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Preface

These lecture notes are a translation of my textbook ‘Einführung in die Statistik’ published by
Birhäuser 2015. They are related to a regular course for B.Sc. students in Mathematics in their
second or third year. All participants are expected to be familiar with basic probability, e.g. as
taught in the B.Sc. course ‘Kombinatorik und Wahrscheinlichkeitsrechnung’.
The choice of topics is admittedly subjective and reflects my experiences with statistical consult-
ing. A distinguishing feature of our field is the ability to quantify uncertainty. For that reason I
focus on confidence regions and much less on point estimation. The latter topic is, in my opin-
ion, overemphasised among academic statisticians. In the present notes numerous procedures with
guaranteed properties for arbitrary finite sample sizes are introduced. One exception is the chapter
on density estimation: Here the goal is to discuss an ill-posed problem and to illustrate important
concepts such as bias and regularity assumptions.
The amount of material corresponds to a lecture of four hours plus two hours of exercises per week.
For shorter courses as in Bern I skip various sections. More complex procedures such as regression
methods or multivariate analyses are treated in advanced courses. In particular, likelihood methods
are not introduced here but in later courses.
As a student and assistant at the University of Heidelberg I had the priviledge to learn a lot about
probability and statistics from Hermann Rost, Dietrich W. Müller and Günter Sawitzki. My choice
of topics and examples reflects partly the inspiring introductory courses by D.W. Müller. Günter
Sawitzki convinced me that stochastic order is a very relevant concept. He also ignited my interest
for graphical methods and numerical aspects. Richard Gill provided valuable information about
the law suit of Lucia de Berk (Example 8.10 in Section 8.2).
Over the last sixteen years, numerous students and assistants have provided comments and con-
structive criticism which helped my to improve the material substantially. An incomplete list of
names comprises Ladina Abbühl, Sofia Caprez, Mika Frei, Manuela Häfliger, Christoph Kopp,
Fabio Matti, Michael Mosimann, Philipp Muri und Niki Zumbrunnen. Special thanks are due to
Dominic Schuhmacher, Kaspar Stucki and Andrea Fraefel who read large parts of the manuscript.

Bern, May 2021 Lutz Dümbgen

Technical hint. The numerical examples and some exercises require suitable software. All cal-
culations and graphics in this book have been produced with the open-source software R [22].
Section A.1 in the appendix contains specific hints for that. I refrained from including this into
the main text. Since R is already the seventh programming environment I am working with, my
confidence in the persistence of such systems is limited.
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Chapter 1

Introduction

In this chapter we discuss some explicit examples of statistical analyses and procedures to illustrate
several important ideas. Thereafter we introduce some basic concepts which will recur repeatedly
in later chapters.

1.1 The Chocolate-Tasting Lady and Fisher’s Exact Test

R. A. Fisher1 illustrated the test carrying his name with a little randomised experiment involving a
tea-tasting lady. Here we consider a similar experiment:

Example 1.1 (Chocolate-tasting lady). A lady claims to be able to distinguish chocolate out of a
freshly opened package from chocolate out of a package which was opened at least one day ago by
taste and smell. Since this claim is smiled at, she and her peers agree on the following randomised
experiment : Two identical small packages, each one containing four pieces of chocolate, are
placed overnight into a cupboard, one package open, the other one still closed. The next day,
the second package is opened, too, and the eight pieces of chocolate are presented to the lady in
random order. Her task is to identify the four pieces from the freshly opened package.

The goal of this experiment is to verify the working hypothesis that the lady is indeed able to
distinguish between “fresh” and “old” chocolate. Easier to describe is the null hypothesis that she
does not smell or taste any difference. Under the latter null hypothesis, the probability that the
lady solves the task equals

1
/(8

4

)
= 1/70 ≈ 0.0143,

because there are
(

8
4

)
= 70 possible answers she could give. If she solves the task, we may claim

with confidence 69/70 ≈ 0.9857 that the working hypothesis is true. If the lady fails, we make no
definitive statement.2

Instead of “with confidence 69/70” one could also say “with an uncertainty of 1/70”. Both state-
ments should be elaborated a bit. Even if the lady solves the task, we don’t know for sure that
the working hypothesis is true. It could happen that a few years later the lady confesses to have
cheated and solved the task just by chance. The stated confidence level may be interpreted as
follows: Suppose a very large number of people claim to have the same ability, and they all par-
ticipate in such an experiment. If none of them has the ability, the relative proportion of people
passing the test is close to 1/70.

1Ronald A. Fisher (1890-1962): important British statistician and mathematical biologist.
2This experiment has really been carried out, and the lady solved the task flawlessly!
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Next, we recall the definition of hypergeometric distributions:

Definition 1.2 (Hypergeometric distributions). A random variable X with values in N0 is hy-
pergeometrically distributed with parameters N ∈ N and `, n ∈ {0, 1, . . . , N}, if for arbitrary
numbers x ∈ N0,

IP(X = x) = fN,`,n(x) :=

(
`

x

)(
N − `
n− x

)/(N
n

)
.

(Here we define
(
a
b

)
:= 0 if b < 0 or b > a.) We denote this distribution by Hyp(N, `, n). The

corresponding distribution function is denoted by FN,`,n, i.e. FN,`,n(x) := IP(X ≤ x) for x ∈ R.
Thus for x ∈ N0,

FN,`,n(x) =

x∑
k=0

fN,`,n(k).

These distributions may be explained with an urn model: Consider an urn withN balls from which
` balls are marked. Now one draws randomly and without replacement n balls from the urn. The
random number X of marked balls in this sample follows Hyp(N, `, n).
In Example 1.1 one could ask whether it would be sufficient if the lady detected at least three of
the four “fresh” pieces. Under the null hypothesis, the number X of correctly detected “fresh”
pieces is hypergeometrically distributed with parameters 8, 4 and 4, so

IP(X ≥ 3) =

(
4

3

)(
4

1

)/(8

4

)
+

(
4

4

)(
4

0

)/(8

4

)
=

17

70
≈ 0.2429.

Thus in case of X ≥ 3 we could only claim with confidence 53/70 ≈ 0.7571 that the lady has
a well-trained sense of smell and taste. In Exercise 1.1 we consider a different variant of this
experiment where the lady gets a second chance in case of X = 3.
A particular feature of Example 1.1 is that all involved people knew that precisely four pieces of
chocolate are “fresh” and four are “old”. Now we discuss a more general version of Fisher’s exact
test in a different situation.

Example 1.3 (Comparison of two treatments in a randomised study). Suppose one wants to verify
that a certain (medical) treatment 1 is better than a standard treatment 2 (or no treatment at all).
As an explicit example consider the regular intake of vitamin C (ascorbic acid) during winter
to prevent a flue (treatment 1) versus no such measure (treatment 2). To verify the benefits of
treatment 1, a group of N test persons is divided randomly into two groups: The n1 individuals in
group 1 receive treatment 1, the n2 individuals in group 2 receive treatment 2. One talks about a
blinded study if the test persons don’t know which group they belong to. With this one wants to
prevent so-called placebo effects. In the explicit example with vitamin C one could give each test
person small capsules to take in daily; in group 1 the capsules contain vitamin C, in group 2 they
contain only a placebo.
After a certain time one determines the number of successes and failures in both groups. The
results may be summarised in a two-by-two table:

Success Failure
Treatment 1 H1 n1 −H1 n1

Treatment 2 H2 n2 −H2 n2

H+ := H1 +H2 N −H+ N

Thus one observed H+ successes in total, Hi times in group i.
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The total number H+ is random and depends on many factors and circumstances. But under the
null hypothesis that the two treatments have precisely the same effects, the conditional distribution
of H1, given H+, equals Hyp(N,H+, n1). For under the null hypothesis, by the end of the study
there will be H+ people with successful treatment and N −H+ people with failure, regardless of
the random splitting into two groups.
Under the working hypothesis that treatment 1 is better than treatment 2 one expects relatively
large values of H1. The question is how large H1 should be to be convinced of the working
hypothesis. To this end we fix a test level α ∈ (0, 1) and consider the quantiles

q1−α;N,`,n := min
{
x ∈ N0 : FN,`,n(x) ≥ 1− α

}
.

Under the null hypothesis we have the inequality

IP
(
H1 > q1−α;N,`,n1

∣∣H+ = `
)

= 1− IP
(
H1 ≤ q1−α;N,`,n1

∣∣H+ = `
)

= 1− FN,`,n1(q1−α;N,`,n1)

≤ α.

In particular,

IP
(
H1 > q1−α;N,H+,n1

)
=

N∑
`=0

IP(H+ = `) IP
(
H1 > q1−α;N,`,n1

∣∣H+ = `
)

≤
N∑
`=0

IP(H+ = `)α

= α.

In case of H1 > q1−α;N,H+,n1 we may claim with confidence 1 − α that the null hypothesis is
wrong and conclude indirectly that treatment 1 is more effective than treatment 2.
Here comes a fictitious data example: In a randomised study during November, December and
January, N = 40 test persons took a small capsule each day. For n1 = 20 persons all capsules
contained a certain dose of vitamin C, for the other n2 = 20 persons the capsules contained a
placebo. By the end of January it turned out that in group 1, H1 = 15 persons stayed healthy
during the whole period while n1 − H1 = 5 persons had a flu at least once. In group 2 the
numbers were H2 = 11 and n2 − H2 = 9. Typically one uses the test level α = 5%. Here this
leads to the critical value q1−α;N,H+,n1 = q0.95;40,26,20 = 15, because F40,26,20(14) ≈ 0.8399
and F40,26,20(15) ≈ 0.9521. Since H1 is not larger than 15, we cannot claim anything about the
positive effect of vitamin C with confidence 95%.

1.2 Tail Regions and P-Values

Fisher’s exact test and numerous other statistical procedure utilise a special transformation of
test quantities into so-called p-values in the unit interval. We describe now the general underlying
principle which will recur repeatedly. The starting point is a random variableX and a hypothetical
probability distribution Po of X . The question is whether X follows the distribution Po indeed or
whether the observed value ofX is “suspiciously small” or “suspiciously large”. An indispensable
tool is the distribution function Fo of Po. That means, Fo(x) := Po((−∞, x]) = IP(X ≤ x) for
any real number, and Fo(x−) := lims→x,s<x Fo(s) = Po((−∞, x)) = IP(X < x).
To judge whether X is suspiciously small, we compute the left-sided p-value

Po((−∞, X]) = Fo(X),
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x

F
o(
x)

0

1

α

1 −α

Figure 1.1: Illustration of Lemma 1.4.

and to judge whether X is suspiciously large, we compute the right-sided p-value

Po([X,∞)) = 1− Fo(X −).

With the two-sided p-value

2 ·min
{
Po((−∞, X]), Po([X,∞))

}
= 2 ·min{Fo(X), 1− Fo(X −)}

we may judge whether X is suspiciously small or large. In all three cases, a small p-value is
evidence against the hypothesis that X follows Po. The subsequent lemma provides a precise
statement.

Lemma 1.4 (P-values). Let X be a real-valued random variable with distribution Po and distri-
bution function Fo. Then

IP
(
Fo(X) ≤ α

)
IP
(
1− Fo(X −) ≤ α

)
IP
(
2 ·min{Fo(X), 1− Fo(X −)} ≤ α

)
 ≤ α

for any α ∈ (0, 1). All three inequalities are equalities if Fo is continuous.

Before proving this lemma let us consider the special case that IP(X ∈ Z) = Po(Z) = 1. Here
Fo is a step function which is constant on any interval [x, x + 1), x ∈ Z. Figure 1.1 illustrates
Lemma 1.4 in this situation. One sees the graph of Fo. The jump size of Fo at a point x ∈ Z, that is
the difference Fo(x)− Fo(x−), equals Po({x}) = IP(X = x). The probability that Fo(X) ≤ α
is equal to the sum of all jump sizes at positions x with Fo(x) ≤ α, and this sum is clearly smaller
or equal to α. Analogously the probability that 1− Fo(X −) ≤ α is equal to the sum of all jump
sizes at positions x with Fo(x−) ≥ 1− α, and this sum is at most α.

Proof of Lemma 1.4. We use the well-known fact that the function Fo is non-decreasing and
continuous from the right with limits limx→−∞ Fo(x) = 0 and limx→∞ Fo(x) = 1. For fixed
α ∈ (0, 1) the real number xo := inf{x ∈ R : Fo(x) > α} is well-defined with Fo(x) ≤ α for
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any x < xo and Fo(x) > α for any x > xo. Moreover, Fo(xo) ≥ α because of the right-continuity
of Fo. In case of Fo(xo) > α,

IP
(
Fo(X) ≤ α

)
= IP(X < xo) = Fo(xo−) ≤ α.

In case of Fo(xo) = α,

IP
(
Fo(X) ≤ α

)
= IP(X ≤ xo) = Fo(xo) = α.

If Fo is continuous, we are necessarily in the latter case.
The inequalities for 1 − Fo(X −) may be verified analogously or by means of a symmetry con-
sideration: The random variable X̃ := −X has distribution function F̃o(x) = 1 − Fo((−x)−).
Consequently,

IP
(
1− Fo(X −) ≤ α

)
= IP

(
F̃o(X̃) ≤ α

)
≤ α.

Equality holds true if F̃o is continuous which is equivalent to Fo being continuous.
Concerning the two-sided p-value, note that at least one of the two values Fo(X) = Po((−∞, X])
and 1− Fo(X −) = Po([X,∞)) has to be greater than or equal to 1/2. Thus

IP
(
2 ·min{Fo(X), 1− Fo(X −)} ≤ α

)
= IP

(
Fo(X) ≤ α/2 or 1− Fo(X −) ≤ α/2

)
= IP

(
Fo(X) ≤ α/2

)
+ IP

(
1− Fo(X −) ≤ α/2

)
≤ α/2 + α/2 = α

with equality in case of a continuous distribution function Fo.

Example 1.5 (Fisher’s exact test). We consider once more example 1.3. The null hypothesis is
rejected if H1 > q1−α;N,H+,n1 . One can easily verify that the latter inequality is equivalent to the
right-sided p-value 1 − FN,H+,n1(H1−) = 1 − FN,H+,n1(H1 − 1) being less than or equal to
α. The present setting corresponds to Lemma 1.4 with X = H1 and Po = Hyp(N,H+, n1), the
conditional distribution of H1, given H+, under the null hypothesis.
Figure 1.2 illustrates this for the fictitious study on vitamin C. The group sizes were n1 = n2 = 20
with the success numbers H1 = 15 and H2 = 11. The figure shows twice a bar plot of the
hypergeometric weight function f40,26,20. In the upper part the weights f40,26,20(x) with x >
q0.95;40,26,20 = 15 are marked dark. The sum of these weights is less than or equal to 5%, the sum
of the remaining weights is at least 95%. In the lower part the weights f40,26,20(x) with x ≥ H1 =
15 are marked dark. The sum of these weights is the (right-sided) p-value 1 − F40,26,50(14) ≈
0.1601. The fact that the latter p-value is greater than the test level 5% confirmes that H1 is not
larger than the critical value q0.95;N,H+,n1 .

1.3 The Size of a Population

Many statistical analyses involve samples from a certain population. By means of the sample one
wants to draw conclusions about the total population. Quite often one focuses on certain averages
or relative proportions within the population whereas its total size is less frequently of interest.
But inference about a population size is an interesting problem and useful to illustrate statistical
concepts.
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Figure 1.2: Fisher’s exact test via critical value (above) or p-value (below).
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Population and sample space. LetM be a population of “individuals” of unknown size

N := #M.

Now we draw a sample ω = (ω1, ω2, . . . , ωn) of size n from that population without replacement.
That means, ω is an element of the sample space{

ω ∈Mn : ωi 6= ωj whenever i 6= j
}
.

This sample space consists of

[N ]n := N(N − 1) · · · (N − n+ 1)

different samples. For if we want to specify an arbitrary sample ω, there are N possibilities for
ω1, then N − 1 possibilities for ω2, thereafter N − 2 possibilities for ω3 and so on. In general we
write [a]k :=

∏k−1
i=0 (a− i) for a ∈ R and k ∈ N while [a]0 := 1.

The case of individuals with reference numbers

We assume that each individual in the population has a unique reference number between 1 and
N which is easily obtained. Here we may identify the populationM with the set {1, 2, . . . , N},
and our sample ω corresponds to a tuple of n different natural numbers. A useful statistic is the
number

X(ω) := max(ω1, ω2, . . . , ωn) ≥ n.

This statistic X(ω) is obviously a lower bound for the unknown population size N , and this is
essentially the only conclusion we may draw with absolute certainty. The art of statistics is to
draw further conclusions about N . In particular we would like to obtain an upper bound for N .

Example 1.6 (Matriculation numbers at the University of Bern in 2005/2006). Students receive
a unique matriculation number when they sign up for a Swiss university program for the first
time. This number is retained even when they switch to a different university. The eight-digit
matriculation number has the form

J1J2−Z1Z2Z3−Z4Z5P.

Here J1 and J2 denote the academic year of the very first registration, for instance J1J2 = 05
for students who started in the fall semester 2005 or in the spring semester 2006. The digits
Z1, Z2, . . . , Z5 correspond to a five-digit number within a certain range depending on the univer-
sity. Especially at the University of Bern, these numbers are assigned consecutively from 10′000
through 14′999. The last digit, P , is just a security digit to detect errors when filling out electronic
forms. For instance, if a student has matriculation number 05−106−020, this means that he was
the 603-rd person to sign up at the University of Bern in the academic year 2005/2006.
Now let N be the total number of students having started their university studies in Bern in the
academic year 2005/2006. In a lecture we obtained the matriculation numbers of n = 9 such
students, resulting in a tuple ω = (ω1, . . . , ω9) of nine different numbers in {1, 2, . . . , N}. It
turned out that X(ω) = 2782.

A statistical model. To say more about the unknown quantity N , we have to make certain as-
sumptions about our sample. For simplicity we assume that ω was chosen completely at random
(even if it was obtained differently). That way the statistic X becomes a random variable

X : Ω→ Z
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defined on the sample space

Ω :=
{
ω ∈ Nn : ωi 6= ωj whenever i 6= j

}
.

The latter is equipped with a probability measure IPN depending on the unknown parameter N .
Precisely, IPN is the uniform distribution on the subset ΩN =

{
ω ∈ Ω : X(ω) ≤ N

}
of Ω, i.e.

IPN (B) =
#(B ∩ ΩN )

#ΩN
=

#(B ∩ ΩN )

[N ]n

for B ⊂ Ω. Generally the dependence of various probabilities, expected values and other objects
on the population size is indicated by a subscript N . In particular the following equations are true:

IPN (X = x) =


n[x− 1]n−1

[N ]n
for x ∈ {n, n+ 1, . . . , N},

0 else,
(1.1)

FN (x) := IPN (X ≤ x) =


0 for x < n,

[x]n
[N ]n

for x ∈ {n, n+ 1, . . . , N},

1 for x ≥ N.

(1.2)

As to (1.1), to generate a sample ω ∈ Ω with X(ω) = x ∈ {n, n + 1, n + 1, . . .}, one could first
specify which of the n components of ω equals x, and then one could fill the remaining n − 1
positions with different numbers from {1, . . . , x − 1} which amounts to [x − 1]n−1 possibilities.
Formula (1.2) follows from the fact that there are [x]n samples ω ∈ Ω with X(ω) ≤ x.

An estimator for N . By means of the sample ω we would like to compute an estimate N̂(ω) of
the population size N . A first attempt would be N̂(ω) := X(ω). But this value is systematically
too small. To make this precise we compute the expected value of X .

Lemma 1.7. For arbitrary N ≥ n,

IEN (X) =
n (N + 1)

n+ 1
.

Proof of Lemma 1.7. Equation (1.1) and the fact that
∑N

x=n IPN (X = x) = 1 lead to the general
formula

∑N
x=n[x− 1]n−1 = [N ]n/n for integers 1 ≤ n ≤ N . In other words,

(1.3)
M∑
j=m

[j]m =
[M + 1]m+1

m+ 1
for integers 0 ≤ m ≤M.

Hence IEN (X) equals

N∑
x=n

IPN (X = x) · x =
n

[N ]n

N∑
x=n

[x]n =
n

[N ]n

[N + 1]n+1

n+ 1
=

n (N + 1)

n+ 1
.

Exercise 1.6 provides an alternative proof of this lemma.

Lemma 1.7 implies that

N̂ :=
n+ 1

n
X − 1
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is an unbiased estimator of N . That means, for arbitrary parameters N ≥ n,

IEN (N̂) = N.

The imprecision of an arbitrary estimator N̂ may be quantified by its mean quadratic error

IEN
(
(N̂ −N)2

)
.

The imprecision of our specific estimator N̂ = (1 + 1/n)X − 1 is analyzed in Exercise 1.7. It
turns out that

IEN
(
(N̂ −N)2

)
<

N2

n2
.

This implies that

IEN

(∣∣∣N̂
N
− 1
∣∣∣) ≤

√
IEN

((N̂
N
− 1
)2
)
<

1

n
.

Here we utilised the well-known inequality IE(|Y |)2 ≤ IE(Y 2) for real-valued random variables
Y . Hence the relative error |N̂/N − 1| is smaller than 1/n on average.

Example 1.8 (Matriculations 2005/2006). In Example 1.6 we observed a sample of size n = 9
with X = 2782, so

N̂ =
10

9
· 2782− 1 = 3090.111.

Hence we guess that 3090 students enrolled in the academic year 2005/2006 at the University of
Bern.

Confidence bounds for N . Instead of an estimator one can also determine bounds for N which
are correct with a given confidence. The idea is to consider all hypothetical values of N and to
check in each case whether the observed value ofX is “suspiciously small” or “suspiciously large”
for the corresponding distribution function FN . To this end we use Lemma 1.4 about p-values.
In the present context it follows from Lemma 1.4 that

IPN (FN (X) ≤ α) ≤ α

for any fixed number α. In other words, with probability 1 − α the unknown true parameter N
satisfies the inequality FN (X) > α which is equivalent to [X]n/[N ]n > α. Since [N ]n is strictly
increasing in N ≥ n, these inequalities are equivalent to N ≤ bα(X), where

bα(x) := max
{
N ≥ n : FN (x) > α

}
= max

{
N ≥ x : [N ]n < [x]n/α

}
for integers x ≥ n. This data-dependent number bα(X) is an upper (1−α)-confidence bound for
N . That means,

IPN (N ≤ bα(X)) ≥ 1− α

for any value of N ≥ n. A simple explicit formula for bα(x) is not available, but its numerical
computation is straightforward. When analysing a specific sample ω, we claim with confidence
1 − α that N ≤ bα(X(ω)). Note that we do not say: “With probability 1 − α, N ≤ bα(X(ω)).”
For a given data set ω, the inequality N ≤ bα(X(ω)) is true with probability one or zero! The
formulation “with confidence 1 − α” indicates that we use a procedure with error rate at most α
in the long run. See also our comments on Example 1.1.
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Figure 1.3: Construction of the upper confidence bound b0.1(2782) with n = 9.

x 500 1000 1500 2000 2500 3000 3500
b0.5(x) 539 1079 1619 2159 2699 3239 3779
b0.1(x) 644 1290 1936 2581 3227 3873 4519
b0.05(x) 695 1393 2090 2788 3485 4183 4880
b0.01(x) 831 1665 2499 3333 4167 5001 5835

Table 1.1: Some values of the upper confidence bound bα(x) with n = 9.

Example 1.9 (Matriculations 2005/2006). Figure 1.3 shows for n = 9 and X = 2782 the values
FN (X) as a function of N ≥ 2782 and the resulting upper 90%-confidence bound b0.1(2782) =
3591. Of course the latter is hard to detect by eye, but indeed F3591(X) > 0.1 > F3592(X). Thus
we claim with confidence 90% that in the academic year 2005/2006 at most 3591 students started
studying in Bern.
Table 1.1 shows for n = 9 and α ∈ {0.5, 0.1, 0.05, 0.01} some values of the upper bound bα(x).

Analogously one can compute a lower confidence bound for N . It follows from Lemma 1.4 that

IPN (FN (X − 1) ≥ 1− α) ≤ α.

In other words, with probability 1 − α the unknown true parameter N satisfies the inequality
FN (X − 1) < 1− α which is equivalent to [X − 1]n/[N ]n < 1− α and to N ≥ aα(X), where

aα(x) := min
{
N ≥ n : FN (x− 1) < 1− α

}
= min

{
N ≥ x : [N ]n > [x− 1]n/(1− α)

}
for integers x ≥ n. Thus we obtain a lower (1−α)-confidence bound aα(X) for N . That means,

IPN (N ≥ aα(X)) ≥ 1− α

for any value of N ≥ n.
Finally one can combine upper and lower bound as follows: For any value of N ≥ n,

IPN
(
aα/2(X) ≤ N ≤ bα/2(X)

)
≥ 1− α.
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This yields a (1− α)-confidence interval
[
aα/2(X), bα/2(X)

]
for N .

Whether a lower bound, an upper bound or an interval is of interest depends on the specific appli-
cation and should be clarified before analysing the data.

Remark 1.10. The problem described in this section is known in the literature as the “taxi
problem”: A visitor arrives at the train station of a city and sees n taxis with licence numbers
ω1, ω2, . . . , ωn. The question is how many taxis are in use in this city. The procedures described
here have been used, for instance, by the allied forces in the second world war to draw conclusions
about the number of german tanks. This is described in the monograph of G. E. Noether3 (1971).

Capture-Recapture Experiments

In ecology the size of a population is sometimes estimated by means of a capture-recapture exper-
iment. The latter are also used in epidemiology, medicine and social sciences. In the simplest case
one conducts a two-stage experiment:
Step 1 (Capture): One draws a first random sample of size ` (without replacement) from the
population, marks these individuals and releases them.
Step 2 (Recapture): One draws a second random sample of size n (without replacement) and
determines the number

X := number of marked individuals in the second sample.

