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Introduction

In this course we are dealing with various optimization methods which are used frequently in
statistics and other fields. The optimization problems we’ll encounter may be divided roughly into
three categories:

(a) Minimization problems. A function f : X → R = [−∞,∞] has to be minimized. This
concerns both the minimal value,

inf
X
f = inf

x∈X
f(x),

as well as the set of minimizers,

arg min
X

f = arg min
x∈X

f(x) :=
{
x ∈ X : f(x) = inf

X
f
}
.

(b) Finding roots. For a mapping f : X → Y and a point b ∈ Y we want to determine the set

f−1(b) = {x ∈ X : f(x) = b}

or at least one of its elements.

(c) Fixed point problems. For a mapping f : X → Y with X ⊂ Y we want to determine its set
of fixed points,

FP(f) := {x ∈ X : f(x) = x}.

Quite often one translates minimization problems into root finding or fixed point problems.
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Chapter 1

Univariate Procedures

In this chapter we consider functions f : X → R on a real interval X ⊂ R.

1.1 Bisection Methods

Suppose that f : [a, b] → R is a continuous function such that f(a) ≤ 0 ≤ f(b). According to
the intermediate value theorem for continuous functions, there exists at least one point x∗ ∈ [a, b]

with f(x∗) = 0. This fact is used in the algorithm in Table 1.1. It returns a pair (xa, xb) of points
in [a, b] such that 0 ≤ xb − xa ≤ δ and f(x∗) = 0 for some x∗ ∈ [xa, xb]. It terminates after⌈

log2

(b− a
δ

)⌉
executions of the while-loop, because after n ≥ 0 executions,

xb − xa = (b− a)2−n.

Sometimes one would also like to ensure that |f(x)| ≤ δ for all x ∈ [xa, xb]. To do so, we
now assume that f is also isotonic (non-decreasing) and modify the algorithm from Table 1.1
as described in Table 1.2. In case of a differentiable function f one can verify easily that the

Algorithm (xa, xb)← Bisection(f, a, b, δ)
(xa, xb)← (a, b)
while xb − xa > δ do

xo ← (xa + xb)/2
if f(xo) ≤ 0 then

xa ← xo
else

xb ← xo
end if

end while.

Table 1.1: Bisection method I.

11
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Algorithm (xa, xb)← Bisection2(f, a, b, δ)
(xa, xb)← (a, b)
(fa, fb)← (f(a), f(b))
while xb − xa > δ or fb − fa > δ do

xo ← (xa + xb)/2
fo ← f(xo)
if fo ≤ 0 then

xa ← xo
fa ← fo

else
xb ← xo
fb ← fo

end if
end while.

Table 1.2: Bisection method II.

while-loop is executed no more than⌈
log2

(b− a
δ

max
{

1, sup
[a,b]

f ′
})⌉

times.

Application to exact confidence bounds

Let Y be a random variable with values in Z and distribution function Fθ∗ , where (Fθ)θ∈Θ is a
given family of distribution functions, and θ∗ is an unknown parameter in Θ. Thus

IP(Y ≤ c) = Fθ∗(c).

One can easily show that

IP(Fθ∗(Y ) > α) ≥ 1− α and IP(Fθ∗(Y − 1) < 1− α) ≥ 1− α

for any fixed α ∈ (0, 1). Thus both

C left
α (Y ) :=

{
θ ∈ Θ : Fθ(Y ) > α

}
and

Cright
α (Y ) :=

{
θ ∈ Θ : Fθ(Y − 1) < 1− α

}
are (1 − α)-confidence regions for θ∗. The set C left

α (Y ) consists of all parameters θ such that
Y is not “suspiciously small” in the sense that the left-sided p-value Fθ(Y ) is larger than α.
Analogously, Cright

α (Y ) consists of all parameters θ such that Y is not “suspiciously large” in the
sense that the right-sided p-value 1− Fθ(Y − 1) is larger than α.

Suppose that Θ is an interval of real numbers. For any integer c let Θ 3 θ 7→ Fθ(c) be continuous
and antitonic (non-increasing). In this case C left

α (Y ) yields an upper and Cright
α (Y ) yields a lower

confidence bound for θ∗.
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More precisely, let Fθ(Y ) be continuous and strictly antitonic in θ ∈ Θ with limits

lim
θ→inf(Θ)

Fθ(Y ) = 1 and lim
θ→sup(Θ)

Fθ(Y ) = 0.

Then
C left
α (Y ) =

{
θ ∈ Θ : θ < bα(Y )

}
with the unique number bα(Y ) ∈ Θ such that

Fbα(Y )(Y ) = α.

Thus we obtain an exact upper confidence bound which may be computed via a bisection proce-
dure.

Analogously let Fθ(Y − 1) be continuous and strictly antitonic in θ ∈ Θ with limits

lim
θ→inf(Θ)

Fθ(Y − 1) = 1 and lim
θ→sup(Θ)

Fθ(Y − 1) = 0.

Then
Cright
α (Y ) =

{
θ ∈ Θ : θ > aα(Y )

}
with the unique number aα(Y ) ∈ Θ such that

Faα(Y )(Y − 1) = 1− α.

Example 1.1 (Binomial parameters). Let Y follow a binomial distribution Bin(n, θ∗) with given
n ∈ N and unknown parameter θ∗ ∈ Θ = [0, 1]. Then

Fθ(c) =

c∑
k=0

(
n

k

)
θk(1− θ)n−k

for arbitrary c ∈ {0, 1, . . . , n}. As a function of θ, this is a polynomial of order n and thus
infinitely often differentiable. In case of 0 ≤ c < n one can even show that Fθ(c) is strictly
antitonic in θ ∈ [0, 1] with limits F0(c) = 1 and F1(c) = 0. Consequently,

C left
α (Y ) =

{
[0, 1] if Y = n,

[0, bα(Y )) if Y < n, where Fbα(Y )(Y ) = α,

and

Cright
α (Y ) =

{
[0, 1] if Y = 0,

(aα(Y ), 1] if Y > 0, where Faα(Y )(Y − 1) = 1− α.

For the computation of both confidence bounds aα(Y ) and bα(Y ) one may employ the algorithm
in Table 1.3 which returns for given numbers c ∈ {0, 1, . . . , n − 1}, γ ∈ (0, 1) and δ > 0 two
numbers xa, xb with the following properties:

0 ≤ xa < xb ≤ 1, xb − xa ≤ δ,

and
Fxa(c) ≥ γ ≥ Fxb(c), Fxa(c)− Fxb(c) ≤ δ.

It requires an auxiliary function FBino(·, n, θ) for the computation of the distribution function of
Bin(n, θ).
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Algorithm (xa, xb)← BinoCB(n, c, γ, δ)
(xa, xb)← (0, 1)
(Fa, Fb)← (1, 0)
while xb − xa > δ or Fa − Fb > δ do

xo ← (xa + xb)/2
Fo ← FBino(c, n, xo)
if Fo ≥ γ then

xa ← xo
Fa ← Fo

else
xb ← xo
Fb ← Fo

end if
end while.

Table 1.3: Computation of confidence bounds for a binomial parameter.

Example 1.2 (Poisson parameters). Let Y follow a Poisson distribution Poiss(θ∗) with unknown
parameter θ∗ ∈ Θ = [0,∞). Then

Fθ(c) = exp(−θ)
c∑

k=0

θk

k!

for arbitrary c ∈ N0. As a function of θ, this is continuous and strictly antitonic with limits
F0(c) = 1 and F∞(c) = 0. Thus

C left
α (Y ) = [0, bα(Y )) with Fbα(Y )(Y ) = α,

and

Cright
α (Y ) =

{
[0,∞) if Y = 0,

(aα(Y ),∞) if Y > 0, where Faα(Y )(Y − 1) = 1− α.

For the computation of both confidence bounds aα(Y ) and bα(Y ) one has to modify algorithm
BinoCB in two respects. On the one hand we replace the function FBino(·, n, θ) with the distri-
bution function FPoiss(·, θ) of Poiss(θ). Moreover, at first one has to find a starting interval for
the bisection search, see Table 1.4.

Exercise 1.3. Let w0, w1, w2, . . . be nonnegative weights such that w0 > 0 and

C(θ) :=

∞∑
k=0

wkθ
k < ∞ for all θ ≥ 0.

With these weights we define a family of distributions on N0: For θ ≥ 0 and c ∈ N0 let

Fθ(c) := C(θ)−1
c∑

k=0

wkθ
k.

(a) Show that θ 7→ Fθ(c) is continuous and antitonic on [0,∞) with F0(c) = 1. Show that it is
even strictly antitonic with limit F∞(c) = 0, provided that wk > 0 for at least one index k > c.
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Algorithm (xa, xb)← PoissCB(c, γ, δ)
(xa, xb)← (0, 1)
(Fa, Fb)← (1, FPoiss(c, 1))
while Fb > γ do

(xa, xb)← (xb, 2xb)
(Fa, Fb)← (Fb, FPoiss(c, xb))

end while
while xb − xa > δ or Fa − Fb > δ do

xo ← (xa + xb)/2
Fo ← FPoiss(c, xo)
if Fo ≥ γ then

xa ← xo
Fa ← Fo

else
xb ← xo
Fb ← Fo

end if
end while.

Table 1.4: Computation of confidence bounds for a Poisson parameter.

(b) This result applies immediately to Poisson distributions, where wk = 1/k!. How could you
apply it to binomial distributions? How would you modify the result to be applicable to negative
binomial distributions?

1.2 Newton’s Method (Univariate Case)

Now we consider a differentiable function f : X → R on an open interval X ⊂ R with strictly
positive derivative f ′. Moreover we assume that infX f < 0 < supX f , hence there exists a
unique x∗ ∈ f−1(0).

To find or approximate this point x∗ we consider an arbitrary first candidate xo ∈ X . Now we
approximate f by an affine function:

x 7→ f(xo) + f ′(xo)(x− xo).

This auxiliary function attains the value 0 at

ψ(xo) := xo −
f(xo)

f ′(xo)
.

Note that ψ(xo) = xo if and only if f(xo) = 0, whence xo = x∗. Otherwise we hope that ψ(xo)

is closer to x∗ than xo.

Now we would like to iterate this mapping ψ. That means, for a starting value x0 ∈ X one
computes inductively

xn := ψ(xn−1) for n = 1, 2, 3, . . . .

When doing so we hope that
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(i) this sequence is well-defined in the sense that all points xn are contained in X ,
(ii) it converges to x∗.

Local convergence. The next theorem implies that the sequence (xn)∞n=0 does have these prop-
erties, provided that the starting value x0 is sufficiently close to x∗.

Theorem 1.4 (Local convergence of Newton’s method).

(a) Let f ′ be continuous at x∗. Then

lim
x→x∗

ψ(x)− x∗
x− x∗

= 0.

(If x = x∗, then ψ(x) = x∗, and we interpret 0/0 as 0.)

(b) Let f be twice differentiable, and let f ′′ be continuous at x∗. Then

lim
x→x∗

ψ(x)− x∗
(x− x∗)2

=
f ′′(x∗)

2f ′(x∗)
.

For the sequence (xn)∞n=0 defined earlier, Theorem 1.4 (a) has the following consequences: For
any ε ∈ (0, 1) there exists a δ(ε) > 0 such that [x∗ ± δ(ε)] ⊂ X and

|ψ(x)− x∗| ≤ ε|x− x∗| for x ∈ [x∗ ± δ(ε)].

In particular, if |x0 − x∗| ≤ δ(ε), then |xn − x∗| ≤ |x0 − x∗|εn for all n ≥ 0. More generally,
if |xn(ε) − x∗| ≤ δ(ε) for some n(ε) ∈ N0, then |xn − x∗| ≤ C(ε)εn for all n ≥ 0, where
C(ε) := maxm≤n(ε) ε

−m|xm − x∗|.

This consideration shows that

(1.1) lim
n→∞

|xn − x∗| = 0 and lim
n→∞

|xn+1 − x∗|
|xn − x∗|

= 0,

provided that x0 is sufficiently close to x∗. We’ll show later how to avoid the latter restriction.
Property (1.1) of (xn)n≥0 is called “super-linear convergence (to x∗)”.

For starting values x0 sufficiently close to x∗, Theorem 1.4 (b) yields even the more precise state-
ment that

(1.2) lim
n→∞

|xn − x∗| = 0 und lim
n→∞

|xn+1 − x∗|
|xn − x∗|2

=
|f ′′(x∗)|
2f ′(x∗)

.

This property of (xn)∞n=0 is called “quadratic convergence (to x∗)”.

Proof of Theorem 1.4. For real numbers a, b let a ∧ b and a ∨ b denote their minimum and max-
imum, respectively. According to the mean value theorem, for x ∈ X \ {x∗}, there exists a point
ξ(x) ∈ (x ∧ x∗, x ∨ x∗) such that

f(x) = f(x)− f(x∗) = f ′(ξ(x))(x− x∗),

whence

ψ(x)− x∗
x− x∗

= 1− f(x)

f ′(x)(x− x∗)
= 1− f ′(ξ(x))(x− x∗)

f ′(x)(x− x∗)
= 1− f ′(ξ(x))

f ′(x)
.
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By continuity of f ′ at x∗ with f ′(x∗) > 0, this implies that

lim
x→x∗

ψ(x)− x∗
x− x∗

= 1− lim
x→x∗

f ′(ξ(x))

f ′(x)
= 1− f ′(x∗)

f ′(x∗)
= 0.

This proves part (a).

For part (b) we use Taylor’s formula. For x ∈ X \ {x∗} and h := x− x∗,

f(x) = f(x∗) + f ′(x∗)h+ f ′′(ξ(x))h2/2 = f ′(x∗)h+ f ′′(ξ(x))h2/2

and

f ′(x) = f ′(x∗) + f ′′(η(x))h

with suitable points ξ(x), η(x) in (x ∧ x∗, x ∨ x∗). Thus,

ψ(x)− x∗
(x− x∗)2

=
h− f(x)/f ′(x)

h2

=
f ′(x)h− f(x)

f ′(x)h2

=
f ′(x∗)h+ f ′′(η(x))h2 − f ′(x∗)h− f ′′(ξ(x))h2/2

(f ′(x∗) + f ′′(η(x))h)h2

=
f ′′(η(x))− f ′′(ξ(x))/2

f ′(x∗) + f ′′(η(x))h

→ f ′′(x∗)− f ′′(x∗)/2
f ′(x∗)

=
f ′′(x∗)

2f ′(x∗)

as x→ x∗, i.e. h→ 0.

Example 1.5. Let us illustrate the potential problems with starting values x0 which are too far
from x∗ with the function f : R→ R, f(x) := x(1 + x2)−1/2. This function is strictly increasing
with f ′(x) = (1 + x2)−3/2, and the limits are f(±∞) = ±1. Here x∗ = 0, and

ψ(x) = x− x(1 + x2) = −x3.

Hence the Newton sequence (xn)n≥0 converges if and only if |x0| < 1. Precisely, one can show
by induction that

xn = (−1)nx3n

0

for all n ≥ 0.

Global convergence. Under the additional assumption that f is convex and x0 ≥ x∗, Newton’s
method yields always a sequence with limit x∗. This is a consequence of the following result:

Theorem 1.6 (Global convergence of Newton’s method). Suppose that f is convex, that means,
f ′ is isotonic. Then ψ(x) ≥ x∗ whenever x ≤ x∗. For x > x∗,

0 ≤ ψ(x)− x∗
x− x∗

≤ 1− f ′(x∗+)

f ′(x)
,

where f ′(x∗+) denotes the rightsided limit of f ′ at x∗.
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Under the assumptions of Theorem 1.6, the sequence (xn)n≥0 is monotone decreasing with limit
x∗, provided that x0 ≥ x∗. The monotonicity is even strikt, unless xn = x∗ for some n ≥ 0. But
ψ(x) = x∗ for some x > x∗ would imply that f ′ ≡ f ′(x∗+) on (x∗, x).

The restriction x0 ≥ x∗ is unnecessary if X = (a,∞) for some a ∈ [−∞,∞). For then x1 =

ψ(x0) ≥ x∗, and (xn)∞n=1 is monotone decreasing with limit x∗.

Example 1.7. A classical application of Newton’s procedure is the computation of square roots.
For any number γ > 0 we consider the function

(0,∞) 3 x 7→ f(x) := x2 − γ.

This function is infinitely often differentiable, strictly isotonic and convex, and f−1(0) =
{√

γ
}

.
Here

ψ(x) = x− x2 − γ
2x

=
x+ γ/x

2
,

and iterating this mapping yields always a sequence converging quadratically to
√
γ. Indeed,

ψ(x)−√γ
x−√γ

=
x−√γ

2x

{
< 1/2

> 0 if x >
√
γ

and
ψ(x)−√γ
(x−√γ)2

=
1

2x

for any x > 0.

Proof of Theorem 1.6. For x < x∗ there exists a point ξ(x) ∈ (x, x∗) such that

ψ(x) = x− f ′(ξ(x))(x− x∗)
f ′(x)

= x∗ + (x− x∗)
(

1− f ′(ξ(x))

f ′(x)

)
≥ x∗,

because 0 < f ′(x) ≤ f ′(ξ(x)).

For x > x∗ there exists a point ξ(x) ∈ (x∗, x) with

ψ(x)− x∗
x− x∗

= 1− f ′(ξ(x))

f ′(x)
∈
[
0, 1− f ′(x∗+)

f ′(x)

]
,

because f ′(x∗+) ≤ f ′(ξ(x)) ≤ f ′(x).

Exercise 1.8. Consider the function f : (0,∞) → R, f(x) := xk − γ, with given constants
k > 1 and γ > 0.

(a) Show that f is strictly isotonic and convex with unique zero at x∗ = γ1/k.

(b) Show that the corresponding algorithmic mapping ψ(x) = x − f(x)/f ′(x) for Newton’s
method has the following properties:

h(x) :=
ψ(x)− x∗
x− x∗

is isotonic on (x∗,∞) with limits h(x∗) = 0 and h(∞) = 1− 1/k.
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Exercise 1.9. For k ∈ N let F : [0,∞)→ R be given by

F (x) := 1− exp(−x)

k∑
j=0

xj/j! .

(a) Show that F is continuously differentiable and strictly isotonic on [0,∞) with F (0) = 0 and
limit F (∞) = 1.

(b) Describe Newton’s procedure for the (approximate) solution of the equation F (x) = γ, where
γ is any given number in (0, 1).

(c) Specify a starting value x0 > 0 such that Newton’s method yields for arbitrary γ ∈ (0, 1) a
convergent sequence.

Stopping criteria. So far we analyzed the algorithmic mapping ψ underlying Newton’s method.
For explicit implementations we also need a stopping criterion involving some upper bound δ for
the approximation error. Since we are looking for a zero of f , we could run the algorithm until
|f(xn)| ≤ δ. Sometimes one combines this criterium with the requirement that |xn − xn−1| ≤ δ.

Suppose we want to guarantee that |xn − x∗| ≤ δ. If we can show that f ′(x) ≥ κ > 0 for all x in
an interval containing x∗ and all points xn, then it follows from

f(xn)

xn − x∗
=

f(xn)− f(x∗)

xn − x∗
= f ′(ξn)

with suitable ξn ∈ (xn ∧ x∗, xn ∨ x∗) that

|xn − x∗| ≤
|f(xn)|
κ

.

Thus the stopping criterion |f(xn)| ≤ δκ guarantees that |xn − x∗| ≤ δ.

A simpler rule of thumb which is often implemented relies on the fact that in case of (1.1) also

lim
n→∞

xn − x∗
xn − xn−1

= 0,

see the next exercise. Consequently, if we iterate the mapping ψ until |xn − xn−1| is smaller than
a (very) small number δ, chances are high that |xn − x∗| ≤ δ, too.

Exercise 1.10 (Rates of convergence). Let (X , d) be a metric space and (xn)∞n=0 a sequence in
X with limit x∗ ∈ X , that is, limn→∞ d(xn, x∗) = 0.

(a) Suppose that

lim
n→∞

d(xn+1, x∗)

d(xn, x∗)
= 0

(with the conventions that 0/0 := 0 and a/0 :=∞ for a > 0). Show that

lim
n→∞

d(xn, x∗)

d(xn, xn−1)
= 0

Show also that for any ε ∈ (0, 1) there exists a K = K(ε) ∈ (0,∞) such that

d(xn, x∗) ≤ Kεn for all n ≥ 0.
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(b) Suppose that
d(xn+1, x∗)

d(xn, x∗)2
≤ C < ∞ for all n ≥ 0.

Show that for each ε ∈ (0, 1) and n, k ∈ N0,

d(xn+k, x∗) ≤ ε(2
k)/C if d(xn, x∗) ≤ ε/C.

Exercise 1.11. For a given constant c > 1, let f(x) := − log(1− x)− cx.

(a) Show that there is a unique point x∗ ∈ (0, 1) such that f(x∗) = 0.

(b) Describe explicit programs to approximate x∗ up to a given error δ ∈ (0, 1) by means of a

(b.1) bisection method,
(b.2) Newton method.

Your descriptions should specify how to determine a starting interval or starting point, respectively,
and provide a stopping criterion such that the approximation xn of x∗ satisfies |xn − x∗| ≤ δ.

Exercise 1.12. For a given parameter c > 1, let f(x) := ex − 1− cx.

(a) Show that there is a unique point x∗ > 0 such that f(x∗) = 0.

(b) Show that log c < x∗ < 2 log c.

(c) Show that f ′(x∗) = h(x∗) := ex∗ − (ex∗ − 1)/x∗. Then show that h is strictly positive and
strictly isotonic on (0,∞), and deduce from that the inequality f ′(x∗) > c− (c− 1)/ log c > 0.

(d) Describe an explicit Newton procedure to approximate x∗. For a given threshold δ > 0, your
procedure should return a number x∗∗ > 0 such that |x∗∗ − x∗| ≤ δ and |f(x∗∗)| ≤ δ.

Exercise 1.13. Suppose that f is convex on X but f ′(x) is concave in x ≥ x∗. Show that

0 ≤ ψ(x)− x∗
x− ψ(x)

< 1 for any x > x∗.

For a Newton sequence (xn)n≥0 with starting value x0 ≥ x∗ this implies that

0 ≤ xn − x∗ ≤ xn−1 − xn for arbitrary n ≥ 1.

Exercise 1.14. Consider independent random variables X1, X2, . . . , Xn ∈ [0, 1] with density
function

fθ(x) := c(θ)−1 exp (θx), x ∈ [0, 1],

where θ ∈ R is some unknown parameter and c(θ) > 0 some norming constant.

(a) Compute c(θ) and verify that

µ(θ) := IEθ(X1) =
d

dθ
log c(θ).

(b) Show that µ is differentiable with

µ′(θ) = Varθ(X1) > 0

and verify that its limits are µ(−∞) = 0 and µ(∞) = 1.
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(c) Show that µ(−θ) = 1− µ(θ) for all θ ∈ R.

(d) Show that µ(θ) is convex in θ ∈ (−∞, 0] and concave in θ ∈ [0,∞).

(e) Show that the log-likelihood function

θ 7→
n∑
i=1

log fθ(Xi)

has a unique maximizer θ̂ ∈ R which is given by

X̄ = µ(θ̂)

with the sample mean X̄ = n−1
∑n

i=1Xi.

(f) Describe and implement an explicit procedure to compute θ̂.

Hint: For small values of |θ| (e.g. |θ| < 0.01) the function µ(θ) may be numerically instable.
(Why?) Use a suitable Taylor approximation of µ to avoid such problems.

1.3 Golden Section Search

We end this chapter with a simple procedure to minimize a “bathtub-shaped” function f : [a, b]→
(−∞,∞]. Precisely, suppose that there exists a unique minimizer x∗ of f . Further let f be strictly
antitonic on [a, x∗] and strictly isotonic on [x∗, b]. Our goal is to find (an approximation of) x∗
without referring to any derivative of f .

To localize the minimizer x∗ we rely on the following simple consideration: Let a ≤ r < s ≤ b.
Then it follows from f(r) ≤ f(s) that x∗ < s. For if x∗ ≥ s, then f(r) > f(s), because f is
strictly antitonic on [a, x∗] ⊃ [r, s]. Analogously it follows from f(r) ≥ f(s) that x∗ > r.

This consideration gives rise to an iterative procedure: Let a ≤ q < r < s < t ≤ b, where it is
known that x∗ ∈ [q, t]. To fulfill the latter requirement, we start with q = a and t = b. In case of
f(r) ≤ f(s) we know that x∗ ∈ [q, s], so we may replace the quadruple (q, r, s, t) with (q, ṙ, r, s),
where q < ṙ < r. In case of f(r) > f(s) it is clear that x∗ ∈ [r, t], so we replace (q, r, s, t) with
(r, s, ṡ, t), where s < ṡ < t, see figure 1.1.

For the explicit choice of the new points ṙ and ṡ there are various possibilities. For instance one
could take ṙ = (q+ r)/2 and ṡ = (s+ t)/2. Here is another proposal: We want to ensure that the
three quadrupels (q, r, s, t), (q, ṙ, r, s) and (r, s, ṡ, t) are identical up to affine transformations. To
this end we consider the ratios

B :=
r − q
t− q

and C :=
s− q
t− q

,

so 0 < B < C < 1 and

r = (1−B)q +Bt, s = (1− C)q + Ct.

The quadrupels (q, ṙ, r, s) and (q, r, s, t) have the same ‘shape’ if and only if

ṙ − q
r − q

=
r − q
s− q

=
B

C
and

r − q
s− q

=
s− q
t− q

= C,
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q r s t

q r⋅ r s

r s s⋅ t

Figure 1.1: Partitions for Golden Section Search.

so
B = C2 and ṙ = q + C(r − q) = (1− C)q + Cr.

The quadrupels (r, s, ṡ, t) and (q, r, s, t) have the same shape if and only if

t− ṡ
t− s

=
t− s
t− r

=
1− C
1−B

and
t− s
t− r

=
t− r
t− q

= 1−B,

so
1− C = (1−B)2 and ṡ = t− (1−B)(t− s) = (1−B)s+Bt.

Plugging in B = C2 into 1− C = (1−B)2 yields the equation

C4 − 2C2 + C = 0.

Obviously, C = 0 and C = 1 are two irrelevant solutions of this equation. Thus we write

C4 − 2C2 + C = C(C3 − 2C + 1) = C(C − 1)(C2 + C − 1)

and determine a solution C ∈ (0, 1) of the equation

0 = C2 + C − 1 = (C + 1/2)2 − 5/4.

This leads to

C =

√
5− 1

2
=

2√
5 + 1

≈ 0.618.

Then the corresponding value for B = C2 = 1− C equals

B =
3−
√

5

2
=

2

3 +
√

5
≈ 0.382.

In figure 1.1 we used these particular ratios B and C. Since B + C = 1, we may rewrite

r = Cq +Bt, s = Bq + Ct, ṙ = Bq + Cr, ṡ = Cs+Bt.

These considerations lead to the algorithm in Table 1.5. It yields an interval [q, t] of length at most
Cδ containing the minimizer x∗. Note that it terminates after at most⌈

log1/C

(b− a
δ

)⌉
repetitions of the while-loop.
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Algorithm (q, t)← GoldenSection(f, a, b, δ)
(B,C)← (0.382, 0.618)
(q, r, s, t)← (a,Ca+Bb,Ba+ Cb, b)
(fr, fs)← (f(r), f(s))
while t− q > δ do

if fr ≤ fs then
(r, s, t)← (Bq + Cr, r, s)
(fr, fs)← (f(r), fr)

else
(q, r, s)← (r, s, Cs+Bt)
(fr, fs)← (fs, f(s))

end if
end while
if fr ≤ fs then

t← s
else

q ← r
end if.

Table 1.5: Golden section search.

Exercise 1.15. Implement the golden section search to approximate the minimizer of the function

x 7→ f(x) := (1− x) log(1− x) + x− x2

on [0, 1] with given precision δ > 0. (Here 0 log(0) := 0.) Why is golden section search justified
here? What is your result in case of δ = 0.0001?

Exercise 1.16. What can be said about the algorithm for golden section search if we assume only
that f is

(a) continuous,
(b) differentiable,
(c) continuous and convex

on [a, b]?

Exercise 1.17. Suppose one replaces algorithm GoldenSection(f, a, b, δ) with the algorithm
in Table 1.6.

(a) Which ratios
(B,C) :=

(r − q
t− q

,
s− q
t− q

)
can occur while running this algorithm?

(b) In what sense is the new algorithm worse than golden section search?
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Algorithm (q, t)← SilverSection(f, a, b, δ)
(q, r, s, t)← (a, 2a/3 + b/3, a/3 + 2b/3, b)
(fr, fs)← (f(r), f(s))
while t− q > δ do

if fr ≤ fs then
(r, s, t)← ((q + r)/2, r, s)
(fr, fs)← (f(r), fr)

else
(q, r, s)← (r, s, (s+ t)/2)
(fr, fs)← (fs, f(s))

end if
end while
if fr ≤ fs then

t← s
else

q ← r
end if.

Table 1.6: ‘Silver section’ search.



Chapter 2

Convex Sets

In the current and next chapter we cover some basic concepts and results of convex analysis. In
what follows we define and analyze properties of subsets of a real vector space V .

2.1 Convex Sets and Cones

Definition 2.1 (Convex sets). A subset C of V is called convex, if for arbitrary points x,y ∈ C
their connecting line segment is contained in C as well:{

(1− t)x+ ty : t ∈ [0, 1]
}
⊂ C.

Via induction this implies that
n∑
i=1

λixi ∈ C

for arbitrary n ∈ N, x1, . . . ,xn ∈ C and λ1, . . . , λn ≥ 0 with
∑n

i=1 λi = 1. Such a point∑n
i=1 λixi is called a “convex combination of the points x1, . . . ,xn (with weights λ1, . . . , λn)”.

Example 2.2. Suppose that (V , ‖·‖) is a normed vector space. Then any closed ballB(xo, δ) :=

{x ∈ V : ‖x − xo‖ ≤ δ} with center xo ∈ V and radius δ ≥ 0 is a convex set. Indeed, if
x,y ∈ B(xo, δ) and λ ∈ [0, 1], then∥∥(1− λ)x+ λy − xo

∥∥ =
∥∥(1− λ)(x− xo) + λ(y − xo)

∥∥
≤
∥∥(1− λ)(x− xo)

∥∥+
∥∥λ(y − xo)

∥∥
= (1− λ)‖x− xo‖+ λ‖y − xo‖

≤ (1− λ)δ + λδ = δ.

With the same arguments one can show that any open ball is a convex set too.

Definition 2.3 (Convex cone). A subset C of V is called a convex cone, if for arbitrary points
x,y ∈ C the set of their linear combinations with nonnegative coefficients is contained in C as
well: {

λx+ µy : λ, µ ≥ 0
}
⊂ C.
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In other words, C is convex, and for arbitrary x ∈ C the set of its nonnegative multiples is
contained in C:

{λx : λ ≥ 0} ⊂ C.

Again one can show via induction that

n∑
i=1

λixi ∈ C

for arbitrary n ∈ N, x1, . . . ,xn ∈ C and λ1, . . . , λn ≥ 0.

Convex hulls etc. Now let M be an arbitrary nonvoid subset of V . Then one can show easily
that

conv(M) :=

{ n∑
i=1

λixi : n ∈ N; x1, . . . ,xn ∈M ; λ1, . . . , λn ≥ 0;

n∑
i=1

λi = 1

}
is the smallest convex set containingM . We call this set the convex hull ofM . Moreover,

cone(M) :=

{ n∑
i=1

λixi : n ∈ N; x1, . . . ,xn ∈M ; λ1, . . . , λn ≥ 0

}
is the smallest convex cone containing M . We call it the convex cone spanned by M . In case of
a finite-dimensional space V , these representations may be simplified as follows:

Lemma 2.4 (Carathéodory1, 1907). Let d := dim(V ) be finite. Then for arbitrary subsetsM of
V ,

conv(M) =

{d+1∑
i=1

λixi : x1, . . . ,xd+1 ∈M ; λ1, . . . , λd+1 ≥ 0;
d+1∑
i=1

λi = 1

}
,

cone(M) =

{ d∑
i=1

λixi : x1, . . . ,xd ∈M ; λ1, . . . , λd ≥ 0

}
.

Proof of Lemma 2.4. We start with the representation of cone(M). Let x =
∑n

i=1 λixi be a
point in cone(M), where x1, . . . ,xn ∈ M , λ1, . . . , λn > 0 and n > d. Then the vectors
x1, . . . ,xn are linearly dependent. That means,

n∑
i=1

µixi = 0

for suitable numbers µ1, . . . , µn such that µi 6= 0 for at least one index i. Without loss of generatily
let µi < 0 for at least one index i. Then for arbitrary t ≥ 0,

x =

n∑
i=1

(λi + tµi)xi.

1Constantin Carathéodory (1873–1950): Greek mathematician who spent most of his academic life in Germany
with significant contributions to measure theory and other fields.
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If we choose
t := min

i :µi<0

λi
|µi|

,

then all coefficients λ̃i := λi + tµi are nonnegative, and at least one of them equals zero. Thus
we may represent x as a linear combination of n − 1 vectors in cone(M) with nonnegative
coefficients. We may iterate this reduction until x is a linear combination of d vectors in cone(M)

with nonnegative coefficients.

As to conv(M), note that the equations x =
∑n

i=1 λixi and
∑n

i=1 λi = 1 with xi ∈ M and
λi > 0 may be combined to one equation

(x, 1) =
n∑
i=1

λi(xi, 1)

involving points in the (d+ 1)-dimensional linear space V ×R. If n > d+ 1, we may imitate the
arguments for cone(M) to show that (x, 1) is a linear combination of n−1 points inM×{1}with
non-negative weights. Again iteration of this argument shows that (x, 1) is a linear combination
of d+ 1 points inM ×{1} with non-negative weights. In other words, x is a convex combination
of d+ 1 points inM .

Exercise 2.5. Determine the convex hull ofM ⊂ R× R in the following cases:

(a) M = {(x, 1/|x|) : x ∈ R, x 6= 0}.

(b) M = {(x, 1/x) : x ∈ R, x 6= 0}.

Exercise 2.6 (Linear mappings and convexity). Let L : V → W be a linear mapping from V

into another real vector spaceW .

(a) Show that L(C) is convex for any convex set C ⊂ V .

(b) Show that L−1(D) is convex for any convex setD ⊂W .

Exercise 2.7. Let (V , ‖ · ‖) be a real normed vector space and M be a nonvoid subset of V .
Prove or falsify the following claims:

(a) IfM is open, then conv(M) is open, too.

(b) IfM is closed, then conv(M) is closed, too.

(c) IfM is compact and dim(V ) <∞, then conv(M) is compact, too.

Exercise 2.8. Let C be a convex subset of a real normed vector space (V , ‖ · ‖). Show that its
closure C is convex, too.

Exercise 2.9 (Minkowski operations). For n ∈ N, nonvoid sets C1,C2, . . . ,Cn ⊂ V and real
numbers λ1, λ2, . . . , λn let

n∑
i=1

λiCi :=
{ n∑
i=1

λixi : xi ∈ Ci for 1 ≤ i ≤ n
}
.

Especially for x ∈ V and C ⊂ V we set x+C := {x}+C.

(a) Show that
∑n

i=1 λiCi is convex if all sets Ci are convex.
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(b) Show that for a nonvoid convex set C ⊂ V and nonnegative numbers λ1, λ2, . . . , λn,

n∑
i=1

(λiC) =
( n∑
i=1

λi

)
C.

Exercise 2.10. LetM be a subset of Rd.

(a) Suppose that M is finite. Show that cone(M) is closed. (Hint: Consider first the situation
that the elements ofM are linearly independent. Then argue as in the proof of Lemma 2.4.)

(b) Find an example of a compact setM ⊂ R2 such that cone(M) is not closed.

2.2 Metric Projections and Separating Hyperplanes

In this section let (V , 〈·, ·〉, ‖ · ‖) be a real Hilbert space, for instance, V = Rd with the standard
inner product 〈x,y〉 := x>y. The closed unit ball is denoted byB,

B = {x ∈ V : ‖x‖ ≤ 1}.

Throughout this section let C be a nonvoid convex and closed subset of V .

2.2.1 Metric projections

The next theorem shows that for any point x ∈ V there exists a unique closest point Πx = ΠCx

in C, that means,

‖x−Πx‖ = d(x,C) := inf
y∈C
‖x− y‖.

The corresponding mapping Π : V → C is called the metric projection of V onto C. It is
Lipschitz continuous with constant one:

Theorem 2.11 (Metric projection onto a closed convex set).

(a) To each point x ∈ V there exists a unique point Πx ∈ C such that

‖x−Πx‖ = min
y∈C

‖x− y‖.

(b) A point yo ∈ C equals Πx if and only if

〈x− yo,y − yo〉 ≤ 0 for all y ∈ C.

(c) For arbitrary x1,x2 ∈ V ,

‖Πx1 −Πx2‖ ≤ ‖x1 − x2‖.

In case of closed convex cones or closed linear subspaces, the characterization in part (b) of The-
orem 2.11 may be simplified somewhat, and the metric projection Π has additional properties:
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Corollary 2.12 (Metric projection onto a closed convex cone). Let C be a closed convex cone.
Then a point yo ∈ C equals Πx if and only if

〈x− yo,yo〉 = 0 and 〈x− yo,y〉 ≤ 0 for all y ∈ C.

Moreover, Π(λx) = λΠx for arbitrary x ∈ V and λ ≥ 0.

Corollary 2.13 (Metric projection onto a closed linear space). LetC be a closed linear subspace
of V . Then a point yo ∈ C equals Πx if and only if

〈x− yo,y〉 = 0 for all y ∈ C.

Moreover, Π : V → C is a linear mapping, the so-called orthogonal projection from V onto C.

Proof of Theorem 2.11. Proof of part (a). We first show that the distance between two points
y1,y2 ∈ C has to be rather small if both ‖x − y1‖ and ‖x − y2‖ are close to d(x,C). To this
end we use the parallelogram identity,

‖a+ b‖2 + ‖a− b‖2 = 2‖a‖2 + 2‖b‖2 für a, b ∈ V ,

which is a consequence of the equations ‖a ± b‖2 = ‖a‖2 ± 2〈a, b〉 + ‖b‖2. This identity is
applied to a = x− y1 and b = x− y2, and we utilize the fact that due to convexity of C,

yo := 2−1(y1 + y2)

belongs to C, too. Thus

‖y1 − y2‖2 =
∥∥(x− y1)− (x− y2)

∥∥2

= 2‖x− y1‖2 + 2‖x− y2‖2 −
∥∥(x− y1) + (x− y2)

∥∥2

= 2‖x− y1‖2 + 2‖x− y2‖2 − 4‖x− yo‖2

≤ 2‖x− y1‖2 + 2‖x− y2‖2 − 4d(x,C)2,

whence

‖y1 − y2‖2 ≤ 2
(
‖x− y1‖2 − d(x,C)2

)
+ 2
(
‖x− y2‖2 − d(x,C)2

)
.

This inequality shows already that there is at most one point y ∈ C such that ‖x−y‖ = d(x,C).
It also implies existence of such a point. To see this, let (yn)∞n=1 be a sequence in C such that

lim
n→∞

‖x− yn‖ = d(x,C).

For N ∈ N,

sup
m,n≥N

‖ym − yn‖2 ≤ 4
(

sup
n≥N

‖x− yn‖2 − d(x,C)2
)

→ 0 as N →∞.

Hence (yn)∞n=1 is a Cauchy sequence in V . Since (V , ‖ · ‖) is complete and C is closed, this
sequence has a limit y ∈ C, and ‖x− y‖ = d(x,C).
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Proof of part (b). For any two points yo,y ∈ C and t ∈ [0, 1], the point yt := (1 − t)yo + ty

belongs to C, too, and

‖x− yt‖2 = ‖x− yo − t(y − yo)‖2 = ‖x− yo‖2 − 2t〈x− yo,y − yo〉+ t2‖y − yo‖2.

The right hand side is greater than or equal to ‖x− yo‖2 for arbitrary t ∈ [0, 1] if and only if

〈x− yo,y − yo〉 ≤ 0.

Proof of part (c). According to part (b),

‖x1 − x2‖2 =
∥∥(Πx1 −Πx2) + (x1 −Πx1 − x2 + Πx2)

∥∥2

≥ ‖Πx1 −Πx2‖2

− 2〈x1 −Πx1,Πx2 −Πx1〉 − 2〈x2 −Πx2,Πx1 −Πx2〉

≥ ‖Πx1 −Πx2‖2.

Hence Π is Lipschitz continuous with constant 1.

Proof of Corollary 2.12. Suppose that a point yo ∈ C satisfies the equation 〈x − yo,yo〉 = 0

and the inequality 〈x− yo,y〉 ≤ 0 for any y ∈ C. Then

〈x− yo,y − yo〉 = 〈x− yo,y〉 − 〈x− yo,yo〉 ≤ 0

for arbitrary y ∈ C. Consequently, according to Theorem 2.11 (b), yo = Πx.

On the other hand, since C is a convex cone, for any number t ≥ 0 the point tΠx belongs to C,
too, whence

0 =
d

dt

∣∣∣∣
t=1

‖x− tΠx‖2 = −2〈x,Πx〉+ 2‖Πx‖2 = −2〈x−Πx,Πx〉.

Furthermore, for arbitrary y ∈ C, the sum Πx + y is an element of C, too, whence Theo-
rem 2.11 (b) implies that

0 ≥ 〈x−Πx, (Πx+ y)−Πx〉 = 〈x−Πx,y〉.

For any x ∈ V and λ ≥ 0, the point λΠx ∈ C satisfies the (in)equalities

〈λx− λΠx, λΠx〉 = λ2〈x−Πx,Πx〉 = 0,

〈λx− λΠx,y〉 = λ〈x−Πx,y〉 ≤ 0 for all y ∈ C.

Hence Π(λx) = λΠx.

Proof of Corollary 2.13. Suppose that a point yo ∈ C satisfies the equation 〈x− yo, z〉 = 0 for
arbitrary z ∈ C. Then 〈x − yo,y − yo〉 = 0 for arbitrary y ∈ C, and Theorem 2.11 (b) shows
that yo = Πx.
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On the other hand, z := Πx± y ∈ C for arbitrary y ∈ C, whence Theorem 2.11 (b) implies that

0 ≥ 〈x−Πx, z −Πx〉 = 〈x−Πx,±y〉 = ±〈x−Πx,y〉.

Consequently, 〈x−Πx,y〉 = 0 for arbitrary y ∈ C.

For x1,x2 ∈ V and λ1, λ2 ∈ R,

〈
(λ1x1 + λ2x2)− (λ1Πx1 + λ2Πx2),y

〉
= λ1〈x1 −Πx1,y〉+ λ2〈x2 −Πx2,y〉 = 0.

Hence Π(λ1x1 + λx2) = λ1Πx1 + λ2Πx2. In other words, Π is a linear mapping from V onto
C.

Exercise 2.14 (Distance functions). Let A be a nonvoid subset of a metric space (X , d). For
y ∈ X let

d(y,A) := inf
x∈A

d(x, y).

Show that

(a) d(y,A) = 0 if and only if y is in the closure A of A,
(b) d(y,A) = d(y,A),
(c)

∣∣d(y,A)− d(z,A)
∣∣ ≤ d(y, z) for arbitrary y, z ∈ X .

Exercise 2.15. Let V = R4 and C := {x ∈ R4 : x1 ≤ x2 ≤ x3 ≤ x4}. Show that C is a closed
convex cone. Guess the projection Πx of the vector x := (3, 1, 5, 3)> onto C. Verify your guess
by checking the conditions in Corollary 2.12.

