variables with distribution function F . Show that for
the empirical distribution function F̂n of (Yi)

n
i=1,

√
n IE dM,1(F̂n, F ) →

√
2

π

∫
R

√
F (y)(1− F (y)) dy.

Exercise A.35. Consider vectors µ, µ̃ in Rp and symmetric, positive semidefinite matrices Σ, Σ̃

in Rp×p. Show that

dM,2

(
Np(µ,Σ), Np(µ̃, Σ̃)

)2 ≤ ∥∥µ− µ̃∥∥2
+
∥∥Σ1/2 − Σ̃

1/2∥∥2

F
.

Here ‖M‖F := trace(M>M)1/2 =
(∑

i,jM
2
ij

)1/2
is the Frobenius norm of an arbitrary matrix

M .

Additional task: LetA,B ∈ Rp×p be symmetric and positive semidefinite. Show that∥∥A1/2 −B1/2
∥∥2

F
≤ p1/2‖A−B‖F .
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Lindeberg’s CLT revisited. The Mallows distance dM,2(·, ·) of distributions on Rd, where
d(x, y) is the usual Euclidean norm ‖x− y‖, is particularly useful in connection with the Central
Limit Theorem. Here is an elegant extension of Theorem A.17:

Corollary A.36. For n ∈ N let Yn1,Yn2, . . . ,Ynn be stochastically independent random vectors
in Rd such that

IE(Yni) = 0 and IE(‖Yni‖2) < ∞.

Further, suppose that

Σn :=
n∑
i=1

IE
(
YniY

>
ni

)
= O(1) and Λn :=

n∑
i=1

IE
(
‖Yni‖2 min(1, ‖Yni‖)

)
→ 0.

Then

dM,2

(
L
( n∑
i=1

Yni

)
,Nd(0,Σn)

)
→ 0

and

IE
∥∥∥ n∑
i=1

YniY
>
ni −Σn

∥∥∥
F
→ 0, IE

(
max

i=1,2,...,n
‖Yni‖2

)
→ 0.

Proof. Let δ ≥ 0 be the limes superior of

δn := dM,2

(
L
( n∑
i=1

Yni

)
,Nd(0,Σn)

)
+ IE

∥∥∥ n∑
i=1

YniY
>
ni −Σn

∥∥∥
F

+ IE
(

max
i=1,2,...,n

‖Yni‖2
)

as n → ∞. We want to show that δ = 0. To this end, let n(1) < n(2) < n(3) < · · · be indices
such that limk→∞ δn(k) = δ. Since (Σn)n is bounded, we may even assume that

Σ := lim
k→∞

Σn(k)

exists. But now we could replace the original triangular array (Yni)n≥1,1≤i≤n with the following
array (Ỹni)n≥1,1≤i≤n without changing δ: For n < n(1) we set Ỹni := 0, 1 ≤ i ≤ n, and for
n(k) ≤ n < n(k + 1), k ≥ 1,

Ỹni :=

{
Yn(k)i if 1 ≤ i ≤ n(k),

0 if n(k) < i ≤ n.

In other words, we may assume without loss of generality that the assumptions of Theorem A.17
are satisfied. But then it follows from Theorems A.17 and A.32 that

dM,2

(
L
( n∑
i=1

Yni

)
,Nd(0,Σ)

)
→ 0

and

IE
∥∥∥ n∑
i=1

YniY
>
ni −Σn

∥∥∥
F
→ 0, IE

(
max

i=1,2,...,n
‖Yni‖2

)
→ 0.

Moreover, Exercise A.35 implies that

dM,2

(
Nd(0,Σ),Nd(0,Σn)

)
→ 0,
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so the triangular inequality for dM,2(·, ·) implies that

dM,2

(
L
( n∑
i=1

Yni

)
,Nd(0,Σn)

)
→ 0.

Hence, the limes superior δ is equal to 0.

A.9 An Inequality for Sums of Independent Random Vectors

At various places in these lecture notes, inequalities for sums of independent random variables are
useful. Let X1, X2, . . . , Xn be independent random variables with values in Rd, and let ‖ · ‖ be
the usual Euclidean norm on Rd. We assume that IE ‖Xi‖ <∞ for all i and consider

S :=
n∑
i=1

Xi

as well as X̄ := n−1S.

Let us start with two special cases: By the triangle inequality,

IE ‖S − IE(S)‖ ≤
n∑
i=1

IE ‖Xi − IE(Xi)‖ ≤ 2

n∑
i=1

IE ‖Xi‖.