We assume tacitly that N ≥ max(`, n). Big values of X indicate a small population size N ,
smaller values a larger one. A possible estimator for N is given by

N̂ :=
`n

X

(or N̂ := `n/(X + 1), to avoid division by zero). The idea behind that estimator is as follows:
After step 1, the relative fraction of marked individuals in the whole population is `/N . Within
the second sample the relative fraction of marked individuals is X/n. Assuming that these two
fractions are similar, one may guess that N is approximately `n/X .
One can easily verify that the random variableX is hypergeometrically distributed with parameters
N , ` and n. To compute confidence bounds for N we need a monotonicity property which is
proven in Exercise 1.8: For fixed x ∈ N0, the value FN,`,n(x) is non-decreasing in N . Note that
the inequality FN,`,n(X) > α holds true with probability at least 1− α according to Lemma 1.4.
But this inequality is equivalent to N being greater than or equal to the lower (1− α)-confidence
bound aα(X), where

aα(x) := min
{
N ≥ max(`, n) : FN,`,n(x) > α

}
for x ∈ {0, 1, . . . ,min(`, n)}.
Alternatively one could start from the inequality FN,`,n(X − 1) < 1 − α which holds true with
probability 1− α, too. This leads to the upper (1− α)-confidence bound bα(X) for N , where

bα(x) := sup
{
N ≥ max(`, n) : FN,`,n(x− 1) < 1− α

}
for x ∈ {0, 1, . . . ,min(`, n)}. In case of x = 0 we just get bα(x) = ∞ because FN,`,n(−1) = 0
for arbitrary N ≥ max(n, `). In case of x > 0, however, bα(x) <∞, see Exercise 1.9.
Again one should determine before the data analysis whether a lower bound, an upper bound or a
combination of both is of interest.

3Gottfried E. Noether (1915-1991): Statistician and educational scientist; born in Germany and emigrated to the
USA in 1939.
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Example 1.11. Suppose that ` = n = 20, and we want to determine a lower 95%-confidence
bound for the population size N . Suppose that the experiment yielded the value X = 2. Now we
have to find out for which potential parameters N the value FN,20,20(2) is suspiciously small, i.e.
smaller than or equal to 5%. Here are some explicit numbers:

N 75 76 77 78 79 80 81 82

FN,20,20(2) .0417 .0455 .0495 .0537 .0580 .0625 .0671 .0719

This table shows that the lower 95%-confidence bound a0.05(2) equals 78. Thus one may claim
with confidence 95% that N ≥ 78. An absolutely correct lower bound would be `+ n−X = 38.

1.4 Main Types of Statistical Procedures

Statistical methods fall into the following categories:
Descriptive statistics: The task is to describe or summarise the raw data quantitatively or graph-
ically.
Inductive statistics: From empirical or experimental data one wants to draw conclusions about
underlying phenomena, despite incomplete information. To this end, the data are considered as
random objects and analyzed with tools from probability theory.
While many laymen associate “statistics” with big tables or colourful graphics, inductive statistics
is more important and demanding. Our focus is primarily in inductive methods, although some
graphical procedures will be covered as well. Our starting point are (raw) data ω ∈ Ω which
is considered as random. That means, we consider a probability space (Ω,A, IP) with a σ-field
A over Ω and an unknown probability distribution IP on A. Readers who are not familiar with
measure theory should just think about a countable set Ω and a discrete probability distribution IP
on Ω.
Usually, we make certain assumptions about the probability measure IP, and often it depends on
a certain unknown parameter θ in a given parameter space Θ. This is indicated by a subscript θ,
writing IPθ instead of IP.
The three most important types of statistical procedures are (point) estimators, confidence re-
gions and (statistical) tests. Out of these, confidence regions are particularly relevant and useful.
Two other types of procedures, predictors and prediction regions, are of interest in time series
analyses.

(Point) Estimators

Suppose one is interested in a real or arbitrary quantity g(θ) ∈ G of the unknown parameter θ,
where G and g : Θ→ G are given. A (point) estimator of g(θ) is a mapping4

ĝ : Ω→ G.

For an arbitrary data set ω ∈ Ω this defines an estimate ĝ(ω) of g(θ); see Figure 1.4.
Point estimators are evaluated by their precision. The goal is to construct an estimator such that
ĝ is “as close as possible” to the unknown value g(θ). In this context there are some concepts
some of which we saw already. For simplicity we consider only the case G = R, i.e. real-valued
quantities g(θ).

4Strictly speaking, (G,B) is a measurable space, and ĝ is a A-B-measurable mapping.
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Figure 1.4: A point estimator ĝ of g(θ).

Bias and unbiasedness. The bias of an estimator is its systematic error which depends typically
on θ:

Biasθ(ĝ) := IEθ(ĝ)− g(θ).

An estimator ĝ of g(θ) is called unbiased if IEθ(ĝ) = g(θ) for arbitrary parameters θ ∈ Θ, that
means,

Biasθ(ĝ) = 0 for any θ ∈ Θ.

(Recall that if IPθ is a discrete distribution,

IEθ(ĝ) =
∑
ω∈Ω

Pθ({ω}) ĝ(ω) =
∑
g∈R

IPθ(ĝ = g) g.

The second formula is true whenever the distribution of ĝ under IPθ is discrete.)

Mean squared error. A common measure for the imprecision of a point estimator is its mean
squared error,

MSEθ(ĝ) := IEθ
(
(ĝ − g(θ))2

)
,

or its root mean squared error,

RMSEθ(ĝ) :=
√

MSEθ(ĝ).

It follows from the well-known formula IE(Y 2) = Var(Y ) + IE(Y )2 that

MSEθ(ĝ) = Varθ(ĝ) + Biasθ(ĝ)2.

Thus the mean squared error equals the sum of the variance, describing random fluctuations of
ĝ around its mean, and the squared bias, describing the systematic error of ĝ. For an unbiased
estimator we get the simple identity MSEθ(ĝ) = Varθ(ĝ).
(If IPθ is a discrete distribution,

MSEθ(ĝ) =
∑
ω∈Ω

Pθ({ω})
(
ĝ(ω)− g(θ)

)2
=
∑
g∈R

IPθ(ĝ = g)(g − g(θ))2,

and the latter formula is true whenever the distribution of ĝ under IPθ is discrete.)
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Example 1.12 (Estimating a population size, I). As in the first part of Section 1.3 we consider
a sample ω = (ω1, ω2, . . . , ωn) of n different numbers in {1, 2, . . . , N}, where the population
size N is unknown. Here Ω =

{
ω ∈ Nn : ωi 6= ωj whenever i 6= j

}
, and θ = N lies in the

parameter space Θ = {n, n + 1, n + 2, . . .}. Moreover, IPN is the uniform distribution on the
subset ΩN =

{
ω ∈ Ω : ω1, . . . , ωn ≤ N

}
of Ω. This corresponds to our assumption that ω was

drawn completely at random.
Now we are interested in g(N) := N and consider the maximal entry X(ω) of ω. A potential
point estimator of N would be X itself. But according to Lemma 1.7,

BiasN (X) = IEN (X)−N =
n (N + 1)

n+ 1
−N =

n−N
n+ 1

.

Exercise 1.7 yields the expression

VarN (X) =
n(N + 1)(N − n)

(n+ 1)2(n+ 2)
,

and after a few manipulations we obtain the mean squared error

MSEN (X) = VarN (X) + BiasN (X)2 =
(2N − n)(N − n)

(n+ 1)(n+ 2)
.

An alternative to X is the unbiased estimator N̂ := (1 + 1/n)X − 1. This estimator satisfies the
equation

MSEN (N̂) = VarN (N̂) =
(n+ 1)2

n2
VarN (X) =

(N + 1)(N − n)

n(n+ 2)
.

From this one can deduce that MSEN (N̂) < MSEN (X) if and only if (n− 1)N > n2 + n + 1.
Hence the estimator N̂ is superior to the naive estimator X in terms of mean squared error if the
sample size n is larger than 1 and the true population size N is sufficiently large.

Example 1.13 (Estimating a population size, II). Suppose the individuals of a population carry
the reference numbers a+1, a+2, . . . , b, where a and b are unknown integers. If we draw a random
sample from this population without replacement, it corresponds to a tuple ω = (ω1, ω2, . . . , ωn)
in the sample space Ω =

{
ω ∈ Zn : ωi 6= ωj whenever i 6= j

}
, and the unknown parameter

θ = (a, b) lies in the parameter space Θ =
{

(a, b) : a, b ∈ Z, b− a ≥ n
}

.
A specific example would be the matriculation numbers if one considers students having started in
Bern, not knowing that the matriculation numbers (Z1Z2Z2, Z4, Z5) start at 10′000, i.e. a = 9′999.
Assuming again that the sample ω has been drawn completely at random, IP(a,b) is the uniform
distribution on the set Ω(a,b) =

{
ω ∈ Ω : a < ω1, . . . , ωn ≤ b

}
.

Suppose we are still interested in the parameter N = b−a = g(a, b). To estimate or bound it, one
could consider the statistic

X(ω) := max(ω1, . . . , ωn)−min(ω1, . . . , ωn).

Here we have to assume that n ≥ 2. The distribution of X depends only on N , because it remains
the same if we replace ω with (ω1 − a, ω2 − a, . . . , ωn − a) which is uniformly distributed on
Ω(0,N). With the considerations in Exercise 1.6 one can show that

N̂ :=
(n+ 1)X

n− 1
− 1

defines an unbiased estimator of N .
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Figure 1.5: A confidence region C for g(θ).

Example 1.14 (Estimating a population size, III). In connection with capture-recapture exper-
iments we consider a population M ⊂ Mtotal of N individuals and the set Ω of all pairs
ω = (ω(1), ω(2)) of two samples ω(1) = (ω

(1)
1 , . . . , ω

(1)
` ) and ω(2) = (ω

(2)
1 , . . . , ω

(2)
n ) from

Mtotal, each of them with pairwise different elements. Here IPM is the uniform distribution
on the subset of all ω ∈ Ω with ω(1)

i , ω
(2)
j ∈M for all i ≤ ` and j ≤ n.

For instance, M could be the population of pigeons that are visiting a particular park in Bern
regularly, andMtotal is, say, the set of all pigeons worldwide.
The superpopulation Mtotal allows us to define a common sample space Ω, and the parameter
space Θ consists of (all) subsetsM ofMtotal with at least max(`, n) elements. Suppose we are
mainly interested in the value g(M) = N = #M. If ω ∼ IPM, then the random variable

X(ω) := #
(
{ω(1)

1 , . . . , ω
(1)
` } ∩ {ω

(2)
1 , . . . , ω(2)

n }
)

has distribution Hyp(N, `, n) if ω ∼ IPM. In this setting, there exists no unbiased estimator of
N . Precisely, as shown in Exercise 1.11, there exists no function h : {0, 1, . . . ,min(`, n)} → R
such that ĝ = h(X) is an unbiased estimator of N .

Confidence Regions

Instead of a point ĝ(ω) ∈ G one specifies a subset C(ω) ⊂ G, claiming or hoping that it contains
the point g(θ). The corresponding mapping

C : Ω→ P(G)

is called a confidence region for g(θ); see Figure 1.5.
If one can guarantee that for a given α ∈ (0, 1),

IPθ
(
g(θ) ∈ C

)
≥ 1− α for arbitrary θ ∈ Θ,

then C is called a confidence region for g(θ)with confidence level 1 − α or briefly a (1 − α)-
confidence region for g(θ). The probability on the left hand side involves the fixed point g(θ) and
the random set C. Written at full length, it stands for IPθ

({
ω ∈ Ω : g(θ) ∈ C(ω)

})
. 5

5We assume tacitly that
{
ω ∈ Ω : g(θ) ∈ C(ω)

}
belongs to the σ-field A for arbitrary θ ∈ Θ.
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A special recipe. In the context of population sizes we utilised a method which will be used
in later sections again. Let X : Ω → R be a real-valued statistic, and let Fθ be its distribution
function, i.e. Fθ(x) := IPθ(X ≤ x) for x ∈ R. Suppose we know Fθ for each hypothetical value
θ ∈ Θ. According to Lemma 1.4, the true parameter θ satisfies the inequality Fθ(X) > α with
probability 1− α. Consequently, if we set

C̃(x) :=
{
g(θ) : θ ∈ Θ, Fθ(x) > α

}
for x ∈ R, then ω 7→ C̃(X(ω)) defines a (1− α)-confidence region for g(θ). In this construction
we exclude all hypothetical parameters θ ∈ Θ such that the value X(ω) is suspiciously small for
Fθ.
Analogously one could exclude all hypothetical parameters in Θ such that the value X(ω) is
suspiciously large. This leads to the (1− α)-confidence region ω 7→ C̃(X(ω)) with

C̃(x) :=
{
g(θ) : θ ∈ Θ, Fθ(x−) < 1− α

}
for x ∈ R.
Finally one could combine both approaches and exclude all hypothetical parameters in Θ such
that the value X(ω) is suspiciously extreme. This leads to the (1 − α)-confidence region ω 7→
C̃(X(ω)) with

C̃(x) :=
{
g(θ) : θ ∈ Θ, Fθ(x) > α/2 and Fθ(x−) < 1− α/2

}
for x ∈ R. One could split the error probability α differently and define

C̃(x) :=
{
g(θ) : θ ∈ Θ, Fθ(x) > α1 and Fθ(x−) < 1− α2

}
with given numbers α1, α2 > 0 such that α1 + α2 = α.
In all three cases we reduce the raw data ω to the value X(ω) and then determine the set of all
hypothetical parameters θ ∈ Θ which are plausible for X(ω). Whether the resulting confidence
regions are really useful and which shape they have depends on the specific situation.

(Statistical) Tests

By means of the data ω ∈ Ω one wants to verify a certain “effect” (working hypothesis, alternative
hypothesis). For this purpose one formulates a null hypothesis. That means, one describes the
distribution of the data under the assumption that the effect in question is not present. Then
one specifies for which data one rejects this null hypothesis. That means, one divides Ω into an
acceptance region Ωo and a rejection region (also called critical region) Ω1 = Ω \ Ωo.6 In case
of ω ∈ Ωo, no conclusion is drawn; the null hypothesis is considered as possibly true. In case of
ω ∈ Ω1 one claims that the null hypothesis is wrong and that the working hypothesis is true or at
least plausible.
This procedure is a so-called statistical test. When applying it one has to be aware of two types of
potential errors:
Error of the first type: The null hypothesis is true, but we reject it because ω ∈ Ω1.
Error of the second type: The working hypothesis is true, but we don’t reject the null hypothesis
because ω ∈ Ωo.
Since these two types of errors cannot be avoided simultaneously, we focus on the probability of
an error of the first type. Indeed, often the null hypothesis is easier to describe and handle than the
alternative hypothesis. If we can guarantee that for a given test level α ∈ (0, 1),

IP(Ω1) ≤ α under the null hypothesis,
6The sets Ωo,Ω1 should belong to the σ-field A.
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then our test is called a test with level α. Under this condition, if ω ∈ Ω1 one may claim with
confidence 1 − α that the null hypothesis is wrong. In other terms, in case of ω ∈ Ω1 we reject
the null hypothesis at test level α.

Example 1.15 (Fisher’s exact test for randomised studies). In Example 1.3 the goal was to verify,
if possible, the working hypothesis that treatment 1 is more effective than treatment 2. The null
hypothesis is that there is no difference between the two treatments. Now let Ω be the set of all
two-by-two tables which could result from a randomised study:

h1 n1 − h1 n1

h2 n2 − h2 n2

h+ = h1 + h2 N − h+ N

The distribution IP takes into account the recruitment of test persons, their assignment to the two
treatment groups, and all factors having an impact on the success or non-success of the treat-
ments. Typically we don’t know IP completely. But we assume that under the null hypothesis the
conditional distribution of the upper left entry h1, given the group sizes and the total number of
successes, equals Hyp(N,h+, n1).
The critical region Ω1 consists of all two-by-two tables in which h1 is suspiciously large in the
sense that it exceeds the critical value q1−α;N,h+,n1 . This is equivalent to the right-sided p-value
1− FN,h+,n1(h1 − 1) being less than or equal to α.

Before describing another example of a statistical test, let us recall the definition of binomial
distributions:

Definition 1.16 (Binomial distributions). A random variable X is binomially distributed with
parameters n ∈ N and p ∈ [0, 1], if for arbitrary x ∈ {0, 1, . . . , n},

IP(X = x) = fn,p(x) :=

(
n

x

)
px(1− p)n−x.

We denote this distribution with Bin(n, p). The corresponding distribution function is denoted by
Fn,p, i.e. Fn,p(x) =

∑x
k=0 fn,p(k) for x ∈ {0, 1, . . . , n}.

The binomial distribution Bin(n, p) describes the distribution of a random sum X =
∑n

i=1Xi,
where the summands X1, X2, . . . , Xn are stochastically independent with IP(Xi = 1) = p and
IP(Xi = 0) = 1− p.

Example 1.17 (A binomial test of randomness). Before carrying on with reading, the reader
should write down a “completely random” sequence of 50 digits in {0, 1}.
If one asks people to write down a random sequence ω = (ω1, ω2, . . . , ωn) of n digits ωi ∈ {0, 1},
they often produce sequences with too many changes. To quantify this effect we define the test
statistic

X(ω) := #{i < n : ωi 6= ωi+1}.

Under the null hypothesis the sequence has been chosen completely at random from {0, 1}n.
One can easily verify that under this null hypothesis, X has distribution Bin(n − 1, 0.5). To
judge whether the observed value of X is suspiciously large, we compute the right-sided p-value
1− Fn−1,0.5(X − 1). It follows from Lemma 1.4 that

IP
(
1− Fn−1,0.5(X − 1) ≤ α

)
≤ α under the null hypothesis.

Hence if this p-value is less than or equal to α, we may claim with confidence 1 − α that the
sequence hasn’t been chosen completely at random.
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Here the sample space equals Ω = {0, 1}n, and the critical region is given by

Ω1 =
{
ω ∈ {0, 1}n : 1− Fn−1,0.5(X(ω)− 1) ≤ α

}
=
{
ω ∈ {0, 1}n : X(ω) > q1−α;n−1,0.5

}
with the critical value

q1−α;n−1,0.5 := min
{
x ∈ {0, 1, . . . , n− 1} : Fn−1,0.5(x) ≥ 1− α

}
.

Numerical example. If n = 50 and α = 0.05, the critical value is q1−α;n−1,0.5 = q0.95;49,0.5 = 30
because F49,0.5(29) ≈ 0.9238 and F49,0.5(30) ≈ 0.9573. Hence if a sequence ω has more than 30
changes, we claim with confidence 95% that it hasn’t been chosen completely at random.

1.5 Data Sets and Variables

In the previous sections we saw already some important procedures and ideas. In the subsequent
chapters we shall introduce and discuss numerous additional procedures and concepts. This mate-
rial will be arranged in terms of data and variable types.

Data sets. A data set (sample) consists of observations (cases). For each observation there are
values of one or several variables (features). The number of observations is called sample size.

Example 1.18 (A poll among students). In the first-year course “Introduction to statistics for
economics and social sciences (Bern 2003/2004)”, 263 students filled out a form. Each student
corresponds to one observation. The students were asked to provide values of the following vari-
ables:
(1) Gender: female oder male
(2) Age: in years
(3) Month of birth: a number from {1, 2, . . . , 12}
(4) Origin: Canton or country of birth
(5-6) Body height and weight : in cm and kg, respectively
(7) Monthly rent: Net rent in CHF
(8) Smoking: never = 0, occasionally = 1, regularly = 2
(9) Random digit: a digit in {0,1,. . . ,9}, chosen “completely at random”
(10) Number of siblings: a number in {0, 1, 2, . . .}
(11) Estimated body height of lecturer: in cm

One distinguishes two or three main types of variables:

Categorical (qualitative) variables. These variables take values in an finite set.
In Example 1.18 the following variables are categorical: ‘Gender’, ‘Month of birth’, ‘Origin’,
‘Smoking’, ‘Random digit’.
If a variable has precisely two possible values, e.g. ‘Gender’, it is called dichotomous or binary.

Numerical (quantitative) variables. These variables contain numbers with an objective (phys-
ical, economical, . . . ) meaning.
In Example 1.18 the following variables are numerical: ‘Age’, ‘Body height’ and ‘Body weight’,
‘Monthly rent’, ‘Number of siblings’, ‘Estimated body height of lecturer’. The variables ‘Month
of birth’ and ‘Smoking’ are also coded by numbers, but these numbers have been chosen somewhat
arbitrary. (In the author’s opinion, the variable ‘Random digit’ is categorical.)
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Ordinal variables. These are categorical variables whose potential values stand in a natural
order with a smallest and a largest value.
Such variables are quite common in medicine, psychology and social sciences. One example are
questions about satisfaction with something with possible answers ‘dissatisfied’, ‘partly dissatis-
fied’, ‘mostly satisfied’ and ‘completely satisfied’. Also grade in exams may be viewed as ordinal
variables. Sometimes ordinal variables are deduced from numerical variables by “binning”, i.e. by
partitioning the range of a numerical variable into finitely many intervals and just recording the
interval the raw variable falls into.
In Example 1.18 the variable ‘Smoking’ is ordinal, 0 (never) ≤ 1 (occasionally) ≤ 2 (regularly).
At first glance one might think that ‘Month of birth’ and ‘Random digit’ are ordinal, too. But after
the month of December follows January. also the random digits may be imagined as sectors on a
small Roulette wheel. Hence these two variables are ‘cyclical’ rather than ordinal.

Data matrices. Typically a data set is stored as a data matrix, that is a table with rows corre-
sponding to observations and columns corresponding to variables. Often there is an additional first
row containing the variables’ names.

1.6 Exercises

Exercise 1.1. In Example 1.1 one could carry out a multiple phase experiment. The base experi-
ment with eight pieces of chocolate is repeated until for the first time X ≤ 2 or X = 4. Precisely,
let Xi be the result of the i-th round. In case of Xi = 3 the base experiment is repeated and yields
a new value Xi+1. All in all we get a random number J of rounds, where Xi = 3 for 1 ≤ i < J
and XJ 6= 3. In case of XJ = 4 we would claim that the working hypothesis is true; in case of
XJ ≤ 2 we would draw no conclusion.
Suppose that the null hypothesis is true. What is the probability that we arrive at the wrong
conclusion, i.e. claim that the working hypothesis is true because XJ = 4? Further, how many
pieces of chocolate may (or need to be) tasted on average?

Exercise 1.2 (Wine-tasting gentlemen). Mr. Perfect and Mr. Good, two gourmets of wine, claim
that they are able to distinguish between two vintages A and B of a particular wine. Precisely,
Mr. Perfect claims that if presented with a glass of this wine, he can tell whether it is vintage A
or vintage B. Mr. Good claims that if presented with two glasses of this wine, he can tell whether
they are from the same vintage or not.
Describe a randomized experiment for each gentleman in which he is presented with n glasses of
the given wine and has to solve a certain task. What is our confidence that his claim is correct if
the task is solved? How large should n be if you aim for 95% confidence?

Exercise 1.3 (An experiment in social sciences). During a special training, 48 future managers
participated in an experiment without knowing its true purpose. Each of them got the resume of a
fictitious employee, and each manager had to decide whether this employee is promoted or not to
a higher job level. the 48 resumes were identical except for the candidate’s name: In 24 cases the
name was Mr. Miller, in 24 cases it was Mrs. Miller. The 48 resumes have been distributed among
the 48 managers completely at random. Here is a two-by-two table of the managers’ decisions:

promotion no promotion
Mr. Miller 21 3 24

Mrs. Miller 14 10 24

35 13 48
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The question is whether these data confirm the general impression of men being being promoted
more easily than women. Analyze the data as in Example 1.3 with test level α = 5% aus. To this
end you may use the following table of the hypergeometric distribution Hyp48,35,24. It contains
the weights f48,35,24(x) (rounded to four decimal digits):

x 11 12 13 14 15 16 17

f48,35,24(x) 0.0000 0.0003 0.0036 0.0206 0.0720 0.1620 0.2415

x 18 19 20 21 22 23 24

f48,35,24(x) 0.2415 0.1620 0.0720 0.0206 0.0036 0.0003 0.0000

Here one should think carefully about the null hypothesis being tested. One could consider the 48
future managers as a random sample from some population, and one wants to draw a conclusion
about the latter. But this is possibly far-fetched. Alternatively one could focus on these specific 48
persons and consider the null hypothesis that all of them judged the fictitious person regardless of
gender. The working hypothesis would be that among these 48 persons some people would prefer
men more easily than women.

Exercise 1.4. Let X be a random variable with the following distribution:

x −1 0 1 2 3 4

IP(X = x) 0.05 0.10 0.20 0.25 0.25 0.15

Draw
(a) the distribution function Fo of X , i.e. Fo(x) := IP(X ≤ x) for x ∈ R.
(b) the three functions

α 7→


IP
(
Fo(X) ≤ α

)
IP
(
1− Fo(X −) ≤ α

)
IP
(
2 ·min{Fo(X), 1− Fo(X −)} ≤ α

)
.

for α ∈ [−0.1, 1.4].

Exercise 1.5. Suppose that X is a random variable with values in a countable set X , and let Po
be a probability distribution on X with probability mass function fo, that is, fo(x) = Po({x}).
Show that

π(X) :=
∑

x∈X : fo(x)≤fo(X)

fo(x)

defines a p-value for the null hypothesis that X ∼ Po. That means, if X ∼ Po, then

IP(π(X) ≤ α) ≤ α for any α ∈ (0, 1).

Exercise 1.6. In this exercise we prove Lemma 1.7 by means of a symmetry consideration. We
consider the uniform distribution IPN on the set ΩN =

{
ω ∈ Ω : X(ω) ≤ N

}
. For a tuple

ω ∈ ΩN let 1 ≤ ω(1) < ω(2) < · · · < ω(n) ≤ N be its ordered components; in particular,
ω(n) = X(ω). With ω(0) := 0 and ω(n+1) := N + 1 we define the random vector Z = (Zi)

n+1
i=1

with entries Zi(ω) := ω(i) − ω(i−1). That means, we partition the numbers from 1 through N + 1
into n+ 1 random intervals:

0, . . . . . . , ω(1)︸ ︷︷ ︸
Z1(ω) elem.

, . . . . . . , ω(2)︸ ︷︷ ︸
Z2(ω) elem.

, . . . . . . , ω(n−1), . . . . . . , ω(n)︸ ︷︷ ︸
Zn(ω) elem.

, . . . . . . , N + 1︸ ︷︷ ︸
Zn+1(ω) elem.

.
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(a) Show that Z is uniformly distributed on the set

ZN :=
{
z ∈ Nn+1 :

n+1∑
i=1

zi = N + 1
}
.

(One has to show that for each z ∈ ZN , the set
{
ω ∈ ΩN : Z(ω) = z

}
has the same number of

elements.)
(b) Show that the random variablesZ1, Z2, . . . , Zn+1 are identically distributed. (For this purpose
one could consider, for instance, the mapping

(z1, z2, . . . , zn+1) 7→ (zn+1, z1, z1, . . . , zn)

from ZN into ZN .)
(c) Determine by means of part (b) the expected values IEN (Zi) and IEN (X).

Exercise 1.7. Consider the proof of Lemma 1.7. Starting from the general formula (1.3) it was
shown that IEN (X) = (N + 1)n/(n+ 1).
(a) Now determine IE(X(X + 1)), IEN (X2) and VarN (X).
(b) Show that the standard deviation of the estimator N̂ := (n+1)X/n−1 satisfies the inequality

Std(N̂) <
N

n
.