Exercise 2.16 (Riesz’2 representation theorem in Hilbert spaces). By means of Corollary 2.13
one can easily prove a key result in functional analysis: Let L : V → R be a continuous linear
function. Then there exists a unique vector v ∈ V such that

L(x) = 〈x,v〉 for all x ∈ V .

Prove this result along the following lines:

(a) Show that C := {x ∈ V : L(x) = 0} is a closed linear subspace of V .

(b) If L 6≡ 0, there exists a x1 ∈ V such that L(x1) = 1. Now consider the vector v :=

‖x1 −Πx1‖−2(x1 −Πx1) which satisifes v ⊥ C by Corollary 2.13.

(b.1) Verify that 〈x1,v〉 = 1.

(b.2) Show that for any x ∈ V , the vector x−L(x)x1 belongs toC. Deduce from the latter fact
that L(x) = 〈x,v〉.

(c) Verify uniqueness of v.

2Frigyes Riesz (1880–1956): Hungarian mathematician who made fundamental contributions to functional analysis.
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2.2.2 Support functions and half spaces

Starting from Theorem 2.11 one can deduce various properties of convex sets. At first we show
that a closed concex subset of V is always an intersection of closed halfspaces. A set H ⊂ V is
called a closed halfspace if

H =
{
x ∈ V : 〈x,v〉 ≤ r

}
for some v ∈ V \ {0} and r ∈ R. One can easily verify that this set H is closed and convex, see
also Exercise 2.6. Its boundary is the hyperplane{

x ∈ V : 〈x,v〉 = r
}

=
r

‖v‖2
v + v⊥

with the orthogonal complement

v⊥ =
{
y ∈ V : 〈y,v〉 = 0

}
of v, a closed linear subspace of V .

Definition 2.17 (Support function). The support function of a nonvoid setM ⊂ V is defined as

hM : V → (−∞,∞] , hM (v) := sup
x∈M
〈x,v〉.

Exercise 2.18 (Support functions of convex hulls). Show that

hM ≡ hM and hM ≡ hconv(M),

where M denotes the closure of M . In particular, the support function of M coincides with the
support function of conv(M), which is the smallest closed and convex set containingM , see also
Exercise 2.8.

Recall that C is a nonvoid closed and convex subset of V and that B is the closed unit ball in V ,
so ∂B is the unit sphere {u ∈ V : ‖u‖ = 1}.

Corollary 2.19 (Support functions and halfspaces). The support function h = hC of C has the
following properties:

C =
⋂
v∈V

{
x ∈ V : 〈x,v〉 ≤ h(v)

}
=

⋂
u∈∂B

{
x ∈ V : 〈x,u〉 ≤ h(u)

}
.

For x ∈ V \C,
d(x,C) = max

u∈∂B

(
〈x,u〉 − h(u)

)
.

Note that the set
{
x ∈ V : 〈x,v〉 ≤ h(v)

}
is a closed halfspace in V if v 6= 0 and h(v) < ∞.

Otherwise it is the full space V .

Proof of Corollary 2.19. Obviously, the setC is contained in any set
{
x ∈ V : 〈x,v〉 ≤ h(v)

}
,

so
C ⊂

⋂
v∈V

{
x ∈ V : 〈x,v〉 ≤ h(v)

}
⊂

⋂
u∈∂B

{
x ∈ V : 〈x,u〉 ≤ h(u)

}
.
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To show that the latter set coincides with C, it suffices to verify the particular representation of
d(x,C) for x ∈ V \C. To this end we consider the metric projection Πx of x onto C. For any
unit vector u in V , the definition of h(u) and the Cauchy–Schwarz inequality imply that

〈x,u〉 − h(u) ≤ 〈x,u〉 − 〈Πx,u〉 = 〈x−Πx,u〉 ≤ ‖x−Πx‖ = d(x,C).

Specifically let u = ‖x−Πx‖−1(x−Πx). Then it follows from Theorem 2.11 (b) that

〈y −Πx,u〉 = ‖x−Πx‖−1〈y −Πx,x−Πx〉 ≤ 0 for all y ∈ C.

In other words, 〈y,u〉 ≤ 〈Πx,u〉 for all y ∈ C, whence

h(u) = sup
y∈C
〈y,u〉 = 〈Πx,u〉,

and

〈x,u〉 = 〈Πx,u〉+ 〈x−Πx,u〉 = h(u) + ‖x−Πx‖.

Exercise 2.20 (Support functions and interior points). Show that for any x ∈ V and δ > 0 the
following two statements are equivalent:

(i) The closed ball x+ δB = {x+ δv : v ∈ B} with center x and radius δ is contained in C;

(ii) h(u) ≥ 〈x,u〉+ δ for any unit vector u in V .

2.2.3 Separating hyperplanes

The next consequence of Theorem 2.11 is that for any point on the boundary of C there exists a
tangent hyperplane, at least in case of V being finite-dimensional.

Corollary 2.21 (Tangent hyperplanes). Let dim(V ) < ∞. For each x ∈ ∂C there exists a unit
vector u ∈ V such that 〈x,u〉 ≥ 〈y,u〉 for all y ∈ C.

Proof of Corollary 2.21. Let (xn)∞n=1 be a sequence in V \C with limit x. We define

un := ‖xn −Πxn‖−1(xn −Πxn).

Then (un)∞n=1 is a sequence of unit vectors such that

〈y − xn,un〉 = 〈y −Πxn,un〉 − ‖xn −Πxn‖ ≤ 0 for all y ∈ C,

see Theorem 2.11 (b). Since the unit sphere of a finite-dimensional Hilbert space is compact, we
may assume without loss of generality that (un)∞n=1 converges to some unit vector u. But then

〈y,u〉 − 〈x,u〉 = 〈y − x,u〉 = lim
n→∞

〈y − xn,un〉 ≤ 0

for any y ∈ C.

Finally we show that two disjoint convex subsets can often be separated by a hyperplane:
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Theorem 2.22 (Separating hyperplanes). Let D1 and D1 be nonvoid convex subsets of V such
thatD1 ∩D2 = ∅.

(a) IfD1 is compact andD2 is closed, then there exists a unit vector u ∈ V such that

sup
x∈D1

〈x,u〉 < inf
y∈D2

〈y,u〉.

(b) If dim(V ) <∞, then there exists a unit vector u ∈ V such that

sup
x∈D1

〈x,u〉 ≤ inf
y∈D2

〈y,u〉.

Proof of Theorem 2.22. We start with part (a). As shown in Exercise 2.14, the mapping x 7→
d(x,D2) is continuous. Hence compactness ofD1 implies existence of a point a ∈D1 such that
d(a,D2) ≤ d(x,D2) for all x ∈ D1. If we denote the metric projection of a onto D2 with b,
then

0 < ‖b− a‖ = inf
x∈D1,y∈D2

‖y − x‖.

In particular, a is the metric projection of b onto D1. Hence it follows from Theorem 2.11 (b)
applied to C = D1,D2 that the unit vector

u := ‖b− a‖−1(b− a)

satisfies the following inequalities:

〈x− a,u〉 ≤ 0 for all x ∈D1,

〈y − b,u〉 ≥ 0 for all y ∈D2.

This implies that

sup
x∈D1

〈x,u〉 ≤ 〈a,u〉,

inf
y∈D2

〈y,u〉 ≥ 〈b,u〉,

and

〈b,u〉 − 〈a,u〉 = 〈b− a,u〉 = ‖b− a‖ > 0.

Now to part (b). Since V is separable, which is a consequence of dim(V ) < ∞, for j = 1, 2

there exists a countable dense subset {zj1, zj2, zj3, . . .} of Dj ; see also Remark 2.23. It follows
from Exercise 2.7 and convexity of Dj that Djn := conv{zj1, . . . ,zjn} is a compact subset of
Dj . Moreover, this construction implies thatDj1 ⊂Dj2 ⊂Dj3 ⊂ · · · with

lim
n→∞

d(x,Djn) = 0 for any x ∈Dj .

According to part (a), for any index n there exists a unit vector un ∈ V such that

inf
yn∈D2n

〈yn,un〉 > sup
xn∈D1n

〈xn,un〉.
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Since dim(V ) <∞, the unit sphere of V is compact. Hence we may replace
(
(D1n,D2n,un)

)
n

with a subsequence, if necessary, such that (un)n converges to a unit vector u. But then for
arbitrary x ∈ D1 and y ∈ D2 the metric projections xn := ΠD1nx and yn := ΠD2ny satisfy
limn→∞ xn = x and limn→∞ yn = y, so the properties of (un)n imply that

〈y,u〉 − 〈x,u〉 = lim
n→∞

(
〈yn,un〉 − 〈xn,un〉

)
≥ 0.

Consequently, infy∈D2〈y,u〉 is greater than or equal to supx∈D1
〈x,u〉.

Remark 2.23 (Separable metric spaces). A metric space (X , d) is called separable if there exists
a countable set Xo ⊂ X which is dense in X . The latter property means that for arbitrary x ∈ X
and ε > 0 there exists a xo ∈ Xo with d(x, xo) ≤ ε. (A standard example is X = Rd with the
standard Euclidean distance and its countable subset Xo = Qd.)

For any nonvoid subset Y of X , the metric space (Y, d) is separable, too. To see this, we ‘choose’
for each xo ∈ Xo and k ∈ N a point y(xo, k) ∈ Y such that d(xo, y(xo, k)) ≤ d(xo,Y) + 1/k.
Then Yo := {y(xo, k) : xo ∈ Xo, k ∈ N} is a countable dense subset of Y . Indeed, consider an
arbitrary point y ∈ Y . For ε > 0, there exists a point xo ∈ Xo such that d(y, xo) ≤ ε/3. Then for
any integer k ≥ 3/ε, the point y(xo, k) ∈ Yo satisfies

d(y, y(xo, k)) ≤ d(y, xo) + d(xo, y(xo, k))

≤ d(y, xo) + d(xo,Y) + 1/k

≤ 2d(y, xo) + 1/k

≤ ε.

2.2.4 Polar sets and cones

For a subsetM of V its polar set is defined as

M∗ :=
{
y ∈ V : 〈x,y〉 ≤ 1 for all x ∈M

}
.

Obviously,M∗ contains the point 0, and writing

M∗ =
⋂
x∈M

{
y ∈ V : 〈x,y〉 ≤ 1

}
shows thatM∗ is closed and convex. With the support function ofM one may also write

M∗ =
{
y ∈ V : hM (y) ≤ 1

}
.

If the closed and convex set C contains the point 0, its polar set C∗ has remarkable properties:

Theorem 2.24 (Polar sets). Suppose that C contains 0. Then

(C∗)∗ = C.

The setC is bounded if and only if 0 is an interior point ofC∗. The setC∗ is bounded if and only
if 0 is an interior point of C.
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Proof of Theorem 2.24. Since 〈x, y〉 ≤ 1 for arbitrary x ∈ C and y ∈ C∗, we have the inclusion

C ⊂
{
x ∈ V : 〈x,y〉 ≤ 1 for all y ∈ C∗

}
= (C∗)∗.

It remains to show that for any x1 ∈ V \C there exists a y ∈ C∗ such that 〈x1,y〉 > 1. To this
end let x0 := ΠCx1. Then v := x1 − x0 6= 0, and by Theorem 2.11 (b), 〈x− x0,v〉 ≤ 0 for all
x ∈ C. Consequently,

sup
x∈C
〈x,v〉 = 〈x0,v〉 = 〈x1,v〉 − ‖v‖2 < 〈x1,v〉.

Since 0 ∈ C, we know that

0 ≤ sup
x∈C
〈x,v〉 = 〈x0,v〉 < 〈x1,v〉.

In case of 〈x0,v〉 = 0, any point y = tv with t ≥ 0 belongs to C∗, and 〈x1,y〉 = t〈x1,v〉 > 1

for sufficiently large t > 0. In case of 〈x0,v〉 > 0 the point y := 〈x0,v〉−1v belongs to C∗ with
〈x1,y〉 > 1 = 〈x0,y〉 = supx∈C〈x,y〉.

Suppose that C is bounded, that means, C ⊂ rB for some r > 0 with the closed unit ball B of
V . This implies that

C∗ ⊃ (rB)∗ = r−1B,

see Exercise 2.25. Thus 0 is an interior point of C∗. On the other hand, suppose that 0 is an
interior point of C, that means, rB ⊂ C for some r > 0. Then

C∗ ⊂ (rB)∗ = r−1B,

whence C∗ is bounded.

Since (C∗)∗ = C, the previous two statements remain valid if we interchange C and C∗.

Exercise 2.25 (Polar sets of balls centered at 0). Show that for any r > 0 and the closed unit ball
B of V ,

(rB)∗ = r−1B.

Remark 2.26 (Polar cones). Suppose that C is a closed convex cone. Then one can show that

C∗ =
{
y ∈ V : 〈x,y〉 ≤ 0

}
.

The latter set is a closed convex cone, too, the so-called polar cone of C.

Figure 2.1 indicates a closed convex cone C ⊂ R2 and its polar cone C∗.

2.3 Extremal Points

In this section we consider again an arbitrary real linear space V , and C is always a nonvoid
convex subset of V . Recall the notion of convex hulls: For a nonvoid set M ⊂ V we defined its
convex hull conv(M), the smallest convex set containing M . Now the question is whether for a
given convex set C there is a smallest set M ⊂ V such that C = conv(M). If such a set M
exists, it will certainly contain all “extremal points” of C:



37

CC*

Figure 2.1: A closed convex cone C and its polar cone C∗.

Definition 2.27 (Extremal points). A point x ∈ C is called extremal point of C (or extremal in
C) if it satisfies the following condition: If x = (1 − λ)y + λz with y, z ∈ C and 0 < λ < 1,
then y = z.

The set of all extremal points of C is denoted with extr(C). Any point x ∈ C \ extr(C) can be
written as x = (1− λ)y + λz with two different points y, z ∈ C and some λ ∈ (0, 1).

Remark 2.28 (Simplified criterion for extremal points). A point x ∈ C is extremal in C if and
only if it satisfies the following condition: If x = 2−1(y + z) with y, z ∈ C, then y = z.

Proof: It is clear that any point x ∈ extr(C) satisfies the latter condition. On the other hand,
suppose that x ∈ C satisfies the latter condition and equals (1 − λ)y + λz with y, z ∈ C and
λ ∈ (0, 1). Without loss of generality let λ ≤ 1/2, because otherwise we could interchange y and
z. Then x = 2−1(y+ z′) with z′ = (1− 2λ)y+ 2λz ∈ C. But then y = z′, which is equivalent
to y = z.

Exercise 2.29. Let x be an element of the convex set C ⊂ V . Show that x ∈ extr(C) if and
only if C \ {x} is convex.

Exercise 2.30. Let C = conv(M) for some setM ⊂ V . Show that

extr(C) ⊂ M .

More precisely, show that

extr(C) =
{
x ∈M : x 6∈ conv(M \ {x})

}
.

Remark 2.31. Suppose that (V , ‖ · ‖) is a normed space. Then

extr(C) ⊂ ∂C.
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Proof: If x is an interior point of C, then for some ε > 0, the closed ball with center x and radius
ε is contained inC. Hence, for anyw ∈ V with ‖w‖ = ε, the points y := x−w and z := x+w

are different points in C such that x = 2−1(y + z).

Exercise 2.32. Let (V , 〈·, ·〉, ‖ · ‖) be a Hilbert space. Show that any unit vector is an extremal
point of the closed unit ballB = {x ∈ V : ‖x‖ ≤ 1}. Precisely,

extr(B) = ∂B.

For compact and convex subsets of Rd there is a simple representation theorem which answers our
initial question:

Theorem 2.33 (Minkowski). Let K be a compact and convex subset of Rd. Then extr(K) is
nonempty, and

K = conv(extr(K)).

In Functional Analysis there exist extensions of this theorem to normed and topological vector
spaces, e.g. the Krein–Milman theorem or Choquet’s theorem. But for our purposes the finite-
dimensional variant will be sufficient.

Proof of Theorem 2.33. In case of d = 1 the statement is easily verified: Here K = [a, b] with
real numbers a ≤ b, and one can show easily that extr(K) = {a, b} andK = conv({a, b}).

Suppose that for some d > 1 the assertion is correct for compact, convex subsets of Rd−1. Now
we have to show that an arbitrary point x ∈ K may be represented as a convex combination of
points in extr(K).

Suppose first that x is in the interior of K. Fixing an arbitrary unit vector u, we may move from
x in direction±u until we hit boundary points y = x−su and z = x+ tu ofK, where s, t > 0.
But then x = (1− λ)y + λz with λ := s/(s+ t) ∈ (0, 1). Thus it suffices to consider boundary
points x ofK.

Let x be on the boundary ofK. As shown in Corollary 2.21, there exists a unit vector u such that

ro := 〈x,u〉 = max
y∈K
〈y,u〉.

In particular, x belongs to the compact, convex set

Ko :=
{
y ∈K : 〈y,u〉 = ro

}
.

But this set is contained in the hyperplane

Ho :=
{
y ∈ Rd : 〈y,u〉 = ro

}
=
{
rou+ z : z ∈ u⊥

}
which is geometrically equivalent to Rd−1. Consequently, by our induction hypothesis, x is a
convex combination of extremal points of Ko. Now the assertion follows from the fact that any
extremal point xo of Ko is automatically an extremal point of K. For if xo = 2−1(y + z) with
y, z ∈K, then

ro = 〈xo,u〉 = 2−1
(
〈y,u〉︸ ︷︷ ︸
≤ro

+ 〈z,u〉︸ ︷︷ ︸
≤ro

)
,
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whence 〈y,u〉 = 〈z,u〉 = ro. Consequently, y and z belong to Ko, so xo ∈ extr(Ko) implies
that y = z = xo.

Exercise 2.34. Prove or falsify the following claim for d = 1, 2, 3: If K ⊂ Rd is compact and
convex, then extr(K) is compact, too.

Exercise 2.35. Let C ⊂ [a, b]d for real numbers a < b. Show that

C ∩ {a, b}d ⊂ extr(C).

Then deduce from Exercise 2.30 that

extr(C) = C ∩ {a, b}d if C = conv
(
C ∩ {a, b}d

)
.

Example 2.36. Consider the following subsets of Rd:

C1 :=
{
x ∈ [0,∞)d :

d∑
i=1

xi ≤ 1
}
,

C2 :=
{
x ∈ [0, 1]d : x1 ≤ x2 ≤ · · · ≤ xd

}
.

Both sets are the intersection of finitely many closed halfspaces in Rd, so they are closed and
convex. (Precisely, both sets are the intersection of d + 1 closed halfspaces.) Moreover, both are
contained in [0, 1]d, so they are bounded and thus compact.

Now we show that for j = 1, 2,

extr(Cj) = Cj ∩ {0, 1}d.

By Exercise 2.35 this is true, provided that Cj is the convex hull of Cj ∩ {0, 1}d.

The set C1 ∩ {0, 1}d consists of the standard basis vectors e1, . . . , ed and 0. Any x ∈ C1 can be
written as

x =
n∑
i=1

xiei =
d∑
i=1

xiei + xd+10

with the nonnegative weights x1, . . . , xd and xd+1 := 1 −
∑d

i=1 xi summing to one. Thus C1 is
indeed the convex hull of {e1, . . . , ed,0}.

Similarly, the set C2 ∩ {0, 1}d consists of b1, b2, . . . , bd+1 with bj := (1[i≥j])
d
i=1, i.e. bd+1 = 0.

Then any x ∈ C2 may be written as

x =

d+1∑
j=1

λjbj

with the nonnegative weights λ1 := x1, λj := xj − xj−1 for 2 ≤ j ≤ d and λd+1 := 1 − xd
summing to one.

The setC2 in the previous example may be seen as a special case of the setC ∩ [0, 1]d in the next
exercise.
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Exercise 2.37. Let O be a nonempty set of index pairs (i, j), where i, j ∈ {1, . . . , d} and i 6= j.
Then define

C :=
{
x ∈ Rd : xi ≤ xj whenever (i, j) ∈ O

}
.

(a) Show that C is a closed convex cone.

(b) Show that

C ∩ [0, 1]d = conv(E+) with E+ := C ∩ {0, 1}d.

(Hence, by Exercise 2.35, the elements of E+ are the extremal points of C ∩ [0, 1]d.)

(c) Show that

C = span(1d) +C+ with C+ := C ∩ [0,∞)d.

(d) Show that

C+ = cone(E+) and C = cone(E+ ∪ {−1d}).

2.4 Convex Polyhedra

In this section we consider the space V = Rd with its standard inner product. In the last section
we encountered already various examples of a special type of subsets of Rd:

Definition 2.38 (Convex polyhedron). A nonvoid subset of Rd is called a convex polyhedron if
it is the intersection of finitely many closed halfspaces.

Since any closed halfspace is convex, a convex polyhedron is a closed and convex set. The next
theorem provides some further facts which are important in various settings.

Theorem 2.39 (Properties of convex polyhedra). Consider a convex polyhedron

C =
m⋂
i=1

{
x ∈ Rd : 〈x,vi〉 ≤ ri

}
with m ∈ N, vi ∈ Rd \ {0} and ri ∈ R.

(a) The following three properties are equivalent:

C is bounded;(2.1)

max
1≤i≤m

〈w,vi〉 > 0 for all w ∈ Rd \ {0};(2.2)

0 is an interior point of conv(v1, . . . ,vm).(2.3)

(b) A point x ∈ C is extremal in C if and only if

(2.4) span
{
vi : 1 ≤ i ≤ m, 〈x,vi〉 = ri

}
= Rd .

In particular, extr(C) comprises at most
(
m
d

)
different points.
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Proof of Theorem 2.39. We start with the equivalence of (2.1) and (2.2). Suppose that prop-
erty (2.2) is violated. That means, for some w ∈ Rd \ {0},

〈w,vi〉 ≤ 0 for i ∈ {1, . . . ,m}.

For a fixed point xo ∈ C and arbitrary t ≥ 0, the point xo + tw lies in C as well, because
〈xo + tw,vi〉 ≤ ri + t〈w,vi〉 ≤ ri for i = 1, . . . ,m. Consequently, C is unbounded.

On the other hand, suppose that C is unbounded. Then there exists a sequence (xn)n in C with
0 < ‖xn‖ → ∞ as n→∞. We may replace this sequence with a subsequence, if necessary, such
that limn→∞ ‖xn‖−1xn = w for some unit vectorw ∈ Rd. But this vector satisfies the condition

〈w,vi〉 = lim
n→∞

‖xn‖−1 〈xn,vi〉︸ ︷︷ ︸
≤ri

≤ lim
n→∞

‖xn‖−1ri = 0

for arbitrary i ≤ {1, . . . ,m}. Hence property (2.2) is violated as well.

Now we prove equivalence of (2.2) and (2.3). Let D = conv(v1, . . . ,vm). As shown in Exer-
cise 2.18,

hD(w) := sup
x∈D
〈x,w〉 = max

1≤i≤m
〈vi,w〉.

Consequently, (2.2) is equivalent to

hD(u) > 0 for any u ∈ ∂B.

Since hD is continuous and ∂B is compact, this is even equivalent to

min
u∈∂B

hD(u) > 0.

But it follows from Exercise 2.20, that for any δ > 0, the set 0 + δB = δB is contained in D if
and only if hD ≥ δ on ∂B. Thus (2.2) is equivalent to 0 being an interior point of D, which is
(2.3).

Now we verify part (b). Suppose first that x ∈ C satisfies (2.4). To show that x ∈ extr(C), let
x = 2−1(y + z) with y, z ∈ C. Now we have to show that y = z. Indeed,

〈x,vi〉 = 2−1 〈y,vi〉︸ ︷︷ ︸
≤ri

+2−1 〈z,vi〉︸ ︷︷ ︸
≤ri

< ri if min
(
〈y,vi〉, 〈z,vi〉

)
< ri,

whence 〈y−z,vi〉 = 0 for all indices i such that 〈x,vi〉 = ri. By assumption (2.4), these vectors
vi span the full space, so y − z = 0.

Secondly, suppose that x ∈ C violates condition (2.4). Then there exists a unit vector w ∈ Rd

such that 〈w,vi〉 = 0 whenever 〈x,vi〉 = ri. For ε > 0,

〈x± εw,vi〉 = 〈x,vi〉 ± ε〈w,vi〉 ≤ ri for all i ∈ {1, 2, . . . ,m},

provided that

ε ≤ min
{ri − 〈x,vi〉∣∣〈w,vi〉∣∣ : 1 ≤ i ≤ m, 〈x,vi〉 < ri

}
.
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In the latter case, x = 2−1y + 2−1z with y := x − εw ∈ C and z := x + εw ∈ C. Thus x is
not an extremal point of C.

The upper bound for the cardinality of extr(C) may be verified as follows: If m < d, the set C
has no extremal points at all. Otherwise one could determine all extremal points of C as follows
(in principle): For arbitrary indices 1 ≤ i(1) < · · · < i(d) ≤ m check whether the vectors vi(1),
. . . , vi(d) are linearly independent. If yes, let x be the unique vector satisfying 〈x,vi(j)〉 = ri(j)

for 1 ≤ j ≤ d. Then check whether 〈x,vi〉 ≤ ri for all remaining indices i. If yes, x is an
extremal point of C. Since there are

(
m
d

)
possibilities for chosing i(1), . . . , i(d), there are at most(

m
d

)
extremal points in C.

For compact convex polyhedra, there is an alternative simple representation:

Theorem 2.40 (Compact convex polyhedra). A set C ⊂ Rd is a compact convex polyhedron if
and only if it is the convex hull of a finite subset of Rd.

Before proving this theorem, we need a simple auxiliary result about convex sets.

Lemma 2.41. Let C = conv(M) for some set M ⊂ Rd with at least two elements. For any
fixed xo ∈ C, the following two properties ofM are equivalent:

(i) The set C has nonempty interior.

(ii) The vectors x− xo, x ∈M , span the whole space Rd.

Proof of Lemma 2.41. Note first that C ⊂ xo + span(M − xo). Indeed, any point x ∈ C can
be written as x =

∑n
i=1 λixi with n ∈ N positive numbers λ1, . . . , λn summing to one and points

x1, . . . ,xn ∈M . But this may be rewritten as x = xo +
∑n

i=1 λi(xi − xo), a point in the affine
space xo + span(M − xo).

Suppose that (ii) is violated, that means, span(M − xo) has dimension d′ < d. Then there exists
a unit vector u ∈ Rd which is perpendicular to span(M −xo), in other words, span(M −xo) ⊂
u⊥. In particular, C ⊂ xo + span(M − xo) is contained in the hyperplane xo + u⊥. Thus, C
has no interior points, whence (i) is violated, too.

Suppose that (ii) is satisfied. Then there exist points x1, . . . ,xd ∈M such that x1−xo, . . . ,xd−
xo are linearly independent. In other words, the matrix A := [x1 − xo, . . . ,xd − xo] ∈ Rd×d is
nonsingular, and φ(λ) := xo + Aλ defines a homeomorphism φ : Rd → Rd. In particular, C
contains the nonempty open set φ(U), where U :=

{
λ ∈ (0,∞)d :

∑d
i=1 λi < 1

}
. Hence, (i) is

satisfied as well.

Proof of Theorem 2.40. Theorem 2.33 implies that a compact convex polyhedron C is equal to
conv(extr(C)). According to Theorem 2.39 (b), the set extr(C) is finite. Thus C is the convex
hull of a finite subset of Rd.

On the other hand, suppose thatC = conv(x1, . . . ,xm) withm ∈ N and pairwise different points
xi ∈ Rd. In case ofm = 1,C = {x1} is easily seen to be the intersection of 2d closed halfspaces,
so we only consider the case m ≥ 2.
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Suppose first that C has nonvoid interior. Without loss of generality let 0 be an interior point of
C. Then it follows from Theorem 2.24 that the polar set C∗ =

{
y ∈ Rd : hC(y) ≤ 1

}
is also a

compact and convex set with interior point 0. But sinceC is the convex hull of x1,x2, . . . ,xm, it
follows from Exercise 2.18 that

C∗ =
{
y ∈ Rd : max

1≤i≤m
〈xi,y〉 ≤ 1

}
=

m⋂
i=1

{
y ∈ Rd : 〈xi,y〉 ≤ 1

}
,

i.e. C∗ is a compact convex polyhedron. According to the first part, C∗ is the convex hull of a
finite subset of Rd. But then we may apply the previous considerations withC∗ in place ofC and
(C∗)∗ = C in place of C∗ to show that C is a convex polyhedron, too.

In general, without loss of generality let 0 ∈ C, and define

W := span{x1, . . . ,xm}.

Considering C as a subset of W , it has nonempty interior, see Lemma 2.41. Thus C may be
represented as

C =

n⋂
i=1

{
x ∈W : 〈x,vi〉 ≤ ri

}
with n ∈ N nonzero vectors v1, . . . ,vn ∈W and real numbers r1, . . . , rn. But if b1, . . . , bk is an
orthonormal basis ofW⊥, then we may rewrite C as

C =
n⋂
i=1

{
x ∈ Rd : 〈x,vi〉 ≤ ri

}
∩

k⋂
j=1

{
x ∈ Rd : 〈x, bj〉 ≤ 0

}
∩

k⋂
j=1

{
x ∈ Rd : 〈x,−bj〉 ≤ 0

}
,

so C is a convex polygon.

Exercise 2.42. LetM be an arbitrary nonvoid subset of a real vector space V . Show that for any
fixed xo ∈ conv(M) the following three sets are identical:

W 1 := span{x− xo : x ∈M},

W 2 := span{x− y : x,y ∈M},

W 3 := span
{ n∑
i=1

λixi : n ∈ N;x1, . . . ,xn ∈M ;λ1, . . . , λn ∈ R with
n∑
i=1

λi = 0
}
.

2.4.1 Linear programs

In numerous applications one has to minimize a linear function f : Rd → R,

(2.5) f(x) = 〈x, c〉

with a given nonzero vector c ∈ Rd, under certain constraints on x. Precisely, let x be an element
of

(2.6) C :=
{
x ∈ [0,∞)d : Ax = b

}
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with a given matrixA = (ai,j)i≤k,j≤d ∈ Rk×d of rank k < d and a given vector b ∈ Rk. This set
C is a convex polyhedron determined by d+ 2k linear inequalities:

〈x,±ai〉 ≤ ±bi for 1 ≤ i ≤ k,

〈x,−ej〉 ≤ 0 for 1 ≤ j ≤ d,

where A = [a1, . . . ,ak]
> with linearly independent vectors a1, . . . ,ak ∈ Rd, and e1, . . . , ed

denotes the standard basis of Rd. The following corollary to Theorem 2.39 provides additional
information about C and its extremal points.

Corollary 2.43. Let C be the polyhedron defined in (2.6). This set is bounded if and only if{
w ∈ [0,∞)d : Aw = 0

}
= {0}.

A point x ∈ C is extremal in C if and only if

span
(
{a1, . . . ,ak} ∪ {ei : xi = 0}

)
= Rd.

Proof of Corollary 2.43. Recall thatC is a convex polyhedron determined by m = 2k+d linear
inequalities with directions ±a1, . . . ,±ak and −e1, . . . ,−ed. Suppose that w ∈ Rd satisfies
〈w,±aj〉 ≤ 0 for 1 ≤ j ≤ k and 〈w,−ei〉 ≤ 0 for 1 ≤ i ≤ d. This is equivalent to saying that
Aw = 0 and w ∈ [0,∞)d. Hence, by Theorem 2.39 (a), C is bounded if and only if w = 0 is
the only vector with these properties.

The characterization of x ∈ extr(C) is an immediate consequence of Theorem 2.39 (b).

In case of C being compact, we know that C = conv(extr(C)), and

inf
x∈C

f(x) = min
x∈extr(C)

f(x).

This equation can be verified easily. It also follows from Exercise 2.18 and the fact that

inf
x∈C

f(x) = −hC(−c).

Even if C is unbounded, either the minimum is attained at an extremal point of C or f is un-
bounded from below:

Theorem 2.44 (Solutions of a linear program). Let f and C be given by (2.5) and (2.6), respec-
tively. If there exists a vector w ∈ [0,∞)d withAw = 0 and f(w) < 0, then

inf
x∈C

f(x) = −∞.

Otherwise,
inf
x∈C

f(x) = min
x∈extr(C)

f(x) ∈ R.

Proof of Theorem 2.44. Suppose first that Aw = 0 and f(w) < 0 for some w ∈ [0,∞)d. For
any x ∈ C and arbitrary t ≥ 0, the point x+ tw belongs to C as well, and

f(x+ tw) = f(x) + tf(w) → −∞ as t→∞.
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Thus
inf
y∈C

f(y) = −∞.

Now suppose that f(w) ≥ 0 whenever w ∈ [0,∞)d and Aw = 0. Suppose that x ∈ C is not an
extremal point of C. That means,

span
(
{a1, . . . ,ak} ∪ {ej : xj = 0}

)
6= Rd.

Hence there exists a unit vector w which is perpendicular to the latter space. In other words, w is
a unit vector such that

Aw = 0 and wj = 0 whenever xj = 0.

Replacingw with−w, if necessary, we may assume without loss of generality that f(w) ≥ 0 and
wj > 0 for at least one index j. (Indeed, if f(w) > 0 but w ∈ (−∞, 0]d, then w̃ := −w would
satisfyAw̃ = 0, w̃ ∈ [0,∞)d and f(w̃) < 0.) But then

xnew := x− tw with t := min
{ xj
wj

: wj > 0
}
> 0.

would be a new vector in C with f(xnew) ≤ f(x) and

span
(
{a1, . . . ,ak} ∪ {ej : xj = 0}

)
( span

(
{a1, . . . ,ak} ∪ {ej : xnew

j = 0}
)
.

Replacing x with xnew and repeating this step, if necessary, we reach eventually a point x ∈
extr(C) with the same or a smaller value of f(x) than the starting point. Since extr(C) is finite,
this shows that

inf
x∈C

f(x) = min
x∈extr(C)

f(x) ∈ R.

Explicit formulae for extremal points of C. As shown in Corollary 2.43, a point x ∈ C is
extremal in C if and only if

span
(
{a1, . . . ,ak} ∪ {ej : xj = 0}

)
= Rd.

By means of basis completion one can show that this condition is equivalent to the following one:
There exist indices 1 ≤ j(1) < · · · < j(d− k) ≤ d such that

det
([
a1, . . . ,ak, ej(1), . . . , ej(d−k)

])
6= 0 and xj(1) = · · · = xj(d−k) = 0.

If h(1) < · · · < h(k) are the elements of {1, . . . , d} \ {j(1), . . . , j(d − k)}, then the former
determinant equals ±det

(
(ai,h(`))

k
i,`=1

)
. Hence we arrive at the following conclusion:

A point x ∈ C is extremal inC if and only if there exist indizes h(1) < . . . < h(k) in {1, . . . , d}
such that

det
(
(ai,h(`))

k
i,`=1

)
6= 0 and xj = 0 if j 6∈ {h(1), . . . , h(k)}.

In this case,
(xh(`))

k
`=1 =

(
(ai,h(`))

k
i,`=1

)−1
b.
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The latter representation is at the heart of the so-called simplex method, invented by G.B. Dantzig
in 1947. Roughly speaking, one starts with one extremal point xH of C, where H stands for
the index set {h(1), . . . , h(k)}, and then one modifies H step by step by exchanging one of its
elements such that the value f(xH) decreases.

Example 2.45 (Nutrients of meals). Let F1, F2, . . . , Fd be given food ingredients, d ≥ 4. For 1 ≤
i ≤ d let a1i, a2i, a3i ≥ 0 be the weight fractions of proteins, carbohydrates and fat, respectively,
contained in one weight unit of Fi. Suppose one is planning to compose a meal, given by a vector
x ∈ [0,∞)d, where xi specifies the amount (weight) of Fi. The goal is to have a meal containing
given amounts b1, b2, b3 > 0 of proteins, carbohydrates and fat, respectively. The set of vectors x
with these properties corresponds to the setC above, where k = 3. It follows from Corollary 2.43
that this set is bounded, unless a1i = a2i = a3i = 0 for some ingredient Fj .

Now one could think about finding a ‘meal’ x ∈ C with a maximal amount of one’s favourite
ingredient Fj∗ , i.e. one would like to minimize f(x) := 〈x,−ej∗〉. Alternatively, let cj be the
price of Fj per unit weight. Then f(x) = 〈x, c〉 would be the overall price of the ‘meal’ x. One
could also consider the volume cj of one weight unit of Fj and thus try to minimize the overall
volume of a meal. With c = 1d := (1, . . . , 1)> one would consider the overall weight of a meal.

Obviously, the extremal points of C may fail to be ‘delicious’ themselves; their main purpose is
to determine the minimum of f over C. A data example will be presented in the lecture; see also
the supplementary files.

Exercise 2.46. For a given program of study and a certain time interval, let pi be the relative
frequency of degrees with final grade xi = 4 + (i− 1)/2, 1 ≤ i ≤ 5, among all degrees awarded.
Thus p ∈ [0, 1]5 with

∑5
i=1 pi = 1. Suppose we only know that

5∑
i=1

pixi = µ ∈ (4, 6) and
( 5∑
i=1

pi(xi − µ)2
)1/2

= σ > 0.

(a) Show that the set P (µ, σ) of all vectors p with these properties is a compact polyhedron with
at most 10 extremal points.

(b) Write a program which generates for given values µ and σ a list of the extremal points of
P (µ, σ).

(c) Determine with your program sharp bounds for pj , 1 ≤ j ≤ 5, and
∑k

i=1 pi, 1 ≤ k ≤ 4, in
case of µ = 5.5 and σ = 0.5.

Inequality constraints and slack variables. Suppose we want to replace some of the constraints
a>i x = bi with the weaker constraint a>i x ≤ bi. After rearranging the rows ofA, if necessary, let
the constraint set C consist of all vectors x ∈ [0,∞)d such that

a>i x ≤ bi if 1 ≤ i ≤ k′,

a>i x = bi if k′ < i ≤ k.

Then we may introduce a vector y ∈ [0,∞)k
′

of additional “slack variables” and write

bi = a>i x+ yi for i = 1, . . . , k′.
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Thus we consider the augmented vector x̃ = [x>,y]> ∈ [0,∞)d+k′ and want to minimize
f̃(x̃) := f(x) under the constraint that Ãx̃ = b, where

Ã := [A,D] with D := (1[i=s])i≤k,s≤k′ .

Hence by increasing the dimension d we may translate the weaker constraint set in a polyhedron
of type (2.6).

2.4.2 Doubly stochastic matrices and the Hoffmann–Wielandt inequalities

Doubly stochastic matrices. We consider a special example of a convex polyhedron. The matrix
space Rd×d becomes a d2-dimensional Euclidean space, if we define 〈A,B〉 :=

∑d
i,j=1AijBij =

trace(A>B). The corresponding norm is the so-called Frobenius norm ‖ · ‖F .

Now we consider the set Θ of all matrices θ ∈ [0,∞)d×d whose row and column sums are all
equal to one,

d∑
j=1

θij = 1 for 1 ≤ i ≤ d and
d∑
i=1

θij = 1 for 1 ≤ j ≤ d.

This set is characterized by d2 + 4d linear inequalities, and since it is contained in [0, 1]d, it is
compact. Hence our general results imply that extr(Θ) is a finite set, and Θ = conv(extr(Θ)).
The set of extremal points in Θ may be characterized as follows:

Theorem 2.47 (Birkhoff–von Neumann). The set extr(Θ) is the set of all permutation matrices
θ, that means,

θ =
(
1[j=σ(i)]

)d
i,j=1

for some permutation σ of {1, . . . , d}.

In other words, θ ∈ Rd×d is an extremal point of Θ if and only if each row and each column
contains precisely one entry 1 and d− 1 entries 0.

Proof of Theorem 2.47. Instead of using Theorem 2.39 (b) we provide an elementary proof. Note
first that Θ ∩ {0, 1}d×d is the set of all permutation matrices: The definition of Θ entails that any
matrix in {0, 1}d×d belongs to Θ if and only if it has precisely on entry 1 and d − 1 entries 0 in
each row and in each column, that means, it is a permutation matrix.

As shown in Exercise 2.35, any matrix in θ ∈ Θ∩{0, 1}d×d is extremal in Θ. Hence, it suffices to
show that any matrix θ in Θ\{0, 1}d×d is not extremal. Indeed, the setK :=

{
(i, j) : 0 < θij < 1}

is nonempty. The definition of Θ implies that with (i, j) ∈ K also (i′, j), (i, j′) ∈ K for some
indices i′ 6= i and j′ 6= j. From this one can deduce that there is an even number k ≥ 4 of different
pairs (i1, j1), . . . , (ik, jk) ∈ K such that

it = it+1 for odd t ∈ {1, . . . , k − 1},

jt = jt+1 for even t ∈ {2, 3, . . . , k} with jk+1 := j1.
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(i1, j1) (i2, j2)

(i3, j3)(i4, j4)

(i1, j1) (i2, j2)

(i3, j3) (i4, j4)

(i5, j5)
(i6, j6)

(i7, j7)
(i8, j8)

Figure 2.2: Two possible configurations of (i1, j1), . . . , (ik, jk).

Figure 2.2 illustrates the definition of this sequence (i1, j1), . . . , (ik, jk). Now we define the non-
zero matrix δ ∈ Rd×d with components

δij :=

{
(−1)t if (i, j) = (it, jt), 1 ≤ t ≤ k,
0 else.

All row and column sums of this matrix δ are equal to 0, and for sufficiently small ε > 0,

θ = 2−1
(
(θ + εδ) + (θ − εδ)

)
and θ ± εδ ∈ Θ.

Thus θ is not an extremal point in Θ.

The Hoffmann–Wielandt inequalities. The preceding considerations enable an elegant proof
of two famous inequalities about eigenvalues of symmetric matrices.

Theorem 2.48 (Hoffmann–Wielandt). Let A and B be symmetric matrices in Rd×d with eigen-
values λ1 ≤ λ2 ≤ · · · ≤ λd and µ1 ≤ µ2 ≤ · · · ≤ µd, respectively. Then

d∑
i=1

(λi − µi)2 ≤
d∑

i,j=1

(Aij −Bij)2 ≤
d∑
i=1

(λi − µd+1−i)
2.

Both inequalities are sharp. Just consider the diagonal matrices A = diag(λ1, . . . , λd) and
B = diag(µ1, . . . , µd),diag(µd, . . . , µ1). The first inequality may be interpreted as a Lipschitz
property of eigenvalues: The standard Euclidean distance between the two vectors λ and µ of
ordered eigenvalues is bounded from above by the Frobenius norm ofA−B,

‖λ− µ‖ ≤ ‖A−B‖F .
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Proof of Theorem 2.48. The spectral decomposition of symmetric matrices shows that there exist
orthogonal matrices U ,V ∈ Rd×d such that

A = U diag(λ)U> and B = V diag(µ)V >.

The general rule trace(DE) = trace(ED) for arbitrary matrices D,E ∈ Rd×d implies that
‖U>D‖F = ‖D‖F = ‖DV ‖F . In particular,

‖A−B‖2F = ‖U>AV −U>BV ‖2F
= ‖ diag(λ)U>V −U>V diag(µ)‖2F

=
d∑

i,j=1

(λi − µj)2(U>V )2
ij

=
d∑

i,j=1

(λi − µj)2θij ,

with θ := (θij)
d
i,j=1 given by

θij := (U>V )2
ij .

Hence for fixed vectors λ,µ, the squared norm ‖A − B‖2F is a linear function of the matrix θ.
Note thatW := U>V is orthogonal, too, so

d∑
j=1

θij = (WW>)ii = 1 for 1 ≤ i ≤ d,

d∑
i=1

θij = (W>W )jj = 1 for 1 ≤ j ≤ d.