Moreover,

IE
(
‖S − IE(S)‖2

)
=

n∑
i,j=1

IE
(
(Xi − IE(Xi))

>(Xj − IE(Xj))
)

=
n∑
i=1

(
IE
(
‖Xi‖2

)
−
∥∥IE(Xi)

∥∥2
)

≤
n∑
i=1

IE
(
‖Xi‖2

)
,

provided that all second moments IE
(
‖Xi‖2

)
are finite. Both inequalities may be generalized to

the situation that for a fixed r ≥ 1, all r-th moments IE(‖Xi‖r) are finite.

Theorem A.37. For each r ≥ 1 there exists a universal constant Cr,d such that

IE
(
‖S − IE(S)‖r

)
≤ Cr,d IE

(( n∑
i=1

‖Xi‖2
)r/2)

≤ Cr,dn
max(r/2−1,0)

n∑
i=1

IE(‖Xi‖r).

In particular,

IE
(
‖X̄ − IE(X̄)‖r

)
≤ Cr,dn

−min(r−1,r/2) 1

n

n∑
i=1

IE(‖Xi‖r).

Remark. The proof presented here yields the constant

Cr,d = (2π)r/2 IE(‖G‖r)d−min(r/2,1)

with a standard Gaussian random vector G ∈ Rd.
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Proof of Theorem A.37. We complement the underlying probability space such that it carries
stochastically independent random variables X1, . . . , Xn, X ′1, . . . , X ′n and G1, . . . , Gmax(n,d)

such that L(X ′i) = L(Xi) and L(Gj) = N(0, 1). Now we apply Jensen’s inequality repeatedly.
At first, withX = (Xi)

n
i=1 and IEo(·) := IE(· |X) one may write

IE
(
‖S − IE(S)‖r

)
= IE

(∥∥∥IEo

( n∑
i=1

(Xi −X ′i)
)∥∥∥r)

≤ IE

(
IEo

(∥∥∥ n∑
i=1

(Xi −X ′i)
∥∥∥r))

= IE

(∥∥∥ n∑
i=1

(Xi −X ′i)
∥∥∥r).

For symmetry reasons,
∑

i(Xi −X ′i) has the same distribution as
∑

i sign(Gi)(Xi −X ′i), so

IE

(∥∥∥ n∑
i=1

(Xi −X ′i)
∥∥∥r) = IE

(∥∥∥ n∑
i=1

sign(Gi)(Xi −X ′i)
∥∥∥r)

= IE

(∥∥∥ n∑
i=1

sign(Gi)Xi −
n∑
i=1

sign(Gi)X
′
i

∥∥∥r)

≤ 2r IE

(∥∥∥ n∑
i=1

sign(Gi)Xi

∥∥∥r),
because

‖A±B‖r ≤ 2r
(‖A‖+ ‖B‖

2

)r
≤ 2r

‖A‖r + ‖B‖r

2
.

But
n∑
i=1

sign(Gi)Xi =
√
π/2 IE

( n∑
i=1

GiXi

∣∣∣ (sign(Gi)
)n
i=1
,X
)
,

because |Gi| and sign(Gi) are stochastically independent with IE(|Gi|) =
√

2/π. Consequently,

IE

(∥∥∥ n∑
i=1

sign(Gi)Xi

∥∥∥r) = (π/2)r/2 IE

(∥∥∥∥IE
( n∑
i=1

GiXi

∣∣∣ (sign(Gi)
)n
i=1
,X
)∥∥∥∥r)

≤ (π/2)r/2 IE

(
IE

(∥∥∥ n∑
i=1

GiXi

∥∥∥r ∣∣∣∣ (sign(Gi)
)n
i=1
,X

))

= (π/2)r/2 IE

(∥∥∥ n∑
i=1

GiXi

∥∥∥r).
The conditional distribution of

∑n
i=1GiXi, givenX , is a centered d-variate Gaussian distribution

with covariance matrix

Σ = Σ(X) :=

n∑
i=1

XiX
>
i .

Hence,

IE

(∥∥∥ n∑
i=1

GiXi

∥∥∥r) = IE IEo

(∥∥∥ n∑
i=1

GiXi

∥∥∥r)
= IE IEo

(∥∥Σ1/2G
∥∥r),
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with G := (Gj)
d
j=1 ∼ Nd(0, Id). If we write

G = ‖G‖U,

then ‖G‖, the unit vector U andX are stochastically independent, and

IEo
(
‖Σ1/2G‖r

)
= IE

(
‖G‖r

)
IEo
(
‖Σ1/2U‖r

)
= IE

(
‖G‖r

)
IEo
(
(U>ΣU)r/2

)
.