Exercise 1.8 (Monotonicity of Hyp(N, `, n) in N ). Show that for any fixed x ∈ N0, the distribu-
tion function FN,`,n(x) of Hyp(N, `, n) is non-decreasing in N . One can even show that

FN+1,`,n(x) = FN,`,n(x) +
x+ 1

N + 1
fN,`,n(x+ 1).

Hint: These claims may be verified with tedious calculations. More elegant is a coupling ar-
gument: Design a random experiment with two random variables X and X̃ such that X ∼
Hyp(N, `, n), X̃ ∼ Hyp(N + 1, `, n) and X̃ ≤ X . For instance, imagine an urn with ` blue,
N − ` white and one black ball. From this urn one draws n+ 1 balls without replacement . . .

Exercise 1.9 (Capture-recapture method).
(a) An absolutely certain lower bound for N is given by ` + n − X , because in the first step
one has marked ` individuals, and in the second step one has seen n−X new individuals. Verify
that the lower confidence bound aα(·) satisfies the inequality aα(x) ≥ ` + n − x for arbitrary
x ∈ {0, 1, . . . ,min(`, n)}.
(b) Show that bα(x) <∞ whenever x ≥ 1.

Exercise 1.10. An ecologist is concerned that the population of bugs of a certain kind in a certain
region has grown too much recently. To verify this, he performs a capture-recapture experiment
with ` = n = 40 bugs.
(a) Should he compute a lower or an upper confidence bound for the total number N of bugs?
(b) Suppose he finds in the second step X = 3 animals he has seen in the first step already.
Determine the resulting 90%-confidence bound for N by means of the following table with values
of FN (x) = FN,40,40(x) for various values of N and x = 2, 3:

N 256 257 258 259 260 261 262 263 264

FN (3) .0902 .0920 .0939 .0957 .0976 .0994 .1013 .1032 .1052

N 1416 1417 1418 1419 1420 1421 1422 1423 1424

FN (2) .8996 .8998 .8999 .9001 .9002 .9004 .9006 .9007 .9009
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Figure 1.6: Example for capture-recapture method.

(c) Since the ecologist is not a statistician, he asks you to formulate a short and concise conclusion.
(d) Where are the lower and upper 90%-confidence bound in Figure 1.6?

Exercise 1.11 (Point estimation for capture-recapture experiments).
(a) Show that there exists an unbiased estimator of the quantity g(N) := 1/N . Determine also
RMSEN (ĝ).
(b) Consider an estimator of N of the form N̂ = h(X) with a real-valued function h on
{0, 1, . . . ,min(`, n)}. Explain why this estimator can never be unbiased.
(c) Determine the bias of the estimator N̂ := (`+1)(n+1)/(X+1) ofN . Show that BiasN (N̂) ≤
1 for any N ≥ max(`, n).

Exercise 1.12. Determine for Example 1.13 explicit formulae for IP(0,N)(X = x) and FN (x) :=
IP(0,N)(X ≤ x), where N ≥ n ≥ 2 and x ∈ N0.

Exercise 1.13 (First confidence bounds for a probability). A player of ‘Eile mit Weile’ is con-
vinced that a certain dice returns the number 1 too rarely. To verify this, he throws the dice several
times and determines the number X of throws until the number 1 appears for the first time.
(a) How could one construct confidence bounds for the unknown probability p of the number 1?
(a.1) Determine the distribution function Fp of X , that means, Fp(x) = IPp(X ≤ x), and its
monotonicity with respect to p,
(a.2) Determine explicit formulae for a lower and an upper (1−α)-confidence bound aα(X) and
bα(X), respectively, utilizing our general recipe.
(b) Which of the two confidence bounds is relevant for the player? For which values of X could
he claim with confidence 90% that p < 1/6?
(c) What happens in (a.1) if one considers the number X of throws until the number 1 appears for
the second time?

Exercise 1.14 (A biological experiment). A group of biologists wanted to verify that a special
type of ants from Central America who is dwelling in Acacia trees has strong preferences con-
cerning the choice of its home tree.
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In a certain region all but 28 Acacia trees have been removed. Out of these trees, 15 were of type
A and 13 of type B; none of them hosted a colony of ants so far, and all trees stood approximately
in a circle. Now 16 colonies of ants who had previously dwelled in trees of type A were released
at the center of that circle. After a certain time period each colony had found a new home tree:

with ants without ants
Type A 13 2 15

Type B 3 10 13

16 12 28

Formulate an appropriate working and null hypothesis. Test your null hypothesis at levelα = 0.01.

Exercise 1.15. Daniel Düsentrieb has developed a brand-new random number generator and
wants to convince you of its quality. To this end he presents to you a “random” sequence ω ∈
{0, 1}100 (to be read row by row):

1 1 0 0 1 0 0 0 0 1 0 0 0 1 0 1 0 1 1 0

1 0 1 1 1 1 0 1 1 1 1 0 0 0 0 0 0 0 1 1

1 1 1 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 1 1 0 1

0 1 1 1 1 1 1 1 1 1 0 1 1 1 0 0 0 0 0 0

Compute a two-sided p-value for the test statistic X(ω) (= number of changes in ω) and the null
hypothesis that this sequence has been chosen completely at random. Test this null hypothesis
at level α = 5%. You may use the following table of the binomial distribution function F99,0.5

(rounded to four digits):

x 35 36 37 38 39 40 41 42

F99,0.5(x) 0.0023 0.0043 0.0077 0.0133 0.0219 0.0350 0.0537 0.0795

Investigate also the following sequence ω:

1 0 0 1 1 1 1 0 1 1 0 1 1 0 0 1 0 1 1 0

0 1 1 0 0 1 0 1 1 0 1 0 1 1 0 0 1 0 1 0

1 1 1 0 1 0 0 1 0 1 1 1 0 1 1 0 1 0 1 0

1 1 1 1 1 0 0 1 1 0 0 0 0 1 1 1 0 1 0 0

1 0 0 1 0 0 1 0 0 0 0 1 0 1 1 0 1 0 1 1
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Chapter 2

Categorical Variables

In this chapter we consider a categorical variable with K ≥ 2 potential values x1, x2, . . . , xK .
The values in the sample are denoted with X1, X2, . . . , Xn. These are viewed as stochastically
independent random variables where

IP(Xi = xk) = pk for 1 ≤ k ≤ K

with certain parameters p1, p2, . . . , pK ≥ 0. In particular,
∑K

k=1 pk = 1.

Examples
• Consider the variable ‘Smoking’ in Example 1.18 with potential values x1 = ‘never’, x2 =
‘occasionally’ and x3 = ‘regularly’. If we consider the 263 persons as a sample from the popu-
lation of all people living in Switzerland and about 18–30 years old, we may assume the model
above. Then p1, p2, p3 are the relative proportions of non-smokers, occasional smokers and regular
smokers in the whole population.
• We stay with Example 1.18 but now consider the variable ‘Random digit’. Let pk be the
probability, that a randomly chosen person from the population would choose the digit k − 1 ∈
{0, 1, . . . , 9}.
• Prior to an election of parliament, n potential voters are asked which of the available parties
x1, x2, . . . , xK they would choose. If the poll size n is substantially smaller than the total number
of potential voters, we may assume the model above with pk being the current proportion of
supporters of party xk.
• Consider a technical device fulfilling a specified task for a certain time period. It could work
flawlessly (x1) or one of K− 1 potential problems could occur (x2, . . . , xK). Now n such devices
are tested under these conditions, and pk is the probability that for a single device we observe the
outcome xk.

2.1 Point Estimators and Graphical Representations

For each of the K possible outcomes we determine its (absolute) frequency

Hk := #{i ≤ n : Xi = xk}

and its relative frequency

p̂k :=
Hk

n
within the sample. As indicated by this notation, p̂k may be viewed as a point estimator for pk.
The next lemma summarises some properties of these random variables Hk and p̂k.

33
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Lemma 2.1 (Multinomial distribution). The tupleH = (Hk)
K
k=1 follows a multinomial distribu-

tion with parameters n and p = (pk)
K
k=1. That means, for any tuple h = (hk)

K
k=1 ∈ NK0 ,

IP(H = h) = fn,p(h) :=

(
n

h1, h2, . . . , hK

) K∏
k=1

phkk

with the multinomial coefficient

(
n

h1, h2, . . . , hK

)
:=


n!

h1!h2! · · · hK !
if h1 + h2 + · · ·+ hK = n,

0 else.

This distribution is denoted with Mult(n,p).
For k = 1, 2, . . . ,K, the absolute frequency Hk has distribution Bin(n, pk), and the estimators p̂k
fulfill

IE(p̂k) = pk,

Var(p̂k) =
pk(1− pk)

n
≤ 1

4n
,

Cov(p̂k, p̂`) =
−pkp`
n

for ` 6= k.

This lemma shows that p̂k is an unbiased estimator for pk with estimation error of orderO(n−1/2).
More precisely,

IE
∣∣p̂k − pk∣∣ ≤ Std(p̂k) ≤

1

2
√
n
.

Proof of Lemma 2.1. We write H = H(X) with the observation vector X = (Xi)
n
i=1 and

X := {x1, x2, . . . , xK}. Then IP(H = h) equals

∑
x̃∈Xn :H(x̃)=h

IP(X = x̃) =
∑

x̃∈Xn :H(x̃)=h

n∏
i=1

px̃i

= #
{
x̃ ∈ X n : H(x̃) = h

} K∏
k=1

phkk .

Now the question is how many tuples x̃ ∈ X n with H(x̃) = h exist. To generate such a tuple,
one could first specify the h1 positions with value x1. This amounts to

(
n
h1

)
possibilities. Therafter

we have
(
n−h1
h2

)
possibilities for placing x2, then

(
n−h1−h2

h3

)
possibilities for x3, and so on. All in

all the number of possibilities is(
n

h1

)(
n− h1

h2

)(
n− h1 − h2

h3

)
· · ·
(
n− h1 − · · ·hK−1

hK

)
,

and elementary calculations reveal that this product equals the multinomial coefficient
(

n
h1,...,hK

)
.

Analogously one can show that Hk ∼ Bin(n, pk). Now we write p̂k = n−1
∑n

i=1 1[Xi=xk]. Here
we use the notation

1[A] :=

{
1 if A is correct
0 else
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for an arbitrary statement A. This representation shows that IE(p̂k) = n−1
∑n

i=1 IP(Xi = xk) =
pk. Moreover it follows from stochastic independence of the random variables Xi that

Cov(p̂k, p̂`) = n−2
n∑
i=1

Cov
(
1[Xi=xk], 1[Xi=x`]

)
= n−1

(
1[k=`]pk − pkp`).

In case of k = ` this leads to the formula Var(p̂k) = n−1pk(1 − pk), and pk(1 − pk) equals
1/4− (pk − 1/2)2 ≤ 1/4.

Graphical representation. The absolute or relative frequencies Hk or p̂k may be visualised
with a bar chart or a pie chart. For a bar chart, the potential values xk are listed horizontally, and
at each xk we draw a vertical bar of height Hk or p̂k, respectively.
For a pie chart, a disc is divided intoK sectors (‘slices of pie’). Each sector corresponds to a value
xk, and its area is proportional to Hk. In other words, the angle of the sector for xk equals 2π · p̂k.

Example 2.2 (‘Random digit’). In Example 1.18, n = 262 students specified a ‘random digit’.
The resulting absolute and relative frequencies are provided in Table 2.1. Figure 2.1 shows the cor-
responding bar chart and pie chart. Although pie charts are quite popular, bar charts are typically
easier to read and interpret.

xk 0 1 2 3 4 5 6 7 8 9

Hk 8 6 12 32 25 23 28 70 41 17

p̂k .0305 .0229 .0458 .1221 .0954 .0878 .1069 .2672 .1565 .0649

Table 2.1: Absolute and relative frequencies for the variable ‘random digit’ in Example 2.2.
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Figure 2.1: Pie and bar chart for the variable ‘random digit’ in Example 2.2.



36 CHAPTER 2. CATEGORICAL VARIABLES

2.2 Confidence Bounds for a Binomial Parameter

Now we focus on one potential value xk and the corresponding quantities p = pk, H = Hk and
p̂ = p̂k. As mentioned already, H is binomially distributed with parameters n and p. At this point
we recommend Exercises 2.1 and 2.2.

Exact Confidence Bounds for p

We use our recipe from Chapter 1, this time with the binomial distribution functions Fn,p, p ∈
[0, 1]. That means, Fn,p(x) = IPp(H ≤ x) =

∑x
k=0

(
n
k

)
pk(1− p)n−k for x = 0, 1, . . . , n. At first

we have to clarify whether Fn,p(x) is monotone in p.

Lemma 2.3. For arbitrary x ∈ {0, 1, . . . , n− 1},

p 7→ Fn,p(x)

is continuous and strictly decreasing on [0, 1] with boundary values Fn,0(x) = 1 and Fn,1(x) = 0.
More precisely,

Fn,p(x) = n

(
n− 1

x

)∫ 1

p
ux(1− u)n−1−x du.

The explicit representation of Fn,p(x) by an integral will be used in a later chapter.

Proof of Lemma 2.3. The function p 7→ Fn,p(x) is a polynomial and thus continuously differ-
entiable. The equations Fn,0(x) = 1 and Fn,1(x) = 0 are easily verified. Moreover, elementary
calculations reveal that

d

dp
Fn,p(x) = −n

(
n− 1

x

)
px(1− p)n−1−x < 0 for 0 < p < 1.

This proves strict monotonicity of p 7→ Fn,p(x), and

Fn,p(x) = Fn,p(x)− Fn,1(x) = n

(
n− 1

x

)∫ 1

p
ux(1− u)n−1−x du.

Figure 2.2 illustrates the monotonicity property stated in Lemma 2.3. This property implies the
following three procedures:
(I) With probability at least 1 − α, the true parameter p and the random variable H satisfy
Fn,p(H) > α. The latter inequality is equivalent to

p

{
< bα(H) if H < n,

≤ 1 if H = n.

Here we set

bα(h) :=

{
unique solution p of Fn,p(h) = α for h = 0, 1, . . . , n− 1,

1 for h = n.

Thus we obtain an upper (1− α)-confidence bound bα(H) for p. That means,

IPp(p ≤ bα(H)) ≥ 1− α for arbitrary p ∈ [0, 1].
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Figure 2.2: The functions p 7→ Fn,p(x) for n = 10 and x = 0, 1, . . . , n.

(II) With probability at least 1 − α, the true parameter p and the random variable H satisfy
Fn,p(H − 1) < 1− α, which is equivalent to

p

{
≥ 0 if H = 0,

> aα(H) if H > 0.

Here we set

aα(h) :=

{
0 for h = 0,

unique solution p of Fn,p(h− 1) = 1− α for h = 1, 2, . . . , n.

This leads to a lower (1− α)-confidence bound aα(H) for p, that means,

IPp(p ≥ aα(H)) ≥ 1− α for arbitrary p ∈ [0, 1].

(III) If we intend to bound the unknown parameter p from below and from above, we may compute
the (1− α)-confidence interval

[
aα/2(H), bα/2(H)

]
for p. This is the method of C. Clopper and

E. S. Pearson1 (1934). Other methods yield somewhat smaller intervals but are more difficult to
justify and compute.

Remark 2.4. The equation Fn,p(x) = γ may be solved for x = 0 and x = n − 1 explicitly.
Otherwise one needs numerical procedures, for instance a bisection algorithm; see Exercise 2.3.

Example 2.5 (Quality control). The manufacturer of a certain device is convinced that the prob-
ability p of a failure under certain standard conditions is close to zero. To support this claim he
tests n such devices and determines the numberH of failures in this series. From his point of view
an upper confidence bound bα(H) is desirable.
Suppose he observes H = 0 failures. Then p̂ = 0, and the upper confidence bound bα(0) is the
solution p of the equation Fn,p(0) = (1 − p)n = α. Hence the manufacturer may claim with
confidence 1− α that p is no larger than

bα(0) = 1− α1/n .

1Karl Pearson (1857-1936) and Egon S. Pearson (1885-1980): Father and son, influential british statisticians.
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In case of n = 50 devices and α = 0.05 one obtains the upper 95%-confidence bound b0.05(0) ≈
0.0582.
Suppose the manufacturer tests n = 50 devices and precisely one of them fails. Then p̂ = 0.02,
and the upper confidence bound b0.05(1) is the unique solution p of the equation (1 − p)50 +
50p(1− p)49 = 0.05. Here one can verify numerically that 0.0913 ≤ b0.05(1) ≤ 0.0914.

Example 2.6 (Opinion poll). The members of a special interest group want to persuade their city
government that a majority of citizens is in favour of keeping a certain tram line. To this end
n = 100 citizens are interviewed, and H = 67 persons turn out to be on the interest group’s side.
This yields the estimate p̂ = 0.67 for the unknown proportion p of supporters of the tram line. To
take into account the uncertainty of this small poll, the special interest group calculates a lower
confidence bound aα(67) for p. This is the unique solution p of the equation Fn,p(66) = 1 − α.
Particularly for α = 0.05, numerical calculations reveal that 0.5845 ≤ a0.05(67) ≤ 0.5846; see
also Figure 2.3. Hence one may claim with confidence 95% that p is no smaller than 0.5845.
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Figure 2.3: The lower confidence bounds a0.05(67) for p with n = 100.

A generalisation. The first part of Lemma 2.3 is a special case of a more general statement about
monotonicity of distribution functions which will be needed later:

Lemma 2.7 (Monotonicity in distribution families). Let w0, w1, w2, . . . be nonnegative weights
such that 0 <

∑
k≥0wkθ

k < ∞ for arbitrary θ > 0. For an arbitrary parameter θ ∈ (0,∞) we
define probability weights

fθ(x) := wxθ
x
/∑
k≥0

wkθ
k, x ∈ N0,

and a distribution function Fθ with

Fθ(x) :=

x∑
k=0

fθ(k), x ∈ N0.

In case of min{k : wk > 0} ≤ x < sup{k : wk > 0}, the value Fθ(x) is continuous and strictly
decreasing in θ > 0, where limθ→0 Fθ(x) = 1 and limθ→∞ Fθ(x) = 0.
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α 0.1 0.05 0.025 0.01 0.005

1− α 0.9 0.95 0.975 0.99 0.995

Φ−1(1− α) 1.2816 1.6449 1.9600 2.3264 2.5759

Table 2.2: Some values of Φ−1.

Example 2.8. Here are two examples of such distribution families:
• Poisson distributions Poiss(θ), θ > 0: wk = 1/k!;
• Binomial distributions Bin(n, p), 0 < p < 1: θ = p/(1− p) and wk =

(
n
k

)
.

In connection with ‘odds ratios’ we’ll encounter a further distribution family of this type.

Approximate Confidence Bounds for p

Numerous text books provide approximate confidence bounds. This is okay if one wants to com-
pute quickly some preliminary bounds. But in view of the powerful computing devices available
today, the computation of exact bounds is no problem. Nevertheless we describe now two variants
of approximate confidence bounds. But first we recall the definition of Gaussian distributions.

Definition 2.9 (Normal distribution). A real-valued random variable X follows the normal (or
Gaussian) distribution with mean µ ∈ R and standard deviation σ > 0, if its distribution is given
by the density function φµ,σ; here

φµ,σ(x) :=
1

σ
φ
(x− µ

σ

)
with φ(z) := (2π)−1/2 exp(−z2/2).

This is equivalent to saying that IP(X ≤ x) = Φ((x− µ)/σ) for arbitrary x ∈ R, where

Φ(x) :=

∫ x

−∞
φ(z) dz.

As a symbol for this distribution we useN (µ, σ2). In the special case of µ = 0 and σ = 1 we say
that X follows the standard normal (or Gaussian) distribution N (0, 1).

That a random variable X has distribution N (µ, σ2) with σ > 0 is equivalent to saying that
Z := (X − µ)/σ has a standard normal distribution, see also Section A.2. In other words, X
may be written as X = µ + σZ with a standard gaussian random variable Z. It follows from
Exercise 2.5 that indeed IE(X) = µ and Std(X) = σ.
The distribution function Φ : R → (0, 1) of the standard normal distribution is bijective with
limits Φ(−∞) = 0 and Φ(∞) = 1. Its inverse function is denoted with Φ−1. The symmetry of
N (0, 1) around 0 implies that

Φ(−x) = 1− Φ(x) for x ∈ R

and
Φ−1(γ) = −Φ−1(1− γ) for γ ∈ (0, 1).

Table 2.2 contains some values of Φ−1, rounded up to four digits.

Wilson’s Method. The Central Limit Theorem (see appendix) implies that for arbitrary numbers
−∞ ≤ r < s ≤ ∞,

(2.1) IPp

( p̂− p√
p(1− p)/n

∈ [r, s]
)
→ Φ(s)− Φ(r) if np(1− p)→∞.
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For large values of np(1 − p) = Var(H) each of the following inequalities is satisfied with
probability approximately 1− α, respectively:

p̂ ≤ p+ cα,n
√
p(1− p),

p̂ ≥ p− cα,n
√
p(1− p),

|p̂− p| ≤ cα/2,n
√
p(1− p),

where
cα,n := Φ−1(1− α)/

√
n.

The preceding inequalities may be solved for p; see Exercise 2.6. They are equivalent to

p ≥
p̂+ c2/2 − c

√
p̂(1− p̂) + c2/4

1 + c2
with c = cα,n,

p ≤
p̂+ c2/2 + c

√
p̂(1− p̂) + c2/4

1 + c2
with c = cα,n,

p ∈
[
p̂+ c2/2 ± c

√
p̂(1− p̂) + c2/4

1 + c2

]
with c = cα/2,n.(2.2)

Thus we obtain approximate (1 − α)-confidence regions for p. These have been developed by
E. B. Wilson2.

Example 2.10. Figure 2.4 shows for n = 30 and α = 0.05 the curves p 7→ p ± c
√
p(1− p)

with c = cα/2,n who form together an ellipse. For three different numbers p ∈ (0, 1) the intervals[
p ± c

√
p(1− p)

]
are drawn as vertical lines. In addition one sees for three different estimates

p̂ ∈ (0, 1) the corresponding confidence intervals (2.2) as horizontal lines.
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Figure 2.4: Wilson’s method.

2Edwin B. Wilson (1879-1964): US-american mathematician with various fields of interest.
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For practitioners the question is in which situations one may use Wilson’s method. A simple
answer would be ‘never!’, because nowadays the computation of the honest confidence bounds
derived before is not a problem at all. Experience shows that the honest bounds and Wilson’s
bounds are very similar if np̂(1− p̂) ≥ 5.

Wald’s Method. Now we describe a widely used and rather simple method which is a special
case of a much more general recipe due to A. Wald3. In addition to the Central Limit Theorem
which led to statement (2.1) we also have the following inequality for p̂:

IE
∣∣∣ p̂(1− p̂)
p(1− p)

− 1
∣∣∣ ≤ IE |p̂− p|

p(1− p)
≤ 1√

np(1− p)
.

Both facts together imply that in (2.1) the term
√
p(1− p)/nmay be replaced with

√
p̂(1− p̂)/n;

see also Exercise 4.27 (b). Thus each of the following inequalities is satisfied with probability
about 1− α, respectively, provided that np(1− p) is sufficiently large:

p ≥ p̂− cα,n
√
p̂(1− p̂),

p ≤ p̂+ cα,n
√
p̂(1− p̂),

p ∈
[
p̂ ± cα/2,n

√
p̂(1− p̂)

]
.

The confidence bounds on the right hand side would also follow from Wilson’s bounds if one
replaced all terms c2 with 0.
Wald’s bounds are substantially easier to compute, but the true confidence level may be drastically
smaller than the intended value of 1 − α if p is close to 0 or 1. We consider the true coverage
probabilities IPp(p ∈ C(H)) as a function of p ∈ (0, 1). Here C(H) stands for the confidence
interval CWilson(H) via Wilson’s method or CWald(H) via Wald’s method. In both cases the
function

(0, 1) 3 p 7→ IPp(p ∈ C(H))

is symmetric around 0.5. Thus we show in Figure 2.5 for n = 100 and α = 0.05 the function
p 7→ IPp(p ∈ CWilson(H)) on (0, 0.5] and the function p 7→ IPp(p ∈ CWald(H)) on [0.5, 1). Note
that on the vertical axis only the range [0.7, 1] is shown. In fact, IPp(p ∈ CWald(H)) converges to
0 as p→ 1.

Upper Confidence Bounds for |p− po|

By means of our (1 − α)-confidence interval
[
aα/2(H), bα/2(H)

]
for p one can possibly claim

with confidence 1− α that p is different from a given value po. For if the confidence interval does
not contain po, then we may deduce with confidence 1 − α the sign of p − po and a lower bound
for |p− po|.
In some applications, however, one wants to show that the unknown parameter p is close to the
special value po, even if possibly p 6= po. The confidence interval mentioned above implies the
following statement: With confidence 1− α, the distance |p− po| is not larger than

max
{
|p′ − po| : aα/2(H) ≤ p′ ≤ bα/2(H)

}
= max

{
bα/2(H)− po, po − aα/2(H)

}
.

3Abraham Wald (1902-1950): Romanian and US-American mathematician who developed, among many things,
sequential statistical procedures, i.e. procedures with data-driven sample size.
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Figure 2.5: Coverage probabilities of the Wilson and Wald confidence interval in case of n = 100
and α = 0.05.

But this bound is too conservative. A better one results if we compute the (1 − α)-confidence
interval [

min
(
aα(H), po

)
,max

(
bα(H), po

)]
for p. Here one combines the lower and upper (1 − α)-confidence bound for p without replacing
α with α/2, but one forces the confidence interval to contain po. Behind this construction is a
more general principle treated in Exercise 2.12. For the distance |p − po| this yields the upper
(1− α)-confidence bound

max
{
bα(H)− po, po − aα(H)

}
.

2.3 The Chi-Squared Goodness-of-Fit Test and Alternatives

In various applications one is wondering whether the vector p = (pk)
K
k=1 coincides with a given

vector po = (pok)
K
k=1 (null hypothesis).