That means, θ belongs to the set Θ of all doubly stochastic matrices in Rd×d. As stated in Theo-
rem 2.47, Θ = conv(P ) with P the set of all permutation matrices in Rd×d. Thus

min
σ∈Sd

d∑
i=1

(λi − µσ(i))
2 ≤ ‖A−B‖2F ≤ max

σ∈Sd

d∑
i=1

(λi − µσ(i))
2

with the set Sd of all permutations of {1, 2, . . . , d}. Now the assertion follows from Lemma 2.49
below.

Lemma 2.49 (Hardy–Littlewood–Polya). For arbitrary real numbers λ1 ≤ λ2 ≤ · · · ≤ λd and
µ1 ≤ µ2 ≤ · · · ≤ µd and any permutation σ of {1, 2, . . . , d},

d∑
i=1

(λi − µi)2 ≤
d∑
i=1

(λi − µσ(i))
2 ≤

d∑
i=1

(λi − µd+1−i)
2.

Proof of Lemma 2.49. This lemma is essentially a consequence of the fact that any permutation
may be represented as a combination of finitely many transpositions (i.e. exchanges of pairs). For
fixed indices 1 ≤ j < k ≤ d we define a new permutation σ̃ via

σ̃(i) :=


σ(i) for i 6∈ {j, k},
σ(k) for i = j,

σ(j) for i = k.
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Then

d∑
i=1

(λi − µσ̃(i))
2 −

d∑
i=1

(λi − µσ(i))
2

= (λj − µσ(k))
2 + (λk − µσ(j))

2 − (λj − µσ(j))
2 − (λk − µσ(k))

2

= 2(λk − λj)(µσ(k) − µσ(j))

{
≤ 0 if σ(k) < σ(j),

≥ 0 if σ(k) > σ(j).
(2.7)

On the one hand, let j be the smallest index such that σ(j) 6= j. Then σ(j) > j and k :=

σ−1(j) > j while σ(k) < σ(j). Then we replace σ with σ̃, so σ(i) = i for i ≤ j. Repeating this
step as often as necessary, we end up with σ(i) = i for all i. In each step the sum of all squares
(λi − µσ(i))

2 stays constant or decreases by (2.7). This yields the first asserted inequality.

On the other hand, let j be the smallest index such that σ(j) 6= d+ 1− j. Then σ(j) < d+ 1− j
and k := σ−1(d+ 1− j) > j while σ(k) > σ(j). Then we replace σ with σ̃, so σ(i) = d+ 1− i
for i ≤ j. This step is repeated until finally σ(i) = d+ 1− i for all i. Since in each step the sum
of all squares (λi − µσ(i))

2 stays constant or increases by (2.7), this yields the second asserted
inequality.

2.4.3 Polyhedral cones

So far, we analyzed bounded convex polyhedra in quite some detail. Now we consider another
special subfamily of convex polyhedra.

Definition 2.50 (Polyhedral cone). A nonvoid subset Rd is called a polyhedral cone if it is the
intersection of finitely many closed halfspaces of the form {x ∈ Rd : 〈x,v〉 ≤ 0} with v ∈
Rd \ {0}.

Here is an analogue to Theorem 2.40 for polyhedral cones.

Theorem 2.51 (Polyhedral cones). A setC ⊂ Rd is a polyhedral cone if and only if it is the cone
generated by a finite subset of Rd.

This theorem can be deduced from Theorem 2.40 by means of a special decomposition of Rd

which is explained first. Let

(2.8) C =

m⋂
i=1

{
x ∈ Rd : 〈x,vi〉 ≤ 0

}
with m ∈ N and nonzero vectors v1, . . . ,vm ∈ Rd. Now let

V := span(v1, . . . ,vm) and W := V ⊥ = {v1, . . . ,vm}⊥.

Obviously, W is a subset of C. If x ∈ Rd is written as x = xV + xW with xV ∈ V and
xW ∈W , then 〈x,vi〉 = 〈xV ,vi〉 for 1 ≤ i ≤ m, whence x ∈ C if and only if xV ∈ C. This
shows that

C = C ∩ V +W .
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Note that C ∩ V is a “pointed cone” in the sense that for x ∈ V \ {0}, x ∈ C implies that
−x 6∈ C.

Proof of Theorem 2.51. Suppose first that C is given by (2.8). With the decomposition C =

C ∩ V +W just mentioned, it suffices to show that C ∩ V andW are cones generated by finite
sets. Since {0} = cone(0), it suffices to consider the cases C ∩ V 6= {0} andW 6= {0}.

Let b1, . . . , bq be a basis of W , and let b0 := −
∑q

i=1 bi. Any point x ∈ W may be written as
x =

∑q
i=1 µibi with suitable numbers µ1, . . . , µq ∈ R. But for any λ0 ≥ 0,

x = λ0b0 +

q∑
i=1

(µi + λ0)bi,

and for sufficienlty large λ0, all factors µi + λ0, 1 ≤ i ≤ q, are positive. Hence, W =

cone(b0, b1, . . . , bq).

Suppose that C ∩ V 6= {0}. With b := −
∑m

i=1 vi, every nonzero vector x ∈ C ∩ V satisfies
〈x, b〉 = 1. Indeed, if x ∈ C, then 〈x, b〉 = −

∑m
i=1〈x,vi〉 ≥ 0 with equality if and only if

〈x,vi〉 = 0 for 1 ≤ i ≤ m, whence x ∈ V ⊥ = W . Consequently, C ∩ V may be written as

C ∩ V = {λx : λ ≥ 0,x ∈K}

with

K :=
{
x ∈ C ∩ V : 〈x, b〉 = 1

}
.

Note thatK is a convex polyhedron, determined by m+ 2 dim(W ) + 2 linear inequalities. IfK
is bounded, it follows from Theorem 2.40 that K = conv(M) for some finite subset of C ∩ V ,
whence C ∩ V = cone(M). To verify boundedness of K, assume the contrary. Then there
exists a sequence (xn)n in K such that ‖xn‖ → ∞ as n → ∞. Without loss of generality we
may assume that un := ‖xn‖−1xn converges to a unit vector u as n → ∞. Since C ∩ V is
a closed convex cone, all points un and the limit u belong to C ∩ V . But this would imply the
contradiction that

〈u, b〉 = lim
n→∞

〈un, b〉 = lim
n→∞

‖xn‖−1 = 0.

Now suppose thatC = cone(v1, . . . ,vm) for somem ∈ N and nonzero vectors v1, . . . ,vm ∈ Rd.
As shown in Exercise 2.10, C is closed, whence C = (C∗)∗ with M∗ denoting the polar set of
M ⊂ Rd. But

C∗ =
{
y ∈ Rd : 〈y,x〉 ≤ 0 for all x ∈ C

}
=
{
y ∈ Rd : 〈y,vi〉 ≤ 0 for 1 ≤ i ≤ m

}
,

which is a polyhedral cone. As shown before, there exists a finite subset M of Rd such that
C∗ = cone(M). But then,

C =
{
x ∈ Rd : 〈x,y〉 ≤ 0 for all y ∈ cone(M)

}
=
{
x ∈ Rd : 〈x,y〉 ≤ 0 for all y ∈M

}
,

which is a polyhedral cone as well.
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The polar cone of a polyhedral cone. It follows from the general theory that for any closed
convex coneC ⊂ Rd and its polar coneC∗, every point x ∈ Rd can be written as x = Πx+Π∗x,
where Π and Π∗ denote the metric projections onto C and C∗, respectively. Moreover, Πx ⊥
Π∗x.

Now suppose that C is a polyhedral cone as in (2.8). Then,

C∗ = cone(v1, . . . ,vm).

For x ∈ Rd let
J(x) :=

{
i ∈ {1, . . . ,m} : 〈Πx,vi〉 = 0

}
.

Then

(2.9) Πx ∈ {vj : j ∈ J(x)}⊥ and Π∗x ∈ cone(vj : j ∈ J(x)),

where cone(∅) := {0}. This implies that Πx is the orthogonal projection onto the linear space
{vj : j ∈ J(x)}⊥ and Π∗x is the orthogonal projection onto the linear space span(vj : j ∈
J(x)). The first part of (2.9) is just a consequence of the definition of J(x). As to the second part
of (2.9), let Π∗x =

∑m
i=1 λivi with λ1, . . . , λm ≥ 0. For any index j with λj > 0, the vector

Π∗x− λjvj belongs to C∗ too, whence

0 ≤ −〈Πx,vj〉 = λ−1
j 〈Πx,Π

∗x− λjvj〉 ≤ 0,

whence j ∈ J(x). Consequently, Π∗x ∈ cone(vj : j ∈ J(x)).



Chapter 3

Convex Functions

3.1 Convex Functions on the Real Line

In Section 1.2 we encountered already convex functions. There, the functions f under consider-
ation were at least differentiable, and convexity was just an additional feature. Now we review
the definition of convexity of univariate functions and its implications in full generality and detail.
Throughout this section let C be a nondegenerate interval in R.

Definition 3.1 (Convex and concave functions, I). (a) A function f : C → (−∞,∞] is called
convex, if for arbitrary points x, y ∈ C and λ ∈ (0, 1),

f((1− λ)x+ λy) ≤ (1− λ)f(x) + λf(y).

A function f : C → [−∞,∞) is called concave, if −f is convex.

(b) A function f : C → R is called strictly convex, if for arbitrary different points x, y ∈ C and
λ ∈ (0, 1),

f((1− λ)x+ λy) < (1− λ)f(x) + λf(y).

A function f : C → R is called strictly concave, if −f is strictly convex.

Note that for points x < y in C, the set {(1−λ)x+λy : λ ∈ (0, 1)} is the interval (x, y). Hence,
if we define the domain of f : C → (−∞,∞] to be the set

dom(f) := {x ∈ C : f(x) <∞},

then convexity of f implies that dom(f) is a subinterval of C. If we set f(x) :=∞ for x ∈ R\C,
then dom(f) remains unaltered, and convexity of f on C implies convexity of f on R.

Exercise 3.2 (Simplified criterion for convexity). Suppose that f : C → R is continuous. Show
that f is convex (strictly convex) if and only if

f(2−1(x+ y)) ≤ (<) 2−1
(
f(x) + f(y)

)
for arbitrary different points x, y ∈ C.

Exercise 3.3 (A contraction principle). Let f : [−1, 1] → R be convex. Show that for any
x ∈ (−1, 1),

f(x) + f(−x) ≤ f(1) + f(−1).

53
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Alternative characterizations. For three numbers x < y < z in C one can always write

y = (1− λ)x+ λz with λ :=
y − x
z − x

∈ (0, 1) and 1− λ =
z − y
z − x

.

Hence, f is (strictly) convex on C if and only if for any choice of the points x < y < z in C,

f(y) ≤ (<) (1− λ)f(x) + λ f(z).

Now we want to reinterpret such inequalities in terms of the slopes (difference ratios)

f ′(r, s) :=
f(s)− f(r)

s− r
∈ [−∞,∞]

for arbitrary points r, s ∈ C such that r 6= s and at least one of them is in dom(f). Note that
f ′(r, s) = f ′(s, r).

In case of f(y) <∞, the inequality

(3.1) f(y) ≤ (1− λ)f(x) + λf(z)

is equivalent to

(3.2) f ′(x, y) ≤ f ′(y, z).

Indeed,

(1− λ)f(x) + λf(z) − f(y) = (1− λ)(f(x)− f(y)) + λ(f(z)− f(y))

=
(z − y)(f(x)− f(y)) + (y − x)(f(z)− f(y))

z − x

=
(y − x)(z − y)

z − x
(
f ′(y, z)− f ′(x, y)

)
.

In case of f(x) <∞, condition (3.1) is equivalent to

(3.3) f ′(x, y) ≤ f ′(x, z).

Indeed, if f(z) = ∞, then both (3.1) and (3.3) are trivial. If f(z) < ∞, then both (3.1) and (3.3)
imply that f(y) <∞, and

f ′(x, z)− f ′(x, y) =
1

y − x
(
λ(f(z)− f(x))− f(y) + f(x)

)
=

1

y − x
(
(1− λ)f(x) + λf(z) − f(y)

)
.

Analogously one can show that in case of f(z) <∞, condition (3.1) is equivalent to

(3.4) f ′(x, z) ≤ f ′(y, z).

These considerations lead to the following characterizations of convexity.
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Lemma 3.4 (Characterizing convexity). For a function f : R → (−∞,∞] the following condi-
tions are equivalent:

(a) f is convex;

(b) dom(f) is an interval, and for arbitrary points x < y < z in dom(f), inequality (3.2) holds
true;

(c) for arbitrary points x ∈ dom(f), the function

R \ {x} 3 y 7→ f ′(x, y) ∈ [−∞,∞]

is isotonic.

With obvious modifications one can also verify the following characterization of strict convexity:

Lemma 3.5 (Characterizing strict convexity). For a function f : C → R, the following two
conditions are equivalent:

(a) f is strictly convex;

(b) for arbitrary points x < y < z in C, inequality (3.2) holds strictly;

(c) for arbitrary points x ∈ C, the function

C \ {x} 3 y 7→ f ′(x, y) ∈ R

is strictly isotonic.

Smoothness and integral representations. It follows from characterization (c) in Lemma 3.4
that any convex function f admits finite one-sided derivatives on the interior of dom(f), and the
latter satisfy certain inequalities.

Corollary 3.6 (One-sided derivatives). (a) Let f : R → (−∞,∞] be convex. Then for each
x ∈ dom(f) the one-sided derivatives

f ′(x−) := lim
y→x,y<x

f ′(x, y),

f ′(x+) := lim
y→x,y>x

f ′(x, y)

exist in [−∞,∞], and

f ′(x−) ≤ f ′(x+).

Moreover, for arbitrary x, y ∈ dom(f) with x < y:

f ′(x+) ≤ f ′(x, y) ≤ f ′(y−).

In particular, f ′(x±) ∈ R for any interior point x of dom(f).

(b) Let f : C → R be strictly convex. Then for arbitrary x, y ∈ C with x < y,

f ′(x+) < f ′(x, y) < f ′(y−).
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Remark 3.7. For a convex function f : R → (−∞,∞], Corollary 3.6 (a) has the following
implications:

(i) The functions x 7→ f ′(x±) are monotonically increasing on dom(f) and real-valued on the
interior of dom(f).

(ii) There are at most countably many points x ∈ dom(f) such that f ′(x−) < f ′(x+).

For if Co is the set of all such points x ∈ dom(f), then the intervals
(
f ′(x−), f ′(x+)

)
, x ∈ Co,

are pairwise disjoint. Consequently, if we choose a rational number q(x) ∈
(
f ′(x−), f ′(x+)

)
,

then Co 3 x 7→ q(x) ∈ Q is injective.

(iii) For any nondegenerate interval [a, b] ⊂ dom(f),∣∣f(y)− f(x)
∣∣ ≤ L|y − x| for x, y ∈ [a, b],

where L := max{f ′(b−),−f ′(a+)}. In particular, f is Lipschitz-continuous on [a, b] whenever
a and b are interior points of dom(f).

To see this, note that for a ≤ x < y ≤ b,

f ′(x, y)

{
≤ f ′(x, b) ≤ f ′(b−),

≥ f ′(a, y) ≥ f ′(a+).

Together with the mean value theorem, Lemmas 3.4, 3.5 and Corollary 3.6 imply the following
facts for smooth functions:

Lemma 3.8 (Convexity of differentiable functions). Let f : C → R be continuous, and let Co be
the interior of C.

(a) If f is differentiable on Co, it is (strictly) convex if and only if f ′ is (strictly) isotonic on Co.

(b) If f is twice differentiable on Co, it is convex if and only if f ′′ ≥ 0 on Co.

(c) If f is twice differentiable on Co, it is strictly convex if and only if f ′′ ≥ 0 on Co and
{x ∈ Co : f ′′(x) > 0} is dense in Co.

Proof of Lemma 3.8. . Suppose that f : C → R is (strictly) convex. Then by Corollary 3.6, f ′

is (strictly) isotonic on Co. On the other hand, suppose that f ′ is (strictly) isotonic. According to
the mean value theorem, for arbitrary points x < y < z in C, there exist points ξ1 ∈ (x, y) and
ξ2 ∈ (y, z) such that

f ′(x, y) = f ′(ξ1) ≤ (<) f ′(ξ2) = f ′(y, z).

Thus it follows from Lemma 3.4 (b) (Lemma 3.5 (b)) that f is (strictly) convex. This proves
part (a).

As to part (b), if f is twice differentiable, then f ′ is isotonic if and only if f ′′ ≥ 0, so by part (a),
f is convex if and only if f ′′ ≥ 0.

As to part (c), by parts (a) and (b), we may assume that f ′ is isotonic and f ′′ ≥ 0. Now we have
to show that f ′ is strictly isotonic if and only if {x ∈ Co : f ′′(x) > 0} is dense in Co. If the latter
condition is violated, then f ′′ = 0 on an interval [a, b] ⊂ Co with a < b. But then, f ′ is constant
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on [a, b], so f ′ is not strictly increasing. If {x ∈ Co : f ′′(x) > 0} is dense in Co, then for arbitrary
a, b ∈ Co with a < b, there exists a point x ∈ (a, b) such that f ′′(x) > 0. But then for sufficiently
small ε > 0, x± ε ∈ [a, b] and

f ′(a) ≤ f ′(x− ε) < f ′(x+ ε) ≤ f ′(b).

This shows that f ′ is strictly increasing on Co.

Exercise 3.9. Determine for each of the following functions f : R→ R maximal intervals C on
which it is convex or concave1.

f(x) :=
√

1 + x2; f(x) :=
x2

1 + x2
;

f(x) := x2
/√

1 + x2; f(x) := log(1 + x2);

f(x) := log(1 + ex).

Example 3.10. For x ∈ R, let f(x) := |x|. With the triangle inequality one can verify rigorously
that f is convex with dom(f) = R. Moreover,

f ′(x±) =

{
sign(x) if x 6= 0,

±1 if x = 0.

As a second example consider

f(x) :=

{
−
√

1− x2 if |x| ≤ 1,

∞ if |x| > 1.

Here dom(f) = [−1, 1]. Moreover, f is convex on R and strictly convex on [−1, 1], because
f < 0 = f(±1) on (−1, 1), and for x ∈ (−1, 1),

f ′(x) = x(1− x2)−1/2, f ′′(x) = (1− x2)−3/2.

Moreover,

f ′(x±) =

{
−∞ if x = −1,

+∞ if x = +1.

Example 3.11 (An exotic convex function). Let Q = {q1, q2, q3, . . .} be a countable subset of R,
and let a1, a2, a3, . . . > 0 such that

∑∞
k=1 ak(1 + |qk|) <∞. Then,

f(x) :=
∞∑
k=1

ak|x− qk|

defines a convex function f : R → R such that f is differentiable at x ∈ R if and only if x ∈ Q.
Moreover, if Q ∩ C is dense in some nondegenerate interval C ⊂ R, then f is strictly convex on
C. The verification of these properties is left to the reader as an exercise.

Our last finding about convex functions on the real line ist the fact that they are absolutely contin-
uous on the interior of their domain:

1i.e. −f is convex
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Lemma 3.12 (Absolute continuity). Let f : R→ (−∞,∞] be convex. For x ∈ dom(f) let f ′(x)

be an arbitrary number in [f ′(x−), f ′(x+)]. Then f ′ is isotonic on dom(f), and for arbitrary
interior points a, b of dom(f),

f(b)− f(a) =

∫ b

a
f ′(x) dx.

Proof of Lemma 3.12. Isotonicity of f ′ follows from Corollary 3.6. Without loss of generality
let a < b. For arbitrary k ∈ N and i ∈ {0, . . . , k} we define δk := (b− a)/k and tk,i := a+ iδk.
Then it follows from Corollary 3.6 and the construction of f ′ that

f(b)− f(a) =
k−1∑
i=0

(
f(tk,i+1)− f(tk,i)

)
=

k−1∑
i=0

f ′(tk,i, tk,i+1)δk


≥

k−1∑
i=0

f ′(tk,i)δk,

≤
k∑
j=1

f ′(tk,j)δk.

Now, isotonicity of f ′ implies that

k−1∑
i=0

f ′(tk,i)δk =

k∑
i=1

f ′(tk,i)δk −
(
f ′(b)− f ′(a)

)
δk

≥
k∑
i=1

∫ tk,i

tk,i−1

f ′(x) dx−
(
f ′(b)− f ′(a)

)
δk

=

∫ b

a
f ′(x) dx−

(
f ′(b)− f ′(a)

)
δk

and

k∑
j=1

f ′(tk,j)δk =

k−1∑
j=0

f ′(tk,j)δk +
(
f ′(b)− f ′(a)

)
δk

≤
∫ b

a
f ′(x) dx+

(
f ′(b)− f ′(a)

)
δk

As k →∞, it follows that f(b)− f(a) =
∫ b
a f
′(x) dx.

Exercise 3.13. Prove or disprove the following claim: A function f : R → R with f(0) = 0 is
convex if the function R \ {0} 3 x 7→ f(x)/x is isotonic.

Exercise 3.14. Let h : C → R be an isotonic (a strictly isotonic) function. For any fixed xo ∈ C
define f : C → R via

f(x) :=

∫ x

xo

h(t) dt.

Show that f is (strictly) convex with f ′(x±) = h(x pm).

Exercise 3.15. Consider functions g : R→ R and h : R→ (−∞,∞].

(a) Show that h ◦ g is convex, provided that g is convex and h is convex and isotonic.

(b) Why is it essential in part (a) that h is isotonic?
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(c) Suppose that h is convex and antitonic. Which property of g would guarantee convexity of
h ◦ g?

(d) Find conditions on g and h which guarantee that h ◦ g is strictly convex.

3.2 Convex Functions on Linear Spaces

Throughout this section let C be a nondegenerate convex subset of a real vector space V .

Definition 3.16 (Convex functions, II). (a) A function f : C → (−∞,∞] is called convex if for
arbitrary x,y ∈ C and λ ∈ (0, 1),

f((1− λ)x+ λy) ≤ (1− λ)f(x) + λf(y).

A function f : C → [−∞,∞) is called concave is −f is convex.

(b) A function f : C → R is called strictly convex if for arbitrary different points x,y ∈ C and
λ ∈ (0, 1),

f((1− λ)x+ λy) < (1− λ)f(x) + λf(y).

A function f : C → R is called strictly concave is −f is strictly convex.

Exercise 3.17 (Norms). Let (V , ‖ · ‖) a real normed vector space. Show that for any xo ∈ V ,
f(x) := ‖x− xo‖ defines a convex function f on R.

Exercise 3.18 (Sublevel sets). Suppose that f : C → (−∞,∞] is convex. Show that all sublevel
sets {x ∈ C : f(x) ≤ r} and {x ∈ C : f(x) < r} with r ∈ R are convex. Does the latter
property imply convexity?

Again we define

dom(f) := {x ∈ C : f(x) <∞}

for a function f : C → (−∞,∞]. If f is convex, then dom(f) is a convex subset of C. If we
define f(x) :=∞ for x ∈ V \C, then convexity of f onC is equivalent to convexity of f on V
while dom(f) remains unaltered.

Remark 3.19 (Epigraphs). For a function f : V → (−∞,∞], its epigraph is defined as

epi(f) :=
{

(x, t) ∈ V × R : t ≥ f(x)
}

Note that {
(x, f(x)) : x ∈ dom(f)

}
⊂ epi(f) ⊂ dom(f)× R.

A useful fact is that f : V → (−∞,∞] is convex if and only if epi(f) is a convex subset of
V × R.

Indeed, suppose first that f is a convex function. Let (x, s), (y, t) ∈ epi(f). Then for λ ∈ (0, 1),

(1− λ)s+ λt ≥ (1− λ)f(x) + λf(y) ≥ f
(
(1− λ)x+ λy

)
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and therefore

(1− λ)(x, s) + λ(y, t) =
(
(1− λ)x+ λy, (1− λ)s+ λt

)
∈ epi(f).

This shows convexity of epi(f).

Assume now that epi(f) is a convex set. For x,y ∈ dom(f) and λ ∈ (0, 1),(
(1− λ)x+ λy, (1− λ)f(x) + λf(y)

)
= (1− λ)(x, f(x)) + λ(y, f(y)) ∈ epi(f),

because (x, f(x)), (y, f(y)) ∈ epi(f) and epi(f) is convex. This shows that

(1− λ)f(x) + λf(y) ≥ f
(
(1− λ)x+ λy

)
.

Hence f is convex.

Convexity of a function can often be established by means of the following lemma the proof of
which is left to the reader as an exercise:

Lemma 3.20 (Verifying convexity).

(a) Let m ∈ N, and let f :=
∑m

i=1 aifi with numbers ai > 0 and convex functions fi : V →
(−∞,∞]. Show that f is convex, too.

(b) Let L be an affine function from V into another real vector space W , and let g : W →
(−∞,∞] be a convex function. Then g ◦ L is a convex function on V .

(c) Let (fλ)λ∈Λ be a family of convex functions fλ : V → (−∞,∞]. Then the pointwise
supremum supλ∈Λ fλ is convex, too.

Here is a simple but very useful observation: A function f : C → (−∞,∞] is convex if and only
if for arbitrary points x ∈ C and vectors v ∈ V \ {0} the function

t 7→ f(x+ tv)

is convex on the interval {t ∈ R : x + tv ∈ C}. Analogously, a function f : C → R is strictly
concave, if the previous univariate funtion is always strictly convex.

Exercise 3.21 (Affine functions). Let f : V → R be both convex and concave. Show that f is an
affine function, that means,

f(x) = c+ L(x)

for some constant c ∈ R and a linear function L : V → R.

Lemma 3.22 (Monotone gradients). Let C be an open, convex subset of Rd, and let f : C → R
be differentiable. Then f is convex (strictly convex) if and only if(

∇f(y)−∇f(x)
)>

(y − x) ≥ (>) 0

for arbitrary different points x,y ∈ C.
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Lemma 3.23 (Hessian matrices). Let C be an open, convex subset of Rd, and let f : C → R be
twice differentiable.

(a) f is convex if and only if the Hessian matrix D2f(x) is positive semidefinite for any point
x ∈ C.

(b) f is strictly convex if the Hessian matrix D2f(x) is positive definite for any point x ∈ C.

The previous two lemmata follow essentially from our results about univariate functions (Sec-
tion 3.1) and the observation that for any x ∈ C and v ∈ Rd, g(t) := f(x+ tv) satisfies

g′(t) = ∇f(x+ tv)>v and g′′(t) = v>D2f(x+ tv)v.

Example 3.24 (Quadratic functions). Let f : Rd → R be a quadratic function, i.e. f(x) =

c+ b>x+ 2−1x>Ax with a constant c ∈ R, a vector b ∈ Rd and a symmetric matrixA ∈ Rd×d.
Here

∇f(x) = Ax+ b and D2f(x) = A.

Note also that 〈
∇f(y)−∇f(x),y − x

〉
= (y − x)>A(y − x).

Hence f is convex if, and only, if A is positiv semidefinite. Strict convexity of f is equivalent to
A being positive definite.

A simple version of Jensen’s inequality. Inductively one can show that a convex function f on
C has the following property: For any n ∈ N,

f
( n∑
i=1

λixi

)
≤

n∑
i=1

λif(xi)

whenever x1, . . . ,xn ∈ C and λ1, . . . , λn > 0 such that
∑n

i=1 λi = 1. This inequality is
sometimes called Jensen’s inequality. It implies a simple fact which we shall use several times:

Lemma 3.25. Let C = conv(S) for a nonvoid set S ⊂ V . For any convex function f : C →
(−∞,∞],

sup
x∈C

f(x) = sup
x∈S

f(x).

For any affine function f : C → R,

inf
x∈C

f(x) = inf
x∈S

f(x) and sup
x∈C

f(x) = sup
x∈S

f(x).

Proof of Lemma 3.25. Since C = conv(S), supx∈C f(x) is the supremum of

f
( n∑
i=1

λixi

)
over all n ∈ N, x1, . . . ,xn ∈ S and λ1, . . . , λn > 0 with

∑n
i=1 λi = 1. Taking n = 1 shows that

supx∈C f(x) ≥ supx∈S f(x). But by Jensen’s inequality,

f
( n∑
i=1

λixi

)
≤

n∑
i=1

λif(xi) ≤ sup
x∈S

f(x).
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If f is an affine function, then f as well as −f are convex, so the second part is an immediate
consequence of the first part.

Exercise 3.26 (Minkowski inequality). Prove the generalized Minkowski inequality: For arbi-
trary positive numbers x1, . . . , xn and λ1, . . . , λn with

∑n
i=1 λi = 1,

n∏
i=1

xi ≤
n∑
i=1

λix
1/λi
i .

Exercise 3.27 (Investment plans). Mr. Müller and Mr. Lüdenscheid, two wealthy gentlemen, in-
vest money at time points t1 < t2 < · · · < tn in shares of the promising company IMSV. The
strategy of Mr. Müller is to invest each time a fixed amount c > 0, regardless of the current price.
(For simplicity we assume that one can buy fractions of shares.) Mr. Lüdenscheid, however, buys
each time a fixed number d > 0 of shares. Who of the two will end up with the higher ratio

amount of shares
amount of invested money

?

3.3 Directional Derivatives and Minimizers

One of the most important features of convex functions is the fact that any local minimizer is also
a global minimizer. This will be derived subsequently.

Let f : V → (−∞,∞] be a convex function. For any point x ∈ dom(f) and arbitrary vectors
v ∈ V , the one-sided directional derivative

Df(x,v) := lim
t→0 +

f(x+ tv)− f(x)

t
∈ [−∞,∞]

is well-defined. This follows from Corollary 3.6, applied to the convex function R 3 t 7→ f(x +

tv). As a function of v, Df(x,v) is sublinear, that means,

Df(x, λv) = λDf(x,v) for v ∈ V and λ ≥ 0,(3.5)

Df(x,v +w) ≤ Df(x,v) +Df(x,w) for v,w ∈ V such that(3.6) {
Df(x,v), Df(x,w)

}
6= {−∞,∞}.

In particular, if Df(x,v) > −∞ for all v ∈ V , then Df(x, ·) is a convex function on V .

Exercise 3.28. Prove the statements (3.5) and (3.6). Show also thatDf(x, ·) is a convex function
on V , provided that Df(x, ·) > −∞.

Example 3.29. To see that for fixed x ∈ dom(f), Df(x, ·) may take the values ±∞, let V = R
and

f(x) :=

{
∞ if |x| > 1,

−
√

1− x2 if |x| ≤ 1.

Then Df(x, v) = vf ′(x) = vx/
√

1− x2 for x ∈ (−1, 1) and v ∈ R, but Df(1,±1) = ±∞ and
Df(−1,±1) = ∓∞.
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It follows from Corollary 3.6 that

(3.7) f(x) +Df(x,v) ≤ f(x+ v) for all v ∈ V .

This statement and the definition of directional derivatives imply the aforementioned fact that
every local minimizer of a convex function is automatically a global minimizer:

Theorem 3.30. Let f : V → (−∞,∞] be a convex function. The following two statements
about x ∈ dom(f) are equivalent:

(a) x is a global minimizer of f , that means, f(x) ≤ f(y) for all y ∈ V ;

(b) Df(x,v) ≥ 0 for arbitrary v ∈ V .

Here is a version of the same result for convex functions on convex subsets of V :

Theorem 3.31. Let f be a real-valued function on a convex subset C of V . The following two
statements about x ∈ C are equivalent:

(a) x is a global minimizer of f on C, that means, f(x) ≤ f(y) for all y ∈ C;

(b) Df(x,y − x) ≥ 0 for arbitrary y ∈ C .

Exercise 3.32 (`p-norms). For p ≥ 1 and x ∈ Rd let ‖x‖p :=
(∑d

i=1 |xi|p
)1/p

. Determine for
p, q ≥ 1 the number

Cp,q := max
x∈Rd\{0}

‖x‖q
‖x‖p

.

Hint: One can write
(
‖x‖q/‖x‖p

)q as a symmetric convex or concave function of the vector
w := ‖x‖−pp (|xi|p)di=1 which lies in the convex polyhedronC =

{
w ∈ [0,∞)d :

∑d
i=1wi = 1

}
.

Example 3.33 (Differentiable and quadratic functions). Let C be an open subset of Rd, and let
f : C → R be differentiable and convex. Since Df(x,v) = ∇f(x)>v for arbitrary x ∈ C and
v ∈ Rd, a point x ∈ C minimizes f if and only if

∇f(x) = 0.

In particular, let C = Rd, and let f be a quadratic function, i.e. f(x) = c + b>x + 2−1x>Ax

for a constant c ∈ R, a vector b ∈ Rd and a symmetric, positive semidefinite matrix A ∈ Rd×d.
Since∇f(x) = Ax+ b, a point x minimizes f if and only if

Ax = −b.

In particular, a minimizer exists if and only if b lies in the column space ofA. In case ofA being
positive definite, the function f is strictly convex with unique minimizer

x = −A−1b.

Exercise 3.34. For x ∈ (0,∞)2 let

f(x) :=
x2

1

x2
+
x2

2

x1
− x1 − x2.

Show that f ≥ 0, and determine the set of minimizers of f .
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Remark 3.35. Let f be a convex function on an open convex subset C of Rd, and let e1, . . . , ed

be the standard basis of Rd. In case of d ≥ 2, it may happen that a point x ∈ C satisfies the 2d

constraints Df(x,±ei) ≥ 0, 1 ≤ i ≤ d, but x is not a minimizer of f . As a counterexample,
consider

f(x) := max
1≤i≤d

xi.

Since f is a maximum of d linear functions, it is convex. Moreover, one can show that

Df(x,v) = max
i∈I(x)

vi with I(x) := arg max
i∈{1,...,d}

xi.

In particular, if x = r1d, then for 1 ≤ i ≤ d,

Df(x, ei) = 1 and Df(x,−ei) = 0.

But Df(y,−1d) = −1 for any y ∈ Rd, whence f has no minimizer on any open set C ⊂ Rd.

Exercise 3.36. Find a convex function f : Rd → R such that for a given basis b1, . . . , bd of
Rd and some x ∈ Rd, the 2d inequalites Df(x,±bi) > 0, 1 ≤ i ≤ d, are satisfied but x 6∈
arg minRd(f).

Exercise 3.37 (Spatial median, I). For given points x1, . . . ,xn ∈ Rd we consider the function
f : Rd → R with

f(x) :=

n∑
i=1

‖xi − x‖.

(a) Show that f is a convex function satisfying f(x)→∞ as ‖x‖ → ∞.

(b) Derive an explicit expression for the directional derivatives Df(x,v). (You should distin-
guish the index sets {i : xi = x} and {i : xi 6= x}.)

(c) Show that
arg min
x∈Rd

f(x) ⊂ conv(x1, . . . ,xn).

Two examples of regularized estimators

Example 3.38 (LASSO penalization). In statistics one is often interested in minimizing a differ-
entiable convex function g : Rd → R, for instance a sum of squared residuals

g(x) =

n∑
i=1

(yi − z>i x)2/2

with a given data vector y ∈ Rn and given design vectors z1, . . . ,zn ∈ Rd. In this particular
example for g, if the vectors zi span Rd, there exists a unique minimizer x̂ of g: With Z :=

[z1, . . . ,zn]> ∈ Rn×d and Γ := Z>Z =
∑n

i=1 ziz
>
i ,

g(x) = ‖y −Zx‖2/2

= ‖y‖2/2− x>Z>y + x>Γx/2

= ‖y‖2/2− y>ZΓ−1Z>y/2 + (x− Γ−1Z>y)>Γ(x− Γ−1Z>y)/2

≥ ‖y‖2/2− y>ZΓ−1Z>y/2
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with equality if and only if

x = Γ−1Z>y.

But often one is interested in computing parameter vectors x having only a few nonzero compo-
nents while g(x) is still relatively small. In the least squares example it may even happen that
d > n, so the minimization problem has no unique solution. One way to deal with these problems
is to minimize the penalized function

fλ(x) := g(x) + λ
d∑
j=1

|xj |.

for some tuning parameter λ > 0. (This method is called least absolute shrinkage and selection
operator.) Here one can easily show that

Dfλ(x,v) =
d∑
j=1

( ∂g
∂xj

(x)vj + λ sign(xj)vj + λ1[xj=0]|vj |
)

=
∑

j :xj 6=0

( ∂g
∂xj

(x) + λ sign(xj)
)
vj +

∑
j :xj=0

( ∂g
∂xj

(x)vj + λ|vj |
)
.

From this representation one can easily deduce that a vector x̂ ∈ Rd minimizes fλ if and only if

∂g

∂xj
(x̂)

{
∈ [−λ, λ] if x̂j = 0,

= −λ sign(x̂j) if x̂j 6= 0.

In particular, x̂j = 0 whenever the modulus of ∂g(x̂)/∂xj is less than λ. This explains why the
LASSO approach tends to produce vectors x̂ with several components equal to zero.

Exercise 3.39. Let g : Rd → R be given by g(x) = ‖y − Zx‖2/2 with given numbers
y1, . . . , yn ∈ R and a matrix Z ∈ Rn×d such that

∑n
i=1 Z

2
ij = 1 for 1 ≤ j ≤ d. For λ > 0

we consider fλ(x) := g(x) + λ
∑d

j=1 |xj |.

(a) Determine for x ∈ Rd and any k ∈ {1, . . . , d} the (unique!) vector

ψ(k)(x) := arg min
{
fλ(x̃) : x̃ ∈ Rd, x̃j = xj whenever j 6= k

}
.

Show that this defines a continuous mapping ψ(k) : Rd → Rd.

These mappings ψ(k) are the basis of a simple iterative algorithm to minimize fλ: For a given
candidate x we compute xnew as follows: After initializing xnew ← x, we execute xnew ←
ψ(k)(xnew) for k = 1, . . . , d. As long as the difference fλ(x) − fλ(xnew) is larger than a given
small constant δ > 0, we set x← xnew and repeat this loop. A justification of this algorithm will
be given in the next chapter.

(b) Suppose that x = ψ(k)(x) for 1 ≤ k ≤ d. Show that x is a minimizer of fλ.

Example 3.40 (Taut Strings). Consider a vector y ∈ Rn of observations y1, y2, . . . , yn corre-
sponding, for instance, to measurements at n consecutive time points. If these measurements are
noisy, one would like to approximate y by a ‘smoother’ vector x.
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A classical approach is to minimize for a given tuning parameter λ > 0 the target function

fλ(x) :=
n∑
i=1

(yi − xi)2 + λ
n−1∑
j=1

(xj+1 − xj)2

= ‖y − x‖2 + λx>Sx

with the symmetric and positive semidefinite matrix S ∈ Rn×n given by

Sij :=


1 if i = j ∈ {1, n},
2 if 1 < i = j < n,

1 if |i− j| = 1,

0 else.

The first summand ‖y − x‖2 of fλ(x) measures the distance between x and y while the second
summand λx>Sx quantifies how strongly consecutive components of x differ. This function fλ
has a unique minimizer x̂λ:

fλ(x) = ‖y‖2 − 2x>y + x>(In + λS)x

= ‖y‖2 − y>(In + λS)−1y

+
(
x− (In + λS)−1y

)>
(In + λS)

(
x− (In + λS)−1y

)
≥ ‖y‖2 − y>(In + λS)−1y

with equality if and only if
x = (In + λS)−1y.

Let us now consider an alternative approach: We want to minimize

fλ(x) := ‖y − x‖2/2 + λ
n−1∑
j=1

|xj+1 − xj |.

The latter penalty term favours vectors x such that xj = xj+1 for several indices j < n. Note first
that fλ is a strictly convex function such that fλ(x)→∞ as ‖x‖ → ∞. This implies that fλ has
a unique minimizer x̂λ, see also Section 3.5.3. Now we characterize x̂λ by means of one-sided
directional derivatives. One can easily show that for arbitrary vectors x,v ∈ Rn,

Dfλ(x,v) = (x− y)>v + λ
n−1∑
j=1

(
sign(xj+1 − xj)(vj+1 − vj) + 1[xj=xj+1]|vj+1 − vj |

)
.

This does not look too illuminating at first glance, but plugging in some special vectors v reveals
interesting information about x̂λ. Specifically, let bk := (1[i≤k])

n
i=1 for k = 1, 2, . . . , n.

If v = ±bn, then

Dfλ(x,v) = ±(x− y)>bn = ±
( n∑
i=1

xi −
n∑
i=1

yi

)
.

Hence a first necessary condition for x = x̂λ is

(3.8)
n∑
i=1

xi =
n∑
i=1

yi.
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Next consider v = ±bk for some index 1 ≤ k < n. Then

Dfλ(x,v) = ±(x− y)>bk ∓ λ sign(xk+1 − xk) + λ1[xk=xk+1]

= ±
( k∑
i=1

xi −
k∑
i=1

yi

)
∓ λ sign(xk+1 − xk) + λ1[xk=xk+1].

This leads to further necessary conditions for x = x̂λ: For 1 ≤ k < n,

(3.9)
∣∣∣ k∑
i=1

xi −
k∑
i=1

yi

∣∣∣ ≤ λ,

(3.10)
k∑
i=1

xi =

k∑
i=1

yi + λ sign(xk+1 − xk) if xk 6= xk+1.

In fact, Conditions (3.8), (3.9) and (3.10) are even sufficient for x = x̂λ. This can be verified by
writing an arbitrary vector v as

v =

n−1∑
k=1

(vk − vk+1)bk + vnbn

and noting that

Dfλ(x,v) =

n−1∑
k=1

(vk − vk+1)(x− y)>bk + vn (x− y)>bn︸ ︷︷ ︸
=0

+ λ

n−1∑
j=1

(
sign(xj+1 − xj)(vj+1 − vj) + 1[xj=xj+1]|vj+1 − vj |

)
=

n−1∑
k=1

(vk − vk+1)(x− y)>bk

+ λ
n−1∑
k=1

(
−(vk − vk+1) sign(xk+1 − xk) + 1[xj=xj+1]|vk − vk+1|

)
=

n−1∑
k=1

|vk − vk+1|Dfλ
(
x, sign(vk − vk+1)bk

)
is nonnegative.

There is a nice geometrical interpretation of Conditions (3.8), (3.9) and (3.10): Any vectorw ∈ Rn

can be identified with its partial sum function,

{0, 1, . . . , n} 3 k 7→ Sw(k) :=

{
0 if k = 0,∑k

i=1wi if k > 0.

Condition (3.8) is equivalent to saying that Sx and Sy coincide at 0 and n. Condition (3.9) means
that Sy − λ ≤ Sx ≤ Sy + λ. Condition (3.10) means the following: If Sx bends upwards at an
index k ∈ {1, . . . , n−1} (i.e. xk < xk+1), then it hits the upper boundary Sy+λ there; if it bends
downwards, then it hits the lower boundary Sy − λ.
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This is illustrated in Figures 3.1, 3.2 and 3.3. For n = 70 and λ = 2, 1, 0.5, respectively, the upper
panel shows a scatter plot of the pairs (i, yi) (black bullets) and (i, x̂λ,i) (blue circles and line). In
the lower panel one sees the partial sum function Sy (thin black line) and the same function±λ on
{1, . . . , n − 1} (black lines and bullets). In between one sees the partial sum function Sx̂λ (thick
blue line). All these functions are interpolated linearly between consecutive integers. Obviously
the fitted vector x̂λ gets closer to y if λ is lowered.

When looking at the lower panels of these figures, one can imagine the following procedure:
Suppose the coordinate system is a wooden board, and each bullet represents a nail. Now we
connect the leftmost and rightmost nail with a string lying loosely between the lower and upper
row of nails. Now we pull the string tight and obtain the graph of the partial sum function of x̂λ.
This explains the name ‘taut string’ method. The actual computation is possible inO(n) steps, but
the precise algorithm is beyond the scope of this lecture.

3.4 Smoothness Properties

In this section we show that convex functions have almost automatically certain smoothness prop-
erties. Throughout this section let (V , ‖ · ‖) be a real normed vector space with closed unit ball
B, and let f : V → (−∞,∞] be a convex function.