Consequently, defining

D = D(X) := trace(Σ)1/2 =
( n∑
i=1

‖Xi‖2
)1/2

,

it suffices to show that

IEo
(
(U>ΣU)r/2

)
≤ C̃r,dD

r

for some constant C̃r,d.

In case of 1 ≤ r ≤ 2, we have the inequality

IEo
(
(U>ΣU)r/2

)
≤
(
IEo(U

>ΣU)
)r/2

=
(
d−1D2

)r/2
= d−r/2Dr,

because U>ΣU =L
∑d

j=1 U
2
j λj(Σ), and a symmetry consideration shows that IE(U2

j ) = 1/d for
all j.

In case of r ≥ 2, we use the fact that
∑d

j=1 U
2
j = 1:

IEo
(
(U>ΣU)r/2

)
= IEo

(( d∑
j=1

U2
j λj(Σ)

)r/2)
≤ IEo

( d∑
j=1

U2
j λj(Σ)r/2

)

= d−1
d∑
j=1

λj(Σ)r/2 ≤ d−1
d∑
j=1

λj(Σ)trace(Σ)r/2−1

= d−1trace(Σ)r/2 = d−1Dr.

All in all, this yields the first asserted inequality, where Cr,d = (2π)r/2 IE(‖G‖r)d−min(r/2,1).

Since ‖Xi‖2/D2 ∈ [0, 1], we may conclude that for 1 ≤ r ≤ 2,

n∑
i=1

‖Xi‖r/Dr =

n∑
i=1

(
‖Xi‖2/D2

)r/2 ≥ n∑
i=1

‖Xi‖2/D2 = 1,

because 0 < r/2 ≤ 1, so Dr ≤
∑n

i=1 ‖Xi‖r. In case of r > 2, we apply Jensen’s inequality to
the convex function 0 ≤ t 7→ tr/2 and obtain the inequality

Dr = nr/2
( 1

n

n∑
i=1

‖Xi‖2
)r/2

≤ nr/2
1

n

n∑
i=1

‖Xi‖r = nr/2−1
n∑
i=1

‖Xi‖r.
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A.10 Stochastic Landau Symbols

Let (Xn)n be a sequence of real- or vector-valued random variables, and let (Rn)n be a sequence
of random variables Rn > 0. One writes

Xn = Op(Rn)

and says that “Xn is of stochastic order Rn” if for any ε > 0 there exists a constant C such that

lim sup
n→∞

IP(|Xn| ≥ CRn) ≤ ε.

One writes
Xn = op(rn)

and says that “Xn is of smaller stochastic order than Rn” if for any ε > 0,

lim
n→∞

IP(|Xn| ≥ εRn) = 0.

The symbols Op(Rn) and op(Rn) are also used directly as placeholders for sequences of random
variables with the stated properties. Often one uses a deterministic sequence (rn)n of numbers
rn > 0 rather than a random sequence (Rn)n. Important special cases are Op(1) and op(1),
corresponding to the constant sequence (1)n. Indeed, Xn = Op(Rn) if and only if R−1

n Xn =

Op(1), and Xn = op(Rn) if and only if R−1
n Xn = op(1). The statement Xn = Op(1) is also

phrased as “Xn is bounded in probability”, and Xn = op(1) means that Xn converges to zero in
probability.

Exercise A.38. Prove the following rules for stochastic Landau symbols:

(a) op(Rn) = Op(Rn)

(b) Op(Rn) +Op(Sn) = Op

(
max(Rn, Sn)

)
(c) op(Rn) + op(Sn) = op

(
max(Rn, Sn)

)
(d) Op(Rn)Op(Sn) = Op(RnSn)

(e) Op(Rn)op(Sn) = op(RnSn)

(f) f(a+ op(1)) = f(a) + op(1) whenever f is continuous at a.

(g) f(a+Op(Rn)) = f(a) +Op(Rn) whenever lim sup06=x→0

∣∣f(a+ x)− f(a)
∣∣/|x| <∞ and

Rn = op(1).

These rules are meant to be read from left to right. For example, (e) means that ifXn is of stochas-
tic orderRn and Yn is of smaller stochastic order than Sn, thenXnYn is of smaller stochastic order
than RnSn.

Exercise A.39. Prove the following rules for (stochastic) Landau symbols:

(a) If Xn converges in distribution to X , then Xn = Op(1).

(b) If IE
(
|Xn|k

)
= O(an) for some k > 0, then Xn = Op(a

1/k
n ).

(c) If IE
(
|Xn|k

)
= o(an) for some k > 0, then Xn = op(a

1/k
n ).

In parts (b-c), (an)n is a deterministic sequence of numbers an > 0.