Examples.
• A manufacturer of toys is producing dice. Now he wants to verify that with a newly produced
dice all six numbers (faces) have the same probability of showing up. Here K = 6, xk = k and
pok = 1/6 for all k. From the manufacturer’s viewpoint it is desirable that all probabilities pk are
close to the ideal value pok.
• The roulette wheel of a casino is to be tested. The question is whether all 37 potential outcomes
0, 1, . . . , 36 have the same probability pok = 1/37. Both the owner and controllers of the casino
want to detect potential deviations of the pk from the ideal value pok.
• When interviewing students (Example 1.18) they were asked to choose a ‘random digit’ in
{0, 1, . . . , 9}. The question is whether some and which probabilities pk deviate significantly from
pok = 1/10.
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• During a different lecture the students have been asked to produce a ‘random sequence’ with
ten entries in {0, 1}. As our categorical variable we consider for each of these n sequences the
number X of changes, so X ∈ {0, 1, . . . , 9}; see also Example 1.17. Under the null hypothesis
that the random sequences have been chosen completely at random, the probability pk of k − 1
changes is equal to

pok :=

(
9

k − 1

)
2−9.

The Chi-Squared Test

We want to devise a test of the null hypothesis that p = po. That means, we want to verify the
working hypothesis that p 6= po with a certain confidence if appropriate.

A test statistic. To test the former null hypothesis we need a test statistic T = T (H) quantifying
the empirical deviation from the null hypothesis: Each value p̂k is compared with its hypothetical
value pok and we form the sum

T := n
K∑
k=1

(p̂k − pok)2

pok
=

K∑
k=1

(Hk − npok)2

npok
.

This is the chi-squared test statistic of Karl Pearson. We’ll see later why it makes sense to use the
special weights 1/pok. One can easily deduce from Lemma 2.1 that

IE(T ) = K − 1 if p = po.

The exact test. Under the null hypothesis, the test statistic T has a well-defined distribution
function Go, namely

Go(x) =
∑

h∈NK0

1[T (h)≤x] fn,po(h)

for x ∈ R; see Lemma 2.1. If the null hypothesis is violated, T tends to attain larger values. Thus
we want to reject the null hypothesis if T is ‘suspiciously large’. Hence if the (right-sided) p-value

1−Go(T −)

is less than or equal to α, we reject the null hypothesis at level α; that means, we claim with
confidence 1 − α that p 6= po. In case of this p-value being larger than α we don’t make a
definitive statement. This procedure is justified by Lemma 1.4 in Chapter 1.

Monte Carlo tests. The explicit computation of the p-value 1−Go(T −) is often too involved.
An alternative to the exact p-value may be produced as follows: One simulates with the com-
puter m stochastically independent random vectors H(1), H(2), . . . , H(m) with distribution
Mult(n,po). For each of these one computes the test statistic Ts = T (H(s)) and then the Monte
Carlo p-value

#
{
s ∈ {1, . . . ,m} : Ts ≥ T

}
+ 1

m+ 1
.

If this p-value is less than or equal toα, we may claim with confidence 1−α that the null hypothesis
is violated. This is justified by the following ‘Monte Carlo version’ of Lemma 1.4.
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Lemma 2.11. Let T0, T1, . . . , Tm be real-valued random variables with the following property:
For any fixed permutation σ of {0, 1, . . . ,m} the random tuples (Tσ(0), Tσ(1), . . . , Tσ(m)) and
(T0, T1, . . . , Tm) are identically distributed. Then the random variable

π̂ :=
#
{
s ∈ {0, 1, . . . ,m} : Ts ≥ T0

}
m+ 1

,

satisfies the inequalities

IP(π̂ ≤ α) ≤ b(m+ 1)αc
m+ 1

≤ α.

for each α ∈ (0, 1). The second last inequality is an equality if the m + 1 values T0, T1, . . . , Tm
are almost surely different.

The property of a random tuple that its distribution remains invariant under arbitrary permutations
of its components will play an important role in later chapters, too. It is satisfied, for instance, if
the random variables T0, T1, . . . , Tm are stochastically independent and identically distributed.

Proof of Lemma 2.11. The assumption on the random variables T0, T1, . . . , Tm implies that the
m+ 1 random variables π̂0, π̂1, . . . , π̂m with

π̂j :=
#
{
s ∈ {0, . . . ,m} : Ts ≥ Tj

}
m+ 1

are identically distributed. Thus IP(π̂ ≤ α) = IP(π̂0 ≤ α) is equal to

1

m+ 1

m∑
j=0

IP(π̂j ≤ α) =
1

m+ 1

m∑
j=0

IE
(
1[π̂j≤α]

)
=

1

m+ 1
IE
( m∑
j=0

1[π̂j≤α]

)
.

Now it suffices to show that
m∑
j=0

1[π̂j≤α] ≤ b(m+ 1)αc

with equality in case of the m + 1 numbers T0, T1, . . . Tm being different. To this end let t0 ≤
t1 ≤ · · · ≤ tm be the values T0, T1, . . . , Tm in ascending order. Then

∑m
j=0 1[π̂j≤α] is equal to

#
{
j ∈ {0, . . . ,m} : #

{
s ∈ {0, . . . ,m} : ts ≥ tj

}︸ ︷︷ ︸
≥m+1−j

≤ (m+ 1)α
}

≤ #
{
j ∈ {0, . . . ,m} : m+ 1− j ≤ (m+ 1)α

}
= #

{
k ∈ {1, . . . ,m+ 1} : k ≤ (m+ 1)α

}
= b(m+ 1)αc.

The preceding inequalities are equalities if t0 < t1 < · · · < tm.

Monte Carlo tests are very easy to implement. But not all practitioners appreciate them, because
the resulting p-values do not only depend on the data but also on the (pseudo)random simulations
of the tuples H(s). On the other hand one can easily show that the exact p-value and its Monte
Carlo version π̂ are essentially identical if m is large, see Exercise 2.15.
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Chi-squared distributions and an approximate test. From a historical viewpoint, the test de-
scribed now was the first procedure because in the old days of statistics the computation of exact
or Monte Carlo p-values was out of reach. Let us first define a family of distributions which appear
in many statistical contexts:

Definition 2.12 (Chi-squared distributions). The chi-squared distribution with ` ∈ N degrees
of freedom is defined as the distribution of

∑`
j=1 Z

2
j . Here Z1, Z2, . . . , Z` are stochastically

independent and standard Gaussian random variables. A symbol for this distribution is χ2
` .

In our specific testing problem the chi-squared distribution provides an approximation for the true
distribution function Go of T under the null hypothesis:

Theorem 2.13 (Chi-squared approximation). Let FK−1 be the (continuous) distribution function
of χ2

K−1. Then
sup
c≥0

∣∣Go(c)− FK−1(c)
∣∣ → 0 as min

k=1,...,K
npok →∞.

Note that the numberK−1 of degrees of freedom is equal to the number of possible values minus
one. For our testing problem Theorem 2.13 yields the approximate p-value

1− FK−1(T ).

Here is a rule of thumb proposed in various text books: If mink=1,...,K np
o
k ≥ 5, then the approxi-

mation above is sufficiently accurate.

Illustration of the approximation. In Figure 2.6 we illustrate the approximation ofGo by FK−1

in two special cases with K = 10. The two upper plots show the distribution functions Go (step
function) and F9 (smooth function) in case of pok = 1/10 for k = 1, 2, . . . , 10 and n = 20 (left)
and n = 50 (right). The quantity mink np

o
k equals n/10, and indeed the approximation is quite

good for n = 50. For the two lower plots we used pok = 2−9
(

9
k−1

)
and n = 20 (left) and n = 100

(right). Here mink np
o
k = n/512, and indeed the difference between Go and F9 is clearly visible,

even for sample size n = 100.

Example 2.14 (‘Random digits’). For the data in Example 2.2 we want to test the null hypothesis
that all pk are equal to 0.1 at level α = 0.01. The χ2-test statistic equals

T = 262
10∑
k=1

(p̂j − 0.1)2

0.1
≈ 122.580.

Since mink np
o
k = 26.2 we trust in the approximation of Go by F9; see also Figure 2.6. The

approximate p-value equals 1 − F9(122.580) < 10−4, and the Monte Carlo method yielded ex-
tremely small p-values, too. Thus we may claim with confidence 99% that the ‘random digits’ are
not uniformly distributed on the ten possible digits.

Justification of Theorem 2.13. The χ2-test statistic T is equal to ‖Y ‖2 with the random vector

Y :=
√
n
( p̂k − pok√

pok

)K
k=1

.

This random vector lies within the (K − 1)-dimensional vector space

H :=
{
y ∈ RK :

K∑
k=1

yk
√
pok = 0

}
.
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Figure 2.6: Approximation of the exact chi-squared test.

It follows from the Multivariate Central Limit Theorem that the random vector is approximatly
standard normally distributed on H, provided that p = po and mink np

o
k → ∞. That means, Y

is approximately distributed like
∑K−1

j=1 Zjbj with stochastically independent standard Gaussian
random variables Z1, Z2, . . . , ZK−1 and an orthonormal basis b1, b2, . . . , bK−1 of H. But this
means, that T = ‖Y ‖2 is approximately distributed like∥∥∥K−1∑

j=1

Zjbj

∥∥∥2
=

K−1∑
j=1

Z2
j ∼ χ2

K−1.

An Alternative Procedure

The chi-squared test just described has two weak points. Even if we reject the null hypothesis that
p = po, we have no information about which components pk are deviate from pok and in which
direction. In other situations it may be our goal to show that p is ‘rather close’ to po.
A possible alternative to statistical tests is the computation of a confidence interval [ãk, b̃k] for
pk, simultaneously for all k = 1, . . . ,K. Precisely, with the given data we want to compute
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confidence bounds ãk = ãk(H) and b̃k = b̃k(H) such that for a given test level α ∈ (0, 1),

IP
(
pk ∈

[
ãk, b̃k

]
for k = 1, . . . ,K

)
≥ 1− α.

In other words, we want to compute a confidence rectangle

C(H) =
[
ã1, b̃1

]
×
[
ã2, b̃2

]
× · · · ×

[
ãK , b̃K

]
for the parameter vector p such that

IPp

(
p ∈ C(H)

)
≥ 1− α for arbitrary p.

Then one may claim with confidence 1 − α that each parameter pk lies in the corresponding
interval [ãk, b̃k]. In particular, one may then check whether each hypothetical parameter pok lies in
the interval

[
ãk, b̃k

]
.

This overall confidence can be achieved by means of a Bonferroni4 adjustment: For each single
parameter pk one computes a (1− α/K)-confidence interval

[
ãk, b̃k

]
,that means, one replaces α

with α/K. Then

IP
(
pk ∈

[
ãk, b̃k

]
for k = 1, . . . ,K

)
= 1− IP

(
pk 6∈

[
ãk, b̃k

]
for at least one k ∈ {1, . . . ,K}

)
≥ 1−

K∑
k=1

IP
(
pk 6∈

[
ãk, b̃k

])
≥ 1−

K∑
k=1

α/K

= 1− α.

The advantage of this method is that one can possibly identify components pk which are with high
confidence strictly smaller or strictly larger than pok. However there are also situations in which
the chi-squared test rejects the null hypothesis although pok ∈ [ãk, b̃k] for all k = 1, . . . ,K.

Example 2.15 (‘Random digits’). For the data in Example 2.2 we compute confidence intervals
for the 10 parameters pk, each with confidence level (1 − α/10) = 0.995, α = 5%. Precisely,
for each pk we compute the honest (1 − α/20)-confidence bounds ãk = aα/20(Hk) and b̃k =
bα/20(Hk):

xk 0 1 2 3 4 5 6 7 8 9

ãk .009 .005 .017 .072 .052 .046 .060 .194 .099 .030

b̃k .074 .063 .095 .189 .157 .148 .171 .350 .229 .119

In particular one may claim with overall confidence 95% that the probabilities of the digits 0, 1, 2
are strictly smaller than 0.1 while the digit 7 is chosen with probability strictly larger than 0.1.

If the goal is to verify that p is close to po, one may construct the confidence intervals [ãk, b̃k] as
follows: Let ã∗k = ã∗k(H) and b̃∗k = b̃∗k(H) be a lower and an upper (1−α/K)-confidence bound
for pk, respectively. Then [

ãk, b̃k
]

:=
[
min(ã∗k, p

o
k),max(b̃∗k, p

o
k)
]

defines a (1− α/K)-confidence interval for pk containing the value pok by construction.
4Carlo E. Bonferroni (1892-1960): Italian mathematician who used probability inequalities in actuarial mathematics

and statistics.
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Example 2.16 (Mendel’s law). In a cross fertilisation experiment someone wants to illustrate
Mendel’s law. Starting from two parental plants n = 400 ‘daughters’ are produced which may
have genotype ‘AA’, ‘AB’ oder ‘BB’ with respect to a particular gene. If both parents are of type
‘AB’, Mendel’s law predicts that the genotype of a ‘daughter’ follows(

poAA, p
o
AB, p

o
BB

)
= (1/4, 1/2, 1/4).

Suppose that the experiment yielded(
HAA, HAB, HBB

)
= (106, 178, 116),

so (
p̂AA, p̂AB, p̂BB

)
= (0.265, 0.445, 0.290).

Now we compute for each of the three parameters pAA, pAB and pBB a lower and an upper (1 −
α/3)-confidence bound, where α = 0.05:

type AA AB BB
lower bound 0.2190 0.3915 0.2424

upper bound 0.3151 0.4994 0.3412

Thus we may claim with confidence 1− α = 95% that(
pAA, pAB, pBB

)
∈ [0.2190, 0.3151]× [0.3915, 0.5]× [0.2424, 0.3412].

In particular we may claim with confidence 95% that the maximal deviation between the true
probabilities from Mendel’s values is at most 0.1085.

A Variation of the Chi-Squared Test

Usually the chi-squared goodness-of-fit test serves the purpose of showing that p 6= po. But one
can use it also to detect manipulated data. That means, one could check whether the vector p̂ is
‘suspiciously close’ to po. To this end one should compute the left-sided p-value

Go(T )

or its Monte Carlo approximation

#
{
s ∈ {1, . . . ,m} : Ts ≤ T

}
+ 1

m+ 1

or the approximation
FK−1(T )

with the distribution function FK−1 of χ2
K−1. If this p-value is less than or equal to α, one may

claim with confidence 1− α that the observed frequency vector h = (Hk)
K
k=1 is not a realisation

of a random vector with distribution Mult(n,po).

Example 2.17. We consider once more the preceding example with Mendel’s law. Suppose a
scientist claims to have observed (HAA, HAB, HBB) = (102, 199, 99). This would fit Mendel’s
law remarkably well. Indeed, here T = 0.055, and the approximate left-sided p-value equals
F2(0.055) ≈ 0.0271. (We use the χ2 approximation since mink npk = 100.) Thus the results
look too good to be true. It could be that he or she manipulated the data or picked one particular
experiment out of several without mentioning the latter.
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2.4 Exercises

Exercise 2.1 (Point estimation of p). Let H be a random variable with distribution Bin(n, p),
where n ∈ N is given while p ∈ [0, 1] is unknown. Consider for c ≥ 0 the estimator

p̂c :=
H + c/2

n+ c
.

For c = 0 this is the standard estimator p̂ = H/n, and for c > 0 the latter is shifted toward the
value 1/2.
(a) Determine bias, variance and mean squared error of p̂c. You should realise that MSEp(p̂c) is
a function of n, c and |p− 1/2|.
(b) Draw the function p 7→ MSEp(p̂c) for n = 25 and c = 0, 1, 2, . . . , 7.
(c) Determine a value c = c(n) such that the maximal mean quadratic error,

max
0≤p≤1

MSEp(p̂c),

is as small as possible.

Exercise 2.2 (Unbiased estimation of g(p)). Let H , n and p be as in Exercise 2.1, and let g :
[0, 1]→ R be an arbitrary function. For g(p) we now consider all estimators of the form ĝ = s(H)
with some mapping s : {0, 1, . . . , n} → R.
(a) Suppose that the estimator ĝ = s(H) is unbiased for g(p). Show that p 7→ g(p) has to be a
polynomial of degree at most n.
(b) Suppose that p 7→ g(p) is a polynomial of degree at most n. Show that there exists a unique
unbiased estimator ĝ = s(H) of g(p).
Hint: Determine for k = 0, 1, . . . , n the expected value of [H]k.
(c) The preceding considerations show that unbiasedness is a seemingly nice but possibly very
restrictive property. Compare under this aspect the unbiased estimator of g(p) := (1 − p)n with
the naive estimator (1−H/n)n.

Exercise 2.3 (Implementing exact confidence bounds for p). To compute exact confidence bounds
for a binomial parameter one has to solve equations of the form

Fn,p(x) = γ

for given n ∈ N, x ∈ {0, 1, . . . , n − 1} and γ ∈ (0, 1). The algorithm described in Table 2.3
solves this problem with prescribed accuracy δ > 0. The result are two numbers p1, p2 ∈ [0, 1]
such that 0 < p2 − p1 ≤ δ, Fn,p1(x) ≥ γ ≥ Fn,p2(x) and Fn,p1(x)− Fn,p2(x) ≤ δ.
Implement this algorithm. Check your program by means of Example 2.6.

Exercise 2.4. Prove Lemma 2.7. Then describe how you would compute exact confidence bounds
for an unknown parameter θ > 0, if you observed a random variable X with distribution function
Fθ. How could one adapt the algorithm in Table 2.3 for the present setting?

Exercise 2.5 (Moments of the standard Gaussian distribution). Let Z be a standard Gaussian
random variable. Show by means of a symmetry consideration and via partial integration that
IE(Z2m−1) = 0 and

IE(Z2m) =

m∏
i=1

(2i− 1) for m ∈ N.

An alternative derivation will be given in Exercise 4.13.
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Algorithmus (p1, p2)← BinoCB(x, n, γ, δ)
p1 ← 0, F1 ← 1
p2 ← 1, F2 ← 0
while p2 − p1 > δ or F1 − F2 > δ do
pm ← (p1 + p2)/2, Fm ← Fn,pm(x)

if Fm ≥ γ then
p1 ← pm, F1 ← Fm

else
p2 ← pm, F2 ← Fm

end if
end while

Table 2.3: Computation of exact confidence bounds for p.

Exercise 2.6 (Inequalities for Wilson’s and Wald’s method). Show that for arbitrary numbers
p, p̂ ∈ [0, 1] and c > 0,

p̂ ≤(≥) p+(−) c
√
p(1− p)

if and only if

p ≥(≤)

p̂+ c2/2 −(+) c
√
p̂(1− p̂) + c2/4

1 + c2
.

For which values p̂ ∈ [0, 1] is Wald’s interval[
p̂ ± c

√
p̂(1− p̂)

]
shorter or longer than Wilson’s interval[

p̂+ c2/2 ± c
√
p̂(1− p̂) + c2/4

1 + c2

]
?

Exercise 2.7 (Examples of confidence regions for a binomial parameter p). Define for the sub-
sequent applications a suitable probability parameter and determine whether a lower confidence
bound, an upper confidence bound or a confidence interval would be appropriate. Then compute
this confidence region with α = 5%. You may use either (i) exact bounds or (ii) Wilson’s method.
(a) How common is airplane anxiety? After a spectacular attempt of a person to escape an
airplane just before take-off, 335 swiss people answered the question whether they suffer from
airplane anxiety. Result: 70 people answered ‘yes’.
(b) Does a majority of voters prefer online-elections? 29 persons have been asked whether they
would prefer showing up at an election office, sending in their ballot by regular mail or voting
online. Result: 22 people would prefer voting online.
(c) A provider of a WLAN router wants to demonstrate that the majority of his customers can
handle the device with the standard installation software and brochure. To this end he investigates
via his call center how many of 2500 new customers needed additional customer support via
phone. Result: 42 customers needed extra support.
(d) Citizens in a town want to convince their mayor that a certain quarter is problematic in terms
of security. To this end, 250 citizens are interviewed and asked whether they would walk through
this quarter at night time alone. Result: 139 people answered ‘no’.

Exercise 2.8 (Comparison of two Poisson parameters). In some applications one observes two
independent random variables with Poisson distributions, Y1 ∼ Poiss(λ1) and Y2 ∼ Poiss(λ2)
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with unknown parameters λ1, λ2 > 0. The question is whether λ1 and λ2 are different. Specific
examples are (i) the comparison of cell concentrations of two cell cultures in biological or medical
experiments or (ii) the comparison of two radioactive probes or (iii) the comparison of two event
rates in actuarial applications.
(a) Show that the conditional distribution of Y1, given Y1 +Y2 = s, is a binomial distribution with
parameters s and p := λ1/(λ1 + λ2). That means,

IP(Y1 = k |Y1 + Y2 = s) =

(
s

k

)
pk(1− p)s−k for k = 0, . . . , s.

(b) Describe confidence bounds for the ratio λ1/λ2 by means of part (a). What would be your
result if Y1 = 14, Y2 = 21 and α = 5% ?

Exercise 2.9 (Wilson’s method for Poisson parameters). Let Y be a random variable with dis-
tribution Poiss(λ) with unknown parameter λ ≥ 0. For λ one could compute exact confidence
bounds, but now we want to imitate Wilson’s method (for binomial parameters). The Central Limit
Theorem implies that for arbitrary numbers −∞ ≤ r < s ≤ ∞,

P
(Y − λ√

λ
∈ [r, s]

)
→ Φ(s)− Φ(r) as λ→∞.

Now construct approximate (1− α)-confidence bounds and intervals for λ.

Exercise 2.10 (Sample sizes for estimating a binomial parameter). So far we considered the sam-
ple size n as given. Sometimes one can determine an appropriate sample size prior to the experi-
ment or study. We illustrate this with Wilson’s (1−α)-confidence interval for binomial parameter
p based on an observation H ∼ Bin(n, p).
(a) How large should the sample size be to guarantee an interval of length at most δ > 0 ? What
is your result if α = 0.05 and δ = 0.1 ?
(b) For given values 0 < p1 < p2 < 1 the confidence interval should never contain both p1 and
p2. How large should n be such that this cannot happen? Hint: Exercise 2.6.
Numerical example: For the german FDP (liberal party) a percentage of p1 = 5% in an election
would be a desaster, a percentage of p2 = 15% or more a good reason to party. How large should
the sample size be such that at least one of these scenarios may be excluded with confidence 99% ?

Exercise 2.11 (McNemar’s test). Let H have distribution Mult(n,p) with unknown probability
vector p = (pj)

K
j=1. The question is whether p1 ≤ p2 (null hypothesis) or p1 > p2 (working

hypothesis). Instead of a statistical test we construct now a suitable confidence bound for p1/p2:
(a) Show that the conditional distribution of H1, given H1 + H2, is a binomial distribution with
parametersH1 +H2 and ρ := p1/(p1 +p2). That means, for arbitrary numbersm ∈ {0, 1, . . . , n}
and x ∈ {0, 1, . . . ,m},

IP(H1 = x |H1 +H2 = m) =

(
m

x

)
ρx(1− ρ)m−x.

(b) Describe explicit confidence bounds for p1/p2 by means of exact confidence bounds for
binomial parameters.
(c) Now analyze the following fictitious data: For the diagnosis of a certain disease two different
medical tests A and B are available. The working hypothesis is that test A is more sensitive
than test B. That means, for a person suffering from that disease, IP(test A is positive) exceeds
IP(test B is positive). Now both tests are applied to n = 60 diseased persons. Test A was positive
for 57 people, test B was positive for 50 people; for 48 people both tests turned out positive. Do
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these numbers support the working hypothesis?
Hint: For each person four different outcomes are possible. Identify these four outcomes and
formulate the working hypothesis in terms of the corresponding probabilities. Then apply one of
the confidence bounds of part (b).

Exercise 2.12 (Confidence bounds for proving small differences). So far we constructed (1−α)-
confidence intervals for a real valued quantity g(θ) by combining a lower (1 − α/2)-confidence
bound and an upper (1 − α)-confidence bound for g(θ). If the main goal is to show that g(θ) is
close to a given value go, one can modify this approach as follows:
Let aα = aα(data) and bα = bα(data) be a lower and an upper confidenc bound for g(θ), respec-
tively. That means, for arbitrary parameters θ,

IPθ
(
g(θ) ≥ aα

)
IPθ
(
g(θ) ≤ bα

) } ≥ 1− α.

Show that [
min (aα, go) ,max(bα, go)

]
defines a (1− α)-confidence interval for g(θ).

Exercise 2.13. To clarify whether the probability p of a newborn child being male differs sig-
nificantly from 0.5, the data of n = 429′440 newborns have been analyzed. It turned out that
H = 221′023 of these newborns were boys.
(a) Compute a 99%-confidence interval for p by means of Wilson’s method. How would you
answer the question about p above?
(b) Compute an upper 99%-confidence bound for |p− 0.5|.

Exercise 2.14 (Geometric interpretation of the chi-squared test statistic). For a probability vector
p we consider

√
p :=

(√
pk
)K
k=1

. This defines a mapping p 7→ √p from the unit simplex to
a subset of the unit sphere in RK , see Figure 2.7 for the case K = 3. Now we define for two
probability vectors p, q the following quantities:

T (p, q) :=

K∑
k=1

(qk − pk)2

pk
, T̃ (p, q) := 4

∥∥√q −√p∥∥2

and
δ(p, q) := max

k=1,...,K

∣∣∣ qk
pk
− 1
∣∣.

(a) Show that in case of δ(p, q) > 0,

1− 3δ(p, q)

4
≤ T (p, q)

T̃ (p, q)
≤ 1 +

δ(p, q)

2
.

(b) Suppose that p̂ = n−1H withH ∼ Mult(n,po). Show that

IE(δ(po, p̂)2) ≤ K − 1

mink=1,...,K np
o
k

.

Exercise 2.15. For a test statistic T = T (data) we consider the p-value

π := 1−Go(T −)

with a given distribution function Go and the Monte Carlo p-value

π̂ :=
#
{
s ∈ {1, . . . ,m} : Ts ≥ T

}
+ 1

m+ 1
.
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p1p2

p3

p1p2

p3

Figure 2.7: Geometric consideration for the chi-squared test statistic.

Here we consider the data as fixed while T1, T2, . . . , Tm are independent random variables with
distribution function Go. Show that

IE
(
(π̂ − π)2

)
≤ 1

4m+ 1
if m ≥ 2.

Exercise 2.16 (Leading digits). What is the distribution of the leading digit of a random variable?
We consider the following sample: From a huge list of towns and villages we picked randomly a
list of 305 municipalities. The table below contains the numbers of municipalities whose popula-
tion size starts with digit 1, 2, . . . , 9.

Leading digit 1 2 3 4 5 6 7 8 9

Frequency 107 55 39 22 13 18 13 23 15

(a) Test the null hypothesis that the leading digit of the population size in this ‘population’ of
municipalities is uniformly distributed on the set {1, 2, . . . , 9}.
(b) Test the null hypothesis that the leading digit follows Benford’s law, i.e.

IP(leading digit = k) = log10(1 + 1/k) for k = 1, 2, . . . , 9.