3.4.1 Local Lipschitz continuity

The next two results are about local Lipschitz continuity of convex functions.

Theorem 3.41 (Local Lipschitz continuity, I). Suppose that for some x ∈ V and ε > 0 the
function f is bounded from above on the set x+ εB. Then f is Lipschitz continuous on x+ δB

whenever 0 < δ < ε.

Theorem 3.42 (Local Lipschitz continuity, II). Let V = Rd. Then f is continuous on the interior
of dom(f). It is even Lipschitz continuous on any compact subset of the interior of dom(f).

Proof of Theorem 3.41. For two different points y, z ∈ dom(f) we consider the mapping f̃ :

R→ (−∞,∞] with f̃(t) := f(y + t(z − y)) and the unit vector v := ‖z − y‖−1(z − y). Then

f(z)− f(y)

{
≤ f̃ ′(1 +) = +‖z − y‖Df(z,+v),

≥ f̃ ′(0−) = −‖z − y‖Df(y,−v).

Hence it suffices to show that

sup
y∈x+δB,v∈B

Df(y,v) < ∞

for 0 < δ < ε.

To this end let M := supx+εB(f) < ∞. For any y ∈ x + εB, the vector ỹ = x − (y − x)

belongs to x+ εB, too, so it follows from x = (y+ ỹ)/2 that (f(y) + f(ỹ))/2 ≥ f(x), whence

f(y) ≥ 2f(x)− f(ỹ) ≥ 2f(x)−M.
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Figure 3.1: Illustration of the Taut String method, λ = 2.
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Figure 3.2: Illustration of the Taut String method, λ = 1.
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Figure 3.3: Illustration of the Taut String method, λ = 0.5.
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This shows that
inf
x+εB

f ≥ 2f(x)−M.

Hence for y ∈ x+ δB and v ∈ B,

Df(y,v) ≤ f(y + (ε− δ)v)− f(y)

ε− δ
≤ M − (2f(x)−M)

ε− δ
=

2(M − f(x))

ε− δ
.

Proof of Theorem 3.42. Since all norms on Rd are equivalent, we consider temporarily the norm
‖v‖ := maxi |vi| with the corresponding unit ballB = [−1, 1]d. Now let x be an interior point of
dom(f). Then there exists an ε = ε(x) > 0 such that x+ εB ⊂ dom(f). Since the cube x+ εB

is the convex hull of the finite set {
x+ εξ : ξ ∈ {−1, 1}d

}
,

it follows from Lemma 3.25 that f is bounded from above on x+ εB. In particular, Theorem 3.41
implies that f is Lipschitz continuous on x+ δB, provided that 0 < δ < ε.

Now letK be a compact subset of interior(dom(f)). Then there exists an ε > 0 such thatK+εB

is contained in interior(dom(f)) as well. Since the latter set K + εB is compact, too, it follows
from continuity of f on interior(dom(f)) that

L̃ := sup
y,z∈K+εB

∣∣f(y)− f(z)
∣∣ < ∞.

Consequently, for arbitrary x ∈K and unit vectors v ∈ B,

Df(x,v) ≤ ε−1
(
f(x+ εv)− f(x)

)
≤ ε−1L̃.

As in the proof of Theorem 3.41 one can deduce from this inequality that f is Lipschitz continuous
onK with Lipschitz constant ε−1L̃.

3.4.2 Subdifferentials and smoothness

A linear functional L : V → R is called subdifferential of f at the point x ∈ dom(f) if

(3.11) f(x) + L(v) ≤ f(x+ v) for all v ∈ V .

It follows from our definition of directional derivatives and inequality (3.7) that condition (3.11)
is equivalent to

(3.12) L(v) ≤ Df(x,v) for all v ∈ V .

In case of Df(x,−v) = −Df(x,v) ∈ R for arbitrary v ∈ V , the function Df(x, ·) itself is the
unique subdifferential of f at x.

Exercise 3.43 (Sublinearity and linearity). Let L : V → R be sublinear, i.e. for arbitrary v,w ∈
V and λ ≥ 0,

L(λv) = λL(v) and L(v +w) ≤ L(v) + L(w).
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(a) Show that L is linear if and only if

L(−v) = −L(v) for all v ∈ V .

(b) Let V = span(b1, . . . , bd). Show that L is linear if and only if

L(−bi) = −L(bi) for 1 ≤ i ≤ d.

Exercise 3.44 (Sublinearity and Lipschitz-continuity). Let L : Rd → R be sublinear. Show that
for arbitrary x,y ∈ Rd,

∣∣L(x)− L(y)
∣∣ ≤ {

max
{
L(v) : v ∈ {−1, 1}d

}
‖x− y‖∞,

max
{
L(v) : v ∈ {±e1, . . . ,±ed}

}
‖x− y‖1,

where ‖x‖∞ := maxi=1,...,d |xi|, ‖x‖1 :=
∑d

i=1 |xi|, and e1, . . . , ed is the standard basis of Rd.

The next theorem shows that a convex function f on Rd is differentiable almost everywhere in the
interior of dom(f).

Theorem 3.45. Let f : Rd → (−∞,∞] be convex. For any interior point of dom(f) there exists
a subdifferential of f . The set of all interior points of dom(f) at which f is not differentiable is a
Borel set with Lebesgue measure 0.

Proof of Theorem 3.45. Let x ∈ Ω := interior(dom(f)). We have to show that there exists a
linear function L on Rd such that f(x) + L ≤ f(x + ·). For this we apply Theorem 2.22 (b) to
the disjoint convex subsetsD1 := {x}× (−∞, f(x)) andD2 := epi(f) of Rd×R. There exists
a nonzero vector (w, t) ∈ Rd × R such that〈

(x, r), (w, t)
〉
≤
〈
(x+ v, s), (w, t)

〉
whenever r < f(x), v ∈ Rd and s ≥ f(x + v). Writing

〈
(x, r), (w, t)

〉
= x>w + rt and〈

(x+ v, s), (w, t)
〉

= (x+ v)>w + st, we get the inequalities

(3.13) rt ≤ v>w + st whenever r < f(x),v ∈ Rd, s ≥ f(x+ v).

For v = 0 we see that rt ≤ st for arbitrary r < f(x) ≤ s, so t ≥ 0. If t = 0, then w 6= 0, and
(3.13) could be rephrased as v>w ≥ 0 for arbitrary v ∈ Rd such that x+ v ∈ dom(f). But this
would contradict our assumption that x is an interior point of dom(f). Thus t > 0, and we may
assume without loss of generality that t = 1. Then (3.13) reads

f(x) ≤ v>w + f(x+ v) for arbitrary v ∈ Rd,

so L(v) := −v>w defines a subdifferential of f at x.

Suppose that

(3.14) Df(x,−ei) = −Df(x, ei) for 1 ≤ i ≤ d,
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where e1, e2, . . . , ed is the standard basis of Rd. Then Df(x, ·) is linear, see Exercise 3.43. But
this implies that f is differentiable at x, see Exercise 3.46. On the other hand, differentiability of
f at x implies (3.14).

Consequently, the set of all x ∈ Ω at which f is not differentiable coincides with
⋃d
i=1 Ωi with

Ωi :=
{
x ∈ Ω : Df(x,−ei) > −Df(x, ei)

}
.

One can easily verify that Ωi is a Borel set, so it remains to be shown that Ωi has Lebesgue measure
0. By Fubini’s theorem,

Lebd(Ωi) =

∫
e⊥i

Leb1(Ni(z)) Lebd−1(dz)

with
Ni(z) :=

{
t ∈ R : z + tei ∈ Ω, Df(z + tei,−ei) > −Df(z + tei, ei)

}
.

But gz(t) := f(z + tei) defines a convex function gz on R, and for t ∈ dom(gz),

g′z(t−) = −Df(z + tei,−ei), g′z(t+) = Df(z + tei, ei).

As shown in Section 3.1, the set Ni(z) = {t ∈ dom(gz) : g′z(t−) < gz′(t+)} is at most
countable and thus has Lebesgue measure 0.

Exercise 3.46 (“Subdifferentiability”). Let f : Rd → (−∞,∞] be convex, and let x be an
interior point of dom(f). Show that

sup
v∈B

∣∣∣f(x+ tv)− f(x)

t
−Df(x,v)

∣∣∣ → 0 as t ↓ 0.

3.4.3 Jensen’s inequality and Bregman divergences

In what follows let Y = (Yi)
d
i=1 be a random vector such that IE ‖Y ‖ < ∞, and let µ :=

(IEYi)
d
i=1 be its mean.

Theorem 3.47 (Jensen). Let f : Rd → (−∞,∞] be a convex and measurable function such that
IP(Y ∈ dom(f)) = 1. Then µ ∈ dom(f) as well, and

IE f(Y ) ≥ f(µ).

If f is strictly convex on dom(f) and IP(Y 6= µ) > 0, then even

IE f(Y ) > f(µ).

Before proving this theorem, let us verify an auxiliary result.

Lemma 3.48. Let C ⊂ Rd be a convex set.

(a) Either C is contained in a hyperplane or it has nonvoid interior. In the latter case,

C ⊂ interior(C) = C.
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(b) Suppose that C is a Borel set with IP(Y ∈ C) = 1. Then either

µ ∈ interior(C),

or there exists a unit vector u ∈ Rd such that u>Y = u>µ almost surely.

Proof of Lemma 3.48. Concerning part (a), let x0 be an arbitrary point in C, and let

W := span{x− x0 : x ∈ C}.

If dim(W ) < d, there exists a unit vector u ∈ Rd which is perpendicular toW , andC ⊂ x0+W

is contained in the hyperplane H := {x ∈ Rd : u>x = u>x0}. If dim(W ) = d, the set C has
nonvoid interior as shown in Lemma 2.41.

Now we change x0, if necessary, such that it is an interior point ofC. That means, for some ε > 0,

x0 + εB ⊂ C.

For any point x1 ∈ C let xλ := (1− λ)x0 + λx1 for λ ∈ [0, 1). Then xλ → x1 as λ ↑ 1. But xλ
is an interior point of C for any λ ∈ [0, 1), because

xλ + (1− λ)εB = (1− λ)(x0 + εB) + λx1 ⊂ C.

Thus x1 ∈ interior(C). This shows that C ⊂ interior(C). The latter inclusion implies that
even C ⊂ interior(C). Since obviously, interior(C) ⊂ C, we end up with the equation C =

interior(C).

Now we prove part (b). If C has no interior points, part (a) shows that it is contained in a hyper-
plane. That means, for some unit vector u ∈ Rd and r ∈ R, C ⊂ {x ∈ Rd : u>x = r}. This
implies that u>Y = r almost surely, and taking the expectation of this equation yields r = u>µ.
Now let C have interior points. If µ is not an interior point of C, it lies on the boundary or in the
complement of C. Since C is a closed and convex set, there exists a unit vector u ∈ Rd such that

u>µ ≥ u>x for all x ∈ C,

see Corollaries 2.19 and 2.21. In particular, u>Y ≤ u>µ = IE(u>Y ) almost surely, and this
implies that even u>Y = u>µ almost surely.

Proof of Theorem 3.47. We may assume without loss of generality that µ is an interior point
of dom(f). Otherwise we could deduce from Lemma 3.48 that IP(Y ∈ H) = 1 for some
hyperplane H ⊂ Rd, so we could replace Rd with H , and the latter set could be identified with
Rd−1. This reduction could be repeated until µ is an interior point of dom(f) and still d ≥ 1, or
IP(Y = yo) = 1 for a fixed point yo ∈ Rd. The latter case is obviously trivial.

If µ is an interior point of dom(f), by Theorem 3.45 there exists a linear function L : Rd → R
such that

f(y) ≥ f(µ) + L(y − µ) for arbitrary y ∈ Rd.
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Setting y = Y and taking the expectation of both sides yields that

IE f(Y ) ≥ f(µ) + IEL(Y − µ) = f(µ) + L
(
IE(Y − µ)︸ ︷︷ ︸

=0

)
= f(µ).

If f is strictly convex on dom(f), then even f(y) > f(µ) + L(y − µ) for all y ∈ Rd \ {µ}, and
we obtain the strict inequality IE f(Y ) > f(µ), unless IP(Y 6= µ) = 0.

The difference IE f(Y )− f(µ) can be quantified in the special setting when dom(f) has nonvoid
interior and f is continuously differentiable and strictly convex on dom(f). For x,y ∈ dom(f)

we define
Df (y,x) = f(y)− f(x)−∇f(x)>(y − x),

the so-called Bregman divergence of y from x (with respect to f ). Note that h(t) := f(x+ t(y−
x)) is strictly convex in t ∈ [0, 1] with derivative h′(t) = ∇f(x+ t(y − x))>(y − x), so

Df (y,x) = h(1)− h(0)− h′(0) =

∫ 1

0

(
h′(t)− h′(0)

)
dt ≥ 0,

with equality if and only if y = x.

Theorem 3.49 (Minimizing expected Bregman divergence). Suppose that IE f(Y ) < ∞. Then
IEDf (Y ,x) <∞ for arbitrary x ∈ dom(f), and

IEDf (Y ,x) ≥ IEDf (Y ,µ)

with equality if and only if x = µ.

More generally, for arbitrary points x,xo ∈ dom(f),

IE
(
Df (Y ,x)−Df (Y ,xo)

)
exists in R and is minimal with respect to x if and only if x = µ.

Proof of Theorem 3.49. Recall from Theorem 3.47 that µ ∈ dom(f). Note that

Df (Y ,x)−Df (Y ,xo) = f(xo) +∇f(xo)
>(Y − xo)− f(x)−∇f(x)>(Y − x)

is integrable, because IE ‖Y ‖ is finite. The function h(x,xo) := IE
(
Df (Y ,x) − Df (Y ,xo)

)
satisfies

h(x,xo)− h(µ,xo) = h(x,µ)

= IE
[
f(µ) +∇f(µ)>(Y − µ)− f(x)−∇f(x)>(Y − x)

]
= f(µ)− f(x)−∇f(x)>(µ− x)

= Df (µ,x).

This shows that µ is the unique minimizer of h(·,xo) on dom(f).

Remark 3.50. Note that under the assumptions of the previous theorem,

IE f(Y )− f(µ) = IE
[
f(Y )− f(µ)−∇f(µ)>(Y − µ)

]
= IEDf (Y ,µ).
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Exercise 3.51. For x ∈ Rd let

f(x) :=
‖x‖2√

1 + ‖x‖2
.

Show that f : Rd → R is strictly convex and continuously differentiable, and determine the
Bregman divergence Df (y,x).

3.5 Lower Semicontinuity, Minimizers and Convex Conjugates

So far we know that convex functions on Rd behave quite nicely on the interior of their domain.
From that perspective it looks a bit strange that we talk about a convex and measurable function in
Jensen’s inequality. To see that strange things may happen on the boundary, note that any function
f : Rd → (−∞,∞] with

f(x)


= 0 if ‖x‖ < 1

≥ 0 if ‖x‖ = 1

= ∞ if ‖x‖ > 1

is convex. This follows from the fact that for the standard Euclidean norm ‖ · ‖, any point on
the unit sphere ∂B is an extremal point of the closed unit ball B. In the next subsection we
introduce an additional regularity condition which has some useful consequences if applied to
convex functions.

3.5.1 Lower semicontinuity

In this subsection we consider an arbitrary metric space (X , d) and study a special property of
functions on X .

Definition 3.52 (Lower semicontinuity). A function f : X → [−∞,∞] is called lower semicon-
tinuous if

f(x) ≤ lim inf
y→x

f(y)

for arbitrary x ∈ X .

The previous limes inferior is defined as follows:

lim inf
y→x

f(y) = lim
δ→0 +

inf
y∈X : d(x,y)≤δ

f(y).

Note that the limit on the right-hand side exists in [−∞,∞], because infy : d(x,y)≤δ f(y) is antitonic
in δ > 0. Note that for any sequence (xn)n in X with limit x,

lim inf
n→∞

f(xn) ≥ lim inf
y→x

f(y).

If we choose xn ∈ X such that d(x, xn) ≤ 1/n and f(xn) ≤ infy : d(x,y)≤1/n f(y) + 1/n, then

lim
n→∞

f(xn) = lim inf
y→x

f(y).
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Lemma 3.53 (Characterizing lower semicontinuity). For a function f : X → [−∞,∞] on a
metric space (X , d) the following three statements are equivalent:

(i) f is lower semicontinuous.

(ii) For any r ∈ R, the set {x ∈ X : f(x) ≤ r} is a closed subset of X .

(iii) The epigraph epi(f) =
{

(x, r) ∈ X × R : f(x) ≤ r
}

is a closed subset of X × R.

In part (iii), we equip the cartesian product X × R with the metric

d
(
(x, r), (y, s)

)
:=

√
d(x, y)2 + |r − s|2.

Alternatively, one could define d
(
(x, r), (y, s)

)
to be d(x, y) + |r − s| or max

(
d(x, y), |r − s|

)
.

Proof of Lemma 3.53. Suppose that f is lower semicontinuous. If (xn)n is a sequence in {f ≤
r} with limit x ∈ X , then f(x) ≤ lim infn→∞ f(xn) ≤ r, so x ∈ {f ≤ r}, too. This shows that
condition (ii) holds true.

Suppose that f satisfies (ii). Let
(
(xn, rn)

)
n

be a sequence in epi(f) with limit (x, r) ∈ X × R.
For arbitrary fixed r′ > r and sufficiently large n, f(xn) ≤ rn ≤ r′, so x is a limit point of a
sequence in {f ≤ r′}. Since the latter set is closed by assumption, x ∈ {f ≤ r′}, so f(x) ≤ r′.
Since r′ can be chosen arbitrarily close to r, we may conclude that f(x) ≤ r, so (x, r) ∈ epi(f).
This proves (iii).

Suppose that f satisfies (iii). For any x ∈ X let (xn)n be a sequence in X with limit x such that
r := limn→∞ f(xn) = lim infy→x f(y). We have to show that r ≥ f(x). This is trivial in case
of r = ∞. Otherwise let r′ > r. Then for a suitable no, f(xn) ≤ r′ for all n ≥ no. Hence
(x, r′) = limn→∞(xn, r

′), and (xn, r
′) ∈ epi(f), for all n ≥ no. By assumption (iii), the point

(x, r′) belongs to epi(f), too, whence f(x) ≤ r′. Since r′ can be chosen arbitrarily close to r, this
shows that f(x) ≤ r, i.e. f is lower semicontinuous.

Exercise 3.54. Let (fλ)λ∈Λ be a family of functions fλ : X → [−∞,∞] on some set X , and let
f := supλ∈Λ fλ (pointwise).

(a) Show that

epi(f) =
⋂
λ∈Λ

epi(fλ).

(b) Now suppose that (X , d) is a metric space and that all fλ, λ ∈ Λ, are lower semicontinuous.
Show that f is lower semicontinuous, too.

Exercise 3.55. Let (X , d) be a metric space, and let f : X → [−∞,∞] be lower semicontinuous.
Show that for any compact set Xo ⊂ X , arg minXo f is a compact (and thus nonvoid) set.

3.5.2 Convexity, lower semicontinuity and affine functions

Now we return to functions f : Rd → (−∞,∞]. As we shall see here and in other parts,
combining convexity and lower semicontinuity is particularly fruitful. Recall that f is convex



79

and lower semicontinuous if and only if its epigraph

epi(f) =
{

(x, r) ∈ Rd × R : f(x) ≤ r
}

is a closed and convex subset of Rd × R. Then epi(f) is an intersection of closed halfspaces in
Rd × R. As shown in Exercise 3.57, the epigraph of an affine function A : Rd → R is a closed
halfspace in Rd × R. Thus the next result is rather plausible in view of Corollary 2.19:

Theorem 3.56 (Convex functions as pointwise suprema of affine functions). For a function f :

Rd → (−∞,∞] the following two statements are equivalent:

(i) f is convex and lower semicontinuous.

(ii) f is the pointwise supremum of all affine functions A : Rd → R such that A ≤ f on Rd.

Note that sup(∅) := −∞, so part (ii) implies that there is some affine function A with A ≤ f .

Proof of Theorem 3.56. LetA be the set of all affine functionsA : Rd → R such thatA ≤ f , and
suppose that A is nonvoid. Since every function A ∈ A is convex, real-valued and continuous, it
follows from Lemma 3.20 (d) and Exercise 3.54 (b) that the pointwise supremum f := supA∈AA

is a convex and lower semicontinuous function f : Rd → (−∞,∞] such that f ≤ f . This shows
already that condition (ii), which states that f ≡ f , implies condition (i).

It remains to show that condition (i) implies condition (ii). For this it suffices to show that for any
point (xo, ro) ∈ Rd ×R with ro < f(xo) there exists an A ∈ A such that A(xo) ≥ ro. In case of
f ≡ ∞ this is trivial; just take the constant function A ≡ ro. Hence let dom(f) be nonempty. In
case of xo 6∈ dom(f) let x∗ be the metric projection of xo onto dom(f), and pick some number
r∗ < f(x∗). Otherwise let (x∗, r∗) := (xo, ro). In both cases,

D := conv
{

(xo, ro), (x∗, r∗)
}

is a compact, convex subset of Rd × R with

D ∩ epi(f) = ∅.

Hence by Theorem 2.22 (a) there exists a nonzero vector (b, c) ∈ Rd × R such that

(3.15) max
(x,r)∈D

(b>x+ cr) < inf
(y,s)∈epi(f)

(b>y + cs).

Suppose that c ≤ 0. Then consider a sequence (yn)n in dom(f) with limit x∗. By lower semi-
continuity of f ,

lim sup
n→∞

(b>yn + cf(yn)) ≤ b>x∗ + cf(x∗) ≤ b>x∗ + cr∗,

a contradiction to (3.15). Hence c > 0 and we may assume without loss of generality that c = 1.
Then (3.15) implies that

b>xo + ro < b>y + f(y) for all y ∈ Rd.

In other words, A(y) := b>xo + ro − b>y defines an affine function such that A < f and
A(xo) = ro.

Exercise 3.57 (Epigraphs of affine functions). Show that a function f : Rd → R is affine if and
only if its epigraph is a closed halfspace in Rd × R.
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3.5.3 Existence of minimizers and coercivity

Let us define an important property in connection with minimization of functions:

Definition 3.58 (Coercivity). A function f : Rd → (−∞,∞] is called coercive if

f(x) → ∞ as ‖x‖ → ∞.

The next lemma shows that lower semicontinuity and coercivity of a function imply the existence
of a compact set of minimizers:

Lemma 3.59 (Existence of minimizers). Let f : Rd → (−∞,∞] be lower semicontinuous and
coercive with dom(f) 6= ∅. Then

arg min
x∈Rd

f(x) =
{
x ∈ Rd : f(x) = inf

y∈Rd
f(y)

}
is compact (and thus nonvoid).

Proof of Lemma 3.59. Let (xn)n be a sequence in Rd such that f(xn) converges to inf(f) :=

infy∈Rd f(y) as n → ∞. It follows from f being coercive that (xn)n is bounded. Thus we may
replace (xn)n with a subsequence, if necessary, such that (xn)n has a limit x ∈ Rd. By lower
semicontinuity of f ,

f(x) ≤ lim
n→∞

f(xn) = inf(f),

whence f(x) = inf(f). This shows that arg min(f) := {f = inf(f)} is nonempty. Since
arg min(f) equals {f ≤ inf(f)}, lower semicontinuity of f implies that it is closed, while coer-
civity of f implies that it is bounded. Consequently, arg min(f) is compact.

For convex functions one can give a rather complete picture. First of all, for a convex and lower
semicontinuous function, coercivity and compactness of its set of minimizers are equivalent.

Theorem 3.60 (Convexity and coercivity). Let f : Rd → (−∞,∞] be convex and lower semi-
continuous with dom(f) 6= ∅. Then f is coercive if and only if the set

arg min
x∈Rd

f(x) =
{
x ∈ Rd : f(x) = inf

y∈Rd
f(y)

}
is compact (and thus nonvoid).

For nondegenerate convex functions which are strictly convex on their domain, it is clear that they
have at most one minimizer. Hence Theorem 3.60 yields the following corollaries:

Corollary 3.61. Let f : Rd → (−∞,∞] be lower semicontinuous and convex with dom(f) 6= ∅.
If f is strictly convex on dom(f), then there exists a unique minimizer of f if and only if f is
coercive.

Since a real-valued convex function on Rd is automatically continuous, there is a simplified version
of the previous corollary for this situation:
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Corollary 3.62. Let f : Rd → R be strictly convex. There exists a unique minimizer of f if and
only if f is coercive.

Proof of Theorem 3.60. We know already from Lemma 3.59 that the set arg min(f) = {f ≤
inf(f)} is compact if f is coercive. It remains to show that compactness of arg min(f) implies
coercivity. To this end let xo ∈ arg min(f) and let r > 0 such that arg min(f) is contained in
xo + rB. Since the sphere with center xo and radius r+ 1 is compact, lower semicontinuity of f
implies the existence of

c := min
x∈Rd : ‖x−xo‖=r+1

f(x) > f(xo);

see also Exercise 3.55 or the proof of Lemma 3.59. For any x ∈ Rd with ‖x − xo‖ ≥ r + 1 we
may write x = xo + ‖x− xo‖u with a unit vector u, and by convexity of f(xo + tu) in t ∈ R,

f(x) = f(xo) +
(
f(xo + ‖x− xo‖u)− f(xo)

)
≥ f(xo) + ‖x− xo‖

f(xo + (r + 1)u)− f(xo)

r + 1

≥ f(xo) + ‖x− xo‖
c− f(xo)

r + 1

≥ f(xo) +
(
‖x‖ − ‖xo‖

)c− f(xo)

r + 1
.

The right-hand side converges to∞ as ‖x‖ → ∞, whence f is coercive.

We end this subsection with a specific characterization of coercivity in terms of directional deriva-
tives which is often rather useful:

Lemma 3.63 (Criterion for coercivity). Let f : Rd → R be convex. Then f is coercive if and
only if for any fixed unit vector u ∈ Rd,

(3.16) lim
t→∞

Df(tu,u) > 0.

Note that convexity of f implies that for a fixed unit vector u ∈ Rd, the function hu : R → R,
hu(t) := f(tu), is convex with h′u(t+) = Df(tu,u). Thus Df(tu,u) is isotonic in t, and the
limit limt→∞Df(tu,u) exists in (−∞,∞].

Proof of Lemma 3.63. Suppose first that f is coercive. Then for sufficiently large r > 0,

c := min
x∈r∂B

f(x) > f(0).

But by convexity of f , for any fixed unit vector u ∈ ∂B, the function hu(t) := f(tu) is convex
in t ∈ R with h′u(t+) = Df(tu,u) being isotonic in t. Thus

lim
t→∞

Df(tu,u) ≥ h′u(r+) ≥ r−1(hu(r)− hu(0)) ≥ r−1(c− f(0)) > 0.

Hence (3.16) is satisfied.
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Now suppose that f fails to be coercive. That means, for some sequence (xn)n in Rd \ {0} and
some real constant C,

lim
n→∞

‖xn‖ = ∞ but f(xn) ≤ C for all n.

We may replace (xn)n with a subsequence, if necessary, such that in addition

un := ‖xn‖−1xn → u ∈ ∂B as n→∞.

But then for any fixed t > 0, convexity and continuity of f imply that

Df(tu,u) ≤ f((t+ 1)u)− f(tu)

= lim
n→∞

(
f((t+ 1)un)− f(tun)

)
≤ lim

n→∞

f(‖xn‖un)− f(tun)

‖xn‖ − t

= lim
n→∞

f(xn)− f(tun)

‖xn‖ − t

≤ lim
n→∞

C −miny∈tB f(y)

‖xn‖ − t
= 0.

Thus (3.16) is violated as well.

Example 3.64 (Logistic regression). In logistic regression one considers observations (z1, y1),
. . . , (zn, yn) in Rd × {0, 1} and wants to minimize the negative log-likelihood function f : Rp →
R given by

f(x) :=

n∑
i=1

(
−yiz>i x+ log(1 + ez

>
i x)
)
.

An obvious question is whether there exists a unique minimizer x∗ of f .

Fist of all, elementary calculations reveal that the gradient and Hessian matrix of f are given by

∇f(x) =

n∑
i=1

(`(z>i x)− yi) zi,(3.17)

D2f(x) =

n∑
i=1

`′(z>i x) ziz
>
i ,(3.18)

where ` : R→ (0, 1) is the logistic distribution function,

`(t) :=
et

1 + et
= (1 + e−t)−1,

with derivative `′ = `(1− `) > 0. Hence for any v ∈ Rp,

v>D2f(x)v =

n∑
i=1

`′(z>i x)(z>i v)2

{
≥ 0,

> 0 if v 6∈ {z1, . . . ,zn}⊥.

This shows that f is convex, and it is even strictly convex if

span(z1, . . . ,zn) = Rd.
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As to coercivity, for any fixed unit vector u ∈ Rd and t ∈ R,

Df(tu,u) = ∇f(tu)>u

=
n∑
i=1

(`(tz>i u)− yi)z>i u

→
n∑
i=1

(
(1− yi)(z>i u)+ + yi(z

>
i u)−

)
as t→∞.

The latter limit is nonnegative, and it is strictly positive unless

yi =

{
1 if z>i u > 0,

0 if z>i u < 0.

Hence the function f is coercive if and only if for each unit vector u ∈ Rd there exists at least one
index i such that yi = 0 < z>i u or 1− yi = 0 > z>i u.

In other words, the function f fails to be coercive if and only if there exists a unit vector u ∈ Rd

such that

{zi : yi = 0} ⊂ {x : u>x ≤ 0} and {zi : yi = 1} ⊂ {x : u>x ≥ 0}.

Exercise 3.65 (Logistic regression, I). Verify formulae (3.17) and (3.18).

Exercise 3.66 (Least absolute deviations regression). For given observations (z1, y1), (z2, y2),
. . . , (zn, yn) in Rd × R let f : Rd → R be given by

f(x) :=

n∑
i=1

|z>i x− yi|.

(a) Show that f is convex.

(b) Show that f is coercive if and only if

span(z1, . . . ,zn) = Rd.

3.5.4 Convex conjugates

Definition 3.67 (Fenchel–Lagrange transform). Let f : Rd → (−∞,∞] with dom(f) 6= ∅. The
Fenchel–Legendre transform of f (also called convex conjugate of f ) is defined as the function
f∗ : Rd → (−∞,∞],

f∗(y) := sup
x∈Rd

(x>y − f(x)) = sup
x∈dom(f)

(x>y − f(x)).

It follows from Lemma 3.20 (c) and Exercise 3.54 that the convex conjugate f∗ of f is convex and
lower semicontinuous. Moreover, the definition of f∗ implies that

x>y ≤ f(x) + f∗(y) for arbitrary x,y ∈ Rd.
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Now consider an affine function A : Rd → R, A(x) := b>x − c, with a certain vector b ∈ Rd

and a real number c. Then A ≤ f if and only if

x>b− f(x) ≤ c for all x ∈ Rd,

and this is equivalent to

f∗(b) ≤ c.

Consequently, if A denotes the set of all affine functions A on Rd with A ≤ f , then

f(x) := sup
A∈A

A(x) = sup
(b,c)∈Rd×R : c≥f∗(b)

(b>x− c)

= sup
b∈Rd : f∗(b)<∞

(b>x− f∗(b))

= (f∗)∗(x).

These considerations and Theorem 3.56 yield the following result:

Theorem 3.68. Let f : Rd → (−∞,∞] be convex and lower semicontinuous with dom(f) 6= ∅.
Then f∗ has these properties, too, and

(f∗)∗ ≡ f.

Example 3.69. Let f(x) := ‖x‖2/2. Then

x>y − f(x) = ‖y‖2/2− ‖x− y‖2/2 ≤ f(y)

with equality if and only if x = y. Thus

f∗ ≡ f.

Exercise 3.70 (Conjugates of quadratic functions). Let

f(x) := c+ b>x+ 2−1x>Ax

with c ∈ R, b ∈ Rd andA ∈ Rd×d symmetric and positive definite. Show that

f∗(y) = c∗ + b>∗ y + 2−1y>A∗y

with c∗ := 2−1b>A−1b− c, b∗ := −A−1b andA∗ := A−1.

The following two exercises are about the standard p-norms on Rd: For a vector x ∈ Rd and
p ∈ [1,∞) we write

‖x‖p :=
( d∑
i=1

|xi|p
)1/p

,

and

‖x‖∞ := max
i=1,...,d

|xi|.
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Exercise 3.71 (Dual norms, I, and Young’s inequality). Let

f(x) := ‖x‖pp/p

with 1 < p <∞. Show that
f∗(y) = ‖y‖qq/q

with q := p/(p− 1), so p−1 + q−1 = 1. Then show that

|x>y| ≤ f(x) + f∗(y) and |x>y| ≤ ‖x‖p‖y‖q

for arbitrary x,y ∈ Rd.

Exercise 3.72 (Dual norms, II). Show that for p ∈ [1,∞], the convex conjugate of the function
f(x) := ‖x‖p is given by

f∗(y) =

{
0 if ‖y‖q ≤ 1,

∞ else,

where

q :=


∞ if p = 1,

p/(p− 1) if 1 < p <∞,
1 if p =∞.

Remark 3.73 (Support functions). Let C be a nonvoid convex and closed subset of Rd, and
define

fC(x) :=

{
0 if x ∈ C,
∞ else.

Then
f∗C(y) = sup

x∈C
x>y = hC(y).

In case of C being a closed and convex cone,

f∗C = fC∗

with the polar cone
C∗ =

{
y ∈ Rd : x>y ≤ 0 for all x ∈ C

}
introduced in Remark 2.26.

Minimizing sums of convex functions. Sometimes one wants to minimize the sum of two con-
vex functions f, g : Rd → (−∞,∞], where we assume that dom(f)∩dom(g) 6= ∅. It may happen
that the minimization of y 7→ f∗(y) + g∗(−y) is easier. Under the slightly stronger constraint
that interior(dom(f)) ∩ dom(g) 6= ∅, both minimization problems are strongly related:

Theorem 3.74 (Fenchel). Let f, g : Rd → (−∞,∞] be convex functions such that the intersec-
tion of interior(dom(f)) and dom(g) is nonvoid. Then

inf
x∈Rd

(
f(x) + g(x)

)
= − inf

y∈Rd

(
f∗(y) + g∗(−y)

)
.

The latter infimum is a minimum if it is real.
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A special case of this theorem is the minimization of a convex function f over a closed convex
cone C. With its polar cone C∗,

inf
x∈C

f(x) = − inf
y∈−C∗

f∗(y).

Proof of Theorem 3.74. Let α := inf(f + g). Then

α = − sup
x∈Rd

(
0>x− f(x)− g(x)

)
= − inf

y∈Rd
sup
x∈Rd

(
y>x− f(x) + (−y)>x− g(x)

)
≥ − inf

y∈Rd
(f∗(y) + g∗(−y)).

Hence it suffices to show that

(3.19) inf
y∈Rd

(f∗(y) + g∗(−y)) ≤ −α.

Since interior(dom(f)) ∩ dom(g) 6= ∅, we know that α < ∞. In case of α = −∞, inequal-
ity (3.19) is trivial, so it suffices to consider the case α ∈ R. Since f + g ≥ α, the two sets

D1 :=
{

(x, s) : x ∈ Rd, s > f(x)}

and
D2 :=

{
(y, t) : y ∈ Rd, t ≤ α− g(y)

}
are convex and disjoint. Thus there exists a nonzero vector (b, c) ∈ Rd × R such that

b>x+ cs ≤ b>y + ct for arbitrary (x, s) ∈D1, (y, t) ∈D2.

Taking x = y = xo ∈ interior(dom(f))∩dom(g) and f(xo) < s→∞, α− g(xo) ≥ t→ −∞
shows that c ≤ 0. If c = 0, we could take x = xo + δb and y = xo with δ > 0 sufficiently small
such that x ∈ dom(f). This would lead to the contradiction b = 0. Hence c < 0, and we may
assume without loss of generality that c = −1. Then we may conclude that

b>x− f(x) ≤ b>y − α+ g(y) for all x,y ∈ Rd.

Rewriting the latter inequality as b>x− f(x) + (−b)>y − g(y) ≤ −α, we realize that

f∗(b) + g∗(−b) ≤ −α ≤ inf
y∈Rd

(
f∗(y) + g∗(−y)

)
.

Consequently, inequality (3.19) is an equality, and b is a minimizer of the function y 7→ f∗(y) +

g∗(−y).



Chapter 4

Multivariate Optimization

In this chapter we modify methods from Chapter 1 for multivariate functions.

4.1 Newton’s Method

Let f = (fi)
d
i=1 be a continuously differentiable mapping from an open set X ⊂ Rd to Rd. We

assume that the Jacobian matrix

Df(x) :=
(∂fi(x)

∂xj

)d
i,j=1

∈ Rd×d

is nonsingular for all x ∈ X . Now we are looking for a zero x∗ of f , that means, a point
x∗ ∈ f−1(0).

Let xo be a first candidate for a zero. We assume that we are already rather close to a zero x∗ and
approximate f by an affine function

x 7→ f(xo) +Df(xo)(x− xo).

The latter function has a unique zero at

ψ(xo) := xo −Df(xo)
−1f(xo),

and we hope that ψ(xo) is even closer to x∗ than xo.

Indeed, iterating this mapping leads to a sequence converging rapidly to a zero of f , provided that
we start sufficiently close to the latter. In what follows we work with the Euclidean norm

‖w‖ :=
√
w>w,

of vectors w ∈ R`, and for a matrixA ∈ Rk×d let

‖A‖ := sup
v∈Rd : ‖v‖≤1

‖Av‖ = sup
v∈Rd : ‖v‖≤1, w∈Rk : ‖w‖≤1

w>Av,

the so-called operator norm ofA. The definition implies that

‖Av‖ ≤ ‖A‖‖v‖ for all v ∈ Rd.
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An important fact is that any identity matrix has operator norm one, and for arbitrary matrices
A,B whose productAB is well-defined,

‖AB‖ ≤ ‖A‖‖B‖.

These are the main advantages of the operator norm over the Frobenius norm. But these two
matrix norms are equivalent:

Exercise 4.1. Show that the operator norm ‖A‖ and Frobenius norm ‖A‖F of a matrix A ∈
Rk×d satisfy the inequalities

‖A‖ ≤ ‖A‖F ≤
√

min(k, d) ‖A‖.

Theorem 4.2 (Local convergence of Newton’s method). Let x∗ be a zero of f .

(a) Then

lim
x→x∗,x6=x∗

‖ψ(x)− x∗‖
‖x− x∗‖

= 0.

(b) Let Df be Lipschitz continuous in a neighborhood U of x∗ with constant L, that means,

‖Df(x)−Df(y)‖ ≤ L‖x− y‖ for all x,y ∈ U.

Then

lim sup
x→x∗,x6=x∗

‖ψ(x)− x∗‖
‖x− x∗‖2

≤ L‖Df(x∗)
−1‖

2
.

Consequently, with the multivariate version of Newton’s method we achieve superlinear or even
quadratic convergence. By means of Exercise 4.1 one can verify that a sufficient condition for
Lipschitz-continuity of Df on a convex set U ⊂ X is that all second derivatives ∂2fi/(∂xk∂x`)

are bounded on U . In the proof of Theorem 4.2 we use the following inequalities for matrices:

Lemma 4.3. Let A be a nonsingular matrix in Rd×d, and let B = A + ∆ for some ∆ ∈ Rd×d.
In case of ‖∆‖ < ‖A−1‖−1, the matrixB is nonsingular, too, and

‖B−1‖ ≤ ‖A−1‖
1− ‖A−1‖‖∆‖

,

‖B−1 −A−1‖ ≤ ‖A−1‖2‖∆‖
1− ‖A−1‖‖∆‖

.

We also need an inequality for vector-valued integrals:

Exercise 4.4. Let g : [a, b]→ Rd have integrable components gj : [a, b]→ R. Show that∥∥∥∥∫ b

a
g(t) dt

∥∥∥∥ ≤ ∫ b

a
‖g(t)‖ dt < ∞,

where the integral on the left hand side is defined component-wise.

Proof of Lemma 4.3. We rewriteB as

B = A+ ∆ = A(I +A−1∆).
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A matrix of type I +M is nonsingular with inverse

(I +M)−1 =

∞∑
i=0

(−1)iM i,

provided that ‖M‖ < 1. In our context, we may apply this to M = A−1∆ with norm ‖M‖ ≤
‖A−1‖‖∆‖. HenceB is nonsingular with inverse

B−1 = (I +A−1∆)−1A−1 =

∞∑
i=0

(−1)i(A−1∆)iA−1 = A−1 +

∞∑
i=1

(−1)i(A−1∆)iA−1,

provided that ‖A−1‖‖∆‖ < 1. The asserted inequalities follow from the fact that∥∥∥ ∞∑
i=k

(−1)i(A−1∆)iA−1
∥∥∥ ≤ ∞∑

i=k

‖A−1‖i+1‖∆‖i =
‖A−1‖k+1‖∆‖k

1− ‖A−1‖‖∆‖

for k = 0, 1.

Proof of Theorem 4.2. It follows from continuity of x 7→ Df(x) that

ρ(δ) := sup
x∈X : ‖x−x∗‖≤δ

∥∥Df(x)−Df(x∗)
∥∥ → 0 as δ ↓ 0.

For sufficiently small δ > 0, the closed ball Bδ(x∗) with center x∗ and radius δ is contained in X ,
and for any vector x ∈ Bδ(x∗),

ψ(x)− x∗ = x− x∗ −Df(x)−1f(x)

= x− x∗ −Df(x)−1

∫ 1

0
Df(x∗ + t(x− x∗))(x− x∗) dt

= Df(x)−1

∫ 1

0

(
Df(x)−Df(x∗ + t(x− x∗))

)
(x− x∗) dt.

This implies that

‖ψ(x)− x∗‖ ≤ ‖Df(x)−1‖
∥∥∥∫ 1

0

(
Df(x)−Df(x∗ + t(x− x∗))

)
(x− x∗) dt

∥∥∥
≤ ‖Df(x)−1‖

∫ 1

0

∥∥(Df(x)−Df(x∗ + t(x− x∗))
)
(x− x∗)

∥∥ dt
≤ ‖Df(x)−1‖

∫ 1

0

∥∥Df(x)−Df(x∗ + t(x− x∗))
∥∥ dt ‖x− x∗‖,(4.1)

where we used the inequality from Exercise 4.4 in the second step. But it follows from Lemma 4.3
that

‖Df(x)−1‖ ≤ ‖Df(x∗)
−1‖

1− ‖Df(x∗)−1‖ρ(δ)
,

provided that ρ(δ) < ‖Df(x∗)
−1‖−1, and∥∥Df(x)−Df(x∗ + t(x− x∗))

∥∥
≤
∥∥Df(x)−Df(x∗)

∥∥+
∥∥Df(x∗ + t(x− x∗))−Df(x∗)

∥∥
≤ 2ρ(δ).
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Hence for sufficiently small δ > 0 and x 6= x∗,

‖ψ(x)− x∗‖
‖x− x∗‖

≤ 2‖Df(x∗)
−1‖ρ(δ)

1− ‖Df(x∗)−1‖ρ(δ)
.

Since the latter bound tends to 0 as δ ↓ 0, this proves part (a).

For part (b) we choose δ > 0 small enough such that Bδ(x∗) ⊂ X , ρ(δ) < ‖Df−1(x∗)‖−1 and
Df is Lipschitz continuous on Bδ(x∗) with constant L. Then for x ∈ Bδ(x∗) and t ∈ [0, 1],∥∥Df(x)−Df(x∗ + t(x− x∗))

∥∥ ≤ L‖x− x∗ − t(x− x∗)‖ = L(1− t)‖x− x∗‖,

so the right hand side of (4.1) is not greater than

‖Df(x)−1‖L
∫ 1

0
(1− t) dt ‖x− x∗‖2 = L‖Df(x)−1‖‖x− x∗‖2/2.

Hence for x 6= x∗,

‖ψ(x)− x∗‖
‖x− x∗‖2

≤ L‖Df(x)−1‖
2

≤ L‖Df(x∗)
−1‖

2
(
1− ‖Df(x)−1‖ρ(δ)

) ,
and the latter bound converges to L‖Df(x∗)

−1‖/2 as δ ↓ 0.

Remark 4.5 (Range of attraction). Let x∗ be a zero of f , and let X (x∗) be the set of all starting
points x0 ∈ X such that the Newton sequence (xn)n≥0 =

(
ψn(x0)

)
n≥0

is well-defined and
converges to x∗. (Here and throughout the sequel, ψn denotes the n-fold iteration of ψ.) The set
X (x∗) is always an open subset of X containing x∗.

To prove this, note first that by Theorem 4.2, X (x∗) contains an open neighborhood U0 of x∗. A
point x0 ∈ X \ U0 belongs to X (x∗) if and only if

for some n ∈ N, xj ∈ X for 1 ≤ j < n and xn ∈ U0.

Indeed, once the sequence has reached a point in U0, it will certainly converge to x∗. Defining

Un := ψ−1(Un−1) for n = 1, 2, 3, . . .

we may reformulate this as xn ∈ Un. Hence

X (x∗) =
⋃
n≥0

Un.

But continuity of ψ : X → Rd and openness of U0 imply that all sets U0, U1, U2, . . . are open.
Consequently, X (x∗) is an open set, too.

Example 4.6 (Julia1 set). Let f : C→ C be given by

f(z) := z3 − 1.

1Gaston Maurice Julia, 1893-1978: French mathematician working on rational functions and fractal sets
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We may identify a complex number z with the vector (Re z, Im z)> ∈ R2. Then f is continuously
differentiable with (complex) derivative

f ′(z) = 3z2

corresponding to the Jacobian matrix[
Re f ′(z) −Im f ′(z)
Im f ′(z) Re f ′(z)

]
.

Hence we consider X = C \ {0}. The zeros of f are precisely the third unit roots

y0 := 1, y1 := exp(2πi/3), y2 := exp(4πi/3).

Newton’s method is based on the mapping

ψ(z) := z − f(z)

f ′(z)
=

2z

3
+

1

3z2
.

According to Remark 4.5, for j = 0, 1, 2 the set

Xj :=
{
z ∈ X : Newton’s method with starting point z converges to yj

}
is an open neighborhood of the point yj . One can also verify directly that

{z ∈ C : |z − yj | ≤ 1/3} ⊂ Xj .

The sets Xj have a very interesting shape, as shown in Figure 4.1. There X0, X1 and X2 are
depicted in white, light gray and dark gray, respectively. A remarkable property of these sets is
their fractal nature: On arbitrarily small scales one can find the same structures as on the original
scale. All this is elaborated in the following four exercises.

Exercise 4.7 (Julia set, I). Let f , X and ψ be as in Example 4.6 with f−1(0) = {y0, y1, y2},
where yj = exp(2πij/3).

(a) Show that f(yjz) = f(z) and ψ(yjz) = yjψ(z) for arbitrary z ∈ X and j = 0, 1, 2.

(b) Verify that for any z ∈ X , the three equations ψ(z) = z, ψ′(z) = 0 and f(z) = 0 are
equivalent.

(c) Determine explicit constants C > 0 and D ∈ (0, 1) such that for j = 0, 1, 2,

|ψ(z)− yj | ≤ D|z − yj | if |z − yj | ≤ C.

For instance, there exists a solution (C,D) with C = 1/3.

(c’) Determine a maximal constant C ′ > 0 such that for j = 0, 1, 2,

|ψ(z)− yj | < |z − yj | if |z − yj | < C ′.

Exercise 4.8 (Julia set, II). Now we investigate the inverse image ψ−1(y) for various y ∈ C.

(a) Determine the set ψ−1(0) ⊂ X .



92

Figure 4.1: Ranges of attraction for Example 4.6.

(b) Show that ψ−1(yj) = {yj ,−yj/2} for j = 0, 1, 2.

(c) Show that for any y ∈ C \ {y0, y1, y2} the set ψ−1(y) consists of three different points
z1, z2, z3 ∈ X , where

max
i=1,2,3

|zi| ≥ |y|/2 and min
i=1,2,3

|zi| ≤ |y|−1/2.

Exercise 4.9 (Julia set, III). From now on we consider the iterates ψn, n ∈ N0, of the mapping
ψ. Show that there exist real numbers 0 = t0 > t1 > t2 > t3 > · · · with the following properties:

(i) ψn(tn) = 0 for n ∈ N.

(ii) limn→∞ tn = −∞.

(iii) limn→∞ ψ
n(t) = 1 for any starting point t ∈ R \ {0, t1, t2, t3, . . .}.

Exercise 4.10 (Julia set, IV). Now we combine the results from the previous three exercises.

(a) Deduce from the previous two exercises that 0 is contained in X (y0) ∩ X (y1) ∩ X (y2).

(b) Let ψ−n(0) be the inverse image (ψn)−1(0), and let Xo :=
⋃
n≥1 ψ

−n(0). That means, Xo is
the set of problematic starting points for Newton’s method.

(b.i) Verify that for arbitrary integers 1 ≤ m < n, ψ−m(0)∩ψ−n(0) = ∅, where ψ−m(0) consists
of 3m different points in X .

(b.ii) Show that Xo = yjXo for j = 1, 2.
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(b.iii) Show that Xo contains points z with arbitrarily small and arbitrarily large modulus |z|.

(c) Show that for each integer n ≥ 1 and any point x ∈ ψ−n(C),

(ψn)′(x) =
n−1∏
k=0

ψ′(ψk(x))

(with ψ0(x) = x). Deduce from that formula that (ψn)′(x) 6= 0 for x ∈ ψ−n(0). Then apply
the inverse mapping theorem to show that each point x ∈ Xo belongs to the intersection X (y0) ∩
X (y1) ∩ X (y2). More generally, the intersection of X (yj) with a small neighborhood of x looks
approximately like the intersection of µ(x)−1X (yj) with a small neighborhood of 0.

Exercise 4.11 (Logistic regression, II). As in Example 3.64 let

f(x) :=

n∑
i=1

(
−yi z>i x+ log(1 + ez

>
i x)
)

with vectors z1, . . . ,zn ∈ Rd such that span(z1, . . . ,zn) = Rd and numbers y1, . . . , yn ∈ {0, 1}.
Write a program for the minimization of f via Newton’s method.

Variations. Sometimes one replaces the exact derivative Df(x) by an approximation H(x).
Two examples for this are:

(A) One approximates the derivative of f by difference ratios. That means, for a small number
δ = δ(x) > 0, the Jacobian matrix Df(x) is replaced with

H(x) :=
(fi(x+ δej)− fi(x− δej)

2δ

)d
i,j=1

.

(B) Quite often, the function f considered here is the gradient of a real-valued and twice contin-
uously differentiable function f̃ to be minimized. In this case, Df(x) is the Hessian matrix of f̃
at the point x and symmetric. Often the function f̃ is even strictly convex with Df(x) positive
definite for any x. But the condition number of Df(x), the ratio of its largest to its smallest
eigenvalue, can be very large, which causes numerical problems when computing ψ(x). To avoid
this, people often replace Df(x) with

H(x) := Df(x) + ε(x)I

with some ε(x) > 0.

Running Newton’s method with a surrogate H(x) for Df(x) is called a quasi-Newton method.
An obvious question is how well it performs. Let us assume thatH(x) is always nonsingular and
continuous in x ∈ X . Now we consider the algorithmic mapping

ψ̃(x) := x−H(x)−1f(x).

The proof of the following lemma is left to the reader as an exercise:
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Lemma 4.12. Let x∗ ∈ X be a zero of f . Then the algorithmic mapping ψ̃ defined above has
the following property:

ψ̃(x)− x∗ = A(x)(x− x∗)

with a matrixA(x) ∈ Rd×d such that

lim
x→x∗

A(x) = I −H(x∗)
−1Df(x∗).

This lemma shows that superlinear convergence gets lost in general. Instead,

lim sup
x→x∗

‖ψ̃(x)− x∗‖
‖x− x∗‖

= ‖I −H(x∗)
−1Df(x∗)‖.

If the right hand side is strictly smaller than 1, we still have linear convergence. One can deduce
from Lemma 4.3 that

‖I −H(x∗)
−1Df(x∗)‖ ≤ ‖H(x∗)

−1‖‖H(x∗)−Df(x∗)‖

≤ ‖Df(x∗)
−1‖‖H(x∗)−Df(x∗)‖

1− ‖Df(x∗)−1‖‖H(x∗)−Df(x∗)‖
,

and the right hand side is strictly smaller than 1 if

‖H(x∗)−Df(x∗)‖ <
1

2‖Df(x∗)−1‖
.

For the special setting (B) with a symmetric and positive definitie matrix Df(x∗) and H(x∗) =

Df(x∗) + ε(x∗)I one can deduce from the spectral representation of Df(x∗) that

(4.2) ‖I −H(x∗)
−1Df(x∗)‖ =

ε(x∗)

ε(x∗) + λmin(Df(x∗))

with λmin(A) denoting the smallest real eigenvalue of a matrixA. Thus we may guarantee linear
convergence here.

Exercise 4.13. Prove Lemma 4.12.

Exercise 4.14. Verify equation (4.2).

4.2 Minimization Problems

Now let (X , d) be a metric space and f : X → R be a given function to be minimized. To this
end we consider algorithmic mappings ψ : X → X we intend to iterate. With ψ0(x) := x and
ψn(x) := ψ(ψn−1(x)) for n ∈ N, we want to find conditions on f and ψ such that

X∗ := arg min
X

f

is compact (and thus nonvoid) and any starting point x0 ∈ X will lead to a sequence (xn)n≥0 :=

(ψn(x0))n≥0 converging to the set X∗. That means,

d(xn,X∗) := min
x∗∈X∗

d(xn, x∗) → 0 as n→∞.
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4.2.1 A general criterion for convergence

Suppose that f is lower semicontinuous and satisfies the following condition:

(4.3) {x ∈ X : f(x) ≤ f(xo)} is compact for arbitrary xo ∈ X .

For instance, this condition is satisfied if f : Rd → R is convex and coercive. Condition (4.3)
implies that X∗ = arg minX (f) is a compact (and thus nonvoid) subset of X , see Exercise 3.55.

Now we consider a mapping ψ : X → X with the following two properties:

f(ψ(x)) = f(x) for x ∈ X∗,(4.4)

f(ψ(x)) < f(x) for x 6∈ X∗.(4.5)

These conditions imply that for any starting point x0 ∈ X , the sequence
(
f(ψn(x0))

)
n≥0

is non-
increasing. Unfortunately, however, (4.5) is too weak to guarantee convergence of (ψn(x0))n≥0

to X∗.

Example 4.15. Let X = [0,∞) and f(x) = x, so X∗ = {0}. For any c ∈ (0, 1), the algorithmic
mapping

ψ(x) :=

{
0 if x ≤ 1

1 + c(x− 1) if x > 1

satisfies conditions (4.4) and (4.5). But for any starting point x0 > 1, ψn(x0) = 1+cn(x0−1)→ 1

as n→∞.

Here is a stronger version of condition (4.5) which is sufficient for our purposes:

(4.6) lim sup
x→y

f(ψ(x)) < f(y) for all y ∈ X \ X∗.

For instance, if f and ψ are continuous, and if ψ satisfies (4.5), then condition (4.6) is satisfied as
well.

Theorem 4.16. Suppose that ψ satisfies conditions (4.4) and (4.6). Then for any starting point
x0 ∈ X , the sequence (xn)n≥0 = (ψn(x0))n≥0 converges to X∗.

Proof of Theorem 4.16. As mentioned already, properties (4.4) and (4.5) of ψ imply that the
sequence of numbers f(xn) is non-increasing. In particular, all points xn are contained in the
compact set Xo :=

{
x ∈ X : f(x) ≤ f(x0)

}
. Suppose that (xn)n does not converge to X∗. That

means, for some δ > 0, d(xn,X∗) ≥ δ for infinitely many indices n. Since
{
x ∈ Xo : d(x,X∗) ≥

δ
}

is compact, too, there exist indices n(1) < n(2) < n(3) < · · · such that limk→∞ xn(k) = y ∈
Xo with d(y,X∗) ≥ δ. By lower semicontinuity of f and monotonicity of (f(xn))∞n=0,

f(y) ≤ lim
k→∞

f(xn(k))

= lim
k→∞

f(xn(k)+1)

= lim
k→∞

f(ψ(xn(k)))

≤ lim sup
x→y

f(ψ(x)).

Because of condition (4.6), this would imply that y ∈ X∗, a contradiction.
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Example 4.17 (Coordinatewise descent and LASSO). Let X = Rd, and consider the function
fλ(x) := ‖y − Zx‖2/2 + λ

∑d
j=1 |xj | with a given vector y ∈ Rn, a matrix Z ∈ Rn×d whose

columns have Euclidean norm 1 and some λ > 0. This function is convex and coercive. As shown
in Exercise 3.39, for any point x ∈ Rd and index k ∈ {1, . . . , d} there exists a unique vector

ψ(k)(x) := arg min
{
fλ(x̃) : x̃ ∈ Rd, x̃j = xj whenever j 6= k

}
,

and this defines a continuous mapping ψ(k) : Rd → Rd. Moreover, x is a minimizer of fλ if and
only if ψ(k)(x) = x for all k ∈ {1, . . . , d}. This implies that the algorithmic mapping

ψ := ψ(d) ◦ψ(d−1) ◦ · · · ◦ψ(1)

is continuous and satisfies conditions (4.4) and (4.5). Since fλ is continuous, too, condition (4.6)
is satisfied as well. Consequently, iterating the mapping ψ, also called iterative coordinatewise
descent, yields a sequence converging to arg minx∈Rd fλ(x).

Example 4.18 (Spatial median and Weiszfeld’s algorithm). As in Exercise 3.37, let f : Rd → R
be given by

f(x) :=

n∑
i=1

‖x− xi‖

with given points x1, . . . ,xn ∈ Rd. As shown earlier,

Df(x,v) = n(x)‖v‖+ g(x)>v

with
n(x) := #{i : xi = x} and g(x) :=

∑
i:xi 6=x

‖x− xi‖−1(x− xi).

In particular,
min

v:‖v‖≤1
Df(x,v) = n(x)− ‖g(x)‖,

so
x ∈ X∗ if and only if ‖g(x)‖ ≤ n(x).

An explicit algorithm for the computation of a point inX∗ has been proposed by Weiszfeld (1937)2

For a given candidate x ∈ Rd \X∗ we approximate f by a function fx which is easier to minimize
explicitly. Precisely, since ‖a + v‖ ≤ ‖a‖ + (‖a + v‖2 − ‖a‖2)/(2‖a‖) for arbitrary vectors
a 6= 0 and v in Rd,

f(x+ v) =
∑

i :xi 6=x
‖x+ v − xi‖+ n(x)‖v‖

≤
∑

i :xi 6=x
‖x− xi‖+

∑
i :xi 6=x

‖x+ v − xi‖2 − ‖x− xi‖2

2‖x− xi‖
+ n(x)‖v‖

= f(x) +
∑

i :xi 6=x

2(x− xi)>v + ‖v‖2

2‖x− xi‖
+ n(x)‖v‖

= f(x) + g(x)>v + n(x)‖v‖+ w(x)
‖v‖2

2
=: fx(x+ v)

2Endre Weiszfeld, alias Andrew Vázsonyi (1916-2003): Hungarian mathematician and operations researcher, who
emigrated in the 1940’s via Paris to the USA.
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with n(x) and g(x) as before, and

w(x) :=
∑

i :xi 6=x

1

‖x− xi‖
.

Note that
fx ≥ f, fx(x) = f(x) and Dfx(x, ·) ≡ Df(x, ·).

Writing v = ta with a unit vector a ∈ Rd and a scalar t > 0,

fx(x+ ta) = f(x) + g(x)>at+ n(x)t+ w(x)
t2

2

≥ f(x)−
(
‖g(x)‖ − n(x)

)
t+ w(x)

t2

2

with equality if and only if a = −‖g(x)‖−1g(x). Then the unique minimizer with respect to
t > 0 is given by

t = − ‖g(x)‖ − n(x)

w(x)
,

and the improvement in the value of fx equals

fx(x)− fx(x+ ta) =

(
‖g(x)‖ − n(x)

)2
2w(x)

.

Since fx ≥ f and fx(x) = f(x), the latter quantity is automatically a lower bound for the
improvement in the value of f .

For general x ∈ Rd we define

ψ(x) :=

x if ‖g(x)‖ ≤ n(x),

x− 1− n(x)/‖g(x)‖
w(x)

g(x) if ‖g(x)‖ > n(x).

Then for x ∈ Rd \ X∗,

f(x)− f(ψ(x)) ≥
(
‖g(x)‖ − n(x)

)2
2w(x)

.

Consequently, Weiszfeld’s algorithmic mapping ψ satisfies (4.4) and (4.5).

Unfortunately, (4.6) is violated in general. But one can easily verify that ψ is continuous on
Rd \ {x1, . . . ,xn}. Indeed, for x 6∈ {x1, . . . ,xn},

n(x) = 0,

g(x) =
n∑
i=1

‖x− xi‖−1(x− xi),

w(x) =

n∑
i=1

‖x− xi‖−1,

ψ(x) = w(x)−1
n∑
i=1

‖x− xi‖−1xi,

f(x)− f(ψ(x)) ≥ ‖g(x)‖2

2w(x)
.
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Thus a possible algorithm with guaranteed convergence runs as follows:

Phase 1: We compute f(xi) for 1 ≤ i ≤ n and determine a minimizer x0 of f on {x1, . . . ,xn}.

Phase 2: If

‖g(x0)‖ ≤ n(x0),

then x0 is already a minimizer of f . Otherwise, ψ(x0) defines a first point in the open convex
set X0 :=

{
x ∈ Rd : f(x) < f(x0)

}
, which is contained in Rd \ {x1, . . . ,xn}. Since ψ is

continuous on the latter set and satisfies (4.4) and (4.5), the sequence (xk)k≥0 :=
(
ψk(x0)

)
k≥0

converges automatically to X∗.

In the next exercise it will be shown that X∗ consists of one point x∗, unless all points x1, . . . ,xn

are lying on a straight line in Rd.

Exercise 4.19 (Spatial median, II).

(a) For x ∈ Rd let g(x) := ‖x‖. Show that for x 6= 0,

∇g(x) = u and D2g(x) = ‖x‖−1(Id − uu>)

with u := ‖x‖−1x.

(b) As in Exercise 3.37 let f(x) :=
∑n

i=1 ‖x − xi‖ with given points x1, . . . ,xn ∈ Rd. Deter-
mine the gradient ∇f(x) and the Hessian matrix D2f(x) for x ∈ Rd \ {x1, . . . ,xn}. Show that
D2f(x) is positive definite, unless all points x1, . . . ,xn are lying on a straight line in Rd running
through x.

(c) Show that the function f is strictly convex on Rd, unless all points x1, . . . ,xn are lying on a
straight line in Rd (which is always the case if d = 1).

4.2.2 Gradient, Newton and quasi-Newton procedures

Now we consider the special case of a continuously differentiable function f on an open subset X
of Rd. We assume condition (4.3) and that

(4.7) ∇f(x) 6= 0 for all x ∈ X \ X∗.

Conditions (4.3) and (4.7) are satisfied if, for instance, X is convex and f is convex such that

f(x) → ∞ as x→ ∂X or ‖x‖ → ∞.

A model algorithm. In the present context we discuss algorithmic mappings ψ : X → X of the
following type:

ψ(x) = x+ λ(x)∆(x)

with a “candidate step function” ∆ : X → Rd and a “step size function” λ : X → [0, 1]. The
mapping ψ satisfies the conditions of Theorem 4.16, provided that the following two conditions
are fulfilled:
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(i) ∆ is continuous, and

∆(x) = 0 for x ∈ X∗,

∇f(x)>∆(x) < 0 for x ∈ X \ X∗.

(ii) For x ∈ X \ X∗ define

C(x) :=
f(x)− f(x+ λ(x)∆(x))

maxt∈[0,1]

(
f(x)− f(x+ t∆(x))

) (f :=∞ on Rd \ X ),

C̃(x) :=
f(x)− f(x+ λ(x)∆(x))

−∇f(x)>∆(x)
.

Then for any y ∈ X \ X∗,

lim inf
x→y

C(x) > 0 or lim inf
x→y

C̃(x) > 0

Concerning the maximum in C(x), note that {t ∈ R : x + t∆(x) ∈ X} is an open subset of R
containing 0. Compactness of {f ≤ f(x)} implies that the set

{
t ∈ [0, 1] : f(x + t∆(x)) ≤

f(x)
}

is compact, and by condition (4.5), maxt∈[0,1]

(
f(x)− f(x+ t∆(x))

)
> 0.

To verify (4.6), note that for y ∈ X \ X∗,

lim sup
x→y

f(ψ(x)) = f(y)− lim inf
x→y

(
f(x)− f(x+ λ(x)∆(x))

)
,

and for a suitable fixed to = to(y) > 0,

lim inf
x→y

(
f(x)− f(x+ λ(x)∆(x))

)
≥ lim inf

x→y
C(x)

(
f(x)− f(x+ to∆(x))

)
= lim inf

x→y
C(x)

(
f(y)− f(y + to∆(y))

)
> 0

or

lim inf
x→y

(
f(x)− f(x+ λ(x)∆(x))

)
= lim inf

x→y
C̃(x)

(
−∇f(x)>∆(x)

)
= lim inf

x→y
C̃(x)

(
−∇f(y)>∆(y)

)
> 0.

4.2.3 Examples for the candidate step function ∆

Gradient descent. In the simplest case one chooses

∆(x) := −∇f(x).

More generally one could take ∆(x) := −κ(x)∇f(x) with a continuous mapping κ : X →
(0,∞).
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Newton proposal. Suppose that f is twice continuously differentiable on X with positive defi-
nite Hessian matrix D2f(x). Then a promising choice of ∆(x) seems to be

∆(x) := −D2f(x)−1∇f(x),

see also Section 4.1.

Quasi-Newton proposal. Both preceding variants may be generalized and interpreted as fol-
lows: For given x ∈ X we approximate f by a quadratic function

y 7→ f(x) +∇f(x)>(y − x) + 2−1(y − x)>A(x)(y − x)

with a symmetric, positive definite matrix A(x) depending continuously on x ∈ X . The unique
minimizer of this quadratic function equals x+ ∆(x) with

∆(x) := −A(x)−1∇f(x).

In case of gradient descent, A(x) = I or A(x) = κ(x)−1I , respectively. In case of Newton’s
proposal,A(x) = D2f(x). Another possible variant is

A(x) := diag
((∂2f

∂x2
i

(x)
)d
i=1

)
,

provided that the second derivatives on the right hand side exist, are strictly positive and continuous
in x ∈ X .

Condition (i) of our model algorithm is always satisfied. Obviously, ∆ is a continuous function on
X , and ∆(x) = 0 if and only if∇f(x) = 0 which is equivalent to x ∈ X∗. Moreover,

∇f(x)>∆(x) = −∇f(x)>A(x)−1∇f(x) < 0

for x ∈ X \ X∗.

4.2.4 Examples for the step size function λ

An ideal choice for λ(x) seems to be

λ(x) ∈ arg min
t∈[0,1]

f(x+ t∆(x)).

Obviously condition (ii) in Section 4.2.2 would be satisfied with C(·) ≡ 1. But in practice one
could compute these step sizes λ(x) only approximately, for instance with one of the methods
in Chapter 1. Hence one would run two nested iterative algorithms which could be too time-
consuming.

With the “improvement function” Hx : R→ [−∞,∞) given by

Hx(t) := f(x)− f(x+ t∆(x))
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one could rewrite the previous goal as

λ(x) ∈ arg max
t∈[0,1]

Hx(t).

Now we introduce two alternative methods for picking λ(x). Note that

Hx(0) = 0 < H ′x(0) = −∇f(x)>∆(x) for all x ∈ X \ X∗.

With Hx one may rewrite C(x) and C̃(x) in condition (ii) in Section 4.2.2 as

C(x) =
Hx(λ(x))

sup[0,1]Hx
and C̃(x) =

Hx(λ(x))

H ′x(0)
.

The method of Goldstein–Armijo. We fix a constant a ∈ (0, 1) and define

λ(x) := 2−n(x) with n(x) := min
{
n ∈ N0 : Hx(2−n) ≥ a2−nH ′x(0)

}
for x ∈ X \ X∗. Since

lim
n→∞

Hx(2−n)

2−nH ′x(0)
= 1 > a,

the number n(x) is well-defined in N0. To verify Condition (ii) in Section 4.2.2, it suffices to show
that for any y ∈ X \ X∗,

lim sup
x→y

n(x) < ∞,

because
C̃(x) ≥ 2−n(x)a

by definition of n(x). Indeed, it follows from 2nHy(2−n) → H ′y(0) that for a suitable no =

no(y) ∈ N0,
Hy(2−no) > 2−noaH ′y(0).

Since Hx(2−no) → Hy(2−no) and H ′x(0) → H ′y(0) as x → y, this implies that n(x) ≤ no if x
is sufficiently close to y.

The definition of λ(x) is illustrated in Figure 4.2. One sees two different examples for a function
Hx with Hx(0) = 0 and H ′x(0) = 1. In addition the linear functions t 7→ H ′x(0)t, t 7→ aH ′x(0)t

with a = 1/3 and the resulting value λ(x) are depicted.

An obvious question is what particular value a we should choose. To this end, suppose for the
moment that the function H = Hx is a quadratic and concave function:

H(t) = bt− ct2/2

with constants b > 0 and c ≥ 0. Here H ′(t) = b− ct, so

t∗ := arg max
[0,1]

H = min(b/c, 1).

Suppose first that t∗ = 1, i.e. c ≤ b. Here H is strictly increasing on [0, 1]. Hence it would be
desirable to have λ = λ(x) = 1, because otherwise H(λ) ≤ H(1/2) < H(1). Note that

H(1) = b− c/2 ≥ b/2 and aH ′(0) = ab.
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Figure 4.2: Step size function à la Goldstein–Armijo.

Hence to guarantee H(1) ≥ aH ′(0) whenever c ≤ b, we should choose

a ≤ 1/2.

Now suppose that t∗ < 1, i.e. c > b. Then t∗ = b/c and H(t∗) = b2/(2c), so

H(λ)

H(t∗)
=

bλ− cλ2/2

b2/(2c)
= 2λ/t∗ − (λ/t∗)

2 = 1− (λ/t∗ − 1)2.

If λ < t∗, then 2λ ≤ 1, and the inequality H(2λ) < a2λH ′(0) reads

2bλ− 2cλ2 < ab2λ.

Dividing both sides by 2bλ yields the inequality 1− λ/t∗ < a, so 0 < 1− λ/t∗ < a and

H(λ)

H(t∗)
≥ 1− a2.

If λ > t∗, then the inequality H(λ) ≥ aλH ′(0) reads

bλ− cλ2/2 ≥ abλ.

Dividing both sides by bλ yields the inequality 1− (λ/t∗)/2 ≥ a, so 1 < λ/t∗ ≤ 2(1− a) and

H(λ)

H(t∗)
≥ 1− (1− 2a)2.

Note that 1 − a2 is decreasing and 1 − (1 − 2a)2 is increasing in a ∈ (0, 1/2]. Equating both
bounds yields

a = 1/3 and
H(λ)

H(t∗)
≥ 8/9.

More generally, for any value a ∈ [1/4, 1/2] we could guarantee that H(λ)/H(t∗) ≥ 3/4.
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Coarse binary search for convex functions. Suppose that f is convex on the convex set X , so
all functions Hx are concave. A simple version of the step size function λ(·) is as follows: For
x ∈ X \ X∗ let

λ(x) := 2−n(x),

with n(x) being the smallest number n ∈ N0 satisfying the two inequalities

0 < Hx(2−n/2) ≤ Hx(2−n).

Figure 4.3 illustrates this definition of λ(x). In both panels one sees Hx(t) for t ∈ [0, 1] as well
as λ(x) and λ(x)/2. In the left panel, λ(x) = 1, because 0 < Hx(1/2) ≤ Hx(1). In the right
panel, Hx(1) < Hx(1/2) ≥ Hx(1/4) > 0, whence λ(x) = 1/2.
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Figure 4.3: Step size function via coarse binary search.

This step size function fulfills condition (ii) in Section 4.2.2 with C(·) ≥ 1/2: Note first that by
concavity of Hx and construction of λ(x), the point t(x) := max

(
arg max[0,1]Hx

)
has to fulfill

λ(x)/2 ≤ t(x) < 2λ(x),

because 0 < Hx(λ(x)/2) ≤ Hx(λ(x)) and Hx(λ(x)) > Hx(2λ(x)) in case of λ(x) < 1.

In case of λ(x)/2 ≤ t(x) < λ(x), concavity of Hx implies that

Hx(λ(x)) ≥ Hx(λ(x)/2) = Hx

((
1− λ(x)/2

t(x)

)
· 0 +

λ(x)/2

t(x)
t(x)

)
≥
(

1− λ(x)/2

t(x)

)
Hx(0) +

λ(x)/2

t(x)
Hx(t(x))

=
λ(x)

2t(x)
Hx(t(x))

≥ Hx(t(x))

2
,

whence Hx(λ(x))/Hx(t(x)) ≥ 1/2.
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In case of λ(x) < t(x) < 2λ(x), concavity of Hx yields

Hx(λ(x)) = Hx

((
1− λ(x)

t(x)

)
· 0 +

λ(x)

t(x)
t(x)

)
≥
(

1− λ(x)

t(x)

)
Hx(0) +

λ(x)

t(x)
Hx(t(x))

=
λ(x)

t(x)
Hx(t(x))

>
Hx(t(x))

2
,

so again Hx(λ(x))/Hx(t(x)) ≥ 1/2.

It is also interesting to consider once more the special case of a quadratic and concave function
H = Hx, i.e. H(t) = bt− ct2/2 with b > 0 and c ≥ 0. Let λ = λ(x) and t∗ := min{b/c, 1}, the
unique maximizer of H on [0, 1]. In case of c ≤ b, the function H is strictly increasing on [0, 1],
so λ = t∗. In case of c > b, t∗ ∈ (0, 1), and

H(λ)

H(t∗)
= 1−

( λ
t∗
− 1
)2
,

see the considerations for the Goldstein–Armijo method. But the symmetry of H around t∗ to-
gether with the inequalities H(λ/2) ≤ H(λ) and H(2λ) < H(λ) in case of λ < 1 imply that
even

3

4
λ ≤ t∗ ≤

3

2
λ.

Hence 2/3 ≤ λ/t∗ ≤ 4/3 and

H(λ)

H(t∗)
= 1−

( λ
t∗
− 1
)2
≥ 8

9
.

Implementation of the quasi-Newton method with stepsize correction. The actual implemen-
tation of a quasi-Newton method with one of the former two stepsize corrections is rather simple,
and one does not need to work with the auxiliary index n(x) explicitly. Here is pseudo-code for
a quasi-Newton method with the Goldstein–Armijo stepsize correction, where we assume that we
have access to the functions f : X → R, ∇f : X → Rd and A : X → Rd×dsym,+, and δo > 0 is a
small threshold for the stopping criterion:
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x← xo
f ← f(x)
g ← ∇f(x)
∆← A(x)−1g
δ ← g>∆
while δ > δo do

xnew ← x−∆
fnew ← f(xnew)
while f − fnew < δ/3 do

xnew ← (x+ xnew)/2
δ ← δ/2
fnew ← f(xnew)

end while
x← xnew

f ← fnew

g ← ∇f(x)
∆← A(x)−1g
δ ← g>∆

end while.

And here is pseudo-code for a variant with coarse binary search:

x← xo
f ← f(x)
g ← ∇f(x)
∆← A(x)−1g
δ ← g>∆
while δ > δo do

xnew ← x−∆
fnew ← f(xnew)
x′new ← (x+ xnew)/2
f ′new ← f(x′new)
while fnew ≥ f or f ′new < fnew do

xnew ← x′new

fnew ← f ′new

x′new ← (x+ xnew)/2
f ′new ← f(x′new)

end while
x← xnew

f ← fnew

g ← ∇f(x)
∆← A(x)−1g
δ ← g>∆

end while.

In practice, one should secure the inner while loop with a counter to make sure that it is not
repeated endlessly due to numerical errors. And right after the inner while loop, one should
include an extra check whether really fnew < f . If not, one should just set δ ← 0 and thus stop
the outer while loop.
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Exercise 4.20 (Another step size function, I). Suppose that f is convex and continuously differ-
entiable on the convex open set X , and let ∆ : X → Rd be a candidate step function with the
stated properties. For x ∈ X \ X∗ define

λ(x) := 2−n(x)

with

n(x) := min
{
n ∈ N0 : Hx(2 · 2−n) ≥ 0

}
.

(a) Show that this stepfunction satisfies the inequality

Hx(λ(x))

max[0,1]Hx
≥ 1

4
.

(b) Show that in case of a quadratic function Hx,

Hx(λ(x))

max[0,1]Hx
≥ 3

4
.

4.2.5 Performance in connection with quasi-Newton methods

If we determine ∆(x) via a quasi-Newton method with good local convergence properties, it is
desirable to have λ(x) = 1 for x ∈ X \ X∗ sufficiently close to X∗. Suppose that f is twice
continuously differentiable and convex. Then Hx is real-valued and twice differentiable on [0, 1]

whenever x is sufficiently close to X∗. In that case, both the Goldstein–Armijo method with
a ≤ 1/3 and the rough binary search yield

λ(x) = 1 whenever H ′′x ≥ −
4

3
H ′x(0) on [0, 1].

To verify this claim, note that

Hx(1) = H ′x(0) +

∫ 1

0
(H ′x(t)−H ′x(0)) dt

≥ H ′x(0)− 4

3
H ′x(0)

∫ 1

0
t dt

=
H ′x(0)

3

and

Hx(1)−Hx(1/2) =
H ′x(0)

2
+

∫ 1

1/2
(H ′x(t)−H ′x(0)) dt

≥ H ′x(0)

2
− 4

3
H ′x(0)

∫ 1

1/2
t dt

= 0,

because H ′x(t)−H ′x(0) = H ′′x(ξ(t))t ≥ −(4/3)H ′x(0)t for some point ξ(t) ∈ [0, t].
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Specifically let ∆(x) = −A(x)−1∇f(x) with a symmetric and positive definite matrix A(x)

depending continuously on x ∈ X . For x∗ ∈ X∗ and x ∈ X \ X∗ sufficiently close to x∗, the
whole line segment

{
x+ t∆(x) : t ∈ [0, 1]

}
is contained in X , and

H ′x(0) = −∇f(x)>∆(x)

= ∆(x)>A(x)∆(x),

H ′′x(t) = −∆(x)>D2f(x+ t∆(x))∆(x).

Hence
H ′′x(t) +

4

3
H ′x(0) = ∆(x)>

(4

3
A(x)−D2f(x+ t∆(x))

)
∆(x) ≥ 0,

provided that (4/3)A(x) − D2f(x + t∆(x)) is positive semidefinite. Consequently, λ(x) = 1

for x ∈ X \ X∗ sufficiently close to x∗, provided that

A(x∗)−
3

4
D2f(x∗) is positive definite.

In particular, let f be twice continuously differentiable on the convex open setX with positive def-
inite Hessian matrixD2f(x) for all x ∈ X , and let ∆(x) be the Newton step−D2f(x)−1∇f(x).
Then iterating the algorithmic mapping ψ with arbitrary starting point x0 will yield a sequence
(xn)n≥0 with limit X∗ = {x∗}, and λ(xn) < 1 for at most finitely many n. Hence the step size
correction yields guaranteed convergence without sacrificing the rapid convergence of Newton’s
method.

Exercise 4.21 (Another step size function, II). Consider the step size function λ(·) introduced in
Exercise 4.20. Suppose that Hx is twice differentiable on [0, 2] with H ′′x ≥ −CH ′x(0) for some
constant C > 0. Which value of C guarantees that λ(x) = 1? Would you recommend this step
size function in connection with the usual Newton candidate step function?

Exercise 4.22 (Logistic regression, III). Complement your Newton procedure for logistic regres-
sion in Exercise 4.11 with a step size function of your choice.

Exercise 4.23 (Smooth approximations). Several of our examples involved convex but non-diff-
erentiable functions x 7→ ‖x − xo‖ or x 7→ |x>o x − ro|. A simple way to avoid the problems
resulting from this lack of smoothness is to approximate these functions by smooth ones.

(a) For ε > 0 let hε : R→ R be given by

hε(x) :=
√
x2 + ε2.

Show that

|x| ≤ hε(x) ≤ |x|+ min
(
ε,

ε2

2|x|

)
,

and

h′ε(r) =
r√

ε2 + r2
,

h′′ε (r) =
ε2

(ε2 + r2)3/2
.
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(b) Now let hε(x) :=
√
‖x‖2 + ε2. Determine the gradient and Hessian matrix of hε. Show that

the Hessian matrix is always positive definite.

(c) Design and implement a Newton method with regularization of the Hessian matrix and some
step size correction for the (approximate) minimization of

f(x) :=
n∑
i=1

|z>i x− yi|

with given numbers y1, . . . , yn ∈ R and vectors z1, . . . ,zn ∈ Rd. Choose a parameter ε > 0

which is related to the numbers y1, . . . , yn in a reasonable fashion.

Exercise 4.24. Let X1, X2, . . . , Xn be stochastically independent random variables with values
in R and density function fµ∗,σ∗ . Here µ∗ ∈ R and σ∗ > 0 are unknown parameters, and

fµ,σ(x) =
1

σ
f0,1

(x− µ
σ

)
with f0,1(y) :=

1

π(1 + y2)
.

Now we’d like to compute a maximum-likelihood estimator for the unknown parameter vector
θ∗ := (µ∗, σ∗)

>. That is a parameter vector θ = (µ, σ)> ∈ R × (0,∞) minimizing the negative
log-likelihood

L̂(θ) := −
n∑
i=1

log fµ,σ(Xi).

Implement a Newton method with step size correction for this task.



Chapter 5

Constrained Optimization

5.1 Lagrange Multipliers

5.1.1 The general principle

We consider functions f : X → (−∞,∞] and g : X → Rq on an arbitrary set X . For a given
vector c ∈ Rq we would like to minimize f under the constraint that g = c or that g ≤ c

component-wise.

In many cases it is much easier to minimize the function f − λ>g on X for an arbitrary vector
λ ∈ Rq and then to study the minimizer as a function of λ. The next theorem explains to what
extent this approach works.

Theorem 5.1. For some λ ∈ Rq let

xλ ∈ arg min
x∈X

(
f(x)− λ>g(x)

)
.

Then

xλ ∈ arg min
x∈X : g(x)=g(xλ)

f(x).

More generally, let

Xλ :=
{
x ∈ X : λ>g(x) ≥ λ>g(xλ)

}
.

Then

xλ ∈ arg min
x∈X̃

f(x)

for any set X̃ such that xλ ∈ X̃ ⊂ Xλ.

If xλ is the unique minimizer of f − λ>g on X , then xλ is also the unique minimizer of f on any
set X̃ such that xλ ∈ X̃ ⊂ Xλ.

Remark 5.2 (Equality constraints). For the original problem, minimizing f under the constraint
that g = c, we obtain the following procedure: For λ ∈ Rq we determine a minimizer xλ of
f −λ>g over X . Then we try to find λ ∈ Rq such that g(xλ) = c. Then the corresponding point
xλ solves the original problem.

109
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Remark 5.3 (Inequality constraints). Suppose for a vector c = (cj)
q
j=1 ∈ Rq and some index

qo ∈ {1, . . . , q} we want to minimize f(x) under the following constraints:

(5.1) gj(x)

{
≤ cj for 1 ≤ j ≤ qo,
= cj for qo < j ≤ q.

For this purpose we try to find a vector λ ∈ Rq such that the corresponding minimizer xλ of
f − λ>g satisfies (5.1), and

λj

{
≤ 0 if j ≤ qo,
= 0 if j ≤ qo and gj(xλ) < cλ.

If such a vector λ exists, the corresponding xλ solves the given constrained optimization problem,
because any point x ∈ X satisfying (5.1) satisfies also λjgj(x) ≥ λjgj(xλ) for 1 ≤ j ≤ q, so
x ∈ Xλ.

Proof of Theorem 5.1. Let y be an arbitrary point in Xλ such that f(y) ≤ f(xλ). Then

f(xλ)− λ>g(xλ) ≥ f(y)− λ>g(xλ) ≥ f(y)− λ>g(y),

where the last inequality follows from the definition of Xλ. Optimality of xλ implies that both
inequalities are equalities, so f(y) = f(xλ) and λ>g(y) = λ>g(xλ). If xλ is even the unique
minimizer of f − λ>g on X , then the inequality f(y) ≤ f(xλ) implies that y = xλ.

Exercise 5.4 (Varying Lagrange multipliers). For two different vectors λ1,λ2 ∈ Rq let

xi ∈ arg min
x∈X

(f − λ>i g)(x), i = 1, 2.

Show that
(λ1 − λ2)>(g(x1)− g(x2)) ≥ 0.

Show also that this inequality is strict whenever the two minimizers x1 and x2 are unique and
different.

5.1.2 Examples for Lagrange’s Method

Optimal linear combinations of estimators. LetX1, X2, . . . , Xd be stochastically independent
random variables with one and the same unknown expected value µ ∈ R and known standard
deviations σi = Std(Xi) > 0. (An example are d different measurement devices with known
imprecision, and with each of them one measures a sample from one and the same substance.)
Now we want to estimate µ by a weighted average of the Xi,

µ̂ :=
d∑
i=1

wiXi

with certain weights wi ∈ R. A natural constraint on w = (wi)
d
i=1 is that

g(w) :=
d∑
i=1

wi = 1,
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because then IE(µ̂) = µ. Now we would like to minimize the mean quadratic error

IE
(
(µ̂− µ)2

)
= f(w) :=

d∑
i=1

w2
i σ

2
i

under that constraint. To this end we minimize for an arbitrary number λ ∈ R the function

f(w)− λg(w) =
d∑
i=1

(
w2
i σ

2
i − λwi

)
.

This minimization may be performed component-wise, and the unique minimizer is given by

wλ :=
( λ

2σ2
i

)d
i=1
.

The constraint g(w) = 1 is satisfied if and only if λ = 2C with

C :=
( d∑
i=1

1

σ2
i

)−1
.

Hence optimal weights are given by
wi := C/σ2

i ,

and the resulting mean squared error equals C.

Minimizing a quadratic function under linear constraints. The previous example may be
considered as a special case of the following optimization problem: Let A ∈ Rd×d be symmetric
and positive definite. Now we would like to minimize

f(x) := 2−1x>Ax

over all x ∈ Rd satisfying the constraint

B>x = c.

HereB is a given matrix in Rd×q of rank q < d, and c is a given vector in Rq.

To this end we minimize for λ ∈ Rq the function f(x)−λ>B>x = f(x)− (Bλ)>x. Note that
the gradient and Hessian matrix of the latter function are given byAx−Bλ andA, respectively.
Thus its unique minimizer is given by

xλ := A−1Bλ.

Alternatively one could argue with quadratic completion: f(x)− (Bλ)>x equals

2−1x>Ax− (Bλ)>x = 2−1
(
x>Ax− 2(A−1Bλ)>Ax

)
= 2−1(x−A−1Bλ)>A(x−A−1Bλ)− 2−1λ>B>A−1Bλ.