Exercise 2.17 (Benford’s law). Behind the Benford distribution in the previous exercise there is a
general phenomenon: IfX is a random variable with continuous distribution function F on R, and
if this distribution is ‘quite diffuse’, then the random variable Y := X − bXc is ‘approximately
uniformly’ distributed on [0, 1). (This vague statement can be made mathematically rigorous.)
Now let Z > 0 be a random variable with continuous distribution on (0,∞). We represent Z as
decimal number, that means,

Z = Z0.Z1Z2Z3 . . . · 10W =
(
Z0 + 10−1Z1 + 10−2Z2 + 10−3Z3 + . . .

)
· 10W

with digits Z0 ∈ {1, . . . , 9}, Z1, Z2, Z3, . . . ∈ {0, 1, . . . , 9} and an integer exponent W . We
assume that the distribution of X = log10(Z) is ‘quite diffuse’. Show that the phenomenon just
mentioned implies that

IP(Z0 = k) ≈ log10(1 + 1/k) for k = 1, 2, . . . , 9.

Remark: Benford’s Law is used, for instance, by the internal revenue service to detect manipula-
tions of financial data.
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Exercise 2.18. The following table contains the frequencies of deaths in the US population in the
twelve months of 1966:

January 166′761

February 151′296

March 164′804

April 158′973

May 156′455

June 149′251

July 159′924

August 145′184

September 141′164

October 154′777

November 150′678

December 163′882

The question is whether the death rate of each month is proportional to its length. One can
justify that conditional on the total number N of deaths of US citizens in 1966, the months
X1, X2, . . . , XN in which these people died may indeed be viewed as independent, identically
distributed random variables. Now we are interested in the probabilities pk = IP(Xi = month k).
Formulate and test a suitable null hypothesis with the two methods we have treated in this chapter,
the chi-squared goodness-of-fit test at level α = 0.01 and simultaneous 99%-confidence intervals
for the pk. How do you interpret the results?

Exercise 2.19. Looking carefully at Figure 2.5, note the particular shape of the smooth parts
between consecutive jumps. Each of these corresponds to a function p 7→ Fn,p(`) − Fn,p(k − 1)
with certain integers 0 ≤ k ≤ ` ≤ n. Show that the function

(0, 1) 3 p 7→ log
(
Fn,p(`)− Fn,p(k − 1)

)
is always concave.



Chapter 3

Numerical Variables: Distribution
Functions and Quantiles

3.1 The Empirical Distribution

Again we focus on one variable of a data set with values X1, X2, . . . , Xn in an arbitrary mea-
surable space (X ,B). Now we consider these n values as stochastically independent random
variables with unknown distribution P on X , so

IP(X1 ∈ B1, X2 ∈ B2, . . . , Xn ∈ Bn) = P (B1)P (B2) · · ·P (Bn)

for arbitrary measurable sets B1, B2, . . . , Bn ⊂ X . This is sometimes paraphrased as X1,X2, . . . ,
Xn being a sample (of size n) from the distribution P . Under this assumption one may estimate
the distribution P by the empirical distribution P̂ of the data which is defined as follows: For a
measurable set B ⊂ X let

P̂ (B) := #{i ≤ n : Xi ∈ B}/n.

This is the relative fraction of data points Xi lying within B. In other words, P̂ is a random
discrete probability distribution on X with weight #{i ≤ n : Xi = x}/n at an arbitrary point
x ∈ X .
The random variables 1[Xi∈B] are stochastically independent with values in {0, 1} and expected
value P (B). Hence

nP̂ (B) =

n∑
i=1

1[Xi∈B] ∼ Bin(n, P (B)).

In particular,

IE(P̂ (B)) = P (B) and Std(P̂ (B)) =

√
P (B)(1− P (B))

n
≤ 1

2
√
n
.

3.2 Distribution Functions and Quantiles

From now on we consider the special case of a numerical variable, i.e. X = R. Let us first recall
the definition and properties of distribution functions.

The distribution function. The distribution P is uniquely characterised by its distribution func-
tion F . Here

F (x) := P ((−∞, x]) = IP(Xi ≤ x) for x ∈ R.

55
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This function F has the following properties:

• F is non-decreasing,
• limx→−∞ F (x) = 0 and limx→∞ F (x) = 1,
• F is right-continuous. Precisely, for arbitrary x ∈ R,

F (x) = lim
s→x,s>x

F (s) and F (x−) := lim
s→x,s<x

F (s) = P ((−∞, x)).

The jump size F (x)− F (x−) of F at an arbitrary position x is equal to P ({x}).

Quantiles. Closely related to the distribution function are so-called quantiles. Let 0 < γ < 1.
A real number qγ is called a γ-quantile of P if

P ((−∞, qγ ]) ≥ γ and P ([qγ ,∞)) ≥ 1− γ.

This is equivalent to the requirement that

P ((−∞, qγ)) ≤ γ and P ((qγ ,∞)) ≤ 1− γ.

Roughly saying, qγ divides the real line into a left and a right halfline with approximate probabil-
ities γ and 1− γ, respectively. By means of the distribution function F one may write

F (qγ −) ≤ γ ≤ F (qγ)

or

F (x)

{
≤ γ for x < qγ ,

≥ γ for x ≥ qγ .

Thus the distribution function F passes the value γ at the point qγ .
The set of all γ-quantiles of P is always a closed interval with boundaries

qγ,1 := min
{
x ∈ R : F (x) ≥ γ

}
and qγ,2 := inf

{
x ∈ R : F (x) > γ

}
.

If we talk about the γ-quantile of P , then we refer to the midpoint qγ := (qγ,1 + qγ,2)/2. If F is
continuous on R and strictly increasing on {x ∈ R : 0 < F (x) < 1}, then there exists a unique
γ-quantile qγ = F−1(γ) with the inverse function F−1 : (0, 1) → {x ∈ R : 0 < F (x) < 1} of
F .

Quartiles and median. Special quantiles are the so-called quartiles: The
• first quartile: q0.25,
• second quartile: q0.50,
• third quartile: q0.75.
A 50%-quantile is also called a median of P . The median is an important feature of the distribution
P which may be characterised as follows:

Lemma 3.1 (Characterising the median). Let X be a random variable with distribution P , where
IE(|X|) <∞. For a fixed number r ∈ R let

H(r) := IE(|X − r|),

the mean distance between X and r. This defines a convex function H with limits H(±∞) =∞.
Moreover, r minimises H if and only if r is a median of P .
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The ‘mail box problem’. Lemma 3.1 provides a solution of the following problem: Along a
street there are n houses at positions x1 < x2 < · · · < xn. Now we want to place a mail box at
position r such that the average distance

1

n

n∑
i=1

|xi − r|

between a house and the mail box becomes minimal. For odd n, the unique optimal position is
equal to x(n+1)/2. For even n, any position within [xn/2, xn/2+1] is optimal.
This is a consequence of Lemma 3.1 if we consider a random variable X with IP(X = xi) = 1/n
for 1 ≤ i ≤ n. Alternatively one could argue directly: Imagine that the mail box is currently at
position r. Now imagine that the mail box is moved a small distance δ to the left or to the right
and what this movement would do to the average of all distances. This type of consideration is
also useful for solving Exercise 3.4.

Proof of Lemma 3.1. It follows from the triangle inequality that

|X − r| ≤ |X|+ |r| and |X − r| ≥ |r| − |X|,

whence

|r| − IE(|X|) ≤ H(r) ≤ |r|+ IE(|X|).

In particular, H(r)→∞ as |r| → ∞.
Convexity of H follows essentially from the fact that h(x, r) := |x − r| is convex in r ∈ R for
any fixed x ∈ R: For r, s ∈ R and 0 < λ < 1,

H((1− λ)r + λs) = IE
(
h(X, (1− λ)r + λs)

)
≤ IE

(
(1− λ)h(X, r) + λh(X, s)

)
= (1− λ)H(r) + λH(s).

Now we consider right- and left-sided derivatives of H: For r < s,

H(s)−H(r)

s− r
= IEh(X, r, s)

with

h(x, r, s) :=
|x− s| − |x− r|

s− r
=


1 if x ≤ r,

s+ r − 2x

s− r
if r ≤ x ≤ s,

−1 if x ≥ s.

Since |h(x, r, s)| ≤ 1, we may interchange limits and expectation and obtain the formulae

H ′(s−) = IE
(

lim
r↑s

h(X, r, s)
)

= IP(X < s)− IP(X ≥ s) = 2 IP(X < s)− 1,

H ′(r+) = IE
(

lim
s↓r

h(X, r, s)
)

= IP(X ≤ r)− IP(X > r) = 2 IP(X ≤ r)− 1.

Note that r is a minimiser of H if and only if H ′(r+) ≥ 0 and H(r−) ≤ 0. This is equivalent to
IP(X ≤ r) ≥ 1/2 and IP(X < r) ≤ 1/2. In other words, r has to be a median of P .
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Empirical distribution function and order statistics. An estimator for F is the empirical dis-
tribution function F̂ ,

F̂ (x) := P̂ ((−∞, x]) = #{i ≤ n : Xi ≤ x}/n.

This is a non-decreasing step function. Precisely, let

X(1) ≤ X(2) ≤ · · · ≤ X(n)

be the ordered values Xi. We call X(i) the i-th order statistic of our data. Then

F̂ (x) =
i

n
for X(i) ≤ x < X(i+1), 0 ≤ i ≤ n,

where X(0) := −∞ and X(n+1) :=∞.

Sample quantiles. By means of the order statistics it is easy to determine sample quantiles: A
number q̂γ is called sample γ-quantile, if it is a γ-quantile of the empirical distribution P̂ . If nγ is
not an integer,

q̂γ = X(dnγe)

is the unique sample γ-quantile. If nγ is an integer, then any number

q̂γ ∈
[
X(nγ), X(nγ+1)

]
is a sample γ-quantile. If we talk about the sample γ-quantile, then we refer to

q̂γ :=
(
X(dnγe) +X(bnγ+1c)

)
/2.

In particular, for γ = 0.5 we obtain the sample median.
The previous definition of sample quantiles is just one out of many proposals. For instance, the
statistics software R provides nine different variants; the one described here is type 2.

Example 3.2 (Monthly rents). In Example 1.18 students have been asked about their monthly
rent (in CHF). Now we consider the population of all students at the University of Bern in the
academic year 2003/2004 which did not live for free with their parents or other relatives. Our
sample contained n = 129 such students, and now we treat these as a random sample from the
aforementioned population. Hence we estimate the proportion of students having to pay at most
x in the whole population by the corresponding proportion F̂ (x) in our sample. The smallest and
largest values are X(1) = 220 CHF and X(129) = 2000 CHF, respectively. Figure 3.1 depicts the
empirical distribution function. The graph of F̂ has been augmented by vertical segments at the
order statistics X(i). Moreover one sees a horizontal line at height 0.5, and this line is crossed by
the graph of F̂ at q̂0.5 = X(65) = 550 CHF (middle vertical line).

Ranks. In some statistical procedures the original data Xi are replaced with their ranks which
are defined as follows:
Suppose that all n values Xi are different. Then we define Ri := k if Xi = X(k). One can also
write

Ri = #{` : X` ≤ Xi} = nF̂ (Xi)

or
Ri = #{` : X` < Xi}+ 1.
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Figure 3.1: Empirical distribution function, sample median and a 95%-confidence interval for q0.5.

Here the resulting vector of ranks, (Ri)
n
i=1, is a permutation of (i)ni=1.

If some values Xi are identical, one uses mean ranks: To the order statistics X(1) ≤ X(2) ≤ · · · ≤
X(n) correspond the ranks 1, 2, . . . , n. However, if

X(j−1) < X(j) = X(j+1) = · · · = X(k) < X(k+1)

for certain indices 1 ≤ j < k ≤ n, then we define

Ri :=
j + (j + 1) + · · ·+ k

k − j + 1
=

j + k

2

for all indices i with Xi = X(j). One can also write

Ri =
(
#{` : X` < Xi}+ 1 + #{` : X` ≤ Xi}

)/
2

=
(
nF̂ (Xi−) + 1 + nF̂ (Xi)

)/
2

or
Ri = #{` : X` < Xi}+

(
1 + #{` : X` = Xi}

)
/2.

Note also that the sum of all ranks is always equal to

n∑
i=1

Ri =
n∑
i=1

i =
n(n+ 1)

2
.

Remark 3.3. If the distribution function F is continuous, the n random variablesX1, X2, . . . , Xn

are almost surely different, whence X(1) < X(2) < · · · < X(n). This is equivalent to saying
that IP(Xi = Xj) = IP(X1 = X2) = 0 for arbitrary indices 1 ≤ i < j ≤ n. Here is an
elementary proof of the latter equality: For an arbitrary integer k ≥ 2 we choose real numbers
ak,1 < ak,2 < · · · < ak,k−1 with F (ak,`) = `/k. Setting ak,0 := −∞ and ak,k := ∞, the
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intervals Ik,` := (ak,`−1, ak,`], 1 ≤ ` ≤ k, satisfy the equalities P (Ik,`) = k−1, 1 ≤ i ≤ n. In
particular,

IP(X1 = X2) =

k∑
`=1

IP(X1 = X2 ∈ Ik,`)

≤
k∑
`=1

IP(X1 ∈ Ik,`, X2 ∈ Ik,`) =

k∑
`=1

P (Ik,`)
2 = k−1.

Since k may be chosen arbitrarily large, the probability on the left hand side equals 0.
By means of Fubini’s Theorem (see Appendix) one can argue as follows:

IP(X1 = X2) = IE
(
IP(X1 = X2 |X2)

)
= IE

(
P ({X2})

)
= 0,

since P ({x}) = F (x)− F (x−) = 0 for arbitrary x ∈ R. The notation IP(X1 = X2 |X2) means
that X2 is viewed temporarily as a fixed number, and only X1 is random with distribution P .

3.3 Confidence Bounds for Quantiles

For quantiles there is a remarkably easy method to compute confidence bounds. For fixed indices
0 ≤ k < ` ≤ n+ 1 we view the random interval

[X(k), X(`)]

as a confidence interval for qγ . In case of k = 0 this corresponds to the upper confidence bound
X(`), in case of ` = n+ 1 we compute a lower confidence bound X(k), because X(0) = −∞ and
X(n+1) = ∞. Otherwise we get a compact confidence interval. The question is how to choose k
and ` in order to guarantee that

IP
(
qγ ∈ [X(k), X(`)]

)
≥ 1− α.

Theorem 3.4. Let qγ be a γ-quantile of P . For arbitrary indices 0 ≤ k < ` ≤ n+ 1,

IP(X(`) ≥ qγ) ≥ Fn,γ(`− 1) with equality if F (qγ −) = γ,(3.1)

IP(X(k) > qγ) ≤ Fn,γ(k − 1) with equality if F (qγ) = γ.(3.2)

Here Fn,γ is the distribution function of Bin(n, γ). In particular,

IP
(
qγ ∈ [X(k), X(`)]

)
≥ Fn,γ(`− 1)− Fn,γ(k − 1)

with equality if F is continuous at qγ .

Remark 3.5. Suppose that the γ-quantile is not unique, that means, qγ,1 < qγ,2. Then F = γ on
[qγ,1, qγ,2), and the open interval (qγ,1, qγ,2) contains almost surely no observation Xi. Hence for
an arbitrary point qγ ∈ (qγ,1, qγ,2),

IP
(
[qγ,1, qγ,2] ⊂ [X(k), X(`)]

)
= IP

(
qγ ∈ [X(k), X(`)]

)
= Fn,γ(`− 1)− Fn,γ(k − 1).

Proof of Theorem 3.4. Note first that

IP
(
qγ ∈ [X(k), X(`)]

)
= 1− IP

(
qγ 6∈ [X(k), X(`)]

)
= 1− IP

(
X(`) < qγ or X(k) > qγ

)
= 1− IP(X(`) < qγ)− IP(X(k) > qγ)

= IP(X(`) ≥ qγ)− IP(X(k) > qγ).
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Hence it suffices to prove (3.1) and (3.2).
As to (3.1), in case of ` = n+ 1 we have X(`) =∞, whence both IP(X(`) ≥ qγ) and Fn,γ(`− 1)
are equal to 1. Otherwise, X(`) ≥ qγ if and only if at most ` − 1 observations Xi are strictly less
than qγ . Consequently,

IP(X(`) ≥ qγ) = IP
(
nP̂ ((−∞, qγ)) ≤ `− 1

)
= Fn,F (qγ −)(`− 1)

≥ Fn,γ(`− 1).

Here we used the fact that nP̂ ((−∞, qγ)) follows Bin(n, F (qγ −)), the inequality F (qγ −) ≤ γ
and Lemma 2.3. Equality holds if F (qγ −) = γ.
Analogously one can prove (3.2): In case of k = 0 it follows from X(k) = −∞ that both
IP(X(k) > qγ) and Fn,γ(k − 1) are equal to 0. Otherwise,

IP(X(k) > qγ) = IP
(
nP̂ ((−∞, qγ ]) ≤ k − 1

)
= Fn,F (qγ)(k − 1)

≤ Fn,γ(k − 1)

with equality if F (qγ) = γ.

Application. To construct a (1 − α)-confidence interval for qγ , one should choose indices 0 ≤
k < ` ≤ n+ 1 such that

(3.3) Fn,γ(`− 1)− Fn,γ(k − 1) ≥ 1− α.

This leads to the lower (1− α)-confidence bound X(k) for qγ with

k = kα(n, γ) := max
{
k ∈ {0, 1, . . . , n} : Fn,γ(k − 1) ≤ α

}
and the upper (1− α)-confidence bound X(`) for qγ with

` = `α(n, γ) := min
{
` ∈ {1, 2, . . . , n+ 1} : Fn,γ(`− 1) ≥ 1− α

}
.

Symmetry considerations yield the equation

kα(n, γ) = n+ 1− `α(n, 1− γ).

In particular,
kα(n, 0.5) = n+ 1− `α(n, 0.5).

A (1− α)-confidence interval for qγ is given by [X(k), X(`)] with the indices k = kα/2(n, γ) and
` = `α/2(n, γ). But it may be possible to increase k or decrease ` without violating (3.3).

Example 3.6 (Monthly rents). In the previous example with n = 129 monthly rents of students
we want to compute a 95%-confidence interval for the unknown median q0.5. Since Fn,0.5(52) <
α/2 = 2.5% < Fn,0.5(53), we obtain the indices kα/2(n, 0.5) = 53 and `α/2(n, 0.5) = n + 1 −
kα/2(n, 0.5) = 77. This leads to the 95%-confidence interval

[X(53), X(77)] = [500 CHF, 580 CHF]

for q0.5. The endpoints of this interval are depicted in Figure 3.1, too.
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Remark 3.7. So far we know how to construct for fixed x ∈ R confidence bounds for F (x),
based on the random variable H := nF̂ (x) ∼ Bin(n, F (x)). On the other hand we know how
to construct confidence bounds for a single quantile qγ . These two procedures are closely related.
For if we consider the one-sided (1− α)-confidence bounds

aα(x) = aα(x,Daten) := inf
{
p ∈ [0, 1] : Fn,p(nF̂n(x)− 1) < 1− α

}
,

bα(x) = bα(x,Daten) := sup
{
p ∈ [0, 1] : Fn,p(nF̂n(x)) > α

}
for F (x), then

X(kα(n,γ)) ≤ x if and only if bα(x) > γ,

X(`α(n,γ)) > x if and only if aα(x) < γ.

The proof of these equivalences is left to the reader as an exercise.

Remark 3.8 (Distribution of order statistics). The proof of Theorem 3.4 yields an explicit formula
for the distribution function of an arbitrary order statistic X(k). Namely,

IP(X(k) ≤ x) = 1− Fn,F (x)(k − 1)

for arbitrary k ∈ {1, 2, . . . , n} and x ∈ R. ForX(k) ≤ x is equivalent to at least k observationsXi

being less than or equal to x. Together with the second part of Lemma 2.3 this yields the formula

IP(X(k) ≤ x) =

∫ F (x)

0
n

(
n− 1

k − 1

)
uk−1(1− u)n−k du.

3.4 Kolmogorov–Smirnov Confidence Bands

In this section we shall derive a (1−α)-confidence band for F . Precisely, we’ll show that for each
sample size n and any α ∈ (0, 1) there exists a constant κn,α with the following property:

(3.4) IPF
(
F (x) ∈

[
F̂ (x)± κn,α

]
∩ [0, 1] for all x ∈ R

)
≥ 1− α

for any distribution function F with equality in case of F being continuous. In other words,

IPF
(
‖F̂ − F‖∞ ≤ κn,α

)
≥ 1− α,

where ‖h‖∞ := supx∈R |h(x)| denotes the supremum norm of a function h : R → R. It will
turn out that κn,α is of order O(n−1/2) for fixed α. An important tool in this context are so-called
quantile transformations which are also essential for computer simulations.

The quantile function. For 0 < u < 1 let

F−1(u) := min
{
x ∈ R : F (x) ≥ u

}
.

This number is well-defined due to the general properties of F . It is just the minimal u-quantile
qu,1 of the distribution P .

Example 3.9 (Distributions with finite support). For some m ∈ N and real numbers x1 < x2 <
. . . < xm let

pi := P{xi} > 0 for i = 1, . . . ,m,
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where
∑m

i=1 pi = 1. Then

F (x) =


0 for x < x1,∑j

i=1 pi for xj ≤ x < xj+1 and 1 ≤ j < m,

1 for x ≥ xm,

and

F−1(u) =

{
x1 if 0 < u ≤ p1,

xk if
∑k−1

i=1 pi < u ≤
∑k

i=1 pi and 1 < k ≤ m.

Example 3.10 (Exponential distributions). For b > 0 let

Fb(x) := max
{

1− e−x/b, 0
}
,

the distribution function of the exponential distribution with scale parameter (mean) b. Here

F−1
b (u) = −b log(1− u)

for arbitrary u ∈ (0, 1).

Lemma 3.11 (Quantile transformation).

(a) Let U be uniformly distributed on [0, 1], that means, IP(U ∈ B) = length(B) for arbitrary
intervals B ⊂ [0, 1]. Then

X := F−1(U)

defines a random variable with distributions function F .

(b) Let U1, U2, . . . , Un be stochastically independent and uniformly distributed on [0, 1] with
empirical distribution function F̂U , i.e. F̂U (v) := #{i ≤ n : Ui ≤ v}/n. Then the random
function R 3 x 7→ F̂ (x) has the same behaviour as the random function

R 3 x 7→ F̂U (F (x)).

In particular,

IP
(
‖F̂ − F‖∞ ≤ κ

)
≥ IP

(
sup
v∈[0,1]

∣∣F̂U (v)− v
∣∣ ≤ κ)

for arbitrary κ ≥ 0 with equality if F is continuous. Moreover, the right hand side is continuous
in κ ≥ 0.

Concerning part (a) one should mention that IP(U = 0) = IP(U = 1) = 0, so X = F−1(U) is
well-defined in R almost surely. Part (a) shows a general recipe for transforming random variables
with uniform distribution on [0, 1] into random variables with arbitrary given distribution (func-
tion). This recipe is used frequently in computer simulations, because computers provide pseudo
random numbers with uniform distribution on [0, 1].

Proof of Lemma 3.11. The definition of F−1 implies the following fact: For arbitrary x ∈ R and
u ∈ (0, 1),

F−1(u) ≤ x if and only if F (x) ≥ u.

This yields part (a), since

IP(X ≤ x) = IP(F−1(U) ≤ x) = IP(U ≤ F (x)) = F (x).
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As to part (b), according to part (a) the random vectors (Xi)
n
i=1 and

(
F−1(Ui)

)n
i=1

are identically
distributed. Thus the random function R 3 x 7→ F̂ (x) has the same bevavior as the random
function

R 3 x 7→ 1

n

n∑
i=1

1[F−1(Ui)≤x] =
1

n

n∑
i=1

1[Ui≤F (x)] = F̂U (F (x)).

In particular, ‖F̂ − F‖∞ has the same distribution as

sup
v∈F (R)

∣∣F̂U (v)− v
∣∣,

und this is obviously not greater than

S := sup
v∈[0,1]

∣∣F̂U (v)− v
∣∣ = sup

v∈(0,1)

∣∣F̂U (v)− v
∣∣.

The latter equality follows from F̂U (0) = 0 almost surely and F̂U (1) = 1. If F is continuous,
then (0, 1) ⊂ F (R) ⊂ [0, 1], so ‖F̂ − F‖∞ has exactly the same distribution as S.
It remains to show that IP(S ≤ κ) is continuous in κ ≥ 0. In other words, we have to show that
IP(S = κ) = 0 for arbitrary κ ≥ 0. To this end note first that F̂U (v) − v = i/n − v on each
interval [U(i), U(i+1)), 0 ≤ i ≤ n. Here U(1) ≤ U(2) ≤ . . . ≤ U(n) are the order statistics of the
random variables U1, U2, . . . , Un, and U(0) := 0, U(n+1) := 1. This yields the equation

S = max
i=1,2,...,n

max
( i
n
− U(i), U(i) −

i− 1

n

)
.

In particular,

IP(S = κ) ≤
n∑
i=1

(
IP
(
U(i) =

i

n
− κ
)

+ IP
(
U(i) =

i− 1

n
+ κ
))

= 0,

because each order statistic U(i) has a continuous distribution function; see Remark 3.8.

Inspired by part (a) of Lemma 3.11, G. Shorack and J. Wellner (1986) wrote the following little
poem:

The Uniform Song
There are continuous distributions,

discrete ones too.
Some are heavy tailed,

and some are skew.
There are logistics and chi squares,

but these we will scorn,
‘Cause the loviest of them all

is the Uniform!

Confidence bands. Part (b) of Lemma 3.11 leads to the aforementioned Kolmogorov-Smirnov
confidence band1 for F . Let

κn,α := min

{
κ ≥ 0 : IP

(
sup
v∈[0,1]

∣∣F̂U (v)− v
∣∣ ≤ κ) = 1− α

}
.

1Andrei N. Kolmogorov (1903-1987) and Vladimir I. Smirnov (1887-1974): famous Russian mathematicians. Kol-
mogorov was a leading figure in the development of modern probability theory.
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Then (3.4) is satisfied. In other words, with confidence 1 − α one may assume that the unknown
graph F is contained within the confidence band{

(x, y) : x ∈ R, y ∈
[
F̂ (x)± κn,α

]
∩ [0, 1]

}
.