Furthermore,
B>xλ = B>A−1Bλ,
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and this equals c if and only if

λ = (B>A−1B)−1c.

Consequently the original constrained optimization problem has the unique solution

x∗ := A−1B(B>A−1B)−1c

with

f(x∗) = 2−1c>(B>A−1B)−1c.

Exercise 5.5 (Minimizing a quadratic function, I). Generalize the previous considerations to the
case of f(x) = γ + β>x+ 2−1x>Ax with γ ∈ R and β ∈ Rd.

Exercise 5.6 (Minimizing a quadratic function, II). (a) Minimize

f(x) =
1

2
x>Ax+ β>x

over all x ∈ R3 satisfying

(5.2) b>x = 4,

where

A =

 3 −1 0
−1 2 −1
0 −1 1

 , β =

1
1
1

 , b =

1
2
1

 .
(b) What happens to the solution in part (a) if the constraint (5.2) is replaced with

b>x ≤(≥) 4 ?

Density functions with maximal entropy. For a probability density p with respect to Lebesgue
measure on a Borel set X ⊂ Rd with Leb(X ) > 0, the (differential Shannon) entropy

H(p) := −
∫
X
p(x) log p(x) dx

measures how “diffuse” the corresponding distribution is; higher values of H(p) indicate a more
diffuse distribution. An obvious question is what the most diffuse distribution looks like. Note
that H(p) is well-defined in [−∞,∞) for arbitrary integrable functions p : X → [0,∞), with the
convention that 0 log 0 := 0, because t 7→ t log t is bounded from below on [0,∞).

More formally, we consider the set P of all nonnegative functions p ∈ L1(X ) and the functional
f(p) := −H(p) ∈ (0,∞]. The additional constraint that p ∈ P is a probability density corre-
sponds to the requirement

g0(p) :=

∫
X
p(x) dx

!
= 1.
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Case 1: No further constraints, but Leb(X ) <∞. We want to maximize H(p) = −f(p) among
all p ∈ X with g0(p) = 1. To this end we minimize

f(p)− λg0(p) =

∫
X

(
p(x) log p(x)− λp(x)

)
dx.

Since
d

dt
(t log t− λt) = log t+ 1− λ,

the minimizing density is unique (almost everywhere) and given by

pλ ≡ exp(λ− 1).

With λ := 1 − log Leb(X ) we obtain the probability density p∗ ≡ Leb(X )−1, the density of the
uniform distribution on X with H(p) = log Leb(X ).

Case 2: Conditions on the first and second moments. In case of Leb(X ) = ∞, there exists no
maximizer p ∈ P of H under the constraint g0(p) = 1. This can be verified by considering
the uniform distribution on X (R) := {x ∈ X : ‖x‖ ≤ R} for sufficiently large radius R > 0

with density p(R)(x) := Leb(X (R))−11X (R)(x) and entropy H(p(R)) = log Leb(X (R))→∞ as
R→∞.

Suppose that X = Rd, and let P be the set of all measurable functions p : Rd → [0,∞) such that∫
p(x)(1 + ‖x‖2) dx <∞. Now we want to maximize H(p) over all probability densities p ∈ P

satisfying ∫
x p(x) dx = µo and

∫
(x− µo)(x− µo)>p(x) dx = Σo

for a given vector µo ∈ Rd and a given symmetric and positive definite matrix Σo ∈ Rd×d.
Such a density p describes the distribution of a random vector X ∈ Rd with IE(X) = µo and
Var(X) = Σo.

In other words, we want to minimize f(p) = −H(p) under the constraints that

g0(p) :=

∫
p(x) dx

!
= 1,

g1(p) :=

∫
xp(x) dx

!
= µo,

G2(p) :=

∫
(x− µo)(x− µo)>p(x) dx

!
= Σo.

To this end we consider for a number λ0 ∈ R, a vector λ1 ∈ Rd and a symmetric matrix Λ2 ∈
Rd×d the quantity

−H(p)− λ0g0(p)− λ>1 g1(p)− trace(Λ2G2(p))

=

∫ (
log p(x)− λ0 − λ>1 x− (x− µo)>Λ2(x− µo)

)
p(x) dx.

The minimizer of that auxiliary functional is unique (almost everywhere) and given by

p(x) = exp
(
−1 + λ0 + λ>1 x+ (x− µo)>Λ2(x− µo)

)
,



114

provided that −Λ2 is positive definite. Note that this is always a positive multiple of a Gaussian
density. If we choose Λ2 := −Σ−1

o /2, λ1 := 0 and the constant λ0 := 1 − 2−1d log(2π) −
2−1 log det(Σo), then

p(x) = (2π)−d/2 det(Σo)
−1/2 exp

(
−(x− µo)>Σ−1

o (x− µo)/2
)
,

which is the density function of the d-variate Gaussian distribution Nd(µo,Σo).

This shows that the Gaussian distribution Nd(µo,Σo) is the most “diffuse” distribution (in the
sense of entropy) among all probability distributions with given mean vector µo and covariance
matrix Σo.

Exercise 5.7. Determine a probability density p on (0,∞) such that its entropy H(p) is maxi-
mized under the constraint ∫ ∞

0
xp(x) dx = µ > 0.

Exercise 5.8 (Discrete Shannon entropy, I). For a vector p ∈ [0,∞)d let

H(p) := −
d∑
i=1

pi log pi.

Maximize H(p) under the constraint that
∑d

i=1 pi = 1.

Exercise 5.9 (Discrete Shannon entropy, II). Let P ∈ [0, 1]r×s be a matrix with given row and
column sums:

s∑
j=1

Pij = ai for i = 1, . . . , r

and
r∑
i=1

Pij = bj for j = 1, . . . , s

with given probability vectors a ∈ (0, 1)r and b ∈ (0, 1)s. Determine such a matrix P with
maximal entropy

H(P ) := −
∑
i,j

Pij logPij .

Interpretation: The matrix P describes the joint distribution of two random variables X and Y
with values in {1, . . . , r} and {1, . . . , s}, respectively. Their respective marginal distributions are
given by a and b, and we are looking for a maximally diffuse joint distribution.

Kullback–Leibler divergence. Let P and Q be probability distributions on a measurable space
(X ,B). The Kullback–Leibler divergence of Q with respect to P is defined as

K(Q |P ) :=

∫
log(q) dQ ∈ [0,∞]

if Q has a density q with respect to P ,1 and K(Q |P ) :=∞ otherwise. Note that∫
log(q) dQ = −

∫
{q>0}

log(1/q)q dP ≥ −
∫
{q>0}

(1/q − 1)q dP = 1− P{q > 0} ≥ 0

1Q(B) =
∫
B
q dP for arbitrary B ∈ B
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with equality if and only if q = 1 P -almost everywhere. Thus, K(Q |P ) ≥ 0 with equality if and
only if Q ≡ P .

By means of Lagrange’s method one can show that

K(Q |P ) = sup
g∈G(P )

∫
g dQ,

where G(P ) is the set of all measurable functions g : X → [−∞,∞) such that
∫
g dQ exists in

[−∞,∞] and ∫
eg dP = 1.

Suppose first that Q(B) > 0 = P (B) for some B ∈ B. Then for r > 0, gr := 1B · r defines a
function in G(P ) such that

∫
gr dQ = rQ(B) → ∞ as r → ∞. Note also that the existence of

such a set B implies that Q does not admit a density with respect to P , whence K(Q |P ) =∞.

If no such setB exists, it follows from the theorem of Radon–Nikodym thatQ does admit a density
q with respect to P . Then we may write

∫
g dQ =

∫
gq dP , and we consider the larger family

Ḡ(P ) of all measurable functions g : X → [−∞,∞) such that
∫
g dQ exists in [−∞,∞] and∫

eg dP <∞. Instead of maximising
∫
g dQ over all g ∈ G(P ), we try to maximise∫

g dQ−
∫
eg dP =

∫
(gq − eg) dP

over all functions g ∈ Ḡ(P ), which is Lagrange’s method with λ = 1. Indeed, for any x ∈ X ,

arg max
h∈[−∞,∞)

(hq(x)− eh) = log q(x)

(with log 0 := −∞), so∫
(gq − eg) dP ≤

∫
(log(q)− 1)q dP =

∫
log(q) dQ− 1

with equality if and only if g = g∗ := log(q) P -almost everywhere. Since g∗ ∈ G(P ), this shows
that K(Q |P ) =

∫
g∗ dQ = maxg∈G(P )

∫
g dQ.

Exercise 5.10. Given a strictly positive probability density po on (0, 1) and numbers µo, σo ∈
(0, 1), determine a probability density p with minimal Kullback–Leibler divergence K(p | po) :=∫ 1

0 log(p(x)/po(x))p(x) dx under the constraints that

µ(p) :=

∫ 1

0
xp(x) dx = µo and σ2(p) :=

∫ 1

0
(x− µo)2p(x) dx = σ2

o .

With a suitable Lagrange ansatz you’ll see immediately how the density p should look like.

(For which values of µo and σo does a solution exist?)

Optimal kernel functions. In connection with kernel density estimation as well as in connection
with Wilcoxon’s rank tests one encounters the following optimization problem: Find a measurable
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function K : R→ [0,∞) such that

g0(K) :=

∫
K(x) dx

!
= 1,

g1(K) :=

∫
K(x)x dx

!
= 0,

g2(K) :=

∫
K(x)x2 dx

!
= 1

with minimal value of
f(K) :=

∫
K(x)2 dx.

To solve this problem, let K be the set of all measurable functions K : R→ [0,∞) such that∫
K(x)(1 + x2) dx < ∞.

We just ignore the constraint g1(K) = 0, hoping that the minimizer K ∈ K of f(K) under the
constraints g0(K) = g2(K) = 1 will automatically satisfy g1(K) = 0.

The Lagrange ansatz leads to the auxiliary function

f(K)− λ0g0(K)− λ2g2(K) =

∫ (
K(x)2 −K(x)(λ0 + λ2x

2)
)
dx

with a certain vector λ = (λ0, λ2)> ∈ R2. Now

K(x)2 −K(x)(λ0 + λ2x
2) =

(
K(x)− (λ0 + λ2x

2)/2
)2 − 4−1(λ0 + λ2x

2)2,

so an optimal function K would be given by

Kλ(x) = (λ0/2 + λ2x
2/2)+.

This defines a nontrivial function in K if and only if λ0 > 0 > λ2. With constants a, b > 0 we
may also consider

Ka,b(x) := a(1− (x/b)2)+.

Note first that with the substition z = x/b, dx = b dz,

g0(Ka,b) = a

∫ b

−b
(1− (x/b)2) dx

= ab

∫ 1

−1
(1− z2) dz = ab · 2(z − z3/3)

∣∣1
z=0

=
4ab

3
,

so
a

!
=

3

4b
.

Furthermore, since Ka,b is an even function, g1(Ka,b) = 0. Finally,

g2(Ka,b) = a

∫ b

−b
(1− (x/b)2)x2 dx

=
3b2

4

∫ 1

−1
(1− z2)z2 dz = ab3 · 2(z3/3− z5/5)

∣∣1
z=0

=
b2

5
,



117

so

b
!

=
√

5.

All in all, the original optimization problem has the (almost everywhere) unique solution

K(x) =
3

4
√

5

(
1− x2

5

)+
,

a so-called Epanechnikov kernel.

The shape of a hanging chain. Let us consider a thin chain of length 2Lwhich is hanging freely
from two points at identical height and with distance 2M , where 0 < M < L. The question is
which shape of the chain will materialize. We talk about chains rather than strings or ropes to
emphasize that within the chain there are no elastic forces at work. Hence the only driving forces
result from gravitation.

Formulating the problem mathematically, we are looking for a curve

[−L,L] 3 t 7→
[
x(t), y(t)

]> ∈ R2

with the following properties:

• The functions x and y are continuously differentiable2 on [−L,L] with derivatives x′ and y′

satisfying

x′(t)2 + y′(t)2 = 1

for arbitrary t ∈ [−L,L]. That means, our curve is parametrized in arc length.

• The curve starts in (−M, 0)> and ends in (M, 0)>, that means,

x(±L) = ±M and y(±L) = 0.

Under these constraints we would like to minimize the potential energy

E :=

∫ L

−L
y(t) dt.

This definition comes from the consideration that for t ∈ [−L,L) and a small δ > 0, the section{
(x(s), y(s)) : t ≤ s < t + δ

}
of our chain has mass proportional to δ and is hanging at height

y(t).

To solve this minimization problem we introduce

v(t) :=
[
x′(t), y′(t)

]>
,

defining a measurable mapping v from [−L,L] to the unit sphere of R2. Now we rewrite E and
the constraints in terms of v: On the one hand, it follows from y(−L) = 0 and y(L)− y(−L) =

2it would even suffice to assume that x and y are absolutely continuous.
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∫ L
−L y

′(t) dt = 0 that

E(v) =

∫ L

−L

∫ t

−L
y′(s) ds dt

=

∫ L

−L

∫ L

s
y′(s) dt ds

=

∫ L

−L
y′(s)(L− s) ds

=

∫ L

−L
y′(s)(−s) ds.

On the other hand, the constraint x(L)− x(−L) = 2M is equivalent to

G(v) :=

∫ L

−L
x′(s) ds = 2M.

Consequently we are now trying the following ansatz: For some λ ∈ R we want to minimize the
function

E(v)− λG(v) =

∫ L

−L

(
−y′(s)s− λx′(s)

)
ds = −

∫ L

−L

〈
v(s), (λ, s)>

〉
ds

with respect to v. The solution may be determined point-wise: By means of the Cauchy–Schwarz
inequality, the optimal v is given by

vλ(s) :=
( λ√

λ2 + s2
,

s√
λ2 + s2

)>
,

obviously a continuous function of s ∈ [−L,L]. Only λ > 0 yields a reasonable solution because
for λ ≤ 0 we would have G(vλ) ≤ 0. For the curve (x, y) itself this yields the following solution:
Note that ∫

s√
λ2 + s2

ds = C +
√
λ2 + s2.

Combining this with the boundary conditions that yλ(±L) = 0, we obtain

yλ(s) =
√
λ2 + s2 −

√
λ2 + L2.

Recall the hyperbolic functions cosh, sinh : R→ R with cosh(r) = (er + e−r)/2 and sinh(r) =

(er − e−r)/2. They satisfy the equation

cosh =
√

1 + sinh2,

while their derivatives are given by cosh′ = sinh and sinh′ = cosh > 0. Moreover, sinh is
bijective with inverse function arsinh : R→ R such that

arsinh′(r) =
1√

1 + r2

for arbitrary r ∈ R. From this and the boundary conditions xλ(±L) = ±M one can easily derive
that

xλ(s) = λ arsinh(s/λ),
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Figure 5.1: Some catenaries.

and we may rewrite this as

s = λ sinh(xλ(s)/λ).

Now the boundary condition xλ(±L) = ±M is equivalent to the requirement that L/λ =

sinh(M/λ), that is,

(5.3) L/M =
sinh(M/λ)

M/λ
= 1 +

∞∑
k=1

(M/λ)2k

(2k + 1)!
.

Since the right hand side is continuous and strictly decreasing in λ > 0 with limits∞ as λ → 0

and 1 as λ → ∞, there exists a unique solution λ > 0 of the equation (5.3). For this particular
λ > 0, the functions x(·) := xλ(·) and y(·) := yλ(·) are the desired solutions with

y = λ
√

1 + sinh(x/λ)2 − λ
√

1 + (L/λ)2

= λ
√

1 + sinh(x/λ)2 − λ
√

1 + sinh(M/λ)2

= λ cosh(x/λ)− λ cosh(M/λ).

Hence the chain configuration is given by the set{(
x, λ cosh(x/λ)− λ cosh(M/λ)

)>
: x ∈ [−M,M ]

}
.

Such a curve is also called a catenary. One of the first people to propose catenaries in archi-
tecture was the English natural philosopher, architect and polymath Robert Hooke (1635–1703).
The famous Catalan architect Antoni Gaudi (1852–1926) used chain models to design a (never
completed) church at Santa Coloma de Cervello. Figure 5.1 shows three different catenaries.
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Exercise 5.11 (A smooth ride with the subway). (a) Determine for a given parameter c > 0 a
twice continuously differentiable function h : [0, 1]→ R such that

h(0) = 0, h(1) = 1, h′(0) = h′(1) = 0, |h′′| ≤ c

with minimal value of

U(h) :=

∫ 1

0
h′′(t)

2
dt.

For which parameters c does a solution exist at all?

(b) One may view h(t) as the position of a subway along a given route at time t. At time 0 the
subway starts at station A, and at time 1 it should arrive at station B. The cost functional U(h)

quantifies how problematic the ride would be for the material. For passengers, however, sudden
changes in h′′ or values h′′(0), h′′(1) 6= 0 would be considered as rather unpleasant. How would
the solution to (a) change if we impose that h′′ should be Lipschitz-continuous with constant
c3 > 0 and satisfy h′′(0) = h′′(1) = 0?

The Neyman–Pearson lemma. Suppose we observe a random variable X with unknown dis-
tribution P on a measurable space (X ,B). We would like to test the null hypothesis “P = P0”
versus the alternative hypothesis “P = P1” at a given test level α ∈ (0, 1), where P0, P1 are given
probability distributions on (X ,B).

That means, we are looking for a statistical test φ, i.e. a measurable function φ : X → [0, 1], where
we reject “P = P0” with probability φ(X). The probability of an error of the first kind equals

g(φ) :=

∫
X
φdP0

and should not exceed α, while the probability of an error of the second kind equals

f(φ) := 1−
∫
X
φdP1

and should be as small as possible.

To solve this optimization problem, let P0 and P1 have densities p0 and p1, respectively, with
respect to some measure µ on (X ,B). This is not a restriction: One could choose µ = P0 + P1

and deduce from the Radon–Nikodym theorem the existence of such densities p0 and p1. Now we
make the Lagrange ansatz and consider for λ ∈ R the functional

φ 7→ f(φ) + λg(φ) = 1 +

∫
X
φ(λp0 − p1) dµ.

(Using +λg(φ) instead of −λg(φ) will be convenient notationally.) This functional may be mini-
mized by minimizing the integrand pointwise: A test φ minimizes f + λg if and only if

φ =

{
1 µ-almost everywhere on {p1 > λp0},
0 µ-almost everywhere on {p1 < λp0}.
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Specifically, let

φλ,γ(x) :=


1 if p1(x) > λp0(x)

γ if p1(x) = λp0(x)

0 if p1(x) < λp0(x)

with γ ∈ [0, 1]. Then ∫
X
φλ,γ dP0 = P0{p1 > λp0}+ γP0{p1 = λp0}.

Note that H(λ) := P0{p1 > λp0} is monotone decreasing and right-continuous in λ ∈ R with

H(λ−)−H(λ) = P0{p1 = λp0},

so ∫
X
φλ,γ dP0 = H(λ) + γ

(
H(λ)−H(λ−)

)
.

Moreover, H(0−) = 1 and limλ→∞H(λ) = 0. Hence an optimal test of “P = P0” versus
“P = P1” at level α is given by φλ,γ , where

λ := min{λ ∈ R : H(λ) ≤ α} ≥ 0,

γ :=

0 if H(λ) = α,
α−H(λ)

H(λ−)−H(λ)
if H(λ) > α.

This optimal test was developed by Neyman 3 and Pearson 4 (1933).

5.1.3 Justification of Lagrange’s method

At first glance, Lagrange’s method looks like a cute trick which may work or fail, but we don’t
know when and why. By means of our results from convex analysis we can show that for convex
functions f : Rd → R and linear functions g : Rd → Rq the method has to work.

Theorem 5.12. Let X be an open convex subset of Rd, let f : X → R be a convex and g : Rd →
Rq be a linear function. Furthermore let C be a convex subset of Rq. Suppose there exists a point

x∗ ∈ arg min
x∈X : g(x)∈C

f(x).

Then there exists a vector λ ∈ Rq such that

x∗ ∈ arg min
x∈X

(
f(x)− λ>g(x)

)
and

λ>g(x) ≥ λ>g(x∗) whenever x ∈ X , g(x) ∈ C.
3Jerzy Neyman (1894–1981): Polish mathematician and statistician; pioneered hypothesis testing and confidence

intervals.
4Egon S. Pearson (1895–1980): British statistician; son of the mathematician and biostatistician Karl Pearson

(1857–1936).
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Finally we formulate an important special case of Theorems 5.1 and 5.12 concerning optimization
problems with linear inequality and equality constraints:

Theorem 5.13 (Karush–Kuhn–Tucker conditions). Let X ⊂ Rd be a convex set, f : X →
R a convex function and g = (gj)

q
j=1 : Rd → Rq a linear function. For certain numbers

c1, c2, . . . , cq ∈ R and qo ∈ {0, 1, . . . , q} let

K :=
{
x ∈ X : gj(x) ≤ cj if j ≤ qo, gj(x) = cj if j > qo

}
.

(a) Suppose there exist λ ∈ Rq and

x∗ ∈ arg min
x∈X

(
f(x)− λ>g(x)

)
such that x∗ ∈ K and

(5.4) λj

{
≤ 0 if j ≤ qo,
= 0 if j ≤ qo and gj(x∗) < cj .

Then

x∗ ∈ arg min
x∈K

f(x).

(b) Suppose that X is open, and let

x∗ ∈ arg min
x∈K

f(x).

Then there exists a vector λ ∈ Rq such that

x∗ ∈ arg min
x∈X

(
f(x)− λ>g(x)

)
and (5.4) is satisfied.

Proof of Theorem 5.12. Let K = g−1(C)∩X . By linearity of g, convexity ofC and X implies
that K is a convex set, too. Thus

D := K × (−∞, f(x∗)) and epi(f) =
{

(x, r) ∈ X × R : f(x) ≤ r
}

are convex and disjoint subsets of Rd×R. According to Theorem 2.22, there exists a nonzero pair
(b, t) ∈ Rd × R such that

b>y + ts ≤ b>x+ tr for all (y, s) ∈ D, (x, r) ∈ epi(f).

Setting y = x = x∗ and s = f(x∗) − 1, r = f(x∗) shows that t ≥ 0. Moreover, t = 0

would imply that b 6= 0 and b>x ≥ b>x∗ for all x ∈ X , a contradiction to X being an open set
and x∗ ∈ X . Hence we may assume without loss of generality that t = 1. Then the separation
inequality is equivalent to

(5.5) b>y + f(x∗) ≤ b>x+ f(x) for all y ∈ K,x ∈ X .
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Setting x = x∗ in (5.5) leads to

(5.6) b>y ≤ b>x∗ for all y ∈ K.

But for sufficiently small δ > 0, all points y = x∗ ±w with w ∈ Rd, g(w) = 0 and ‖w‖ < δ

belong to the setK. Hence it follows from (5.6) that b>w = 0 for allw ∈ Rd such that g(w) = 0.
If we write g(w) = B>w with a matrix

B = [b1, b2, . . . , bq] ∈ Rd×q,

then b is perpendicular to all vectors in {b1, . . . , bq}⊥. In other words, b has to be a linear com-
bination of the vectors b1, . . . , bq, see Exercise 5.14. Hence b = −

∑q
j=1 λjbj = −Bλ for some

λ ∈ Rq, so b>x = −λ>B>x = −λ>g(x). Consequently we may deduce from (5.5) that

f(x)− λ>g(x) ≥ f(x∗)− λ>g(x∗) for all x ∈ X ,

while (5.6) is equivalent to

λ>g(y) ≥ λ>g(x∗) for all y ∈ K.

Exercise 5.14 (Bi-orthogonal sets). Show that for any nonvoid setM ⊂ Rd,

(M⊥)⊥ = span(M),

whereM⊥ := {y ∈ Rd : x>y = 0 for all x ∈M}.

Proof of Theorem 5.13. Part (a) follows immediately from Theorem 5.1 and Remarks 5.2 and
5.3.

It remains to prove part (b). According to Theorem 5.12 there exists a vector λ ∈ Rq such that x∗
minimizes f − λ>g on X and

λ>g(y) ≥ λ>g(x∗) for all y ∈ K.

In other words, λ>g(v) ≥ 0 for any vector v ∈ Rq such that x∗ + tv ∈ K for some t > 0. Since
x∗ is an interior point of X , one may reformulate this statement as follows: For v ∈ Rd,

(5.7) λ>g(v) ≥ 0 whenever gi(v)

{
≤ 0 if i ≤ qo and gi(x∗) = ci,

= 0 if i > qo.

Unfortunately, the latter condition on λ alone does not guarantee the KKT conditions (5.4). To
achieve the latter, we have to “sparsify” λ as follows: We write gj(v) = b>j v with certain vectors
b1, . . . , bq ∈ Rd and define the index set

J = J(λ) :=
{
j ∈ {1, . . . , q} : λj 6= 0 or gj(x∗) = cj

}
.

Suppose that for some index j,

λj 6= 0 and bj ∈ span
(
bi : i ∈ J \ {j}

)
.
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Then there exist real numbers µi, i ∈ J \ {j} such that bj =
∑

i∈J\{j} µibi. But then

λ>g ≡ λ̃
>
g

with

λ̃i :=

{
λi + µiλj if i ∈ J \ {j},
0 else.

Hence we may modify the vector λ step by step without changing λ>g until finally its index set
J has the following property:

(5.8) bj 6∈ span
(
bi : i ∈ J \ {j}

)
whenever λj 6= 0.

This vector λ does satisfy the KKT conditions (5.4). Suppose the contrary. Then there exists an
index j ≤ qo such that either λj > 0 or λj < 0 and gj(x∗) < cj . By property (5.8) there exists a
vector w ∈ Rd such that

b>j w = 1 and b>i w = 0 for all i ∈ J \ {j}.

But then the vector v := −|λj |w would satisfy the inequalities for gi(v) in (5.7), because gi(v) =

−|λj |1[i=j] for i ∈ J . But λ>g(v) = −λ2
j < 0. This contradiction shows that λ has to satisfy

(5.4).

Exercise 5.15 (Empirical likelihood). Let x1, . . . ,xn be pairwise different vectors in Rd which
are not lying on a common hyperplane. Show that for any interior point µ of conv(x1, . . . ,xn)

there exists at least one vector p ∈ (0, 1)n such that

n∑
i=1

pi = 1 and
n∑
i=1

pixi = µ.

(a) Show that among all such vectors p there is precisely one minimizer of

f(p) := −
n∑
i=1

log pi.

Show that this minimizer has the form

pi = (a+ b>xi)
−1

for suitable parameters a ∈ R and b ∈ Rd.

(b) Show that a vector p ∈ (0, 1)n solves the optimization problem in part (a) if and only if for
some vector b ∈ Rd,

pi =
1

n+ b>(xi − µ)
with n+ b>(xi − µ) > 0 for 1 ≤ i ≤ n

and
n∑
i=1

xi − µ
n+ b>(xi − µ)

= 0.
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(c) Show that the vector b in part (b) is the unique minimizer of

f̃(b) := −
n∑
i=1

log
(
n+ b>(xi − µ)

)
on Rd, where log(r) := −∞ for r ≤ 0.

(d) Describe and implement a procedure to solve the optimization problem in part (a) by means
of parts (b-c).

5.1.4 Lagrange duality

In connection with Theorem 5.12, there is a so-called dual approach to optimization under linear
constraints. We elaborate on this in the following setting: Let f : Rd → R be convex and
coercive, and let g : Rd → Rq be linear and surjective with q < d. The goal is to minimize f over
N(g) := {x ∈ Rd : g(x) = 0}.

By coercivity of f , there exists a point

x∗ ∈ arg min
x∈N(g)

f(x),

and by Theorem 5.12, there exists a vector λ∗ ∈ Rq such that

x∗ ∈ arg min
x∈Rd

(
f(x)− λ>∗ g(x)

)
.

We define an auxiliary function L : Rq → [−∞,∞) via

L(λ) := inf
x∈Rd

(
f(x)− λ>g(x)

)
.

This function L is concave and upper semicontinuous, that is, −L is convex and lower semicon-
tinuous. Indeed, if g(x) = Ax, x ∈ Rd, for some matrixA ∈ Rq×d, then

L(λ) = −f∗(A>λ)

with the Fenchel-Laplace transform f∗ of f ; see Chapter 3. An important fact is that

f(x∗) = L(λ∗) = max
λ∈Rq

L(λ).

Indeed, since x∗ ∈ N(g),

L(λ∗) = f(x∗)− λ>∗ g(x∗) = f(x∗),

and for any λ ∈ Rq,
L(λ) ≤ f(x∗)− λ>g(x∗) = f(x∗).

These findings suggest the following strategy to minimize f over N(g):

Step 1. Find a vector
λ̂ ∈ arg max

λ∈Rq
L(λ).
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Step 2. Determine a point
x̂ ∈ arg min

x∈Rd

(
f(x)− λ̂

>
g(x)

)
and check whether x̂ ∈ N(g). If yes, this point x̂ minimizes f over N(g).

Remark 5.16. If L is strictly concave on {L > −∞}, then Step 1 yields automatically λ̂ = λ∗,
and Step 2 is possible in the sense that some minimizer of f(x) − λ̂

>
g(x) over all x ∈ Rq

does belong to N(g). More generally, let g∗ be the conjugate mapping of g, that is, the mapping
λ 7→ A>λ if g is given by x 7→ Ax. Since

f(x)− λ>g(x) = f(x)− g∗(λ)>x,

one can write
L(λ) = L̃(g∗(λ))

with a concave function L̃ : N(g)⊥ → [−∞,∞). Here we utilise the fact that N(g)⊥ = g∗(Rq).
If the latter function is strictly concave on {L̃ > −∞}, the set X̂ coincides with the set X∗ =

arg minx∈Rq(f(x)− λ>∗ x), which contains x∗.

Remark 5.17. Suppose that Step 1 yields some vector λ̂, and let x̂ be any minimizer of f(x)−
λ̂
>
g(x) over all x ∈ Rq. If f is strictly convex, then x̂ = x∗. To see this, note that

f((1− u)x∗ + ux̂)− λ̂
>
g((1− u)x∗ + ux̂) = f((1− u)x∗ + ux̂)− uλ̂

>
g(x̂)

is a convex function of u ∈ R with value L(λ̂) = L(λ∗) = f(x∗) for u ∈ {0, 1}, whence

f((1− u)x∗ + ux̂) ≤ f(x∗) + uλ̂
>
g(x̂) for u ∈ [0, 1].

On the other hand, by definition of L(λ̂),

f(x∗) = L(λ̂) ≤ f((1− u)x∗ + ux̂)− uλ̂
>
g(x̂)

for arbitrary u ∈ R, whence

f((1− u)x∗ + ux̂) = f(x∗) + uλ̂
>
g(x̂) for u ∈ [0, 1].

If f is strictly convex, this implies that x̂ = x∗.

Example 5.18 (Least squares with `1-penalties). For a given vector y ∈ Rn and a matrix D ∈
Rq×n, consider the function H : Rn → R with

H(β) := ‖y − β‖2/2 + ‖Dβ‖1,

where ‖ · ‖ is standard Euclidean norm, and ‖z‖1 :=
∑q

i=1 |zi|. Minimizing H over all vectors
β ∈ Rn is equivalent to minimizing

f(β, z) := ‖y − β‖2/2 + ‖z‖1

over all pairs (β, z) ∈ Rn × Rq under the constraint that g(β, z) := z −Dβ = 0. We may
identify Rn×Rq with Rd, where d = n+ q, and apply the previous considerations. Note first that
for λ ∈ Rq,

f(β, z)− λ>g(β, z) = ‖y − β‖2/2 + λ>Dβ +

q∑
i=1

(|zi| − λizi).
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For fixed β,

inf
z∈Rq

q∑
i=1

(|zi| − λizi) =

{
0 if ‖λ‖∞ ≤ 1

−∞ if ‖λ‖∞ > 1

with ‖λ‖∞ := maxi=1,...,q |λi|. In case of ‖λ‖∞ ≤ 1, the minimum is attained at z if and only if

(5.9) for i = 1, . . . , q, zi


= 0 if |λi| < 1,

≥ 0 if λi = 1,

≤ 0 if λi = −1.

Moreover,

‖y − β‖2/2 + λ>Dβ = 2−1
(
β>β − 2β>(y −D>λ) + ‖y‖2

)
/2

≥ ‖y‖2/2− ‖y −D>λ‖2/2

with equality if and only if
β = y −D>λ.

Hence,

L(λ) = inf
(β,z)∈Rn×Rq

(
f(β, z)− λ>g(β, z)

)
=

{
−∞ if ‖λ‖∞ > 1,

‖y‖2 − ‖y −D>λ‖2/2 if ‖λ‖∞ ≤ 1,

and in case of ‖λ‖∞ ≤ 1,

arg min
(β,z)∈Rn×Rq

(
f(β, z)− λ>g(β, z)

)
=
{

(y −D>λ, z) : z ∈ Z(λ)
}

with Z(λ) denoting the set of all vectors z ∈ Rq satisfying (5.9).

Consequently, to obtain the unique minimizer β∗ ofH , one may proceed as follows: Find a vector

λ̂ ∈ arg min
λ∈Rq :‖λ‖∞≤1

‖y −D>λ‖2.

Then,
β̂ := y −D>λ̂

coincides with the unique minimizer β∗ of H(β) = ‖y − β‖2/2 + ‖Dβ‖1 over all β ∈ Rn. The
reason is that if we would replace λ̂ with the Lagrange vector λ∗ corresponding to β∗, then λ∗
would also minimize ‖y −D>λ‖2 over all λ ∈ Rq satisfying ‖λ‖∞ ≤ 1, and β∗ = y −D>λ∗.
But ‖ · ‖2 is a strictly convex function on Rn, soD>λ̂ = D>λ∗, whence β̂ = β∗.

5.2 Special Algorithms

In what follows we consider a continuous and convex function f : Rd → (−∞,∞] which is
continuously differentiable and strictly convex on X := dom(f) = {x ∈ Rd : f(x) < ∞}.
Furthermore let K be a closed convex subset of Rd such that

X ∩ K 6= ∅,
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and we assume that {x ∈ K : f(x) ≤ f(xo)} is compact for arbitrary xo ∈ X ∩ K. These
conditions imply existence of a unique minimizer

x∗ := arg min
x∈K

f(x)

Subsequently we describe algorithms to compute x∗. Our general results about convex functions
show that x ∈ X ∩ K equals x∗ if and only if

(5.10) ∇f(x)>(y − x) ≥ 0 for arbitrary y ∈ K.

This condition will be encountered repeatedly.

Exercise 5.19. Suppose that K = [0,∞)d. Show that x ∈ X ∩ K equals x∗ if and only if for
1 ≤ j ≤ d,

∂f(x)

∂xj

{
≥ 0,

= 0 if xj > 0.

5.2.1 Iterative algorithms

As in Section 4.2 we iterate a mapping ψ : X ∩ K → X ∩K of type

ψ(x) = x+ λ(x)∆(x)

with a candidate step function ∆ : X ∩K → Rd and a step size function λ : X ∩K → [0, 1]. The
regularity conditions on ∆ and λ are essentially identical with the ones in Section 4.2.2:

(i) ∆ is continuous with ∆(x∗) = 0 while

x+ ∆(x) ∈ K and ∇f(x)>∆(x) < 0 for x ∈ X ∩ K \ {x∗}.

(ii) With

C(x) :=
f(x)− f(x+ λ(x)∆(x))

maxt∈[0,1]

[
f(x)− f(x+ t∆(x))

] and C̃(x) :=
f(x)− f(x+ λ(x)∆(x))

−∇f(x)>∆(x)

for x ∈ X ∩ K \ {x∗}, we assume that for any fixed y ∈ X ∩ K \ {x∗},

lim inf
X∩K3x→y

C(x) > 0 or lim inf
X∩K3x→y

C̃(x) > 0.

With the same arguments as in Section 4.2.2 one can show that iteration ofψ with arbitrary starting
point x0 ∈ X ∩ K yields a sequence converging to {x∗}.

A special procedure for K = [0,∞)d

In several settings one may parametrize the optimization problem such that the constraints cor-
respond to the convex cone K = [0,∞)d. Now we derive an explicit example for the candidate
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step function ∆: As in case of quasi-Newton procedures we approximate f locally by a quadratic
function. Precisely let

fx(y) := f(x) +∇f(x)>(y − x) + 2−1(y − x)>A(x)(y − x)

for x ∈ X ∩ K with a diagonal matrix

A(x) = diag
(
a1(x), . . . , ad(x)

)
and continuous diagonal elements aj : X ∩ K → (0,∞). Explicit examples are

aj(x) := 1, aj(x) := ε(x) or aj(x) :=
∂2f(x)

∂x2
j

.

In the latter case we assume that these partial derivatives exist and are continuous and strictly
positive on X ∩ K.

With gj(x) := ∇f(x)j one may write

fx(y) = f(x) +
d∑
j=1

(
gj(x)(yj − xj) + 2−1aj(x)(yj − xj)2

)

= c(x) + 2−1
d∑
j=1

aj(x)
(
y2
j − 2yj

(
xj −

gj(x)

aj(x)

))
with c(x) not depending on y. As a function von y ∈ K this is minimal if and only if

yj =
(
xj −

gj(x)

aj(x)

)+

for 1 ≤ j ≤ d. Hence we define

∆(x) := arg min
y∈K

fx(y)− x =
((
xj −

gj(x)

aj(x)

)+
− xj

)d
j=1

.

One can easily verify that this candidate step function ∆ does fulfill Condition (i).

An inverse problem from Physics

In a basic experiment in particle physics a random number Y ≥ 0 of certain particles is generated,
and these particles fly off independently into different directions, the directions being uniformly
distributed on the unit sphere of R3. The goal is to estimate the unknown weight function q :

N0 → [0,∞) with
q(y) := IP(Y = y),

but the total number Y cannot be measured directly. Instead one uses a detector which counts
the number X ≥ 0 of particles flying off into a direction which is covered by the detector. The
relative size ρ ∈ (0, 1) of these detectable directions is given. So one measurement yields a
random variable X such that

IP(X = x |Y = y) = K(x | y) :=

(
y

x

)
ρx(1− ρ)y−x,
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and

p(x) := IP(X = x) = Kq(x) :=

∞∑
y=0

K(x | y)q(y).

Suppose we repeat this basic experiments n � 1 times, resulting in independent random counts
X1, X2, . . . , Xn with distribution p. We estimate the weight function p by the empirical weight
function p̂ with

p̂(x) =
1

n

n∑
i=1

1[Xi=x].

As shown in Exercise 5.21, the mapping q 7→ p = Kq is linear and invertible, but the inverse
mapping is ill-conditioned in the sense that small deviations of p̂ from p may lead to rather large
errors in the reconstruction of q.

An alternative approach is to minimize the functional

f(q) := −
∞∑
x=0

p̂(x) logKq(x) +

∞∑
y=0

q(y)

over all weight functions q : N0 → [0,∞). Indeed, one can show that in case of p̂ ≡ p = Kq, the
unique minimizer of f is given by q. In general, any minimizer q of f satisfies automatically the
constraint

∑
y q(y) = 1, because for any weight function q with f(q) <∞ and arbitrary numbers

t > 0,
d

dt
f(tq) =

∞∑
y=0

q(y)− t−1.

Note that for integers 0 ≤ x ≤ y,

K(x | y + 1)

K(x | y)
=

1− ρ
1− x/(y + 1)

< 1 if and only if y > x/ρ− 1.

Hence, if we define x̂ := max(X1, . . . , Xn) and

ŷ :=

{
0 if x̂ = 0

bx̂/ρc − 1 if x̂ > 0

for any weight function q and x ≤ x̂, the value Kq(x) gets strictly larger if we replace(
q(ŷ), q(ŷ + 1), q(ŷ + 2), q(ŷ + 3), . . .

)
with

(∑
y≥ŷ

q(y), 0, 0, 0, . . .
)
,

unless q(y) = 0 for all y > ŷ. Consequently, we have to solve a finite-dimensional minimization
problem:

With the dimensions c := x̂ + 1 and d := ŷ + 1, the vector p̂ :=
(
p̂(i − 1)

)c
i=1

and the matrix
K :=

(
K(i− 1 | j − 1)

)
1≤i≤c,1≤j≤d we want to minimize

f(q) := −
c∑
i=1

p̂i log(Kq)i +

d∑
j=1

qj
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over all vectors q ∈ [0,∞)d, where q corresponds to
(
q(j−1)

)d
j=1

. Note that with the convention
log(r) := −∞ for r ≤ 0, the function f : Rd → (−∞,∞] is continuous with f(q) < ∞ if and
only if

(Kq)i > 0 whenever p̂i > 0.

Moreover, for q = tu with t ≥ 0 and u ∈ Σd :=
{
v ∈ [0, 1]d :

∑d
j=1 vj = 1

}
,

f(q) = − log t+ t− 1 + f(u) ≥ − log t+ t− 1 + min
v∈Σd

f(v) → ∞ as t→ {0,∞}.

Hence the set
{
x ∈ [0,∞)d : f(x) ≤ f(q)

}
is compact for any q ∈ [0,∞)d ∩ dom(f). Finally,

f is twice continuously differentiable on dom(f) with

gj(q) :=
∂

∂qj
f(q) = 1−

c∑
i=1

p̂iKij

(Kq)i
,

aj(q) :=
∂2

∂q2
j

f(q) =
c∑
i=1

p̂iK
2
ij

(Kq)2
i

.

Hence we may apply the general optimization algorithm described before.

Remark 5.20 (EM algorithm). For the particular problem here, many statisticians would use
a so-called expectation-minimization algorithm. Suppose we would observe independent pairs
(X1, Y1), . . . , (Xn, Yn) with Yi having distribution q and IP(Xi = x |Yi = y) = K(x | y). Then
one could estimate q by the unobserved empirical weight function q̌ with

q̌(y) :=
1

n

n∑
i=1

1[Yi=y].

Indeed, q̌ is the unique minimizer of

f̌(q) := −
∞∑
y=0

q̌(y) log q(y) +

∞∑
y=0

q(y)

Since we observe only X1, . . . , Xn, the idea is to replace a current estimator qk for the true q by

qk+1(y) := IEqk
(
q̌(y)

∣∣X1, . . . , Xn

)
=

x̂∑
x=0

p̂(x) IPqk(Y1 = y |X1 = x)

=

x̂∑
x=0

p̂(x)K(x | y)qk(y)∑
z≥0K(x | z)qk(z)

.

Here IEqk and IPqk denote expectations and probabilites in case of q ≡ qk. Although this ap-
proach is rather intuitive and easy to implement, the resulting algorithm converges slower than the
algorithm we derived before.

Exercise 5.21. Show that for s ∈ R and k ∈ N0,

IE
(
[X]ks

X−k) = ρk IE
(
[Y ]k(1− ρ+ ρs)Y−k

)
,
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provided that both sides are well-defined in R. Here [z]0 := 1 and [z]k :=
∏k−1
i=0 (z− i) for z ∈ R

and k ∈ N.

Deduce from the previous identities that

IE(Y ) = ρ−1 IE(X) and Var(Y ) = ρ−2 Var(X)− ρ−2(1− ρ) IE(X).

Furthermore, show that for arbitrary k ∈ N0,

q(k) =
1

ρkk!
IE
(
[X]k(1− 1/ρ)X−k

)
,

provided that IE(sYo ) <∞ for some so > 2(1− ρ).

5.2.2 Active set methods

In this section we concentrate on a polyhedral cone

K =
{
x ∈ Rd : 〈x,vi〉 ≤ 0 for i = 1, . . . , q

}
with q ≤ d linearly independent vectors v1, . . . ,vq ∈ Rd. For a vector x ∈ Rd let

J(x) :=
{
i ∈ {1, . . . , q} : 〈x,vi〉 = 0

}
.

If x ∈ K, then J(x) specifies the “set of active constraints (active set) at x”, that is, the set
of inequality constraints which are even equalities for the point x. For an arbitrary index set
J ⊂ {1, . . . , q} let

XJ := X ∩
{
x ∈ Rd : 〈x,vi〉 = 0 for all i ∈ J

}
,

i.e. the intersection of the open set X = dom(f) with a (d−#J)-dimensional linear subspace of
Rd. That is, x ∈ XJ if and only if J(x) ⊃ J . Moreover, x ∈ XJ belongs to K if and only if

〈x,vi〉 ≤ 0 for all i ∈ {1, . . . , q} \ J.

The idea of active set methods is to determine for an index set J ⊂ {1, . . . , q} the point

xJ := arg min
XJ

f

(if possible) and to modify the set J finitely many times until xJ = {x∗} eventually. Here we
assume that minimizing f over such a set XJ is sufficiently easy. In case of a quadratic function f
this is certainly the case, see Section 5.1.2.

An obvious question is how to infer for a given index set J that the vector xJ is equal to x∗. To
this end we chose a “dual basis” b1, b2, . . . , bd of Rd in the sense that for i ∈ {1, . . . , d} and
j ∈ {1, . . . , q},

〈bi,vj〉 = 1[i=j].



133

(Such a dual basis always exists. For instance, one may augment the given vectors v1, . . . ,vq to a
basis v1, . . . ,vd of Rd, and then the rows of the matrix [b1, . . . , bd]

> := [v1, . . . ,vd]
−1 have the

desired property.) With these basis vectors bi we may write

K =
{ d∑
i=1

λibi : λ ∈ Rd, λi ≤ 0 for i = 1, . . . , q
}
,

XJ = X ∩
{ d∑
i=1

λibi : λ ∈ Rd, λi = 0 for all i ∈ J
}
.

Lemma 5.22 (Characterizing xJ and x∗). Let J ⊂ {1, . . . , q} and x ∈ XJ .

(a) The vector x equals xJ if and only if

(5.11) 〈∇f(x), bi〉 = 0 for all i ∈ {1, . . . , d} \ J.

(b) If x ∈ K and satisfies (5.11), then it equals x∗ if and only if

(5.12) 〈∇f(x), bj〉 ≤ 0 for all j ∈ J.

Proof of Lemma 5.22. Part (a) is an easy consequence of convexity of f plus the fact that XJ is
the intersection of the open set X with the linear subspace span

{
bi : i ∈ {1, . . . , d} \ J

}
⊂ Rd.

Concerning part (b), suppose first that x = x∗. For arbitrary j ∈ J , the vector y = x− bj lies in
K, so by (5.10),

0 ≤ 〈∇f(x),y − x〉 = −〈∇f(x), bj〉.

Hence x has to fulfill (5.12).

On the other hand, suppose that x lies within K and satisfies both (5.11) and (5.12). Any vector
y ∈ K may be written as x +

∑d
i=1 λibi, where λi ≤ 0 in case of 〈x, bi〉 = 0. In particular,

λi ≤ 0 for all i ∈ J . Thus,

〈∇f(x),y − x〉 =
∑
i∈J

λi︸︷︷︸
≤0

〈∇f(x), bi〉︸ ︷︷ ︸
≤0

+
∑

i∈{1,...,d}\J

λi 〈∇f(x), bi〉︸ ︷︷ ︸
=0

≥ 0.

Consequently, x satisfies (5.10) and hence is equal to x∗.

An active set algorithm for “quadratic programming”

We consider the special case of a quadratic function f with positive definite Hessian matrix. The
active set algorithm alternates finitely many times between two basic procedures. Both precedures
return a pair (x, F ) consisting of a candidate x ∈ K for x∗ and the value F = f(x).

An important notion of the algorithm is local optimality of a candidate x ∈ K for x∗. This means
that

x = xJ(x).

That is, x lies in K and minimizes f over the linear subspace XJ(x) of all points x̃ ∈ Rd such that
J(x̃) ⊃ J(x).
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Starting point. A natural starting point is x{1,...,}, because X{1,...,q} ⊂ K. This point is clearly
locally optimal.

Basic procedure 1 (checking optimality; deactivating constraints). Suppose that x ∈ K is
locally optimal. Then we check Condition (5.12) in Lemma 5.22: If 〈∇f(x), bi〉 ≤ 0 for all
i ∈ J(x), we know that x = x∗ and stop the algorithm. Otherwise we replace x with some vector
xnew ∈ K such that f(xnew) < f(x).

Here is a particular variant for xnew: For some nonvoid set J̃(x) ⊂ J(x) such that 〈∇f(x), bi〉 >
0 for all i ∈ J̃(x), we compute

xnew = x−
∑
i∈J̃(x)

〈∇f(x), bi〉 bi.

This vector is certainly in K. Then we check whether f(xnew) < f(x). As long as this is not
the case, we replace xnew with 2−1(x+ xnew) ∈ K. After finitely many steps, f(xnew) < f(x),
because

lim
t→0+

t−1
(
f((1− t)x+ txnew)− f(x)

)
= 〈∇f(x),xnew − x〉 = −

∑
i∈J̃(x)

〈∇f(x), bi〉2

is strictly negative. The fact that a finite number of updates xnew ← (x+ xnew)/2 is sufficient is
true in theory. In practice, if a moderate number of updates does not yield a better candidate xnew,
we conclude that x is equal to x∗ up to numerical errors.

Basic procedure 2 (local search). Starting from an arbitrary candidate x ∈ K for x∗, we want
to replace it with a point xnew ∈ K which is locally optimal and satisfies

J(xnew) ⊃ J(x),(5.13)

f(xnew) ≤ f(x).(5.14)

To this end, we determine J := J(x) and compute xnew := xJ . In case of f(xnew) = f(x) we
know that xnew = x is locally optimal, and requirements (5.13), (5.14) are obviously satisfied.

If f(xnew) < f(x), we know that f((1 − t)x + txnew) is strictly decreasing in t ∈ [0, 1]. Note
that by definition of xnew,

〈x,vi〉 = 0 = 〈xnew,vi〉 for all i ∈ J,

while the definition of J implies that

〈x,vi〉 < 0 whenever i ∈ {1, . . . , q} \ J.

Thus, xnew ∈ K if and only if

V (J,xnew) :=
{
i ∈ {1, . . . , q} \ J : 〈xnew,vi〉 > 0

}
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(x, F )← BasicProcedure2(x)

F ← f(x)
J ← J(x) (**)
xnew ← xJ
Fnew ← f(xnew)
while Fnew < F do

V ← V (J,xnew) (**)
if V = ∅ then

x← xnew

F ← Fnew

else
to ← to(J,xnew)
xnew ← (1− to)x+ toxnew

Fnew ← f(xnew)
if Fnew < F then (*)

x← xnew

F ← Fnew

J ← J(x) (**)
xnew ← xJ
Fnew ← f(xnew)

end if
end if

end while.

Table 5.1: Basic procedure 2 for quadratic f .

is empty. In that case, it follows from J(xnew) ⊃ J that xnew is locally optimal, satisfies (5.13)
and satisfies (5.14) with strict inequality.

If V (J,xnew) 6= ∅, the largest value t ∈ [0, 1] such that (1− t)x+ txnew ∈ K is given by

to(J,xnew) = min
i∈V (J,xnew)

−〈x,vi〉
〈xnew,vi〉 − 〈x,vi〉

∈ (0, 1).

If we set to := to(J,xnew) and replace xnew with (1 − to)x + toxnew, then the new point xnew

belongs to K, satisfies (5.13) with strict inclusion and (5.14) with strict inequality. But it may still
fail to be locally optimal. Thus we replace x with xnew and repeat the previous steps.

After a finite number of iterations, the point xnew will be locally optimal and satisfy the require-
ments (5.13) and (5.14). Indeed, whenever we replace x with a new vector, the value f(x) de-
creases strictly, the set J(x) increases strictly, so eventually the point xnew = xJ(x) will have to
satisfy V (x,xnew) = ∅.

Table 5.1 provides pseudo-code for the whole procedure. Checking the inequality Fnew < F in
line (*) is superflous in theory, but in practice it could be violated due to rounding errors. In that
case we conclude that x is already locally optimal up to rounding errors. Whenever one determines
the set J = J(x) or the set V (J,xnew) in lines (**), one should be wary or numerical errors and
replace conditions such as ±〈x,vi〉 > 0 with ±〈x,vi〉 > τ with a very small parameter τ > 0.
Without such precautions, there is a risk of creating an endless loop.
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(x, F )← ActiveSet

x← x{1,...,q}
F ← f(x)
γ ← maxj∈{1,...,q}〈∇f(x), bj〉
if γ ≤ 0 then

return x
end if
while γ > 0 do

(xnew, Fnew)← BasicProcedure1(x)
if Fnew ≥ F then

γ ← 0
else

x← xnew

F ← Fnew

(x, F )← BasicProcedure2(x)
γ ← maxj∈J(x)〈∇f(x), bj〉

end if
end while.

Table 5.2: Active set algorithm for quadratic f .

Complete algorithm. Table 5.2 describes the whole algorithm as described here.

Example: Concave regression

Suppose that for given data vectorsX,Y ∈ Rn, we are looking for a concave function µ̂ : R→ R
such that

n∑
`=1

(Y` − µ̂(X`))
2

is minimimal. The minimizer µ̂ is not unique, but it is unique on the set {X1, . . . , Xn}. Precisely,
let

t1 < t2 < · · · < td

be the different elements of {X1, . . . , Xn}, and let

wi := #{` ≤ n : X` = xi}.

Then for any function µ̂ : R→ R,

n∑
`=1

(Y` − µ̂(X`))
2 = S2

0 +

d∑
i=1

wi(yi − µ̂(ti))
2,

where

S2
0 :=

d∑
i=1

∑
`:X`=xi

(Y` − yi)2 = ‖Y ‖2 −
d∑
i=1

wiy
2
i .

Thus, we are looking for a vectorm ∈ Rd, interpreted as (µ̂(ti))
d
i=1, with minimal value of

f(m) :=
d∑
i=1

wi(yi −mi)
2
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under the constraints that

(5.15)
mk −mk−1

tk − tk−1
≥ mk+1 −mk

tk+1 − tk
for 1 < k < d.

A possible extension of m to a concave function µ̂ on R is to require that µ̂ is affine on each
interval [ti, ti+1], 1 ≤ i < d, and on (−∞, t2] as well as on [td−1,∞). (It is tacitly assumed that
d ≥ 3.)

In this particular example it is convenient to label the constraint vectors for K with indices k ∈
{2, . . . , d− 1}. Precisely, let

vk :=
(1[i=k+1] − 1[i=k]

tk+1 − tk
−

1[i=k] − 1[i=k−1]

tk − tk−1

)d
i=1

=
((tk+1 − tk)1[i=k−1] − (tk+1 − tk−1)1[i=k] + (tk − tk−1)1[i=k+1]

(tk+1 − tk)(tk − tk−1)

)d
i=1

for 2 ≤ k ≤ d− 1. Then (5.15) is equivalent to

〈m,vk〉 ≤ 0 for 2 ≤ k ≤ d− 1.

A suitable dual basis is given, for instance, by the vectors

b1 := (1)di=1,

bk :=
(
(tk − ti)+

)d
i=1
, 2 ≤ k ≤ d.

For a set J ⊂ {2, . . . , d− 1}, the set

XJ =
{
m ∈ Rd : 〈m,vk〉 = 0 for all k ∈ J

}
corresponds to the set of all continuous and piecewise linear functions µ : [t1, td] → R with
potential changes of slope only at the points ti, i ∈ {1, . . . , d} \ J . These points will be referred
to as knots.

Concerning the set J̃(m) for basic procedure 1, in our particular implementation, we go through
all pairs of consecutive knots xk and x` ofm such that k + 1 < `. Then we choose an index

i(k, `) ∈ arg max
i∈{k+1,...,`−1}

〈∇f(m), bi〉.

If 〈∇f(m), bi(k,`)〉 is larger than 0.5 times maxi=1,...,d〈∇f(m), bi〉, then i(k, `) ∈ J̃(m).

One important fact is that we don’t have to generate and store the vectors vk and bi. Indeed, fitting
a continuous and piecewise linear function with specified knots (a linear spline) is a standard
problem from linear regression. Moreover, for

g := ∇f(m) = −2
(
wi(yi −mi)

)d
i=1
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and k ∈ {2, . . . , d− 1} one may write

〈g, bk〉 =
d∑
i=1

gi(tk − ti)+

=

k−1∑
i=1

gi

k−1∑
j=i

(tj+1 − tj)

=

k−1∑
j=1

(tj+1 − tj)
j∑
i=1

gi.

Hence one may compute all directional derivatives 〈g, bk〉, 2 ≤ k < d, by a simple summation
scheme.

Figures 5.2 and 5.3 illustrate this procedure with a data example involving n = 1000 raw obser-
vations (X`, Y`), leading to d = 101 triples (ti, yi, wi). The raw observations (X`, Y`) and pairs
(ti, yi) are shown in the upper panel of Figure 5.2. The lower panel shows the final fit. Figure 5.3
shows intermediate stages of the active set algorithm. The current fit is shown as a blue line with
the knots (changes of slope) highlighted. On sees the current fit after one, three, five and seven
iterations (i.e. basic procedure 1, followed by basic procedure 2). That is, the current fit is locally
optimal. The vertical lines (magenta) indicate positions at which the currently active constraint
will be deactivated, leading to a new knot.

Active set algorithms for general f

For the general setting, suppose that we work with quasi-Newton steps for the miminization of f
over XJ . That is, in addition to f and∇f there is a continuous mappingA : X → Rd×dsym,+, and for
a candidate xo ∈ K ∩ X for x∗, the function f(x) is approximated temporarily by the quadratic
function

f̃(x |xo) := f(xo) +∇f(xo)
>(x− xo) + 2−1(x− xo)>A(xo)(x− xo).

Note that xo = x∗ if and only if xo minimizes f̃(· |xo) over K.

One strategy, used by numerous authors, is to apply an active set algorithm for quadratic functions
to this surrogate function f̃(· |xo) to obtain a new candidateψo(xo) ∈ K for x∗. Then one applies
some stepsize correction and determines a pointψ(xo) = (1−λ(xo))xo+λ(xo)ψo(xo) to make
sure that this point does belong to K ∩ X and yields a strictly smaller value of f , unless xo was
already the minimizer x∗.

5.2.3 Isotonic least squares regression

The present and subsequent subsection is about the special cone

K↑ :=
{
m ∈ Rd : m1 ≤ m2 ≤ · · · ≤ md

}
.

At first we’ll discuss a particular optimization problem on this set K↑ and describe geometrical
properties of the solution. In the next subsection we consider a rather general optimization problem
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and provide an exact algorithm for its solution which may be viewed as a special active set method.
All this material is based on ideas of Robertson and Waltman (1968) and Robertson et al. (1988).

For a fixed data vector y ∈ Rd and a weight vector w ∈ (0,∞)d we consider the function

f(m) :=

d∑
i=1

wi(yi −mi)
2.

Obviously this quadratic function is strictly convex and coercive on Rd, i.e. f(m) → ∞ as
‖m‖ → ∞. Consequently, x∗ = arg minm∈K↑ f(m) exists. Here

∇f(m) = 2
(
wi(mi − yi)

)d
i=1
,

so it follows from (5.10) that the minimizer of f over K↑ is the unique pointm ∈ K↑ such that

(5.16)
d∑
i=1

wi(mi − yi)∆i ≥ 0 whenever ∆ ∈ Rd such thatm+ t∆ ∈ K↑ for some t > 0.

Plugging in suitable test vectors ∆ in the previous inequality yieds the following characterization
of x∗.

Theorem 5.23. A vector m ∈ K↑ minimizes the function f above over K↑ if and only if for
arbitrary j ∈ {1, 2, . . . , d},

j∑
i=1

wimi ≤
j∑
i=1

wiyi

with equality if j = d or mj < mj+1.

Remark 5.24 (Convex minorants). Before proving the latter theorem, let us interpret it geomatri-
cally. An arbitrary vector v ∈ Rd may be identified with the picewise linear path S(v) ⊂ R× R,
connecting the d+ 1 points (0, 0) and

( j∑
i=1

wi,

j∑
i=1

wivi

)
, 1 ≤ j ≤ d.

A vector m belongs to K↑ if and only if its path S(m) is the graph of a convex function on the
interval

[
0,
∑f

i=1wi
]
. According to Theorem 5.23, this path has to be below the path S(y) with

the same starting point and end point. Moreover, mj < mj+1 is equivalent to saying that the
path S(m) changes slope at the point

(∑j
i=1wi,

∑j
i=1wimi

)
. Consequently, at any such point

the path S(m) has to touch the path S(y). Now one can verify easily that this amounts to the
following description: The path S(m) corresponds to the largest (pointwise) convex function on
the interval

[
0,
∑f

i=1wi
]

which is less than or equal to the function corresponding to the path
S(y).

This fact is illustrated in Figure 5.4. In the upper panel one sees a scatter plot of d = 40 pairs
(ti, yi) = (i, yi) as well as a line plot of the optimal vector m ∈ K↑, where we chose wi = 1. In
the lower panel one sees the corresponding paths S(y) and S(m).
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Proof of Theorem 5.23. Let m be the minimizer of f on K↑. Clearly the vector ∆ := ±(1)di=1

satisfies the condition in (5.16). Hence ±
∑d

i=1wi(mi − yi) ≥ 0 which is equivalent to

d∑
i=1

wimi =
d∑
i=1

wiyi.

For 1 ≤ j < d we consider the vector ∆ := (−1[i≤j])
d
i=1. It satisfies the condition in (5.16), too,

whence −
∑

i≤j wi(mi − yi) ≥ 0 or, equivalently,

j∑
i=1

wimi ≤
j∑
i=1

wiyi.

In case of mj < mj+1 the vector ∆ := (1[i≤j])
d
i=1 fulfils the same requirement, whence

j∑
i=1

wimi =

j∑
i=1

wiyi.

For the reverse direction, let m ∈ K↑ such that
∑j

i=1wimi ≤
∑j

i=1wiyi for all j ∈ {1, . . . , d}
with equality in case of j = d ormj < mj+1. Now let ∆ ∈ Rd be a vector such thatm+t∆ ∈ K↑
for some t > 0. This is equivalent to saying that

(5.17) ∆j ≤ ∆j+1 if 1 ≤ j < d and mj = mj+1.

Since
∑d

i=1wi(mi − yi) = 0, we may write

d∑
i=1

wi(mi − yi)∆i =

d∑
i=1

wi(mi − yi)(∆i −∆d)

=
d−1∑
i=1

wi(mi − yi)
d−1∑
j=i

(∆j −∆j+1)

=
d−1∑
j=1

(∆j −∆j+1)

j∑
i=1

wi(mi − yi)

≥ 0.

In the latter step we used the assumptions onm and (5.17).

5.2.4 The pool-adjacent-violators algorithm (PAVA)

Now we consider a generalization of the function f in the previous subsection, namely,

f(m) :=

d∑
i=1

hi(mi)

with certain functions hi : R 7→ (−∞,∞]. Explicit examples for the hi, which are relevant in
statistical applications, are:
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• hi(r) := wi(yi − r)2,
• hi(r) := |yi − r|,
• hi(r) := wi

(
yiL(r) + (1− yi)L(1− r)

)
, where yi ∈ [0, 1] and

L(r) :=

{
− log(s) if s ∈ (0, 1],

∞ else.

Assumption on the functions hi. For any nonvoid index set Q ⊂ {1, 2, . . . , d} let

hQ(r) :=
∑
i∈Q

hi(r).

We assume that there exists a number ξQ ∈ R with the following properties: hQ(ξQ) <∞, and

(5.18) hQ is

{
isotonic on [ξQ,∞),

antitonic on (−∞, ξQ].

In the explicit examples mentioned before, this assumption is always satisfied:

• In case of hi(r) = wi(yi − r)2 or hi(r) := wi
(
yiL(r) + (1− yi)L(1− r)

)
,

ξQ =
∑
i∈Q

wiyi

/∑
i∈Q

wi.

• In case of hi(r) = |yi − r| we may choose

ξQ ∈ Median(yi : i ∈ Q).

Abstract description of PAVA. In principle the algorithm operates on partitions P of the index
set {1, 2, . . . , d} into blocks, that is, into sets of the form {a, . . . , b} with integers 1 ≤ a ≤ b ≤ d.
For each such partition P we define the vector

mP :=
(∑
P∈P

1[i∈P ]ξP

)d
i=1
∈ arg min

m∈XP
f(m),

where
XP :=

{(∑
P∈P

1[i∈P ]vP

)d
i=1

: vP ∈ R for P ∈ P
}
.

Initialization: We start with the finest partition

P =
{
{1}, {2}, . . . , {n}

}
.

Induction step: Suppose that the vector mP is not in K↑. More generally, suppose that the
partition P contains two neighboring blocks Q = {a, . . . , b − 1} and R = {b, . . . , c} such that
ξQ > ξR, that is, Q and R are two “adjacent violators”. Then we replace P with a new partition
by replacing Q and R with their union Q ∪R = {a, . . . , c} (“pool adjacent violators”).

End: The induction step is repeated until finally mP ∈ K↑. As shown next, this vector mP is
automatically a minimizer of f over K↑.
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Validity of PAVA. Since the cardinality of P decreases by one in each instance of the induction
step, the algorithm will terminate after at most d − 1 repetitions of the induction step. Obviously
the final vectormP belongs to K↑. That it minimizes f follows from the following observation:

Lemma 5.25. Let P be a partition of {1, 2, . . . , d} into blocks, among them the two neighbors
Q = {a, . . . , b − 1} and R = {b, . . . , c}. Further let P̃ be the partition resulting from pooling
Q and R. Suppose that ξQ ≥ ξR. Then for each vector m ∈ K↑ ∩ XP there exists a vector
m̃ ∈ K↑ ∩ XP̃ such that f(m̃) ≤ f(m).

This lemma implies that the final partition P produced by PAVA satisfies

min
m∈K↑

f(m) = min
m∈K↑∩XP

f(m) ≥ min
m∈XP

f(m) = f(mP).

And since the vector mP belongs to K↑, the previous inequality is even an equality, so mP
minimizes f over K↑.

Proof of Lemma 5.25. Letm ∈ K↑ ∩ XP , that means,

m =
(∑
P∈P

1[i∈P ]mP

)d
i=1

with certain numbers mP , P ∈ P such that mP ≤ mP ′ whenever max(P ) < min(P ′). Then

f(m) =
∑
P∈P

hP (mP ).

In case of ξQ > mQ one could replace both numbers mQ and mR with the value

min(ξQ,mR) ∈ [mQ,mR]

without increasing f(m), because hQ is antitonic on (−∞, ξQ] while hR is isotonic on [ξR,∞) ⊃
[ξQ,∞).

In case of ξQ ≤ mQ it follows from ξQ ≥ ξR that ξR ≤ mQ, so we could replace mR with mQ

without increasing f(m).

In both cases the resulting vector belongs to the smaller set K↑ ∩ XP̃ .

Explicit implementations. In practice, it is even advisable to pool adjacent weak violators, that
is, to pool two adjacent blocks Q = {a, . . . , b− 1} and R = {b, . . . , c} in P whenever ξQ ≥ ξR.
This is justified by Lemma 5.25, too.

We introduce an auxiliary integer variable c running from 2 through d, and in each step we compute
a vector in

arg min
m∈Rc:m1≤···≤mc

c∑
i=1

hi(mi).

To this end we use an additional tuple ` = (`0, `1, . . . , `k) of variable length k + 1 with integer
components 0 = `0 < `1 < `2 < · · · < `k = c. This tuple corresponds to the partition

P =
(
{1, . . . , `1}︸ ︷︷ ︸

=:P1

, {`1 + 1, . . . , `2}︸ ︷︷ ︸
=:P2

, . . . , {`k−1 + 1, . . . , c}︸ ︷︷ ︸
=:Pk

, {c+ 1}, {c+ 2}, . . . , {d}
)
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in the abstract definition. In addition we use the tupleM = (M0,M1, . . . ,Mk) with components
M0 := −∞ and Mj := ξPj for 1 ≤ j ≤ k. Then the algorithm works as in Table 5.3.

Algorithmm← PAVA(h1, . . . , hd)
`← (0, 1)
M ← (−∞, ξ{1})
k ← 1
for c← 2 to d do

`← (`, c)
M ← (M , ξ{c})

k ← k + 1
while Mk−1 ≥Mk do

`← (`0, . . . , `k−2, c)
M ←

(
M0, . . . ,Mk−2, ξ{`k−2+1,...,c}

)
k ← k − 1

end while
end for
m← (0)di=1

for j ← 1 to k do
for i← `j−1 + 1 to `j do

mi ←Mj

end for
end for.

Table 5.3: Explicit version of PAVA.

• The special case hi(r) = wi(yi − r)2. Here one should use an additional tuple W =

(W1, . . . ,Wk) with the weights Wj :=
∑

i∈Pj wi. For then

ξ{`k−2+1,...,c} =
Wk−1Mk−1 +WkMk

Wk−1 +Wk
and

∑
i∈Pk−1∪Pk

wi = Wk−1 +Wk.

Thus each instance of the while–loop in Table 5.3 requires only O(1) operations. Consequently,
the whole algorithm requires O(d) memory and O(d) operations.

• The special case hi(r) = |yi − r|. Here one should use an additional vector z = (zi)
d
i=1

which is equal to y initially. In general, (zi)i∈Pj contains the components of (yi)i∈Pj in non-
decreasing order. If two blocks Pk−1 = {`k−1, . . . , `k − 1} and Pk = {`k, . . . , c} have to be
pooled, the entries z`k−1

, . . . , zc need to be sorted which is possible within O(d) steps (similarly
as in “MergeSort”). All in all the whole algorithm requires O(d) memory and O(d2) operations.

Refinement. Suppose that the local minimizers ξQ, ∅ 6= Q ⊂ {1, . . . , d}, are unique. This
implies that for arbitrary disjoint and nonempty sets Q,R ⊂ {1, . . . , d},

min(ξQ, ξR) ≤ ξQ∪R ≤ max(ξQ, ξR).

Consequently, instead of starting the PAVA (abstract description) with the finest possible partition
P =

(
{1}, {2}, . . . , {d}

)
, one can start with a partition into maximal blocks on which i 7→ ξ{i} is

non-increasing.
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For the special case of hi(r) = wi(yi − r)2, Table 5.4 contains pseudocode for a refined version
of the PAVA. Table 5.5 illustrates this procedure for a vector y ∈ R12 and w = 112.

Algorithmm← PAVA(y,w)
`← (0) % initialize
W ← (0)
M ← (−∞)
c← 0
k ← 0
while c < d do

c← c+ 1 % add new block
Wnew ← wc
Snew ← wcyc
c′ ← c+ 1
while c′ ≤ d and yc′ ≤ yc do

c← c′

Wnew ←Wnew + wc
Snew ← Snew + wcyc
c′ ← c+ 1

end while
`← (`, c)
W ← (W ,Wnew)
M ← (M , Snew/Wnew)
k ← k + 1
while Mk−1 ≥Mk do

`← (`0, . . . , `k−2, c) % pool adjacent
Wnew ←Wk−1 +Wk % weak violators
M ←

(
M0, . . . ,Mk−2, (Wk−1Mk−1 +WkMk)/Wnew

)
W ←

(
W0, . . . ,Wk−1,Wnew

)
k ← k − 1

end while
end for
m← (0)di=1 % generatem
for j ∈ {1, . . . , k} do

for i ∈ {`j−1 + 1, . . . , `j} do
mi ←Mj

end for
end for.

Table 5.4: Explicit version of PAVA for isotonic weighted least squares.

The next three exercises show that the PAVA leads to an explicit nonparametric density estimator
introduced by U. Grenander (1956). Instead of minimizing a convex function f over the cone K↑
one has to use an appropriate variant of the PAVA for the cone Rn↓ = {m ∈ Rn : m1 ≥ · · · ≥
mn}.

Exercise 5.26 (Silverman’s trick). Let F be a family of probability densities on a measure space
(X ,B, µ), and let P := {tf : t > 0, f ∈ F} be the cone generated by F . Show that for given
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y> = ( 2 0 3 4 1 0 3 5 6 1 7 3 )

add ` ← ( 0 2 )
new W ← ( 0 2 )

block M ← ( −∞ 1 )

add ` ← ( 0 2 3 )
new W ← ( 0 2 1 )

block M ← ( −∞ 1 3 )

add ` ← ( 0 2 3 6 )
new W ← ( 0 2 1 3 )

block M ← ( −∞ 1 3 1.6 )

pool ` ← ( 0 2 6 )
adj. W ← ( 0 2 4 )
viol. M ← ( −∞ 1 2 )

add ` ← ( 0 2 6 7 )
new W ← ( 0 2 4 1 )

block M ← ( −∞ 1 2 3 )

add ` ← ( 0 2 6 7 8 )
new W ← ( 0 2 4 1 1 )

block M ← ( −∞ 1 2 3 5 )

add ` ← ( 0 2 6 7 8 10 )
new W ← ( 0 2 4 1 1 2 )

block M ← ( −∞ 1 2 3 5 3.5 )

pool ` ← ( 0 2 6 7 10 )
adj. W ← ( 0 2 4 1 3 )
viol. M ← ( −∞ 1 2 3 4 )

add ` ← ( 0 2 6 7 10 12 )
new W ← ( 0 2 4 1 3 2 )

block M ← ( −∞ 1 2 3 4 5 )

m> = ( 1 1 2 2 2 2 3 4 4 4 5 5 )

Table 5.5: Numerical example for the PAVA with hi(r) = (yi − r)2.

n ∈ N and x1, . . . , xn ∈ X ,

arg max
f∈F

`(f) = arg min
p∈P

(
−`(p) + n

∫
p dµ

)
where `(p) :=

∑n
i=1 log p(xi).

Exercise 5.27 (Grenander’s estimator, I). LetF be the family of monotone decreasing probability
densitites f on (0,∞) with respect to Lebesgue measure. Let 0 = x0 < x1 < x2 < · · ·xn be
given numbers. Viewing x1, . . . , xn as the order statistics of n independent random variables with
unknown density f ∈ F , the nonparametric maximum likelihood estimator of f is defined as

f̂ := arg max
f∈F

`(f) with `(f) :=

n∑
i=1

log f(xi).

The goal of this and the next exercise is to show that this estimator is well-defined and can be
computed by means of the pool-adjacent-violators algorithm.
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(a) Show that for each f ∈ F there exists a density f̄ ∈ F such that

f̄ ≡

{
f̄(xi) on(xi−1, xi] for 1 ≤ i ≤ n,
0 on (xn,∞),

and `(f̄) ≥ `(f) with equality if and only if f ≡ f̄ .

(b) Show by means of the previous part and Exercise 5.26 that f̂ is uniquely determined by

p̂ := arg min
p∈Rn↓

n∑
i=1

hi(pi) with hi(s) := − log(s) + n(xi − xi−1)s.

Exercise 5.28 (Grenander’s estimator, II). (a) Show that the vector p̂ in Exercise 5.27 is identical
with

arg min
m∈Rn↓

n∑
i=1

wi(yi −mi)
2 with wi := xi − xi−1 and yi := (nwi)

−1.

(b) Let F̂emp : [0,∞) → [0, 1] be the empirical distribution function of the points x1, . . . , xn,
that means, F̂emp(x) = i/n for xi ≤ x < xi+1, 0 ≤ i ≤ n, with xn+1 := ∞. Further let
F̂ (x) :=

∫ x
0 f̂(t) dt with Grenander’s estimator f̂ . Verify that F̂ is the smallest concave function

which is bounded from below by F̂emp.
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Figure 5.2: Example for concave regression.
Upper panel: data pairs (X`, Y`) (◦) and preprocessed pairs (ti, yi) (•).
Lower panel: data pairs and final fit.
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Figure 5.3: Example for concave regression: Some intermediate steps of the active set algorithm.
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Chapter 6

Conjugate Gradients

The main part of this chapter is based on the textbook of G. Opfer (1994).

6.1 The Task

Let (V , 〈·, ·〉, ‖ · ‖) be a Euclidean space1 with dimension d, and letA : V → V be a self-adjoint,
positive definite linear operator. ThatA is self-adjoint means that

〈x,Ay〉 = 〈Ax,y〉 for arbitrary x,y ∈ V .

And a self-adjoint linear operator is called positive definite if

〈x,Ax〉 > 0 for arbitrary x ∈ V \ {0}.

In particular,A is invertible. Now, for a given vector b ∈ V , our goal is to determine the vector

x∗ := A−1b.

This looks like a rather trivial task. If we choose an orthonormal basis u1,u2, . . . ,ud of V , then
A corresponds to a symmetric, positive definite matrix in Rd×d, b may be viewed as a vector in
Rd, and x∗ is the solution of the linear equation system Ax = b. The reason for considering an
operator rather than a matrix is that in some applications it is easy to compute the point Ax for
any x ∈ V , but the storage or inversion of the corresponding matrix A would require too much
space or computation time. Then it is not obvious how to determine x∗, and in what follows, a
special iterative scheme will be derived.

Note first that the vector x∗ is the unique minimizer of the function f : V → R with

f(x) := 2−1〈x,Ax〉 − 〈b,x〉.

Indeed, for arbitrary x,h ∈ V ,

(6.1) f(x+ h) = f(x)− 〈r(x),h〉+ 2−1〈h,Ah〉
1a finite-dimensional real Hilbert space
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with the “residual”
r(x) := b−Ax = A(x∗ − x).

This expansion shows that∇f(x) = −r(x) and D2f(x) = A. In particular,

f(x∗ + h) = f(x∗) + 2−1〈h,Ah〉 ≥ f(x∗)

with equality if and only if h = 0. Precisely, for arbitrary x ∈ V ,

f(x)− f(x∗) = 2−1〈x− x∗,A(x− x∗)〉

= 2−1〈A−1r(x), r(x)〉(6.2)

= 2−1
∥∥A1/2(x− x∗)

∥∥2
.(6.3)

6.2 The Gradient Method

A first approach is to minimize f iteratively in the direction of its residual. That means, for a
vector x ∈ V \ {x∗} we define

ψ(x) := x+ t(x)r(x)

with
t(x) := arg min

t∈R
f(x+ tr(x)).

Starting from an arbitrary point x0 ∈ V , we define the sequence (xk)k≥0 inductively via xk+1 :=

ψ(xk), where ψ(x∗) := x∗. As shown later, this sequence will always converge to the minimizer
x∗.

Since
f(x+ tr(x)) = f(x)− t‖r(x)‖2 + 2−1t2〈r(x),Ar(x)〉,

the number t(x) is given by

t(x) =
‖r(x)‖2

〈r(x),Ar(x)〉
,

and

f(ψ(x)) = f(x)− ‖r(x)‖4

2〈r(x),Ar(x)〉
.

Combining this equation and (6.2) leads to

f(ψ(x))− f(x∗)

f(x)− f(x∗)
= 1− ‖r(x)‖4

〈r(x),Ar(x)〉 〈r(x),A−1r(x)〉
.

The ratio on the right hand side may be bounded as follows.

Lemma 6.1. Let Ax =
∑d

i=1 λi〈ui,x〉ui for x ∈ V with an orthonormal basis u1,u2, . . . ,ud

of V and eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λd > 0. For arbitrary y ∈ V \ {0},

1 ≤ 〈y,Ay〉 〈y,A
−1y〉

‖y‖4
≤ (λ1 + λd)

2

4λ1λd
.

The second last inequality is an equality if and only if y is an eigenvector ofA. The last inequality
is an equality if y is a multiple of u1 + ud or u1 − ud.
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For the algorithmic mapping ψ, this lemma leads to the following inequality:

Theorem 6.2. With the same notation as in Lemma 6.1,

f(ψ(x))− f(x∗)

f(x)− f(x∗)
≤
(λ1 − λd
λ1 + λd

)2

for arbitrary x ∈ V \ {x∗}. Equality holds if r(x) is a multiple of u1 + ud or u1 − ud. In that
case, r(ψ(x)) is a multiple of u1 − ud or u1 + ud, respectively.

This theorem implies that the sequence (xk)k≥0 just introduced converges to x∗ for any starting
point x0 ∈ V . More precisely, the inequality is equivalent to∥∥A1/2(ψ(x)− x∗)

∥∥∥∥A1/2(x− x∗)
∥∥ ≤ λ1 − λd

λ1 + λd
=

1− λd/λ1

1 + λd/λ1
= 1− 2

λ1/λd + 1

by virtue of (6.3). Hence,∥∥A1/2(xk − x∗)
∥∥ ≤ (1− λd/λ1

1 + λd/λ1

)k∥∥A1/2(x0 − x∗)
∥∥

for arbitrary k ≥ 0 with equality in case of r(x0) being a multiple of u1 ± ud. However, the
speed of convergence can be rather low whenever the condition number λd/λ1 of the operator A
is close to zero.

Figure 6.1 illustrates the gradient method in case of V = R2 with the usual inner product, A =

diag(1, 3), b = (1, 1)> whence x∗ = (5, 5/3)>, and x0 = 0. Here r(xk) is always a positive
multiple of (1, 1)> or (1,−1)>, and f(xk) − f(x∗) decreases in each step by the same factor(
(3− 1)/(3 + 1)

)2
= 1/4.
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Figure 6.1: The gradient method.

Proof of Lemma 6.1. The asserted inequalities are equivalent to the following ones: For arbitrary
vectors p ∈ [0, 1]d with

∑d
i=1 pi = 1,

1 ≤
d∑
i=1

piλi

d∑
j=1

pjλ
−1
j ≤ (λ1 + λd)

2

4λ1λd
.
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Indeed, if we write y =
∑d

i=1 aiui with a ∈ Rd, then

‖y‖−2〈y,Asy〉 =

d∑
i=1

piλ
s
i with pi := ‖y‖−2a2

i .

Furthermore, any probability vector p may be obtained in this fashion from some vector a ∈
Rd \ {0}.

In the center of the new inequalities we see IE(X) IE(X−1) with a random variable X > 0 hav-
ing distribution

∑d
i=1 piδλi . Since the function x 7→ x−1 is strictly convex on (0,∞), Jensen’s

inequality implies that IE(X−1) ≥ IE(X)−1. Equality holds if and only if X has a degenerate
distribution. In the original inequality, this means that y is an eigenvector ofA.

On the other hand, λd ≤ X ≤ λ1, so convexity of x 7→ x−1 yields the following inequality:

X−1 ≤ λ1 −X
λ1 − λd

λ−1
d +

X − λd
λ1 − λd

λ−1
1 .

Consequently,

IE(X) IE(X−1) ≤ IE(X)
(λ1 − IE(X)

λ1 − λd
λ−1
d +

IE(X)− λd
λ1 − λd

λ−1
1

)
=

IE(X)

(λ1 − λd)λ1λd

(
λ2

1 − λ2
d − (λ1 − λd) IE(X)

)
=

IE(X)(λ1 + λd − IE(X))

λ1λd

≤ (λ1 + λd)
2

4λ1λd
.

Equality holds if p1 = pd = 1/2, and in the original inequality, this means that y is proportional
to u1 ± ud.

Proof of Theorem 6.2. According to Lemma 6.1,

f(ψ(x))− f(x∗)

f(x)− f(x∗)
= 1− ‖r(x)‖4

〈r(x),Ar(x)〉 〈r(x),A−1r(x)〉
≤ 1− 4λ1λd

(λ1 + λd)2
=
(λ1 − λd
λ1 + λd

)2
.

In general,
x∗ −ψ(x) = x∗ − x− t(x)r(x) = (A−1 − t(x)I)r(x).

Consequently, if r(x) = γ(u1 ± ud) for some γ 6= 0, then

r(ψ(x)) = A(x∗ −ψ(x)) = (I − t(x)A)r(x)

=
(
I − ‖r(x)‖2

〈r(x),Ar(x)〉
A
)
r(x)

= γ
(
u1 ± ud −

2

λ1 + λd
(λ1u1 ± λdud)

)
= γ

(λd − λ1

λ1 + λd
u1 ±

λ1 − λd
λ1 + λd

ud

)
= − λ1 − λd

λ1 + λd
γ(u1 ∓ ud).
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6.3 Conjugate Directions

As we shall see soon, the minimization of f would be rather simple if we had a basis of V which
is “conjugate with respect toA”.

Definition 6.3 (Conjugate vectors). Vectors h1,h2, . . . ,hk ∈ V are called conjugate with re-
spect toA if

〈hi,Ahj〉 = 0 for 1 ≤ i < j ≤ k.

In other words, the vectorsA1/2h1,A
1/2h2, . . . ,A

1/2hk are pairwise orthogonal.

Lemma 6.4. Let h1,h2, . . . ,h` ∈ V \{0} be conjugate with respect toA. For an arbitrary point
x0 ∈ Rd and any integer k ∈ {1, 2, . . . , `} let

Vk := span(h1, . . . ,hk),

xk := arg min
x∈x0+Vk

f(x).

Then

xk = x0 +

k∑
i=1

tihi = xk−1 + tkhk

with
ti :=

〈r(x0),hi〉
〈hi,Ahi〉

=
〈r(xi−1),hi〉
〈hi,Ahi〉

.

Moreover, r(xk) ⊥ Vk.

Proof of Lemma 6.4. For t ∈ Rk, it follows from (6.1) that

f
(
x0 +

k∑
i=1

tihi

)
= f(x0)−

k∑
i=1

ti〈r(x0),hi〉+ 2−1
k∑

i,j=1

titj〈hi,Ahj〉

= f(x0) +
k∑
i=1

(
2−1t2i 〈hi,Ahi〉 − ti〈r(x0),hi〉

)
.

Obviously, this is minimal in t if and only if

ti =
〈r(x0),hi〉
〈hi,Ahi〉

.

In case of i ≥ 2,

r(xi−1) = b−Axi−1 = b−Ax0 +A(x0 − xi−1) = r(x0) +A(x0 − xi−1),

and this implies that

〈r(x0),hi〉 = 〈r(xi−1),hi〉+ 〈xi−1 − x0,Ahi〉 = 〈r(xi−1),hi〉,

because xi−1 − x0 ∈ span(h1, . . . ,hi−1) and 〈hj ,Ahi〉 = 0 for 1 ≤ j < i. This proves the
alternative expression for the optimal ti.

That r(xk) is perpendicular to Vk follows from the fact that for arbitrary h ∈ V k,

0 =
d

dt

∣∣∣
t=0

f(xk + th) = −〈r(xk),h〉.
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A Gram–Schmidt type procedure. The preceding considerations suggest the following proce-
dure: We start with a vector x0 ∈ V such that r(x0) 6= 0 which is equivalent to x0 6= x∗. Then
we set

h1 := r(x0).

Suppose that for some k ∈ N we have chosen conjugate vectors h1, . . . ,hk ∈ V \ {0} with
respect toA. Let

Vk := span(h1, . . . ,hk) and xk := arg min
x∈x0+Vk

f(x).

If r(xk) = 0, we know that xk = x∗. Otherwise we define

hk+1 := r(xk)−
k∑
i=1

βk,ihi

with certain coefficients βk,i ∈ R yet to be specified. Since r(xk) ⊥ Vk, the vector hk+1 is
nonzero for any choice of the βk,i. The vectors h1, . . . ,hk+1 are conjugate with respect to A if
and only if for 1 ≤ j ≤ k,

0 = 〈hk+1,Ahj〉 = 〈r(xk),Ahj〉 − βk,j〈hj ,Ahj〉,

that means,

βk,j =
〈r(xk),Ahj〉
〈hj ,Ahj〉

.

All in all, if we start from a point x0 6= x∗, we obtain linearly independent vectors h1, . . . ,hko ∈
V and points x1, . . . ,xko ∈ V such that for 1 ≤ k ≤ ko,

Vk := span(h1, . . . ,hk) = span
(
r(x0), . . . , r(xk−1)

)
and xk = arg min

x∈x0+Vk

f(x).