Remark 3.12. The exact distribution of supv∈[0,1]

∣∣F̂U (v) − v
∣∣ is derived, for instance, in the

monograph of G. Shorack and J. Wellner (1986). There one also finds the limits

lim
n→∞

IP
(√

n sup
v∈[0,1]

±
(
F̂U (v)− v

)
≥ η

)
= exp(−2η2),

lim
n→∞

IP
(√

n sup
v∈[0,1]

∣∣F̂U (v)− v
∣∣ ≥ η) = 2

∞∑
i=1

(−1)i−1 exp(−2i2η2)

for arbitrary η > 0. Finally P. Massart (1990) showed that

(3.5) IP
(

sup
v∈[0,1]

∣∣F̂U (v)− v
∣∣ ≥ κ) ≤ 2 exp(−2nκ2)

for arbitrary n ∈ N and κ ≥ 0. This yields the inequality

κn,α ≤ κ̃n,α :=

√
log(2/α)

2n
.

This upper bound is remarkably accurate, so we use it in all our numerical examples as a proxy
for κn,α.

Further details about F̂ and a proof of a weaker version of (3.5) are provided in Section A.8 of the
appendix.

Example 3.13 (Monthly rents). Figure 3.2 shows a 95%-confidence band for F in our data ex-
ample with n = 129 monthly rents of student. Here we used κ̃129,0.05 ≈ 0.1196.

Confidence bands and specific models. The set of all distribution functions G satisfying the
inequality ‖F̂ − G‖∞ ≤ κn,α comprises a (1 − α)-confidence region for the unknown true dis-
tribution function F . Sometimes we have a particular model (Fθ)θ∈Θ of distribution functions in
mind. Then one could determine the set

(3.6)
{
η ∈ Θ: ‖F̂ − Fη‖∞ ≤ κn,α

}
.

Under the assumption that F = Fθ for some unknown true parameter θ ∈ Θ, the set (3.6) is a
(1− α)-confidence region for θ. If this set is empty, we may claim with confidence 1− α that the
model is incorrect, that is, F 6∈ {Fθ : θ ∈ Θ}.
The explicit computation of the confidence region (3.6) can be a challenging problem in itself.
What is helpful is the fact that for any distribution function G,

‖F̂ −G‖∞ = max
i=1,...,n

max
( i
n
−G(X(i)), G(X(i)−)− i− 1

n

)
This can be verified as in the proof of Lemma 3.11 (b), noting that F̂ − G = i/n − G on
[X(i), X(i+1)) for 0 ≤ i ≤ n. Hence the set (3.6) may be rewritten as

(3.7)
{
η ∈ Θ: Fη(X(i)) ≥

i

n
− κn,α and Fη(X(i)−) ≤ i− 1

n
+ κn,α for 1 ≤ i ≤ n

}
.
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Figure 3.2: A Kolmogorov–Smirnov confidence band for F .

Example 3.14 (Body heights). Numerous empirical studies confirm that in many populations the
variable ‘body height’ follows closely a Gaussian distribution, after dividing the population by
gender. This approximation cannot be completely accurate if body heights are measured to whole
centimeters only. (Also negative values are obviously impossible, though this is rather irrelevant
if the mean is much higher than the standard deviation.) Hence a more precise model starts from a
random variable with Gaussian distribution whose values have been rounded to whole centimeters.
That results in the following model for the body height X of a randomly chosen person:

IP(X ≤ x) = Φ̃µ,σ(x) := Φ
(bxc+ 0.5− µ

σ

)
for certain unknown parameters µ > 0 und σ > 0. Whenever µ � σ, the value of Φ̃µ,σ(0) is
negligible. The recipe (3.6) and the alternative represention (3.7) lead to the following (1 − α)-
confidence region for the unknown parameter (µ, σ) ∈ R× (0,∞):

Cα :=
{

(m, s) : ‖F̂ − Φ̃m,s‖∞ ≤ κn,α
}

=
{

(m, s) : Φ̃m,s(X(i)) ≥
i

n
− κn,α

and Φ̃m,s(X(i) − 1) ≤ i− 1

n
+ κn,α for 1 ≤ i ≤ n

}
=
{

(m, s) : m+ sΦ−1
( i
n
− κn,α

)
≤ X(i) + 0.5

and m+ sΦ−1
( i− 1

n
+ κn,α

)
≥ X(i) − 0.5 for 1 ≤ i ≤ n

}
,

where Φ−1(u) := −∞ for u ≤ 0 and Φ−1(u) := ∞ for u ≥ 1. The latter representation of Cα
shows that it is the intersection of at most 2n halfplanes in R × (0,∞), that is, sets of the form
{(m, s) : am+ bs ≤ c} with certain numbers a = ±1 and b, c ∈ R.
As an explicit data example we consider the body heights of men in Example 1.18. This corre-
sponds to a sample with n = 145 observations. Figure 3.3 shows contour lines of the function
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(m, s) 7→ ‖F̂ − Φ̃m,s‖∞. (Precisely we evaluated this function on a fine grid of 251 × 251
points within the displayed region and interpolated these values.) The smallest distance of 0.0311
was achieved for (m, s) = (178.8, 6.39), marked by a star. This minimum distance estima-
tor of (µ, σ) is an alternative to the more traditional estimator (X,S) = (178.94, 6.24) in-
troduced and analyzed in Section 4.1. The fat line corresponds to all parameters (m, s) with
‖F̂ − Φ̃m,s‖∞ = κ̃n,0.05 ≈ 0.1128 and surrounds the confidence region C0.05. Figure 3.4 shows
the empirical distribution function F̂ and the Kolmogorov–Smirnov confidence band (fine lines)
together with the estimated function Φ̃178.8,6.39 (highlighted).
By the way, the confidence region would be substantially smaller if we would have ignored the
rounding errors and used the continuous distribution functions Φm,s(x) = Φ((x−m)/s). But this
would be an artefact of assuming a wrong model rather than an advantage.

m

s

177 178 179 180 181

4
5
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7

8
9

10

*

Figure 3.3: A Kolmogorov–Smirnov confidence region for (µ, σ).

3.5 Exercises

Exercise 3.1. Verify that the following functions are distribution functions, and determine the
corresponding inverse functions F−1 : (0, 1)→ R:

F1(x) :=
ex

1 + ex
, F2(x) := exp(− exp(−x)),

F3(x) :=
1

2
+

x

2
√

1 + x2
, F4(x) :=

{
0 for x ≤ 0,

1− (1 + x2)−b/2 for x ≥ 0, where b > 0.

Exercise 3.2 (Tails of the standard normal distribution, I). For the distribution function Φ or
quantile function Φ−1 of the standard normal distribution there are no closed formulae available.
But show that

1− Φ(x) ≤ exp(−x2/2)/2 for x ≥ 0.
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Figure 3.4: A Kolmogorov–Smirnov approximation.

Deduce from that the inequality

Φ−1(1− α) ≤
√
−2 log(2α) for 0 < α ≤ 1/2.

Exercise 3.3 (Tails of the standard normal distribution, II). One can approximate 1−Φ(x) quite
well by expressions of the form φ(x)/h(x), where φ = Φ′ and h : [0,∞) → (0,∞) is differen-
tiable and monotone increasing. Show that ∆ := φ/h − (1 − Φ) always satisfies the equations
limx→∞∆(x) = 0 and

∆′(x) =
φ(x)

h(x)2

(
h(x)2 − xh(x)− h′(x)

)
.

Specifically, let h1(x) := x/2 +
√

1 + x2/4 and h2(x) := x/2 +
√

2/π + x2/4. Show that

φ(x)

h1(x)
≤ 1− Φ(x) ≤ φ(x)

h2(x)
for all x ≥ 0

Exercise 3.4. In a village with 33 houses, a mail box is to be placed such that the sum of all
distances from a house to the mail box becomes minimal. Here we mean distances along the roads
on the plan depicted in Figure 3.5. Show that there is precisely one optimal position for the mail
box. (It is not necessary to measure distances explicitly. Just consider an arbitrary stretch of road
without houses or intersections and determine how the total sum of distances would change if the
mail box were positioned somewhere at that stretch and moved by a small amount.)

Exercise 3.5 (An example for quantiles). The bakery of Schilda has to spend an amount of h to
produce a loaf of sunday bread, and it is sold at the price v > h. According to past experience, the
demand X for this type of bread on a sunday morning (i.e. the number of potentially sold items)
follows a certain distribution P on N0. Now the question is how many loafs of sunday bread the
bakery should produce to maximise its expected net revenues. (The citizens of Schilda are picky
and would never buy old sunday bread!) The result depends on the distribution P of X and the
ratio h/v.
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Figure 3.5: A village.

Exercise 3.6. Show that always

n∑
i=1

Ri = n(n+ 1)/2 and
n∑
i=1

R2
i ≤ n(n+ 1)(2n+ 1)/6

with equality if and only if the n numbers X1, X2, . . . , Xn are different.

Exercise 3.7. Let (Xi)
n
i=1 be an arbitrary random vector with n real-valued components satisfy-

ing the following two properties:
(i) With probability one, X1, X2, . . . , Xn are different;
(ii) For any permutation σ of {1, 2, . . . , n}, the two vectors (Xσ(i))

n
i=1 and (Xi)

n
i=1 are identically

distributed.
Show thatR : {1, 2, . . . , n} → {1, 2, . . . , n}withR(j) =

∑n
i=1 1[Xi≤Xj ] is uniformly distributed

on the set of all n! permutations of {1, 2, . . . , n}.

Exercise 3.8. Show that
IP
(
q0.5 ∈ [X(1), X(n)]

)
≥ 1− 21−n

with equality if F is continuous at q0.5. How large should n be such that this lower bound is at
least 95%?

Exercise 3.9. Let n ∈ N \ (4N). What do you know about

IP
(
q0.5 ∈ [q̂0.25, q̂0.75]

)
?

Exercise 3.10. Suppose one wants to determine a confidence interval for the quantile qγ based on
a sample of size n = 30.
(a) Determine for γ ∈ {0.25, 0.5, 0.75} all ‘minimal’ index pairs (k, `) such that [X(k), X(`)]
is a 90%-confidence interval for qγ . Here ‘minimal’ means that (k, `) could not be replaced by
(k + 1, `) or (k, `− 1). Use Tables 3.1 and 3.2 or write a computer program to solve this task.
(b) Table 3.3 contains the life spans of n = 30 house cats in months (ordered values). Determine
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a lower 90%-confidence bound for the median life span of house cats. Formulate your result in
words.

x F30,0.25(x) x F30,0.25(x) x F30,0.25(x) x F30,0.25(x)

0 0.0002 8 0.6736 16 0.9998 24 1.0000

1 0.0020 9 0.8034 17 0.9999 25 1.0000

2 0.0106 10 0.8943 18 1.0000 26 1.0000

3 0.0374 11 0.9493 19 1.0000 27 1.0000

4 0.0979 12 0.9784 20 1.0000 28 1.0000

5 0.2026 13 0.9918 21 1.0000 29 1.0000

6 0.3481 14 0.9973 22 1.0000 30 1.0000

7 0.5143 15 0.9992 23 1.0000

Table 3.1: Distribution function F30,0.25 of Bin(30, 0.25).

x F30,0.5(x) x F30,0.5(x) x F30,0.5(x) x F30,0.5(x)

0 0.0000 8 0.0081 16 0.7077 24 0.9998

1 0.0000 9 0.0214 17 0.8192 25 1.0000

2 0.0000 10 0.0494 18 0.8998 26 1.0000

3 0.0000 11 0.1002 19 0.9506 27 1.0000

4 0.0000 12 0.1808 20 0.9786 28 1.0000

5 0.0002 13 0.2923 21 0.9919 29 1.0000

6 0.0007 14 0.4278 22 0.9974 30 1.0000

7 0.0026 15 0.5722 23 0.9993

Table 3.2: Distribution function F30,0.5 of Bin(30, 0.5).

66.6 89.5 103.2 122.5 140.0 148.4
70.5 96.1 106.2 127.0 140.6 160.1
77.1 96.6 106.9 127.2 143.0 167.7
84.4 97.7 112.0 129.0 144.0 182.0
88.4 102.0 122.2 129.1 145.8 189.0

Table 3.3: Life spans (in months) of n = 30 house cats.

Exercise 3.11. Write a program that returns for given n ∈ N, γ ∈ (0, 1) and α ∈ (0, 1) the two
indices k = kα(n, γ) and ` = `α(n, γ).

Exercise 3.12. In medical science, a measure for a person’s weightyness is its ‘body mass index’

BMI :=
body weight in kg

(body height in m)2
.

Persons with 20 ≤ BMI < 25 are considered as normal, persons with 25 ≤ BMI < 30 as
potentially overweight, and persons with BMI ≥ 30 as potentially obese. (Note however that
sportive people tend to have higher BMI because of increased muscle and bone mass.)
Obtain some data set containing body heights and weights of various people. Reflect which popu-
lation these people could represent. Then determine point estimators and 90%-confidence intervals
for the three quartiles q0.25, q0.5 and q0.75.
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Exercise 3.13 (Approximations for kα(n, γ) and `α(n, γ)). Let H ∼ Bin(n, γ). The Central
Limit Theorem implies that (H − nγ)/

√
nγ(1− γ) follows approximately a standard Gaussian

distribution when nγ(1− γ)→∞. In particular,

Fn,γ(x) = IP(H ≤ x) = IP(H < x+ 1) ≈ Φ
(x+ 1/2− nγ√

nγ(1− γ)

)
for x = 0, 1, . . . , n.
(a) Illustrate graphically that the ‘continuity correction’ +1/2 above is indeed reasonable. To this
end, compare the exact value Fn,γ(x) with the approximation Φ

(
(x+ s− np)/

√
np(1− p)

)
for

s = 0, 0.5, 1.
(b) Use the approximation formula above to define approximations for kα(n, γ) and `α(n, γ).
Compare these approximations with the exact indices.

Exercise 3.14. Let Y be a real-valued random variable with distribution function G and quantile
function G−1.
(a) Express the distribution function F and the quantile function F−1 of the following random
variables in terms of G and G−1:
(a.1) X := dY e,
(a.2) X := bY with b > 1,
(a.3) X := logb(Y ) with b > 1, where we assume that Y > 0.
(b) Suppose that G has a continuous density g = G′. Determine the density f = F ′ for (a.2-3).

Exercise 3.15 (Kolmogorov–Smirnov band and quantiles). The confidence band for F implies
confidence bounds for qγ , simultaneously for all γ ∈ (0, 1): Determine indices 0 ≤ k(γ) <

`(γ) ≤ n+ 1, γ ∈ (0, 1), such that ‖F̂ − F‖∞ ≤ κn,α implies that

qγ ∈
[
X(k(γ)), X(`(γ))

]
for 0 < γ < 1.

Exercise 3.16 (Monte-Carlo simulations of the Kolmogorov–Smirnov statistic). Write a program
which yields for given parameters n ∈ N, α ∈ (0, 1) and m ∈ N a Monte-Carlo estimate for the
(1− α)-quantile of

S := sup
v∈[0,1]

∣∣F̂U (v)− v
∣∣

in m simulations. Use the special representation of S in the proof of Lemma 3.11.

Exercise 3.17 (Smallest value of the Kolmogorov–Smirnov statistic). Show that the random vari-
able S = supv∈[0,1]

∣∣F̂U (v)− v
∣∣ in Lemma 3.11 satisfies

IP(S ≤ κ)

{
= 0 if κ ≤ (2n)−1,

> 0 if κ > (2n)−1.

Exercise 3.18 (Sample size determination for Kolmogorov–Smirnov bands). Determine a sam-
ple size n by means of Massart’s inequality (3.5) such that the empirical distribution function F̂
satisfies ∥∥F̂n − F∥∥∞ ≥ 0.01

with probability at most 0.01.
On the other hand, determine a small constant κ > 0 (up to five digits) with the property that∥∥F̂n − F∥∥∞ ≥ κ with probability at most κ, provided that n ≥ 40′000.
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Chapter 4

Numerical Variables: Means and Other
Features

4.1 Means and Standard Deviations

This section is primarily about estimation of the mean µ = IE(Xi) of the distribution P , that is
the number

µ = µ(P ) =

∫
xP (dx).

For a general function h the integral
∫
h(x)P (dx) stands for the number

∑
x h(x) · P ({x}) in

case of P being a discrete distribution or
∫∞
−∞ h(x)f(x) dx in case of P having density function

f .
We always assume that IE(X2

i ) < ∞ which implies IE(|Xi|) being finite, too. Closely related to
the mean is the variance σ2 = IE((Xi − µ)2) of the distribution P . It may be written as

σ2 = σ(P )2 =

∫
(x− µ)2 P (dx) =

∫
x2 P (dx)− µ2.

The standard deviation of the distribution P is the square root σ = σ(P ) of the variance.
The mean µ is of interest, for instance, in the following situations:
• The data Xi are the values of a numerical variable within a random sample from a certain
population. Then µ is the arithmetic mean of this variable over the whole population. Here,
σ2 is the arithmetic mean of the squared difference between this variable and µ over the whole
population.
• The data Xi are repeated measurements with a certain measurement device to determine an
unknown parameter µ. The measurement device works correctly if there are no systematic errors,
that means, if each single measurement has mean µ. Then σ quantifies the inaccuracy of a single
measurement.

A prediction problem. Before we discuss the estimation of µ and σ, let us motivate these quan-
tities by means of a prediction problem. Suppose for the moment that the distribution P is known.
We want to predict the value of a future observation X with distribution P by a fixed real number
as precisely as possible. One may interpret ‘precisely as possible’ in many ways. The two most
popular are:
• Minimizing the mean absolute prediction error

IE(|X − r|).

73
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This criterion has been looked at in Lemma 3.1 already, and the median q0.5 = q0.5(P ) turned out
to be the optimal prediction.
• Minimizing the mean squared prediction error

IE((X − r)2).

The equation IE((X − r)2) = Var(X) + (r − IE(X))2 = σ2 + (r − µ)2 shows that the optimal
prediction is given by r = µ. The resulting mean squared prediction error is just the variance σ2.

Point estimation of µ and σ

A canonical estimator for the mean µ of P is the mean of the empirical distribution P̂ , and this
leads to the sample mean

µ(P̂ ) =
1

n

n∑
i=1

Xi =: X.

This estimator is unbiased, and its precision increases with n:

IE(X) = µ and IE
(
(X − µ)2

)
=

σ2

n
.

In particular, IE
(
|X − µ|

)
≤
√

IE
(
(X − µ)2

)
= σ/

√
n.

Usually not only the mean but also the standard deviation σ and the variance σ2 are unknown, so
we need an estimator for the latter quantities. Again one could replace the unknown distribution
P with the empirical distribution P̂ . That means, we could estimate the variance σ2 by

σ2(P̂ ) =
1

n

n∑
i=1

(Xi −X)2 =
1

n

n∑
i=1

X2
i −X

2
.

This value, however, is systematically too small. It follows from Exercise 4.1 that the sample
variance

S2 :=
1

n− 1

n∑
i=1

(Xi −X)2 =
1

n− 1

( n∑
i=1

X2
i − nX

2
)

is an unbiased estimator for the variance σ2. For large sample sizes, the correction factor n/(n−1)
has almost no impact, but for smaller samples it is relevant. The square root S is the so-called
sample standard deviation and serves as an estimator for the true standard deviation σ.
Both S2 and S are consistent estimators for σ2 and σ, respectively. Precisely,

lim
n→∞

IE
(
|S2 − σ2|

)
= 0 = lim

n→∞
IE(|S − σ|).

This is a consequence of the following version of the weak law of large numbers: For independent,
identically distributed random variables Y1, Y2, Y3, . . . with expected value ν ∈ R,

lim
n→∞

IE
(
|Y − ν|

)
= 0,

where Y := n−1
∑n

i=1 Yi. We apply this fact to the random variables Yi := (Xi − µ)2 with
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expectation ν = σ2: Indeed,

S2 − σ2 =
1

n− 1

n∑
i=1

(Xi −X)2 − σ2

=
1

n− 1

n∑
i=1

(
(Xi − µ)− (X − µ)

)2 − σ2

=
1

n− 1

n∑
i=1

Yi −
n

n− 1
(X − µ)2 − σ2

=
n

n− 1

(
Y − ν

)
− n

n− 1
(X − µ)2 +

σ2

n− 1
.

Hence

IE
(
|S2 − σ2|

)
≤ n

n− 1
IE
(
|Y − ν|

)
+

n

n− 1
IE
(
(X − µ)2

)
+

σ2

n− 1

=
n

n− 1
IE
(
|Y − ν|

)
+

2σ2

n− 1
,

and this converges to 0 as n→∞. Moreover,

IE(|S − σ|) = IE
( |S2 − σ2|

S + σ

)
≤

IE
(
|S2 − σ2|

)
σ

.

Z-Confidence Bounds for µ

To construct confidence bounds for µ we consider the standardised quantity

Z :=
X − IE(X)

Std(X)
=

√
n(X − µ)

σ
.

This random variable Z has mean zero and standard deviation one. Furthermore, it follows from
the Central Limit Theorem that for large n it follows approximately a standard Gaussian distribu-
tion:

lim
n→∞

IP(r ≤ Z ≤ s) = Φ(s)− Φ(r)

for arbitrary −∞ ≤ r < s ≤ ∞. If P is a Gaussian distribution itself, i.e. P = N (µ, σ2), then Z
is a standard Gaussian random variable for any sample size n; see Theorem 4.3. The inequalities
r ≤ Z ≤ s are equivalent to

X − σ√
n
s ≤ µ ≤ X − σ√

n
r.

Hence, if the standard deviation σ is known, we obtain the following confidence regions for µ:
The upper confidence bound

X +
σ√
n

Φ−1(1− α),

the lower confidence bound
X − σ√

n
Φ−1(1− α)

or the confidence interval [
X ± σ√

n
Φ−1(1− α/2)

]
.
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The confidence level is approximately equal to 1− α for large n. In case of observations Xi with
normal distribution the confidence level is precisely 1 − α. If we knew only an upper bound σ
for σ, we could replace σ in the bounds above with σ. The resulting confidence level would be
(precisely or approximately) at least 1− α.

Example 4.1 (Measurement errors). Consider a scale which shows a measurement X when
putting a probe of weight µ on it. Suppose that from extensive test series it is known or at least
plausible that X follows a Gaussian distribution with (unknown) mean µ and known standard de-
viation σ > 0. Repeating this measurement n times independently yields independent random
variables X1, X2, . . . , Xn with distribution P = N (µ, σ2). The standard deviation σ > 0 is a
known feature of the scale which quantifies the uncertainty of a single measurement. The sample
mean X has the property that

IP[X deviates from µ by more than c]

= IP
(
|X − µ| > c

)
= IP

(
|Z| >

√
n c

σ

)
= 2

(
1− Φ

(√n c
σ

))
.

In other words, with confidence 1 − α, µ lies within the interval [X ± c], where c := σΦ−1(1 −
α/2)/

√
n. If one specifies a value α and a precision c, one can determine a minimal required

sample size n as follows:

n ≥ σ2Φ−1(1− α/2)2

c2
.

Student Confidence Bounds for µ

The assumption that σ is known is rarely met. An obvious way out is to replace σ in the definition
of Z with the sample standard deviation S and to consider the standardised quantity

T :=

√
n(X − µ)

S
.

In other words, one replaces the unknown standard deviation σ/
√
n of X with the so-called stan-

dard error S/
√
n. Indeed, for large sample sizes n, T follows approximately a standard Gaussian

distribution, too, because IE |S/σ−1| → 0 as n→∞. The question is, however, what the precise
impact of estimating σ is for fixed n.
W. S. Gosset1 investigated this question for Gaussian observations Xi. Upon request of his em-
ployer, he published his results under the pseudonym ‘student’ and introduced a new class of
distributions:

Definition 4.2 (Student’s t distributions). Let Z0, Z1, Z2, . . . , Zk be stochastically independent
and standard Gaussian random variables. Student’s t distribution (student distribution, t distribu-
tion) with k degrees of freedom is defined as the distribution of

Z0

/√√√√1

k

k∑
i=1

Z2
i .

The usual symbol for this distribution is tk. Its β-quantile is denoted with tk;β .

Remarks on tk. Student’s t distribution has a density given by

fk(x) = Ck(1 + x2/k)−(k+1)/2

1William S. Gosset (1876-1937): british statistician, employee of the Guinness brewery in Dublin.
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with a certain normalising constant Ck > 0. The main important fact for us is that fk is also a
bell-shaped function and symmetric around zero. This symmetry implies that tk;1/2 = 0 and

tk;1−β = −tk;β.

For explicit values one needs suitable software or tables.
The density function fk is derived in the appendix. There it is also shown that fk(0) is strictly
increasing in k, that limk→∞ fk(x) = φ(x) for arbitrary x ∈ R, and that for 1/2 < β < 1,

t1;β > t2;β > t3;β > · · · with lim
k→∞

tk;β = Φ−1(β).

Figure 4.1 shows the density functions fk for k = 1, 2, 3, 4 as well as the standard Gaussian
density φ, where f1(0) < f2(0) < f3(0) < f4(0) < φ(0).

-4 -2 0 2 4

0.
0

0.
1

0.
2

0.
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4

x

f k
(x
)

Figure 4.1: Density functions of t1, t2, t3, t4 and N (0, 1).

These t and also chi-squared distributions come into play via the following result:

Theorem 4.3 (W. Gosset, R.A. Fisher). Let X1, X2, . . . , Xn be stochastically independent ran-
dom variables with distribution N (µ, σ2). Then the random pair(√

n(X − µ)

σ
,
S

σ

)
has the same distribution as (

Z1,

√√√√ 1

n− 1

n∑
i=2

Z2
i

)

with independent, standard Gaussian random variables Z1, Z2, . . . , Zn. In particular, T =√
n(X − µ)/S has distribution tn−1, and (n− 1)S2/σ2 has distribution χ2

n−1.
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Confidence bounds for µ. In case of Gaussian observations Xi, the auxiliary quantity T =√
n(X − µ)/S follows a student distribution with n− 1 degrees of freedom, whence

IP
(
T ≤ tn−1;1−α

)
IP
(
T ≥ −tn−1;1−α

)
IP
(
|T | ≤ tn−1;1−α/2

)
 = 1− α.

Solving the inequalities ±T ≤ c for µ yields three different (1 − α)-confidence regions for µ,
namely, the lower confidence bound

X − S√
n
tn−1;1−α,

the upper confidence bound

X +
S√
n
tn−1;1−α

and the confidence interval [
X ± S√

n
tn−1;1−α/2

]
.

If the distribution P of the observations Xi is not Gaussian, these confidence regions still have
approximate confidence level 1− α as n→∞.

Example 4.4 (Monthly rents). Once again we consider the monthly rents of students, this time
focussing on the mean rent µ of all students in Bern in 2003 (those who did rent a room or an
appartment). Suppose that we want to emphasise how expensive a student’s life is in Bern. Then
it is appropriate to compute a lower confidence bound for µ. Our sample contains n = 129
observations with X = 609.128 and S = 289.153. From a table or suitable software we find
t128;0.95 = 1.6568 and obtain the lower confidence bound

X − S√
n
tn−1;1−α = 609.128− 289.153√

129
1.6568 = 565.947.

Thus we may claim with confidence about 95% that the mean monthtly rent µ is larger than
565 CHF. The confidence is ‘about 95%’, because the empirical distribution function of the data
indicates clearly a non-Gaussian distribution P .

Proof of Theorem 4.3. With Zi := (Xi − µ)/σ we may write Xi = µ + σZi. The components
of the random vector Z = (Zi)

n
i=1 are independent and standard Gaussian. With the sample mean

Z of the Zi we get X = µ+ σZ. The sample standard deviations S = SX and SZ of the Xi and
Zi, respectively, satisfy the equation SX = σSZ . Consequently,

(√n(X − µ)

σ
,
SX
σ

)
=
(√
nZ, SZ

)
.

Now we employ the spherical symmetry of standard Gaussian random vectors: Let B ∈ Rn×n
be an orthogonal matrix, that means, B>B = BB> = In. Then the random vector Z has the
same distribution as Y = (Yi)

n
i=1 := B>Z. This follows from the fact that the random vector Z

follows the density function

f(z) := (2π)−n/2 exp
(
−‖z‖2/2

)
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on Rn, and the latter is invariant under rotations and reflections of z. Now we choose an orthogonal
matrix of the form

B =


n−1/2 b12 · · · b1n
n−1/2 b22 · · · b2n

...
...

. . .
...

n−1/2 bn2 . . . bnn

 = [b1 b2 . . . bn].

In other words, we choose an orthonormal basis b1, b2, . . . , bn of Rn such that b1 is equal to
n−1/2(1, 1, . . . , 1)>. Then

Y1 = b>1 Z = n−1/2
n∑
i=1

Zi =
√
nZ

and
n∑
i=1

(Zi − Z)2 =

n∑
i=1

Z2
i − nZ

2
= ‖Z‖2 − Y 2

1 = ‖Y ‖2 − Y 2
1 =

n∑
i=2

Y 2
i .

Consequently, (√
nZ, SZ

)
=

(
Y1,

√√√√ 1

n− 1

n∑
i=2

Y 2
i

)
.

An Example of ‘Biased Sampling’

In this subsection we discuss a situation in which we draw a sample from a population which is
related to but different from the population of interest. More precisely, we consider a popula-
tion which is assumed to be constant over a longer period concerning life expectancy and family
planning of its members. Now we consider the following subpopulations and features:
• Subpopulation 1 of all mothers (i.e. women with at least one child) with completed family
planning and the variable Y = ‘number of children’ with relative proportions

qk := IP(Y = k), k = 1, 2, 3, . . .

and mean

ν := IE(Y ) =

∞∑
k=1

k · qk,

i.e. the mean number of children per mother.
• Subpopulation 2 of all persons whose mothers have completed family planning and the variable
X = ‘number of siblings’ (with the same mother) with relative proportions

pj := IP(X = j), j = 0, 1, 2, . . .

and mean

µ := IE(X) =
∞∑
j=0

j · pj ,

i.e. the mean number of siblings per person.
Now the question is: What is the relationship between the distributions (qk)k≥1 and (pj)j≥0, in
particular, between the corresponding means ν and µ? At first glance one would probably guess
that ν = µ+ 1, but we’ll see soon that ν < µ+ 1. A mother with k children is represented k times
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in subpopulation 2. That means, if we consider a total ofN mothers, they have
∑∞

k=1Nqkk = Nν
children, and Nqj+1(j + 1) of these have precisely j ≥ 0 siblings (with the same mother). Hence

pj =
qj+1(j + 1)

ν
and

qj+1

ν
=

pj
j + 1

for j = 0, 1, 2, . . . .

Summing the latter equation over all j ≥ 0 yields the equation

1

ν
=

∞∑
j=0

pj
j + 1

= IE
( 1

X + 1

)
.

In particular it follows from Jensen’s inequality and strict convexity of the function 0 ≤ x 7→
1/(x+ 1) that

ν =
(

IE
( 1

X + 1

))−1
<
( 1

IE(X) + 1

)−1
= µ+ 1

unless X is almost surely constant. The latter condition would mean that all mothers have the
same number ν of children.

Analyzing samples from subpopulation 2. Suppose one draws a random sample from sub-
population 2 and obtains the X-values X1, X2, . . . , Xn. With these values one may compute the
estimateX and a student confidence interval for µ. With the transformed valuesWi := 1/(Xi+1),
an estimate for ν is given by

ν̂ :=
1

W
.

By the way, the sample mean W may be expressed as follows:

W =
∑
j≥0

p̂j
j + 1

with p̂j := Hj/n and Hj := #{i ≤ n : Xi = j}. The probabilities qk can be estimated by

q̂k :=
ν̂p̂k−1

k
.

An approximate (1 − α)-confidence interval for ν can be constructed by first computing an ap-
proximate (1 − α)-confidence interval for 1/ν = E(W ) and then taking the reciprocals of its
boundaries: [(

W +
SW√
n
tn−1;1−α/2

)−1
,
(
W − SW√

n
tn−1;1−α/2

)−1

+

]
,

where a+ := max(a, 0). For the sample standard deviation SW there is also an alternative repre-
sentation:

SW =

√√√√ n

n− 1

( ∞∑
j=0

p̂j
(j + 1)2

− W
2
)

Example 4.5. The questionnaires for students (Example 1.18) included the number of siblings
(with the same mother). We obtained n = 260 values Xi, and it turned out that X = 1.5538,
SX = 0.9711. To compute a 95%-confidence interval for µ we need the 97.5%-quantile of t259.
By means of a table or software we obtain t259;0.975 = 1.9692, so the approximate 95%-confidence
interval for µ is equal to[

X ± SX√
n
tn−1;1−α/2

]
=
[
1.5538± 0.9711√

260
1.9692

]
= [1.4352, 1.6724].
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However, if we are interested in the distribution of Y in subpopulation 2, we proceed as follows:
The absolute frequenciesHj = #{i : Xi = j} and relative frequencies p̂j (rounded to four digits)
are:

j 0 1 2 3 4 5 6 ≥ 7

Hj 22 122 79 28 6 2 1 0

p̂j 0.0846 0.4692 0.3038 0.1077 0.0231 0.0077 0.0038 0

This leads to W ≈ 0.4539 and SW ≈ 0.1943. In place of the naive estimate X + 1 = 2.5538 for
ν we thus obtain

ν̂ =
1

0.4539
≈ 2.2032.

For the probabilities qk we obtain the following estimates q̂k = ν̂p̂k−1/k (rounded to four digits):

k 1 2 3 4 5 6 7 ≥ 8

q̂k 0.1864 0.5169 0.2231 0.0593 0.0102 0.0028 0.0012 0

Finally, with t259;0.975 = 1.9692 we compute the approximate 95%-copnfidence interval[
W ± SW√

n
tn−1;1−α/2

]
≈
[
0.4539± 0.1943√

260
1.9692

]
≈ [0.4302, 0.4776]

forr 1/ν = IE(W ). This leads to the approximate 95%-confidence interval[ 1

0.4776
,

1

0.4302

]
≈ [2.0937, 2.3248]

for its reciprocal ν = 1/ IE(W ). Note that the latter interval does not contain the naive estimate
X + 1 = 2.5538.

Remark 4.6. The longer one thinks about the previous problem and data example, the more
questions come into mind. For instance, we did not specify an explicit population, and our sample
is not really a random sample from some population. In particular, one should keep in mind that we
only asked university students, i.e. young people studying at a university, so we are talking about
a population of mothers whose kids (at least some of them) belong to the latter group. A second
problem is that preferences of women concerning family planning may change over time. If one
is interested in the more recent trends and wants to avoid the problem of different social classes,
one could interview children at preschool age. But here a new problem arises: The corresponding
mothers may have further kids in the future, that means, at interview time the final values of X
and Y may still be unknown. A possible way out is to ask children about

X̃ := number of older siblings

(with the same mother). This option will be analyzed in Exercise 4.5.

Bounds for σ

In some applications one is interested in confidence regions for σ as well. For instance, the manu-
facturer of a measurement device may want an upper bound for the standard deviation σ of a single
measurement. If someone wants to prove that a certain measurement method is rather imprecise,
a lower confidence bound would be useful.
For the sake of simplicity we restrict ourselves to Gaussian data Xi. According to Theorem 4.3,
(n− 1)S2/σ2 follows a chi-squared distribution with n− 1 degrees of freedom. If we denote its



82 CHAPTER 4. MEANS AND OTHER FEATURES

β-quantile with χ2
n−1;β , then

IP
(
(n− 1)S2/σ2 ≤ χ2

n−1;1−α
)

IP
(
(n− 1)S2/σ2 ≥ χ2

n−1;α

)
IP
(
χ2
n−1;α/2 ≤ (n− 1)S2/σ2 ≤ χ2

n−1;1−α/2
)
 = 1− α.

Again one may solve the inequalities within IP(·) for σ and obtains the following (1 − α)-
confidence regions for σ: The lower (1− α)-confidence bound

S
√

(n− 1)/χ2
n−1;1−α,

the upper (1− α)-confidence bound

S
√

(n− 1)/χ2
n−1;α,

and the (1− α)-confidence interval[
S
√

(n− 1)/χ2
n−1;1−α/2 , S

√
(n− 1)/χ2

n−1;α/2

]
.

4.2 Further Features and Robustness

Quantiles, means and standard deviations are particular features which we embed into a more
general context now. For the sake of simplicity we focus mostly on empirical features

K(X1, X2, . . . , Xn)

which quantify certain aspects of the data Xi. Often one may interpret K(X1, X2, . . . , Xn) as
a feature K(P̂ ) of the empirical distribution P̂ of X1, X2, . . . , Xn. If we view X1, X2, . . . , Xn

as independent random variables with distribution P , then K(P̂ ) is an estimator for the feature
K(P ).
In the sequel we describe various features which are used in (descriptive) analyses. Here we
distinguish three types:
• Location parameters (centers)
• Scale parameters (measures of spread)
• Shape parameters

Location Parameters

A location parameter K(X1, . . . , Xn) is a number which is (i) ‘as close as possible’ to all X-
values or (ii) provides a typical value and the order of magnitude of the X-values.
If one applies an affine transformation to the X-values, the location parameter should change cor-
respondingly. This leads to the following mathematical characterisation of a location parameter:
For arbitrary observations X1, . . . , Xn and arbitrary constants a ∈ R, b > 0,

K(a+ bX1, . . . , a+ bXn) = a+ bK(X1, . . . , Xn).

Sample mean. The most popular location parameter is the sample mean X , i.e. the arithmetic
mean of the numbers X1, . . . , Xn.
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Sample quantiles. For any fixed γ ∈ (0, 1), the sample quantile q̂γ is a location parameter.

Trimmed means. Sometimes the largest and smallest values in a sample are suspicious in the
sense that they may correspond to erroneous measurements or false answers in questionnaires. In
this case one fixes a number τ ∈ (0, 0.5), for instance τ = 10%, and computes the arithmetic
mean Xτ of all order statistics X(i) such that nτ < i < n+ 1− nτ :

Xτ =
1

n− 2k

n−k∑
i=k+1

X(i) with k := bnτc.

For instance, in case of n = 100 observations and τ = 0.1 we obtain the trimmed mean Xτ =∑90
i=11X(i)/80.

Scale parameters

A scale parameter K(X1, . . . , Xn) quantifies (i) the ‘typical’ distance between the X-values and
their ‘center’ or (ii) the ‘typical’ distance of the X-values among themselves. Here we only con-
sider sample sizes n ≥ 2.
Such a feature should remain unchanged if all X-values are shifted to the left or to the right by
the same amount, and it should increase by a factor of b > 0 if all X-values are multiplied with b.
Hence for arbitrary observations X1, . . . , Xn and arbitrary constants a ∈ R, b > 0,

K(a+ bX1, . . . , a+ bXn) = bK(X1, . . . , Xn).

In addition we require that

K(X1, . . . , Xn) > 0 whenever #{X1, . . . , Xn} = n.

Range. The simplest scale parameter is the so-called range,

X(n) −X(1),

which is the distance between smallest and largest observation.

Inter quartile range. A scale parameter which is quite popular in exploratory data analyses is
the inter quartile range. It is defined as the distance between the first and third quartile,

IQR := q̂0.75 − q̂0.25.

In other words, IQR is the length of the intervals
[
q̂0.25, q̂0.75

]
and

(
q̂0.25, q̂0.75

)
containing at least

and at most, respectively, 50% of all observations.

Sample standard deviation. The sample standard deviation S is a scale parameter, too.

Gini’s scale parameter. This feature has been proposed by C. Gini2. It is the arithmetic mean
of the distances |Xi −Xj | over all pairs of two observations:

G :=

(
n

2

)−1 ∑
1≤i<j≤n

|Xi −Xj |.

2Corrado Gini (1884-1965): Italian econometrician. Better known than his scale parameter is the Gini index which
measures income inequality.
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The sum is over all index pairs (i, j) with 1 ≤ i < j ≤ n, and there are
(
n
2

)
= n(n − 1)/2 of

these.
This definition of Gini’s scale parameter is rather intuitive but rather inefficient computationally.
An alternative formula for G (Exercise 4.6) is given by

(4.1) G =
2

n(n− 1)

n∑
i=1

(2i− n− 1)X(i).

If one computes the order statistics with a suitable sorting method, the computation of G requires
only O(n log n) steps.

Median absolute deviation. Similarly as in case of the standard deviation we want to quantify
typical distances from a ‘center’, this time from the median. Thus we first compute the sample
median M := Median(X1, . . . , Xn) of the values Xi and then the sample median of the moduli
|Xi −M |:

MAD := Median
(
|X1 −M |, |X2 −M |, . . . , |Xn −M |

)
.

In particular, |Xi −M | < MAD for at most 50% and |Xi −M | ≤ MAD for at least 50% of all
observations.
If the distances of the median to the other two quartiles are identical, then one can easily show that
MAD = IQR/2.

Shape parameters

A shape parameter describes aspects of the empirical distribution P̂ such as symmetry with respect
to some ‘center’ which are invariant under arbitrary affine and increasing transformations. For-
mally, for any sample size n ≥ 2, for arbitrary observations X1, . . . , Xn and arbitrary constants
a ∈ R, b > 0,

K(a+ bX1, . . . , a+ bXn) = K(X1, . . . , Xn).

In the sequel we introduce briefly two such shape parameters.

Skewness. The mean X is the center of gravity in the sense that
∑n

i=1(Xi −X) = 0: Imagine
n persons of equal weight taking a seat on a seesaw at positions X1, X2, . . . , Xn. If the seesaw’s
turning point coincides with X , then the seesaw is balanced.
Now one could quantify non-symmetry of the values Xi around the center X by means of the
average n−1

∑n
i=1(Xi −X)3. Here deviations from the center are weighted over-proportionally.

This average is already invariant with respect to location changes (adding a constant to all obser-
vations). To make it also invariant with respect to scale changes (multiplying all observations with
a positive number) we divide it by S3 and obtain the

Skewness :=
1

nS3

n∑
i=1

(Xi −X)3 =
1

n

n∑
i=1

(Xi −X
S

)3
.

This may be viewed as an estimator of the theoretical quantity

Skewness(P ) :=

∫ (x− µ(P )

σ(P )

)3
P (dx).

We call P ‘right-skewed’ or ‘left-skewed’ if Skewness(P ) is strictly positive or strictly negative,
respectively.
A good example for right-skewed distributions are Gamma distributions:
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Definition 4.7 (Gamma distributions). The Gamma distribution with shape parameter a > 0 and
scale parameter b > 0 is defined as the probability distribution on R with density function

ga,b(x) :=

0 for x ≤ 0,
1

bΓ(a)

(x
b

)a−1
exp
(
−x
b

)
for x > 0,

where Γ(a) :=
∫∞

0 ta−1e−t dt. We denote this distribution with Gamma(a, b).

If Y ∼ Gamma(a, 1) with a > 0, then bY ∼ Gamma(a, b) for any b > 0, see also Section A.2.
That’s the reason why we call b a scale parameter. The parameter a > 0 determines the shape
of the density function ga,b. In case of a < 1 it has a pole at 0. In case of a = 1 it describes
an exponential distribution. In case of a > 1 it is continuous on R with unique local and global
maximum at a − 1, and in case of a > 2 it is continuously differentiable on R. The skewness of
Gamma(a, b) equals 2/

√
a, see Exercise 4.11.

Kurtosis. The kurtosis is defined as the number

Kurtosis :=
1

nS4

n∑
i=1

(Xi −X)4 − 3 =
1

n

n∑
i=1

(Xi −X
S

)4
− 3.

Both skewness and kurtosis are sometimes employed as test statistics to detect non-Gaussian dis-
tributions. Note that Kurtosis(X1, X2, . . . , Xn) may be viewed as an estimator of the theoretical
quantity

Kurtosis(P ) :=

∫ (x− µ(P )

σ(P )

)4
P (dx)− 3,

and in case of a Gaussian distribution P this value equals zero. In general, Kurtosis(P ) > 0 or
Kurtosis(P ) < 0 indicates that P puts more or less mass, respectively, into the tail regions than
the corresponding normal distribution N (µ(P ), σ(P )2).
Exercise 4.12 establishes a connection between skewness, kurtosis and so-called moment-gener-
ating functions. Based on that one can easily verify that skewness and kurtosis of Gamma(a, b)
are given by 2/

√
a and 6/a, respectively; see Exercise 4.14.

Robustness

The sample mean is easier to calculate than the sample median, because there is no need to sort
the observations. On the other hand, it is sensitive to ‘outliers’ in the data. Such ‘outliers’ may be
values which have been entered incorrectly (e.g. omission or wrong positioning of decimal points,
non-sensible answers in questionnaires) or values which are really extremely large or small. One
single extreme valueXi may cause the meanX to be quite far away from the majority ofX-values.
By way of contrast, the median is rather robust with respect to outliers, see Exercise 4.16.
One can quantify robustness of a feature by means of the breakdown point which has been intro-
duced by Hampel (1968, 1971) and Donoho and Huber (1982, 1983). Let an be the largest integer
in {0, 1, . . . , n} with the property that for arbitrary values X1, . . . , Xn,

sup
{∣∣K(Y1, . . . , Yn)

∣∣ : Yi 6= Xi for at most an indices i
}
< ∞.

The breakdown point of the feature K(·) is defined as the number

lim inf
n→∞

an
n
.
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(Here we tacitly assume that K(·) is well-defined for arbitrary sample sizes n ≥ no.) If this
number is strictly positive, the feature K(·) is called robust.
The sample mean has breakdown point 0, because an = 0 for all n. For the sample median we find
in Exercise 4.16 that an = b(n − 1)/2c. Hence its breakdown point equals 1/2. This statement
may be generalised for arbitrary sample quantiles.

Lemma 4.8. For γ ∈ (0, 1), the sample quantile q̂γ has breakdown point

min(γ, 1− γ).

Proof. Let P̂ be the empirical distribution of the observations X1, X2, . . . , Xn, and for a fixed
k ∈ {1, 2, . . . , n} let Q̂ be the empirical distribution of Y1, Y2, . . . , Yn, where #{i : Yi 6= Xi} ≤
k. For any interval B ⊂ R we have the inequalities

P̂ (B)− k/n ≤ Q̂(B) ≤ P̂ (B) + k/n.

In case of k < nmin(γ, 1− γ) this implies that

Q̂((−∞, x]) ≤ k/n < γ whenever x < X(1)

and
Q̂([x,∞)) ≤ k/n < γ and whenever x > X(n).

Thus q̂γ(Y1, . . . , Yn) will be contained in [X(1), X(n)], whence an is at least dnmin(γ, 1−γ)e−1.
In case of γ ≤ 1/2 and k > nγ, we choose an arbitrarily small number x and replace X1, . . . , Xk

with values in (−∞, x]. This leads to q̂γ(Y1, . . . , Yn) ≤ x, because Q̂((−∞, x]) > γ. In case of
γ > 1/2 and k > n(1− γ), we choose an arbitrarily large number x and replace X1, . . . , Xk with
values in [x,∞). This leads to q̂γ(Y1, . . . , Yn) ≥ x, because Q̂([x,∞)) > 1− γ. This shows that
an is no larger than bnmin(γ, 1− γ)c.
These simple considerations show that an/n→ min(γ, 1−γ) as n→∞. Exercise 4.17 provides
refined bounds for the difference between q̂γ(Y1, . . . , Yn) and q̂γ(X1, . . . , Xn).

In connection with scale parameters one considers log(K) in place of K and restricts one’s atten-
tion to samples X1, . . . , Xn with pairwise different values. Thus, a scale parameter breaks down
if modifying some components of the sample leads to arbitrary large values or to values arbitrarily
close to zero.

Lemma 4.9. The IQR has breakdown point 1/4, and the MAD has breakdown point 1/2.

Proof. We only derive the breakdown point of the IQR; proving the statement about the MAD
is posed as Exercise 4.18. If 2 ≤ n ≤ 4, then IQR(X1, . . . , Xn) = X(n) − X(1), and an = 0.
Let n ≥ 5, and let Y1, . . . , Yn be the new observations after modifying up to k ≥ 1 of the
observations Xi. Then IQR(Y1, . . . , Yn) is the length of an interval [A,B] containing at least
dn/2e observations Yi, so it contains at least dn/2e − k observations Xi. If ` := dn/2e − k ≥ 2,
then

IQR(Y1, . . . , Yn) ≥ min
i=1,...,n+1−`

(X(i+`−1) −X(i)) > 0,

so log IQR(Y1, . . . , Yn) stays bounded away from −∞. On the other hand both (−∞, A] and
[B,∞) contain at least dn/4e observations Yi, so they both contain at least dn/4e−k observations
X(i). In case of ` := dn/4e − k ≥ 1 we may conclude that A ≥ X(`) and B ≤ X(n+1−`), that
means

IQR(Y1, . . . , Yn) ≤ X(n+1−`) −X(`) < ∞.

This shows that an ≥ min
(
dn/2e − 2, dn/4e − 1

)
= dn/4e − 1.
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Feature Breakdown point

Mean X 0

Quantile q̂γ min(γ, 1− γ)

Trimmed mean Xτ τ

Range X(n) −X(1) 0

Inter quartile range IQR 1/4

Standard deviation S 0

Gini’s scale parameter G 0

Median of absolute deviations MAD 1/2

Table 4.1: Breakdown points of some locations and scale parameters.

Finally, if one adds a constant R > 0 to the dn/4e largest order statistics of X1, . . . , Xn, then
IQR(X1, . . . , Xn) increases by R/2 or R, depending on n/4 being an integer or not. Thus an ≤
dn/4e − 1. These considerations show that an/n→ 1/4 as n→∞.

Table 4.1 shows which of our location and scale parameters are robust.

4.3 Sign Tests and Related Procedures

In this section we leave temporarily the framework of one numerical variable and consider so-
called ‘paired samples’. As a by-product we’ll obtain procedures to estimate the center of a sym-
metric distribution.

Sign Tests for Paired Samples

The expression ‘paired samples’ is somewhat misleading. We consider one sample with two
numerical variables. Thus we observe pairs (Y1, Z1), (Y2, Z2), . . . , (Yn, Zn). Now the questions
is whether the differences

Xi := Yi − Zi
tend to be greater than or less than zero. To answer this question one could view the differencesXi

as stochastically independent and identically distributed random variables. Then one could apply
one of our previous methods to compute confidence bounds for the mean IE(X1) or particular
quantiles of the distribution of X1.

Example 4.10 (Gossets barley data). In his famous paper about student’s t distribution, published
in 1908, Gosset illustrated his method with the data in Table 4.2: Each of eleven fields of equal
size had been divided into two halves. On one half, people deployed regular barley seeds, on
the other half they deployed barley seeds which had undergone a special drying treatment. The
measurements are the yield on each half-field (in lbs/acre).
Gosset analysed these data under the assumption that the differences Xi are independent and
follow a Gaussian distribution N (µ, σ2) with unknown parameters µ and σ2. One may interpret
the mean µ as mean increase of yield when replacing dried barley seeds with regular barley seeds.
For µ he obtained the 95%-confidence interval[

X ± SX√
n
t10;0.975

]
≈
[
−33.727 ± 66.171√

11
2.228

]
=
[
−78.182, 10.727

]
.
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Yield Yield Yield
Field regular dried Field regular dried Field regular dried

1 1903 2009 5 2108 2180 9 1612 1542

2 1935 1915 6 1961 1925 10 1316 1443

3 1910 2011 7 2060 2122 11 1511 1535

4 2496 2463 8 1444 1482

Table 4.2: Gosset’s barley data.

Thus it is possible that µ = 0. With confidence 95% one may claim that the change of mean yield
is no more than 79 lbs/acre.

Sometimes the assumption of independent, identically and normally distributed differences is
questionable. For instance, it could be that the differences are independent but not identically
distributed. The following lemma describes three equivalent possibilities to describe the null hy-
pothesis that there is no systematic difference between the Y - andZ-values. Here and in the sequel
we use the following notation:

wx := (wixi)
n
i=1 and |x| :=

(
|xi|
)n
i=1

for vectors w,x ∈ Rn.

Lemma 4.11 (Sign-symmetry). Let ξ be a random vector with uniform distribution on {−1, 1}n
and independent from X . In other words, X, ξ1, ξ2, . . . , ξn are independent random variables
such that IP(ξi = 1) = IP(ξi = −1) = 1/2. Then the following three statements are equivalent:
(i) For arbitrary fixed s ∈ {−1, 1}n, the random vectors sX andX are identically distributed.
(ii) The random vectors ξX andX are identically distributed.
(iii) The random vectors ξ|X| andX are identically distributed.

Proof of Lemma 4.11. For arbitrary Borel sets B ⊂ Rn,

IP(ξX ∈ B) =
∑

s∈{−1,1}n
IP(ξ = s, sX ∈ B) = 2−n

∑
s∈{−1,1}n

IP(sX ∈ B).