Moreover, for 1 ≤ k < ko,

r(xk) ⊥ V k and hk+1

{
∈ r(xk) + Vk,

⊥ AV k,

while r(xko) = 0 and

xko = x∗.

6.4 The Conjugate Gradient (CG) Algorithm

At first glance, it looks as if we have solved the original problem already. But recall that we have
situations in mind in which the storage of a matrix for A would be too involved. But the Gram–
Schmidt type procedure just described would require to keep track of all vectors h1,h2, . . . ,hko .
Fortunately, as shown in the next theorem, all coefficients βk,j with 1 ≤ j < k are zero, so we
only need hk and r(xk) to compute the next direction hk+1.
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Theorem 6.5. Starting from x0 6= x∗, let h1, . . . ,hko and x1, . . . ,xko be constructed as just
described. For 1 ≤ k ≤ ko, the space Vk = span(h1, . . . ,hk) = span

(
r(x0), . . . , r(xk−1)

)
is

equal to the so-called Krylow space

span(Ai−1r(x0) : 1 ≤ i ≤ k).

Moreover, for 1 ≤ k ≤ ko,

xk = xk−1 + tkhk and r(xk) = r(xk−1)− tkAhk with tk :=
‖r(xk−1)‖2

〈hk,Ahk〉
,

while in case of k < ko,

hk+1 = r(xk) +
‖r(xk)‖2

‖r(xk−1)‖2
hk.

This theorem shows that hk+1 = r(xk)−
∑k

i=1 βk,ihi is just a linear combination of r(xk) and
hk. The explicit formulae in Theorem 6.5 yield a relatively simple algorithm for the computation
(approximation) of x∗:

Algorithmus xk ← CG(A, b,x0, ε)

r0 ← b−Ax0

h1 ← r0

k ← 0

while ‖rk‖ > ε do

k ← k + 1
tk ← ‖rk−1‖2/〈hk,Ahk〉
xk ← xk−1 + tkhk
rk ← rk−1 − tkAhk
βk ← ‖rk‖2/‖rk−1‖2
hk+1 ← rk + βkhk

end while

After a finite number of steps, this algorithm yields a vector xk such that ‖Axk − b‖ ≤ ε, where
ε ≥ 0 is an arbitrary given number. Here is a different description:

Algorithmus x← CG(A, b,x0, ε)

x← x0

r ← b−Ax
γ ← ‖r‖2
h← r
while

√
γ > ε do

y ← Ah
t← γ/〈h,y〉
x← x+ th
r ← r − ty
γnew ← ‖r‖2
h← r + (γnew/γ)h
γ ← γnew

end while
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Proof of Theorem 6.5. We write r` := r(x`) and Wk := span(Ai−1r0 : 1 ≤ i ≤ k). Since
dim(Vk) = k and dim(Wk) ≤ k, it suffices to show that Vk ⊂Wk for 1 ≤ k ≤ ko. Obviously,
W1 = V1. Suppose that Vk ⊂ Wk for some 1 ≤ k < ko. Then there exist real coefficients
λ1, . . . , λk such that

xk = x0 +
k∑
i=1

λiA
i−1r0.

But then

rk = b−Axk = r0 −
k∑
i=1

λiA
ir0 ∈ W k+1,

whence Vk+1 ⊂Wk+1.

It remains to verify the recursion formulae for 1 ≤ k ≤ ko. We know already from Lemma 6.4
that

xk = xk−1 + tkhk with tk =
〈rk−1,hk〉
〈hk,Ahk〉

.

But hk ∈ rk−1 + Vk−1 and rk−1 ⊥ Vk−1, whence 〈rk−1,hk〉 = 〈rk−1, rk−1〉 = ‖rk−1‖2, and

tk =
‖rk−1‖2

〈hk,Ahk〉
.

Now the simplified formula for rk follows from

rk = b−Axk = b−Axk−1 −A(xk − xk−1) = rk−1 − tkAhk.

Concerning hk+1, recall that hk+1 = rk −
∑k

i=1 βk,ihi with

βk,i =
〈rk,Ahi〉
〈hi,Ahi〉

.

But for 1 ≤ i < k, the vector hi lies in Vi = span(As−1r0 : 1 ≤ s ≤ i), whence Ahi ∈
span(Asr0 : 1 ≤ s ≤ i) ⊂ V k ⊥ rk, and thus βk,i = 0. Consequently, we know that

hk+1 = rk −
〈rk,Ahk〉
〈hk,Ahk〉

hk.

Finally, it follows from rk = rk−1 − tkAhk that

Ahk = t−1
k (rk−1 − rk) =

〈hk,Ahk〉
‖rk−1‖2

(rk−1 − rk),

and this leads to

hk+1 = rk −
〈rk, rk−1 − rk〉
‖rk−1‖2

hk = rk +
‖rk‖2

‖rk−1‖2
hk,

because rk−1 ∈ Vk ⊥ rk.
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6.5 Bounding the running time and approximation error

In many applications of the CG algorithm, it turns out that the norm of the residual rk = b−Axk
is rather small or even zero after k � d steps. This is related to the aforementioned Krylow spaces

V k = span(Ai−1r0 : 1 ≤ i ≤ k)

with r0 = r(x0). As shown already,∥∥A1/2(x∗ − xk)
∥∥2

= min
x∈x0+V k

∥∥A1/2(x∗ − x)
∥∥2

= min
v∈V k

∥∥A1/2(x∗ − x0)−A1/2v
∥∥2

= min
β∈Rk

∥∥∥A1/2(x∗ − x0)−A1/2
k∑
j=1

βjA
j−1r0

∥∥∥2

= min
β∈Rk

∥∥∥A1/2(x∗ − x0)−
k∑
j=1

βjA
jA1/2(x∗ − x0)

∥∥∥2
.

Now we consider a spectral representation of A, that means, Ax =
∑d

i=1 λi〈ui,x〉ui with
eigenvalues λ1 ≥ · · · ≥ λd > 0 and an orthonormal basis u1, . . . ,ud of V . If we write
A1/2(x∗ − x0) =

∑d
i=1 γiui for some γ ∈ Rd, then

∥∥A1/2(x∗ − xk)
∥∥2

= min
β∈Rk

∥∥∥∥ d∑
i=1

(
1−

d∑
j=1

βjλ
j
i

)
γiui

∥∥∥∥2

= min
Q∈Qk

d∑
i=1

γ2
i (1−Q(λi))

2,

where Qk denotes the set of all real polynomials Q of order k with Q(0) = 0.

Early stopping. If the set {λ1, λ2, . . . , λd} consists of the k(A) ≤ d different numbers λ(1) >

λ(2) > · · · > λ(k(A)), then

Q(t) := 1−
k(A)∏
j=1

(1− t/λ(j))

defines a polynomial from Qk(A) such that Q = 0 on {λ1, λ2, . . . , λd}. Consequently,

xk(A) = x∗

for arbitrary starting point x0! This result should be taken with a pinch of salt, though. Numerical
errors may result in more than k(A) iterations, sometimes even more than d. Indeed, one should
take precautions to avoid endless loops.

Tshebyshev polynomials. The subsequent error bounds use the well-known Tshebyshev poly-
nomials. For k ∈ N0 and s ∈ R let

Tk(s) :=


(−1)k cosh

(
k arcosh(−s)

)
if s ≤ −1,

cos
(
k arccos(s)

)
if s ∈ [−1, 1],

cosh
(
k arcosh(s)

)
if s ≥ 1.
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Then T0(s) = 1, T1(s) = s, and

(6.4) Tk+1(s) = 2sTk(s)− Tk−1(s) for k ∈ N.

The claims about T0 and T1 are obvious. The recursion formula (6.4) can be verified as follows:
Note first that

cosh(z1 + z2) + cosh(z1 − z2) = 2 cosh(z1) cosh(z2) for z1, z2 ∈ C.

Since cos(z) = cosh(iz), the latter equation is true with cos(·) in place of cosh(·). Thus, for
s ≥ 1,

Tk+1(±s) = (±1)k+1 cosh
(
arcosh(s) + k arcosh(s)

)
= 2(±1)k+1 cosh

(
arcosh(s)

)
cosh

(
k arcosh(s)

)
− (±1)k+1 cosh

(
arcosh(s)− k arcosh(s)

)
= 2(±s)(±1)k cosh

(
k arcosh(s)

)
− (±1)k−1 cosh

(
(k − 1) arcosh(s)

)
= 2(±s)Tk(±s)− Tk−1(±s).

The case s ∈ [−1, 1] can be treated analogously.

The formulae T0(s) = 1, T1(s) = s and the recursion formula (6.4) imply that Tk(s) is equal to∑k
j=0 αkjs

j with certain coefficients αkj ∈ R, where αkk = 2k−1 for k ∈ N. Moreover, one can
show that

|Tk| ≤ 1 on [−1, 1],

|Tk| > 1 on R \ [−1, 1],

Tk

(
cos
(2j − 1

k
π
))

= 0 for j = 1, . . . , k,

Tk

(
cos
(2j

k
π
))

= (−1)j for j = 0, 1, . . . , k.

Another useful representation of Tk results from the known formulae

arcosh(s) = log
(
s+

√
s2 − 1

)
= − log

(
s−

√
s2 − 1

)
for s ≥ 1.

This implies that

Tk(±s) = (−1)k
(
s+
√
s2 − 1

)k
+
(
s−
√
s2 − 1

)k
2

for s ≥ 1.

And from this one can deduce that

Tk(s) =

bk/2c∑
`=0

(
k

2`

)
sk−2`(s2 − 1)`.



161

Error bounds. With the eigenvalues λ1 ≥ · · · ≥ λd > 0 and eigenvectors u1, . . . ,ud of A, let
A1/2(x∗ − x0) =

∑d
i=1 γiui. With the probability weights pi := ‖γ‖−2γ2

i ,∥∥A1/2(x∗ − xk)
∥∥∥∥A1/2(x∗ − x0)
∥∥ = min

Q∈Qk

( d∑
i=1

pi(1−Q(λi))
2
)1/2

≤ min
Q∈Qk

max
t∈[λd,λ1]

|1−Q(t)
∣∣.

As shown later, the minimum is attained for a special polynomial Qk such that

max
t∈[λd,λ1]

∣∣1−Qk(t)∣∣ =
∣∣1−Qk(λd)∣∣ =

∣∣1−Qk(λ1)
∣∣.

Hence, ifA1/2(x∗ − x0) fulfils

pi = 0 whenever
∣∣1−Qk(λi)∣∣ < max

t∈[λd,λ1]

∣∣1−Qk(t)∣∣,
then ∥∥A1/2(x∗ − xk)

∥∥∥∥A1/2(x∗ − x0)
∥∥ = max

t∈[λd,λ1]

∣∣1−Qk(t)∣∣.
Theorem 6.6. For k ∈ N and real numbers 0 < a < b let

Qk(t | a, b) := 1− Tk
(2t− a− b

b− a

)/
Tk

(
− a+ b

b− a

)
,

where Tk is the Tshebyshev polynomial of order k. Then Qk(· | a, b) ∈ Qk, and

max
t∈[a,b]

∣∣1−Qk(t | a, b)∣∣ = δk(a/b)

with

δk(u) :=
2 (1− u)k(

1 +
√
u
)2k

+
(
1−
√
u
)2k for u ∈ [0, 1].

Furthermore, for arbitrary Q ∈ Qk,

max
t∈[a,b]

∣∣1−Q(t)
∣∣ ≥ δk(a/b)

with equality if and only if Q ≡ Qk(· | a, b).

Figure 6.2 shows for a = 1, b = 4 and k = 2, 3, 6, 7 the optimal polynomial Qk(· | a, b).

Remark 6.7 (Inequalities for δk(·)). Obviously,

δk(u) < 2
(1− u)k(
1 +
√
u
)2k = 2

(1−
√
u

1 +
√
u

)k
for 0 ≤ u < 1.

For k ≥ 2 and 0 < u < 1, strict convexity of s 7→ sk on (0,∞) implies that(
1 +
√
u
)2k

+
(
1−
√
u
)2k

2
=

(
1 + u+ 2

√
u
)k

+
(
1 + u− 2

√
u
)k

2
> (1 + u)k.

Hence,

δk(u) < δ1(u)k for k ≥ 2 and 0 < u < 1.
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Figure 6.2: Some optimal polynomials Qk(· | a, b) for a = 1 and b = 4.

Remark 6.8 (Expansions for δk(·)). By virtue of the binomial formula,(
1 +
√
u
)2k

+
(
1−
√
u
)2k

2
=

k∑
`=0

(
2k

2`

)
u` =

{
1 + u for k = 1,

1 + k(2k − 1)u+O(u2) for k ≥ 1.

In particular,

δ1(u) =
1− u
1 + u

= 1− 2u+O(u2),

and

δ1(u)k = 1− 2ku+O(u2),

δk(u) = 1− 2k2u+O(u2).

Remark 6.9 (Comparison of gradient and CG method). Theorem 6.6 and Remark 6.7 imply that
k steps of the CG algorithm result in a reduction of the approximation error

∥∥A1/2(x∗ − x)
∥∥ by

a factor δk(λd/λ1) at least. This factor is strictly smaller than the factor δ1(λd/λ1)k which could
result from k iterations of the gradient method.
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Figure 6.3: Approximation errors δ1(·) > δ1(·)k > δk(·).

Figure 6.3 shows the functions δ1(·) > δ1(·)k > δk(·) for k = 2, 3.

In the proof of Theorem 6.6 we use an elementary lemma about real polynomials.

Lemma 6.10. For k ∈ N0 let ∆ : R → R be given by ∆(s) =
∑k

j=0 αjs
j with real coefficients

α0, α1, . . . , αk. Suppose that there exist points s0 < s1 < · · · < sk+1 such that

(−1)i∆(si) ≥ 0 for 0 ≤ i ≤ k + 1.

Then, ∆ ≡ 0.

Exercise 6.11. Prove Lemma 6.10.

Proof of Theorem 6.6. One can easily verify that Qk(·) = Qk(· | a, b) defines a polynomial in
Qk. Further, the properties of the Tshebyshev polynomials imply that

δk := max
t∈[a,b]

∣∣1−Qk(t)∣∣ =
∣∣1−Qk(a)

∣∣ =
|Tk(−1)|∣∣Tk(−(a+ b)/(b− a)

)∣∣
=

1

cosh
(
k arcosh(1/δ)

)
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with δ := (b− a)/(a+ b) = (1− u)/(1 + u). In particular, δ1 = δ. For general k ≥ 1,

δk =
2(

δ−1 +
√
δ−2 − 1

)k
+
(
δ−1 −

√
δ−2 − 1

)k
=

2 δk(
1 +
√

1− δ2
)k

+
(
1−
√

1− δ2
)k

=
2 (1− u)k(

1 + u+
√

(1 + u)2 − (1− u)2
)k

+
(
1 + u−

√
(1 + u)2 − (1− u)2

)k
=

2 (1− u)k(
1 + u+ 2

√
u
)k

+
(
1 + u− 2

√
u
)k

=
2 (1− u)k(

1 +
√
u
)2k

+
(
1−
√
u
)2k .

It remains to prove optimality and uniqueness of Qk. Suppose there exists a polynomial Q ∈ Qk
such that

max
t∈[a,b]

∣∣1−Q(t)
∣∣ ≤ δk.

Let a = t1 < t2 < · · · < tk+1 = b be the points ti ∈ [a, b] such that Qk(ti) = 1 − (−1)i−1δk.
Then the polynomial ∆ := Qk − Q satisfies ∆(0) = 0 and (−1)i∆(ti) ≥ 0 for 1 ≤ i ≤ k + 1.
Hence, it follows from Lemma 6.10 that ∆ ≡ 0.

Example 6.12. We consider the matrix A = diag(21−i : i = 1, . . . , d) and the vector b =

(1, 1, . . . , 1)> with d = 8. For the starting point x0 = 0, the CG algorithm yields the following
approximations xk = (xk,i)

d
i=1 and errors (all numbers rounded to three digits):

k xk,1 xk,2 xk,3 xk,4 xk,5 xk,6 xk,7 xk,8 ‖rk‖
0 0 0 0 0 0 0 0 0 2.828

1 4.016 4.016 4.016 4.016 4.016 4.016 4.016 4.016 3.674

2 −0.423 6.287 9.643 11.320 12.159 12.578 12.788 12.893 3.265

3 1.271 −0.984 9.273 17.248 21.947 24.474 25.782 26.448 2.560

4 0.978 2.610 −0.494 14.748 28.789 37.692 42.649 45.258 1.807

5 1.001 1.953 4.859 2.395 24.889 46.736 60.991 69.043 1.128

6 1.000 2.001 3.947 8.852 10.429 43.122 74.498 95.047 0.589

7 1.000 2.000 4.001 7.969 16.492 28.442 74.842 117.072 0.222

8 1.000 2.000 4.000 8.000 16.000 32.000 64.000 128.000 0.000

Note that f(xk) and ‖A1/2(x∗ − xk)‖ = ‖A−1/2rk‖ are non-decreasing in k, but ‖rk‖ can
increase every now and then.

Example 6.13 (Hilbert matrix). A notorious example for a symmetric and positive definite, but
ill-conditioned matrixA is the Hilbert matrix

A :=
( 1

i+ j − 1

)d
i,j=1

.

Obviously,A is symmetric. ThatA is positive definite can be deduced from the representation

1

i+ j − 1
=

∫ 1

0
ti−1tj−1 dt.
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Thus,

h>Ah =

∫ 1

0

( d∑
i=1

hit
i−1
)2
dt > 0 for h ∈ Rd \ {0}.

However, the ratio λd/λ1 tends to be very small, even for moderate dimension d. For instance,
if d = 8, then (λ1, λd) ≈ (1.696, 1.112 · 10−10). For b = (1, 1, . . . , 1)>, the equation system
Ax = b can not be solved with standard methods such as the R procedure qr.solve. But the
CG algorithm with starting point x0 = 0 yields after k = 19 steps an approximation xk of x∗
such that ‖b−Axk‖ < 10−8.

Example 6.14 (Poisson problem). For integers dx, dy > 2, we consider the vector space V =

Rdx×dy with inner product

〈x,y〉 :=

dx∑
i=1

dy∑
j=1

xijyij = trace(x>y).

Occasionally we interpret a matrix x ∈ V as a function (i, j) 7→ x(i, j) = xij on the index set
D := {1, 2, . . . , dx} × {1, 2, . . . , dy}.

Here is a discrete version of the classical Poisson problem (heat equation): Let

I := {2, . . . , dx − 1} × {2, . . . , dy − 1} and

R :=
{

(i, j) ∈ D : i ∈ {1, dx} oder j ∈ {1, dy}
}

be the “interior” and the “boundary” of D, respectively. For a given matrix b ∈ V with

b = 0 on I

we look for a matrix x ∈ V such that

x = b on R

and

(6.5) xij =
∑

u,v=−1,0,1

pu,vxi+u,j+v for all (i, j) ∈ I.

Here

pu,v :=


3/16 if |u|+ |v| = 1,

1/16 if |u|+ |v| = 2,

0 if u = v = 0.

In other words, we are looking for a solution x ∈ V of the equation

Lx = b

with the linear operator L : V → V given by

(Lx)ij :=

{
xij for (i, j) ∈ R,
xij −

∑
u,v=−1,0,1 pu,vxi+u,j+v for (i, j) ∈ I.



166

One may imagine x(i, j) as the temperature at the point (i, j) on a rectangular metal plate D. By
heating or cooling, the temperature is fixed as b(i, j) at the boundary points (i, j) ∈ R.

The operator L is easily implemented, and the computation of Lx requires O(dxdy) steps. How-
ever, representating L by a matrix would result in a matrix of size dxdy × dxdy. This can be very
large, even for moderate values dx and dy.

The operator L is nonsingular. Indeed, suppose that Lx = 0 for some x ∈ V . Let (i, j) ∈ D
with |xij | = maxi′,j′ |xi′j′ |. Since x = Lx = 0 on R, we may assume without loss of generality
that (i, j) ∈ I. It follows from (6.5) that xi+u,j+v = xij for all u, v ∈ {−1, 0, 1}. Now one
may deduce inductively that x is a constant function (matrix), and since x = Lx = 0 on R, this
implies that x = 0.

Solution via CG algorithm. Unfortunately, L is not self-adjoint, but the adjoint operator L∗ :

V → V , given by
〈x,Ly〉 = 〈L∗x,y〉 for arbitrary x,y ∈ V ,

is given by
(L∗x)ij = xij −

∑
u,v=−1,0,1

1[(i+u,j+v)∈I]pu,vxi+u,j+v.

Thus we consider

f̃(x) := 2−1‖Lx− b‖2 = 2−1〈x, L∗Lx〉 − 〈x, L∗b〉+ 2−1‖b‖2

and apply the CG algorithm with the self-adjoined and positive definite operator A := L∗L and
L∗b in place of b.

Figure 6.4 depicts a gray scale image of the approximate solution xk in case of dx = dy = 50 and

bij =


+1 if (i, j) ∈ R and min{|i− 1|+ |j − 1|, |i− 50|+ |j − 50|} ≤ 9,

−1 if (i, j) ∈ R and min{|i− 1|+ |j − 50|, |i− 50|+ |j − 1|} ≤ 9,

0 else.

This corresponds to the temperature on a metal plate which is heated at to opposite corners and
cooled down at the other two corners. The solution depicted here resultet from the starting point
x0 = b and the stopping criterion ‖L∗b − L∗Lxk‖ < ε := 10−9 after k = 761 steps, which
is substantially smaller than dxdy = 2500. Figure 6.5 shows log10 ‖b − Lxs‖ as a function of
s ∈ {0, 1, . . . , k}.

Solution via fixed point iteration. The solution x∗ may be interpreted stochastically. let (Zt)t≥0

be a random walk on Z× Z with independent increments

Zt+1 − Zt ∼
∑

u,v=−1,0,1

pu,vδ(u,v)

and fixed starting value Z0 ∈ D. Further let T be the stopping time

T := min{t ∈ N0 : Zt ∈ R}.
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Figure 6.4: Approximate solution of the Poisson problem (Example 6.14).

Then,

x∗(i, j) = IE
(
b(ZT )

∣∣Z0 = (i, j)
)

for (i, j) ∈ D.

If we define for s ∈ N0 the matrix ys ∈ V via

ys(i, j) := IE
(
b(Zmin(T,s))

∣∣Z0 = (i, j)
)
,

then one can show that

y0 = b,

ys+1 = Mys for s = 0, 1, 2, . . . ,

lim
s→∞

ys = x∗ = Mx∗.

Here M : V → V is the linear operator with

(Mx)ij :=

{
xij for (i, j) ∈ R,∑

u,v=−1,0,1 pu,vxi+u,j+v for (i, j) ∈ I.

For our particular example, Figure 6.5 shows in addition the log-approximation errors log10 ‖b−
Lys‖, 0 ≤ s ≤ k = 761. For quite some time, ‖b − Lys‖ is smaller than ‖b − Lxs‖, but
eventually, as s approaches k, ‖b− Lxs‖ is substantially smaller than ‖b− Lys‖.
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Figure 6.5: Log-approximation errors in Poisson problem (Example 6.14): CG algorithm (•) and
fixed point iterations (blue line).

6.6 Minimizing a Smooth Convex Function

Let X ⊂ Rd be an open, convex set, and let f : X → R be twice continuously differentiable such
that its Hessian matrix A(x) := D2f(x) is positive definite for any x ∈ X . Suppose that f has a
unique minimizer x∗ ∈ X . Now we describe an iterative procedure for the approximation of x∗
which is inspired by the CG algorithm. To this end we write r(x) := −∇f(x). The idea is to
approximate f(x+ h) for given x ∈ X and “small” h ∈ Rd by

f̃(x+ h |x) := f(x)− r(x)>h+ 2−1h>A(x)h.

We start with an arbitrary point x0 ∈ X and set

h̃1 := arg min
h∈span(r(x0))

f̃(x0 + h |x0) =
‖r(x0)‖2

r(x0)>A(x0)r(x0)
r(x0).

Suppose that for some number k ∈ N, we have already chosen points x0,x1, . . . ,xk−1 ∈ X and
directions h̃1, h̃2, . . . , h̃k ∈ Rd such that r(xk−1)>h̃k > 0. Then we choose

xk := xk−1 + λkh̃k

for a certain step size λk = λ(xk−1, h̃k) ∈ (0, 1] such that xk ∈ X and f(xk) < f(xk−1). Then
we define

h̃k+1 := arg min
h∈span

(
h̃k,r(xk)

) f̃(xk + h |xk).
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If f is a quadratic function on X = Rd, then this algorithm coincides essentially with the CG
algorithm, provided that λk = 1 for all k. In general, the computation of hk+1 amounts to
minimizing a uni- or bivariate quadratic function which is much easier than the computation of a
usual Newton step A(xk)

−1r(xk).
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Chapter 7

Dynamic Programming

Dynamic programming is a strategy to solve discrete optimization problems. More precisely, one
wants to minimize a target function f on a finite but huge setX . The idea of dynamic programming
is to identify a sequence of minimization problems (X1, f1), (X2, f2), . . . , (Xn, fn) = (X , f) such
that

• minimizing f1 over X1 is easy,

• for 2 ≤ k ≤ n, minimizing fk over Xk is easy, provided that we have already minimized fj
over Xj for 1 ≤ j < k.

We illustrate this paradigm with three particular examples. For a more thorough treatment we refer
to the textbook of Cormen et al. (1990).

7.1 Dykstra’s Algorithm

We are given n ≥ 3 “locations” which we label with the numbers 1, 2, . . . , n. For two locations
a, b let D(a, b) ∈ [0,∞] be their “direct distance”, where we assume that D(a, a) = 0. Specifi-
cally one may think of geographic locations, andD(a, b) could measure the distance, time or costs
when travelling from a to b directly. The value D(a, b) =∞ could indicate that there is no direct
route from a to b.

For two locations a and b we are now interested in a path

~x = (x0, x1, . . . , xm)

of arbitrary length m ≥ 1 consisting of locations x0, x1, . . . , xm such that x0 = a and xm = b

with minimal total distance

f(~x) :=

m∑
j=1

D(xj−1, xj).

SinceD ≥ 0, it suffices to consider paths of length at most n−1, because constant pieces or loops
would never diminish total distance. The assumption that D(c, c) = 0 for all c implies that any
path of lenth m < n− 1 may be extended by a constant piece without changing its total distance.
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Hence we consider for m = 1, 2, . . . , n− 1 the minimal total distances

Gm(a, b) := min
~x∈Xm(a,b)

f(~x)

with Xm(a, b) denoting the set of all paths ~x = (x0, x1, . . . , xm) of length m connecting a and b.

In principle one could determine Gn−1(a, b) by considering all nn−2 paths in Xn−1(a, b). Or one
goes through all (n − 1)! paths (x0, x1, . . . , xn−1) such that x0 = a and {x0, x1, . . . , xn−1} =

{1, 2, . . . , n} and computes for each b 6= a the sum
∑j(b)

j=1D(xj−1, xj) with j(b) denoting the
unique index j ≥ 1 such that xj = b. But even for moderate numbers n this would be way too
demanding.

Instead one may solve the problem in O(n3) steps with memory O(n2) for any fixed location a
and simultaneously for all destinations b: Note first that

G1(a, b) = D(a, b).

For m = 2, 3, . . . , n− 1 we have the recursion

Gm(a, b) = min
z=1,...,n

(
Gm−1(a, z) +D(z, b)

)
≤ Gm−1(a, b),

because the part (x0, . . . , xm−1) of an optimal path (x0, x1, . . . , xm) ∈ Xm(a, b) has to be an
optimal path in Xm−1(a, xm−1). These facts are utilized in Dykstra’s algorithm described in
Table 7.1: For a given location a we determine the matrix

G :=
(
Gm(a, y)

)
1≤m≤n−1,1≤y≤n ∈ [0,∞](n−1)×n

inductively for m = 2, 3, . . . , n − 1. Thereafter, we determine for an arbitrary b an optimal path
(x0, x1, . . . , xn−1) ∈ Xn−1(a, b). To ease the latter task, the algorithm utilizes a second matrix
J =

(
Jm(y)

)
1≤m≤n−1,1≤y≤n with J1(y) := a and

Jm(y) ∈ arg min
z=1,...,n

(
Gm−1(a, z) +D(z, y)

)
for 2 ≤ m ≤ n− 1, 1 ≤ y ≤ n.

Then (x0, x1, . . . , xn−1) with xn−1 := b and xm−1 := xJm(xm) for m = n − 1, n − 2, . . . , 1

yields an optimal path in Xn−1(a, b).

If we also require that Jm(y) = y whenever possible, then the optimal path (x0, x1, . . . , xn−1) ∈
Xn−1(a, b) just constructed will have at most one constant piece at the end and can be shortened
easily, see Exercise 7.2.

Remark 7.1. Dykstra’s algorithm is often formulated as an algorithm acting on weighted and
directed graphs, see for instance Cormen et al. (1990). Depending on the underlying data structure
and distance function, it may be worthwhile to utilize the regions E(y) := {z : D(z, y) < ∞}
and write

Jm,y ← zo ∈ arg min
z∈E(y)

(
Gm−1,z +D(z, y)

)
in Table 7.1.



173

Algorithm ~x← Dykstra
(
D(·, ·), a, b

)
J ← (a)1≤m≤n−1,1≤y≤n
G← (∞)1≤m≤n−1,1≤y≤n(
G1,y

)
1≤y≤n ←

(
D(a, y)

)
1≤y≤n

for m← 2 to (n− 1) do
for y ∈ {1, . . . , n} do

Jm,y ← zo ∈ arg min
1≤z≤n

(
Gm−1,z +D(z, y)

)
Gm,y ← Gm−1,zo +D(zo, y)

end for
end for

~x = (x0, . . . , xn−2, xn−1)← (∗, . . . , ∗, b)
for m← (n− 1) downto 1 do

xm−1 ← Jm,xm
end for

Table 7.1: Dykstra’s Algorithm.

Exercise 7.2. Suppose that for arbitrary y ∈ {1, . . . , n} and m ∈ {2, . . . , n − 1}, Jm(y) = y

whenever possible. Show that Dykstra’s algorithm produces an optimal path (x0, x1, . . . , xn−1)

in Xn−1(a, b) such that for some M ∈ {0, 1, . . . , n − 1}, the points xj , 0 ≤ j ≤ M are distinct
while xM = · · · = xn−1 = b.

Exercise 7.3 (Negative costs). If one considers the planning of a bike route and if D(a, b) mea-
sures strain to get from a to b, it could be reasonable to consider negative numbers D(a, b), for
instance, if the direct road from a to b goes mostly downhill. Formulate conditions on a cost
function D : {1, . . . , n} × {1, . . . , n} → (−∞,∞] such that Dykstra’s algorithm works without
modifications.

Exercise 7.4 (A small world). Consider n people which we label with 1, 2, . . . , n. Let K ∈
{0, 1}n×n be a matrix such that Ka,b = 1 indicates that person a knows person b. Now let
U ∈ {0, 1}n×n have entry Ua,b = 1 if and only if there is a tuple (xj)

m
j=0 of m + 1 ≤ n persons

such that x0 = a, xm = b and Kxj−1,xj = 1 for 1 ≤ j ≤ m. How could one determine this matrix
U efficiently fromK?

7.2 Alignment of Sequences

We are given two sequences x = (x1, x2, . . . , xm) and y = (y1, y2, . . . , yn) of “letters” xi and
yj in an alphabet A. For instance, the sequences x and y could represent amino acids of two
proteins, i.e. A consists of the 20 possible amino acids. Alternatively, x and y could be two DNA
sequences, represented by letters in the alphabet A of 4 possible nucleic acids.

To judge how similar these sequences x and y are, we want to determine an optimal ‘alignment’
of them. That means, we are looking for a matrix

H =

[
H1,1 H1,2 · · · H1,N

H2,1 H2,2 · · · H2,N

]
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with entries Hi,j ∈ Ā := A ∪ {�}, where � 6∈ A represents a blank (space), such that the two
rows (H1,j)

N
j=1 and (H2,j)

N
j=1 contain the entries of x and y, respectively, in their original order,

augmented by several blanks � at arbitrary places. The number N of columns is arbitrary but will
certainly satisfy N ≥ max(m,n). Our goal is to minimize

f(H) :=
N∑
j=1

c(H1,j , H2,j)

over all alignmentsH of x and y, where c : Ā × Ā → [0,∞) is a certain cost function satisfying
c(�, �) = 0, c(a, a) ≤ 0 for all a ∈ A, and c(a, b) > 0 for a, b ∈ Ā with a 6= b. Obviously it
suffices to consider alignmentsH with N ≤ m+ n columns, because columns with two blanks �
could be deleted without increasing f(H).

To construct an optimal alignment H via dynamic programming we consider the subsequences
x(k) := (x1, x2, . . . , xk) and y(`) := (y1, y2, . . . , y`), including the empty sequences x(0) and
y(0). Now one can easily verify that an optimal alignment H ∈ Ā2×N of x(k) and y(`) with
k, ` ≥ 1 needs to satisfy one of the following three conditions:

(i) H1,N = xk, H2,N = y`,
and (Hi,j)1≤i≤2,1≤j<N is an optimal alignment of x(k−1) and y(`−1);

(ii) H1,N = xk, H2,N = �,
and (Hi,j)1≤i≤2,1≤j<N is an optimal alignment of x(k−1) and y(`);

(iii) H1,N = �, H2,N = y`,
and (Hi,j)1≤i≤2,1≤j<N is an optimal alignment of x(k) and y(`−1).

Hence we construct a matrixG = (Gk,`)0≤k≤m,0≤`≤n as follows:

G0,0 := 0,

Gk,0 :=

k∑
i=1

c(xi, �) for 1 ≤ k ≤ m,

G0,` :=
∑̀
j=1

c(�, yj) for 1 ≤ ` ≤ n,

and for 1 ≤ k ≤ m, 1 ≤ ` ≤ n let

Gk,` := min
{ N∑
j=1

c(H1,j , H2,j) : H Alignment of x(k) and y(`)
}

= min
(
Gk−1,`−1 + c(xk, y`), Gk−1,` + c(xk, �), Gk,`−1 + c(�, y`)

)
.

This matrix may be computed inductively in O(mn) steps, and one obtains an optimal alignment
by backtracking the matrixG as described in Table 7.2.

Remark 7.5. Alignment algorithms as the one described here are a standard tool in many genome
data bases. Instead of minimizing a cost function, these programs often maximize a similarity
function, i.e. c(a, b) measures similarity of two letters a, b ∈ Ā. In this case one has to use the
assignment

Gk,` ← max
(
Gk−1,`−1 + c(xk, y`), Gk−1,` + c(xk, �), Gk,`−1 + c(�, y`)

)
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in Table 7.2.

Exercise 7.6 (Longest monotone subsequences). Let x = (xj)
n
j=1 be a given vector in Rn. We

are looking for a subvector (xj(i))
m
i=1 satisfying

j(1) < j(2) < · · · < j(m) and xj(1) ≤ xj(2) ≤ · · · ≤ xj(m)

such that m is as large as possible. Design and implement a dynamic program for this task.
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AlgorithmusH ← Align
(
x,y, c(·, ·)

)
(m,n)←

(
length(x), length(y)

)
G←

(
∞
)

0≤k≤m,0≤`≤n
G0,0 ← 0(
Gk,0

)
1≤k≤m ←

(∑k
i=1 c(xi, �)

)
1≤k≤m(

G0,`

)
1≤`≤n ←

(∑`
j=1 c(�, yj)

)
1≤`≤n

for k ← 1 to m do
for `← 1 to n do

Gk,` ← min
(
Gk−1,`−1 + c(xk, y`), Gk−1,` + c(xk, �), Gk,`−1 + c(�, y`)

)
end for

end for

H ←
(
�
)

1≤i≤2,1≤j≤m+n

(k, `)← (m,n)
T ← m+ n
while k > 0 and ` > 0 do

if Gk,` = Gk−1,`−1 + c(xk, y`) then
(H1,T , H2,T )← (xk, y`)
(k, `)← (k − 1, `− 1)

else if Gk,` = Gk−1,` + c(xk, �) then
(H1,T , H2,T )← (xk, �)
k ← k − 1

else
(H1,T , H2,T )← (�, y`)
`← `− 1

end if
T ← T − 1

end while
if k > 0 then

(H1,T−k+1, . . . ,H1,T )← (x1, . . . , xk)
T ← T − k

else if ` > 0 then
(H2,T−`+1, . . . ,H2,T )← (y1, . . . , y`)
T ← T − `

end if
H ←

(
Hi,j

)
1≤i≤2,T<j≤m+n

Table 7.2: Alignment of two sequences.
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7.3 Bimonotone Regression

Our third example combines ideas from previous chapters, notably convex polyhedral cones and
the PAVA, with dynamic programming to solve a particular regression problem. This material is
taken from Beran and Dümbgen [2].

For integers m,n > 1, let y ∈ Rm×n and w ∈ (0,∞)m×n be given matrices, and consider the
function f : Rm×n → R given by

f(x) :=
∑
i,j

wij(yij − xij)2,

where
∑

i,j · · · is shorthand notation for
∑m

i=1

∑n
j=1 · · · . As in previous chapters, we identify

Rm×n with the Euclidean space Rd, where d = mn, so the standard inner product is given by
〈x, x̃〉 := trace(x>x̃), and ‖x‖ = trace(x>x)1/2 =

(∑
i,j x

2
ij

)1/2 is the Frobenius norm.

Obviously, f is strictly convex and coercive, so there exists a unique minimizer x∗ ∈ K of f over
any closed, convex subset K of Rr×s. Note also that

∇f(x) = 2
(
wij(xij − yij)

)
i≤r,j≤s

in the sense that

f(x+ v) = f(x) + 〈∇f(x),v〉+
∑
i,j

wijv
2
ij .

Thus a point x ∈ K is equal to x∗ if and only if

(7.1) 〈∇f(x), x̃− x〉 ≥ 0 for all x̃ ∈ K.

Now we consider the special set K of all matrices x ∈ Rr×s which are bimonotone in the sense
that

xij ≤ xi+1,j for 1 ≤ i < r and 1 ≤ j ≤ s,

xij ≤ xi,j+1 for 1 ≤ i ≤ r and 1 ≤ j < s.

Note that K is a closed, concex cone (and a convex polyhedron). Consequently, characterization
(7.1) of x∗ is equivalent to the following two conditions:

〈∇f(x),x〉 = 0,(7.2)

〈∇f(x), x̃〉 ≥ 0 for all x̃ ∈ K.(7.3)

Concerning (7.3), we may apply Exercise 2.37 to show that K consists of all matrices

x =
∑
e∈E

λee,

where

E := K ∩ {0, 1}r×s,
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and λe ≥ 0 whenever e 6= 1 := (1)i≤r,j≤s. This representation of K implies that (7.3) is
equivalent to the following two conditions:

〈∇f(x),1〉 = 0,(7.4)

〈∇f(x), e〉 ≥ 0 for all e ∈ E .(7.5)

Now we are ready to describe an explicit active set algorithm for the minimization of f over K. It
consists of alternating between the following two basic procedures finitely many times.

Basic procedure 1: Finding a locally optimal matrix. For x ∈ K consider the set

K(x) :=
{
x̃ ∈ Rm×n : x̃ij ≤ x̃k` whenever xij ≤ xk`

}
.

One can easily verify that K(x) is a subcone of K. More importantly, if σ(1), σ(2), . . . , σ(mn) is
a list of all index pairs (i, j) ∈ {1, . . . ,m} × {1, . . . , n} such that xσ(1) ≤ xσ(2) ≤ · · · ≤ xσ(mn),
then minimizing f(·) over K(x) is equivalent to minimizing

mn∑
i=1

wσ(i)(yσ(i) − zi)2

over all vectors z ∈ Rmn such that zi ≤ zj whenever i ≤ j and zi = zj whenever xσ(i) = xσ(j).
This can be done via a suitable modification of the pool-adjacent-violators algorithm. Finally, the
resulting minimizer z corresponds to a matrix xnew ∈ K(x) with components xnew

σ(i) = zi for
1 ≤ i ≤ mn. This matrix satisfies f(xnew) ≤ f(x) with equality if and only if xnew = x.
Finally, we replace x with xnew and note that the new matrix x is locally optimal in the sense that
f(x̃) ≥ f(x) for all x̃ ∈ K(x).

Basic procedure 2: Checking for global optimality and moving on, if necessary. Suppose
that x ∈ K is locally optimal. Applying (7.2) and (7.4) with K(x) in place of K shows that x
satisfies these two conditions. Consequently, x is equal to the global minimizer x∗ if and only if
it satisfies (7.5). To this end, we determine a matrix

e(x) ∈ arg min
e∈E

〈∇f(x), e〉.

If 〈∇f(x), e〉 = 0, we know that x = x∗. Otherwise, we replace x with

x+ t(x)e(x)

with

t(x) := arg min
t≥0

f(x+ te(x)) = −2−1
〈
∇f(x), e(x)

〉/∑
i,j

eij(x).

The new vector x has a strictly smaller value f(x) than its predecessor. Then we run basic proce-
dure 1 with this new vector x.
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Convergence of the algorithm. Since the number of locally optimal matrices x ∈ K is finite,
after finitely many repetitions of basic procedures 1 and 2, the resulting matrix x will be the global
optimum x∗.

In high-dimensional settings, one could also stop earlier when −
〈
∇f(x), e(x)

〉
is smaller than a

small constant δ > 0.

Minimizing 〈a, ·〉 over E . With a := ∇f(x), basic procedure 2 involves the minimization of
〈a, e〉 with respect to e ∈ E . Note that a matrix e ∈ {0, 1}m×n belongs to K if and only if

eij = 1[j>f(i)]

for some non-increasing function f : {1, . . . ,m} → {0, 1, . . . , n}, and a simple combinatorial
argument shows that

#E =

(
m+ n

m

)
.

Since this grows exponentially in min(m,n), computing 〈a, e〉 for all e ∈ E is not feasible
in general. Fortunately, the optimization problem can be solved via dynamic programming as
follows.

LetH = (Hk,`)1≤k≤m+1,1≤`≤n+1 be given by

Hm+1,· := 0,

Hk,n+1 := min
{ m∑
i=k

n∑
j=1

aijeij : e ∈ E
}

for 1 ≤ k ≤ m,

Hk,` := min
{ m∑
i=k

n∑
j=1

aijeij : e ∈ E , ek` = 1
}

for 1 ≤ k ≤ m, 1 ≤ ` ≤ n,

so

H1,n+1 = min
e∈E
〈a, e〉.

To computeH via dynamic programming, we use the auxiliary matrixB = (Bi,`)1≤i≤m,1≤`≤n+1

with components Bi,n+1 = 0 and

Bi,` :=

n∑
j=`

aij for 1 ≤ i ≤ m, 1 ≤ ` ≤ n.

Then for 1 ≤ k ≤ m and 2 ≤ ` ≤ n+ 1,

Hk,1 = Bk,1 +Hk+1,1,

Hk,` = min
(
Hk,`−1, Bk,` +Hk,`

)
.

Consequently, B and H can be computed in time O(mn). A minimizer e ∈ E of 〈a, e〉 can be
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determined by backtracking:

e← 0
k ← 1
`← n
while k ≤ m and ` ≥ 1 do

if Hk,` = Hk,`+1 then
(ei`)k≤i≤m ← 1
`← `− 1

else
k ← k + 1

end if
end while

Numerical example. Figure 7.1 shows a numerical example for bimonotone regression with
m = n = 100. The upper panel shows the data matrix y on a colour scale from light yellow to
dark purple for −5 ≤ yij ≤ 5. The lower panel depicts the matrix x∗ on a colour scale from light
yellow to dark purple for −2.2 ≤ xij ≤ 2.7.
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Figure 7.1: Example for bimonotone regression.