If Condition (i) is met, all summands IP(sX ∈ B) on the right hand side are equal to IP(X ∈ B).
Thus IP(ξX ∈ B) = IP(X ∈ B), and Condition (ii) is satisfied, too.
Now we show that the distributions of ξX and ξV X coincide whenever V is an arbitrary sign
vector of the form V = f(X) ∈ {−1, 1}n. For arbitrary Borel sets B ⊂ Rn,

IP(ξV X ∈ B) = 2−n
∑

s∈{−1,1}n
IP(sV X ∈ B)

= 2−n IE
( ∑
s∈{−1,1}n

1[sV X∈B]

)
= 2−n IE

( ∑
s∈{−1,1}n

1[sX∈B]

)
= 2−n

∑
s∈{−1,1}n

IP(sX ∈ B)

= IP(ξX ∈ B).
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In the third step we used the fact that the mapping s 7→ sV from {−1, 1}n to {−1, 1}n is bijective.
This shows that, indeed, the random vectors ξV X and ξX are identically distributed.
If we set Vi := 1[Xi≥0] − 1[Xi<0], then V X = |X|. Hence ξ|X| and ξX are identically dis-
tributed, which implies the equivalence of Conditions (ii) and (iii).
If, on the other hand, V is an arbitrary fixed sign vector, then ξV X = V ξX and ξX are
identically distributed. Thus Condition (ii) implies Condition (i).

Null hypothesisHo (Sign-symmetry). The random vectorX = (Xi)
n
i=1 has a sign-symmetric

distribution. That means, it satisfies the conditions described in Lemma 4.11.

Example 4.12 (Lectures as a sedative). In a lecture about biometry for students of computer
science, n = 18 students determined their pulse rate prior at the beginning (Yi) and after (Zi)
class. Both values are the number of heart beats in one minute. The working hypothesis was
that the Y -values are systematically larger than the Z-values, which we would interpret as the
lecture having a sedative effect. The null hypothesis Ho that the difference vector X = Y − Z
has sign-symmetric distribution is illustrated in Figure 4.2. There one sees graphical displays of
the vectors X and ξ(1)|X|, ξ(2)|X|, . . . , ξ(8)|X| in random order. Here we simulated eight sign
vectors ξ(1), ξ(2), . . . , ξ(8) with uniform distribution on {−1, 1}n which are independent mutually
and from X . The components ofX have been ordered such that |X1| ≤ |X2| ≤ · · · ≤ |Xn|. The
readers should try to find the original data vectorX before reading on.
The original data vector is the top right one. If you found it, you may claim with confidence
8/9 ≈ 88.9% that the null hypothesis is wrong. For otherwise, the probability of finding the
original data vector would have been equal to 1/9; see also the considerations about Monte-Carlo
tests in the last chapter. Formal statistical tests will be applied later.
If one doesn’t view the 18 persons as a random sample from some population, one should keep
in mind that random fluctuations of the pulse rate (without external influence) are rather different
from person to person. Hence it is important that we don’t assume identically distributed random
variables Xi.

P-values for Ho. In some applications one guesses a priori that the differences Xi tend to be
positive or tend to be negative, respectively (one-sided working hypotheses). In other situations
one expects a deviation from Ho without an a priori guess about the direction (two-sided working
hypothesis). To test Ho we compute for a given test statistic T : Rn → R and depending on our
working hypothesis one of the p-values π`(X), πr(X) or πz(X). Here

π`(x) := 2−n #
{
s ∈ {−1, 1}n : T (s|x|) ≤ T (x)

}
,

πr(x) := 2−n #
{
s ∈ {−1, 1}n : T (s|x|) ≥ T (x)

}
and πz(x) := 2 · min{π`(x), πr(x)} for a fixed vector x ∈ Rn. These p-values quantify how
exceptional the vector x is among all vectors x̃ with |x̃| = |x|. With a random sign vector
ξ ∈ {−1, 1}n as in Lemma 4.11 one can also write

π`(x) = IP
(
T (ξ|x|) ≤ T (x)

)
,

πr(x) = IP
(
T (ξ|x|) ≥ T (x)

)
.

The null hypothesis Ho is rejected at level α if the p-value of our choice (a priori!) is less than or
equal to α. Here is a justification for this sign test:
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Figure 4.2: The null hypothesis of sign-symmetry.
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Lemma 4.13. Let π(X) be one of the three p-values above. Under the null hypothesis of sign-
symmetry ofX ,

IP
(
π(X) ≤ α

)
≤ α

for any α ∈ (0, 1).

Proof of Lemma 4.13. Under Ho,

IP
(
π(X) ≤ α

)
= IP

(
π(ξ|X|) ≤ α

)
= 2−n

∑
s∈{−1,1}n

IP
(
π(s|X|) ≤ α

)
= IE

(
2−n

∑
s∈{−1,1}n

1[π(s|X|)≤α]

)
.

Thus it suffices to show that

2−n
∑

s∈{−1,1}n
1[π(s|x|)≤α] = IP

(
π(ξ|x|) ≤ α

)
≤ α

for arbitrary fixed vectors x ∈ Rn. To this end we consider the random variable Y := T (ξ|x|).
Note that

IP(Y ≤ y) = 2−n#
{
s ∈ {−1, 1}n : T (s|x|) ≤ y

}
=: G|x|(y)

for arbitrary y ∈ R, and

π`(x) = G|x|(T (x)),

πr(x) = 1−G|x|(T (x)−).

Since
∣∣ξ|x|∣∣ = |x|, one may also write

π`(ξ|x|) = G|x|(Y ),

πr(ξ|x|) = 1−G|x|(Y −),

πz(ξ|x|) = 2 ·min{G|x|(Y ), 1−G|x|(Y −)}.

According to Lemma 1.4, IP
(
π(ξ|x|) ≤ α

)
is always less than or equal to α.

To compute the p-values above explicitly, one avoids the definition with 2n summands. Instead one
uses special properties of the test statistic T (·), or one employs approximate p-values or computes
Monte-Carlo p-values.

Special Sign Tests

In the sequel we consider three specific examples for T and the resulting tests. In all cases the test
statistic has the form

(4.2) T (x) :=
n∑
i=1

sign(xi)Bi

with certain numbers Bi = Bi(|x|), 1 ≤ i ≤ n. We always assume that Bi = 0 whenever
|xi| = 0. Then sign(xi)Bi = 2 · 1[xi>0]Bi −Bi, so we may write

T (x) = 2To(x)−B+

with B+ :=
∑n

i=1Bi and

(4.3) To(x) :=

n∑
i=1

1[xi>0]Bi.

For the explicit computation of p-values, the test statistic To(x) is often preferable, but its value is
typically more difficult to interpret than T (x).
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Pair Cross Self Pair Cross Self Pair Cross Self
1 23.5 17.4 6 21.5 18.6 11 23.3 16.3

2 12.0 20.4 7 22.1 18.6 12 21.0 18.0

3 21.0 20.0 8 20.4 15.3 13 22.1 12.8

4 22.0 20.0 9 18.3 16.5 14 23.0 15.5

5 19.1 18.4 10 21.6 18.0 15 12.0 18.0

Table 4.3: Darwin’s plant experiment.

Pearson’s sign test. In the simplest case we just consider the signs of the xi and define

T (x) :=
n∑
i=1

sign(xi).

This corresponds to (4.2) with Bi = 1[|xi|>0]. The corresponding sum B+ equals

N = N(|x|) := #{i ≤ n : xi 6= 0},

and T (x) = 2To(x)−N with

To(x) = #{i ≤ n : xi > 0}.

Here To(ξ|x|) has the same distribution as
∑N

i=1 1[ξi=1], and the latter follows Bin(N, 0.5). This
leads to the p-values

π`(x) = FN,0.5(To(x)),

πr(x) = 1− FN,0.5(To(x)− 1),

where FN,0.5 denotes the distribution function of Bin(N, 0.5).

Example 4.14 (Darwin’s plant experiment). To verify that cross fertilisation leads to stronger
plants than self-fertilisation, Charles Darwin (1809-1882) carried through the following experi-
ment: In each of 15 plant pots he grew two plants of the same species, one of which was generated
via cross-fertilisation and the other one via self-fertilisation. After a certain time period the heights
(in 0.125 inches) of the plants were measured; see Table 4.3. With these data, Darwin approached
Karl Pearson.
For the i-th pair let Yi and Zi be the heights of the plant generated via cross- and self-fertilisation,
respectively. All n = 15 differences Xi are non-zero, so N = 15. Darwin’s one-sided working
hypothesis leads to the right-sided p-value which is compared with α = 0.05: Our of the N = 15
differences To(X) = 13 turned out to be strictly positive, so

πr(X) = 1− F15,0.5(12) = 0.0037.

Thus we reject Ho at level 5% (and confirm Darwin’s working hypothesis with confidence 95%).

Example 4.15 (Lectures as a sedative, cont.). Out of the n = 18 differences,N = 16 are different
from zero and To(X) = 11 strictly positive. In view of our one-sided working hypothesis we
compute the right-sided p-value

πr(X) = 1− F16,0.5(10) = 0.1051.

Hence we cannot reject Ho at the standard test level 5%.
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The sign-t-test. The simple sign test doesn’t take the moduli |Xi| into account, although bigger
differences may be more relevant than small ones. Alternatively one could consider the test statis-
tic T (x) :=

∑n
i=1 xi =

∑n
i=1 sign(xi)|xi|. The resulting sign test is considerably more difficult

to perform than the simple sign test. On the other hand, one can show that the sign test with this
test statistic is at least as sensitive to violations of the null hypothesis as Gosset’s method whenever
the latter is justified.

Wilcoxon’s signed-rank test. A possible compromise between the simple sign test and the sign-
t-test is to replace the moduli |x1|, |x2|, . . . , |xn| with their ranks. Precisely, we only consider the
non-zero components of x and define

Ri := #
{
` : 0 < |x`| < |xi|

}
+
(

1[|xi|>0] + #
{
` : 0 < |x`| = |xi|

})/
2.

Then the signed-rank statistic of Wilcoxon3 (1945) is defined as

T (x) :=

n∑
i=1

sign(xi)Ri.

If the non-zero values |xi| are pairwise different, then the tuple (R1, R2, . . . , Rn) is a permutation
of (1, 2, . . . , n) if N = n and of (0, . . . , 0, 1, 2, . . . , N) if N < n. In this case we compare T (x)
with the distribution of the random variable

N∑
i=1

ξi · i.

The explicit computation of p-values is still computer-intensive. But the distribution of T (ξ|x|)
may be computed exactly in O(N3) steps with memory O(N2). To this end we use the represen-
tation (4.3) and the fact that

R+ = N(N + 1)/2,

see Exercise 3.6. Hence T (x) = 2To(x)−N(N + 1)/2 with

To(x) =

n∑
i=1

1[xi>0]Ri,

and

To(ξ|x|) =
n∑
i=1

1[ξi=1]Ri.

The possible values of To(x) and To(ξ|x|) are contained in {k/2 : k = 0, 1, . . . , N(N + 1)}, and
one may write

π`(x) = IP
(
To(ξ|x|) ≤ To(x)

)
= GN (To(x)),

πr(x) = IP
(
To(ξ|x|) ≥ To(x)

)
= 1−GN (To(x)− 1/2),

where

Gj(y) := IP
( j∑
i=1

1[ξi=1]Mi ≤ y
)

3Frank Wilcoxon (1892-1965): US-american chemist and statistician; introduced in his paper [30] two new and
nowadays widely used statistical tests.
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G =
(
G[k]

)N(N+1)

k=0
←
(
1
)N(N+1)

k=0
m← 0
for j ← 1 to N do

m← m+ 2Mj(
G[k]

)m
k=2Mj

←
((
G[k]

)m
k=2Mj

+
(
G[k − 2Mj ]

)m
k=2Mj

)/
2(

G[k]
)2Mj−1

k=0
←
(
G[k]

)2Mj−1

k=0
/2

end for.

Table 4.4: Auxiliary program for Wilcoxon’s signed rank test.

for 1 ≤ j ≤ N with the sorted and strictly positive components M1 ≤ M2 ≤ · · · ≤ MN of
(Ri)

n
i=1. But

Gj(y) = IP
(
ξj = −1 and

j−1∑
i=1

1[ξi=1]Mi ≤ y
)

+ IP
(
ξj = 1 and

j−1∑
i=1

1[ξi=1]Mi +Mj ≤ y
)

=
(
Gj−1(y) +Gj−1(y −Mj)

)
/2

with G0(y) := 1[0≤y]. With this recursion formula one can compute the tupleG =
(
G[k]

)N(N+1)

k=0

with G[k] := GN (k/2) as a function of N and (Mi)
N
i=1; see Table 4.4.

Example 4.16 (lectures as a sedative, cont.). In Table 4.5 the data pairs (Yi, Zi) are arranged
such that the moduli |Xi| increase. In the column with ranks the numbers in brackets correspond
to the ranks one would assign without caring about equal values of |Xi|. Here To(X) = 108.5
and T (X) = 81. The corresponding exact right-sided p-value equals πr(X) = 0.0171. Hence
we may claim with confidence 95% that Ho is wrong (and that the lecture had a sedating effect).

Yi Zi Xi Ri sign(Xi)

66 66 0 0 (0) 0
78 78 0 0 (0) 0
54 56 −2 2 (1) −1
76 78 −2 2 (2) −1
80 78 2 2 (3) +1
94 90 4 4 (4) +1
68 74 −6 6.5 (5) −1
64 70 −6 6.5 (6) −1
76 70 6 6.5 (7) +1
80 74 6 6.5 (8) +1
64 72 −8 10.5 (9) −1
66 58 8 10.5 (10) +1
70 62 8 10.5 (11) +1
80 72 8 10.5 (12) +1
82 72 10 13.5 (13) +1
102 92 10 13.5 (14) +1
74 62 12 15.5 (15) +1
90 78 12 15.5 (16) +1

Table 4.5: Example for the computation of Wilcoxon’s signed rank statistic.
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Approximate and conservative p-values. In all cases we work with a test statistic of the form
(4.2). Here

IE
(
T (ξ|x|)

)
= 0 and Std

(
T (ξ|x|)

)
= ‖B‖

with the Euclidean norm ‖B‖ ofB = (Bi)
n
i=1; see the first part of Exercise 4.19. It follows from

the second part or the Central Limit Theorem that∣∣π(x)− π̃(x)
∣∣ → 0 as max

i=1,...,n
|Bi|/‖B‖ → 0

with the approximate p-values

π̃`(x) := Φ
(
T (x)/‖B‖

)
,

π̃r(x) := Φ
(
−T (x)/‖B‖

)
= 1− π̃`(x) and

π̃z(x) := 2 ·min
{
π̃`(x), π̃r(x)

}
= 2 Φ

(
−|T (x)|/‖B‖

)
.

One can also bound the exact p-values from above by the following expressions:

π`(x) ≤ exp
(
−min{T (x), 0}2

2‖B‖2
)
,

πr(x) ≤ exp
(
−max{T (x), 0}2

2‖B‖2
)
,

πz(x) ≤ 2 exp
(
− T (x)2

2‖B‖2
)
.

These bounds follow from the second part of Exercise 4.19. They are a special case of a famous
inequality due to Hoeffding4 (1963).

The Center of a Symmetric Distribution

By means of Wilcoxon’s signed rank test one may also compute a confidence interval for the
unknown median µ of a symmetric distribution P . Precisely, we assume that the random variables
X1, X2, . . . , Xn are stochastically independent with unknown continuous distribution function F
satisfying

(4.4) F (µ− r) + F (µ+ r) = 1 for arbitrary r ∈ R;

in particular, F (µ) = 1/2. Now one can compute (1 − α)-confidence bounds for µ by applying
Wilcoxon’s signed rank test to the shifted data vectors

X −m := (Xi −m)ni=1

for hypothetical values m of µ. Precisely, it follows from assumption (4.4) that X − µ has a
sign-symmetric distribution, and T (X − µ) has the same distribution as

n∑
i=1

ξi · i.

Hence for an arbitrary threshold c,

IP
(
T (X − µ) ≤ c

)
IP
(
T (X − µ) ≥ −c

) } = IP
( n∑
i=1

ξi · i ≤ c
)
.

To solve inequalities of type ±T (X − µ) ≤ c for µ, the following representation of Wilcoxon’s
signed rank statistic is useful:

4Wassily Hoeffding (1914-1991): Finnish statistician and probabilist who emigrated 1946 to the USA; one of the
founders of nonparametric statistics.
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Lemma 4.17 (Tukey5). For a Vektor x ∈ Rn with non-zero components,

T (x) = T̃ (x) :=
∑

1≤i≤j≤n
sign(xi + xj).

Under assumption (4.4) the random vector X − µ satisfies the assumption of Lemma 4.17 with
probability one. Hence we may utilise that

m 7→ T̃ (X −m) =
∑

1≤i≤j≤n
sign

(Xi +Xj

2
−m

)
is monotone decreasing in m, and that for arbitrary thresholds c,

IP
(
T̃ (X − µ) ≤ c

)
IP
(
T̃ (X − µ) ≥ −c

) } = IP(2T ∗n − ñ ≤ c),

where

ñ :=
n(n+ 1)

2
and T ∗n :=

n∑
i=1

1[ξi=1]i.

We denote the distribution function of T ∗n with Gn and fix an error probability α ∈ (0, 1). For the
unknown center µ we obtain the lower (1− α)-confidence bound

aα(X) = inf
{
m ∈ R : T̃ (X −m) ≤ 2G−1

n (1− α)− ñ
}
,

the upper (1− α)-confidence bound

bα(X) = sup
{
m ∈ R : T̃ (X −m) ≥ ñ− 2G−1

n (1− α)
}

or the (1−α)-confidence interval
[
aα/2(X), bα/2(X)

]
. To deduce explicit formulae we consider

the ñ pairwise means (Xi +Xj)/2, 1 ≤ i ≤ j ≤ n, in increasing order:

W1 ≤W2 ≤ · · · ≤Wñ.

For 0 ≤ k ≤ ñ and Wk < m < Wk+1, we obtain T̃ (X − m) = ñ − 2k, where W0 := −∞
and Wñ+1 := ∞. This is less than or equal to 2G−1

n (1 − α) − ñ or greater than or less than
ñ− 2G−1

n (1− α) if and only if k ≥ ñ−G−1
n (1− α) or k ≤ G−1

n (1− α), respectively. Thus

aα(X) = W
ñ−G−1

n (1−α)
and bα(X) = W

G−1
n (1−α)+1

.

Example 4.18 (Gosset’s barley data, cont.). For n = 11 observations, numerical calculation yield
G−1

11 (0.95) = 52 andG−1
11 (0.975) = 55. Since ñ = 11·12/2 = 66, we obtain the 95%-confidence

interval
[W11,W56] = [−84, 20],

which is comparable to the result of student’s method. Figure 4.3 shows the functionm 7→ T̃ (X−
m) and the resulting one- and twosided 95%-confidence bounds.

5John W. Tukey (1915-2000): US-american statistician; co-developer of the fast Fourier transform; important con-
tributions to mathematical and explorative and robust statistics.
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Figure 4.3: The function m 7→ T̃ (X −m) for Gosset’s data.

Proof of Lemma 4.17. Since by assumption |xj | > 0 for all j,

Ri(x) = #
{
j : |xj | < |xi|

}
+

1 + #
{
j : |xj | = |xi|

}
2

.

Hence

T (x) =
n∑
i=1

sign(xi)
n∑
j=1

(
1[|xj |<|xi|] +

1[i=j] + 1[|xj |=|xi|]

2

)
=

n∑
i=1

n∑
j=1

Hij

with

Hij := sign(xi)
(

1[|xj |<|xi|] +
1[|xj |=|xi|]

2
+

1[i=j]

2

)
.

On the one hand,
Hii = sign(xi) = sign(xi + xi).

On the other hand, in case of i 6= j and |xj | < |xi|,

Hij = sign(xi) = sign(xi + xj) and Hji = 0,

whereas in case of i 6= j and |xj | = |xi|,

Hij = sign(xi)/2, Hji = sign(xj)/2 and Hij +Hji = sign(xi + xj).

Consequently,

T (x) =
∑

1≤i<j≤n
(Hij +Hji︸ ︷︷ ︸
=sign(xi+xj)

) +

n∑
i=1

sign(xi + xi) =
∑

1≤i≤j≤n
sign(xi + xj).
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4.4 Asymptotic Considerations and Comparisons

In the previous sections we became familiar with various location parameters which may be con-
sidered as an estimator of the ‘center’ of the underlying distribution P . Now we would like to
investigate and compare the precision of these estimators. For a given sample size, this is quite a
difficult task, because we know little about their exact distributions. But it turns out that for large
sample sizes n and under certain conditions, all these location estimators follow approximately a
Gaussian distribution which facilitates a comparison.
We’ll start with the sample mean, then consider the sample median, and then we’ll introduce a
new location parameter which is closely related to Wilcoxon’s signed rank test. The proofs are
deferred to the end of this section. In all cases we consider random variables ∆n of the form

∆n :=
√
n
(
K(X1, X2, . . . , Xn)−K(P )

)
and show that they follow asymptotically, as n→∞, a Gaussian distributionN (0, τ2) with some
τ = τ(P ) > 0. That means, for arbitrary numbers −∞ ≤ r < s ≤ ∞,

lim
n→∞

IP(r ≤ ∆n ≤ s) = Φ(s/τ)− Φ(r/τ).

We indicate this fact briefly as
∆n →d N (0, τ2),

see also Section A.3 in the appendix. At this point we recommend Exercises 4.26 and 4.27.

The mean. As mentioned already, the sample meanX has the following property as an estimator
of µ = µ(P ): By virtue of the Central Limit Theorem,

(4.5)
√
n(X − µ) →d N (0, σ2).

The median and quantiles. Also for the sample quantile q̂γ and the corresponding quantile
qγ = qγ(P ) one may derive such a limit theorem under certain regularity assumptions.

Theorem 4.19 (Asymptotic normality of sample quantiles). For a fixed γ ∈ (0, 1) let qγ be the
unique γ-quantile of the distribution P . Precisely, let F be differentiable at qγ with derivative
F ′(qγ) > 0. Then √

n(q̂γ − qγ) →d N (0, σ2
γ)

with

σγ :=

√
γ(1− γ)

F ′(qγ)
.

The Hodges–Lehmann estimator for µ. Suppose that the distribution function F of P is con-
tinuous and symmetric around µ ∈ R, that means, F (µ+r) = 1−F (µ−r) for arbitrary r ∈ R. In
this case, µ is a median as well as the mean (if it exists) of the distribution P . Hence one could es-
timate µ byX or q̂0.5. Here is an alternative location parameter: The absolute value of Wilcoxon’s
signed-rank statistic T̃ (X − m) becomes minimal if, any only if, m is a sample median of the
pairwise means (Xi+Xj)/2 (so-called Walsh-means), 1 ≤ i ≤ j ≤ n. This suggests an estimator
which has been proposed and analyzed by Hodges and Lehmann6 (1963):

µ̂W := Median
(Xi +Xj

2
: 1 ≤ i < j ≤ n

)
.

6Joseph L. Hodges (1922-2000) and Erich L. Lehmann (1917-2009): Mathematical statisticians at Berkeley Uni-
versity.



4.4. ASYMPTOTIC CONSIDERATIONS AND COMPARISONS 99

We omit index pairs (i, j) with i = j. This simplifies the analysis somewhat; the impact is
negligible. This Hodges–Lehmann estimator is asymptotically Gaussian, too:

Theorem 4.20 (Asymptotic normality of the Hodges–Lehmann estimator). Let F = Fo(· − µ)
with a distribution function Fo with bounded and continuous density fo = F ′o such that fo(−x) =
fo(x) for all x ∈ R. Then √

n(µ̂W − µ) →d N (0, σ2
W )

with
σW :=

(√
12

∫ ∞
−∞

fo(x)2 dx
)−1

.

Comparing the three estimators. Suppose that P has a density f of the form f(x) = fo(x−µ),
where fo is bounded, continuous and even. In addition let fo(0) > 0 and σ2 =

∫∞
−∞ fo(x)x2 dx <

∞. Then the three random quantities
√
n(X − µ),

√
n(q̂0.5 − µ) and

√
n(µ̂W − µ) are asymptot-

ically Gaussian with mean 0 and standard deviations

σ, σ0.5 = (2fo(0))−1 and σW =
(√

12

∫ ∞
−∞

fo(x)2 dx
)−1

,

respectively. Specifically, suppose that P = N (µ, σ2). Then it follows from Exercises 4.28 and
4.29 that

σ0.5

σ
=
√
π/2 ≈ 1.2533 and

σW
σ

=
√
π/3 ≈ 1.0233.

Hence, in case of Gaussian observationsXi, the Hodges–Lehmann estimator is substantially more
precise than the sample median, and it is only slightly less precise than the sample mean.
Note that σ0.5/σ and σW /σ can be arbitrarily close to 0, see Exercise 4.30. At the end of this
section we’ll show that always

(4.6)
σW
σ
≤
√

125/108 ≈ 1.0758.

Equality holds if and only if fo(x) = τ−1f∗(τ
−1x) for some τ > 0 with

f∗(x) = 0.75 max(1− x2, 0).

This is the Epanechnikov density which will play an important role in connection with kernel
density estimators; see Chapter 5.
Now we prove the previous statements. Unless stated differently, asymptotic statements always
refer to n→∞. The proofs of Theorems 4.19 and 4.20 are based on a more general fact:

Theorem 4.21 (Asymptotic normality of random quantiles). For n ≥ 1 let Ĝn be a random
distribution function, and let G be a fixed distribution function. Suppose that the following two
properties are satisfied:
(i) G is differentiable at a point xo ∈ R with

G(xo) ∈ (0, 1) and G′(xo) > 0.

(ii) There exists a τ > 0 such that for any sequence (xn)n≥1 with limit xo,
√
n
(
Ĝn(xn)−G(xn)

)
→d N (0, τ2).

For n ≥ 1 let Mn be a random variable such that

Ĝn(Mn−) ≤ G(xo) ≤ Ĝn(Mn).

Then √
n(Mn − xo) →d N

(
0, τ2/G′(xo)

2
)
.
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Proof of Theorem 4.21. According to Exercise 4.27 (a), it suffices to show that for an arbitrary
fixed number r ∈ R,

IP
(√
n(Mn − xo) ≤ r

)
→ Φ(rG′(xo)/τ).

But √
n(Mn − xo) ≤ r if and only if Mn ≤ xn := xo + r/

√
n.

Moreover, the assumption on Mn implies that[
Ĝn(xn) > G(xo)

]
⊂ [Mn ≤ xn] ⊂

[
Ĝn(xn) ≥ G(xo)

]
.

Note also that

Ĝn(xn) > G(xo) if and only if
√
n
(
Ĝn(xn)−G(xn)

)
> yn,

Ĝn(xn) ≥ G(xo) if and only if
√
n
(
Ĝn(xn)−G(xn)

)
≥ yn,

where
yn :=

√
n
[
G(xo)−G

(
xo + r/

√
n
)]
→ −rG′(xo).

Consequently, it follows from
√
n
(
Ĝn(xn)−G(xn)

)
→d N (0, τ2) that

lim sup
n→∞

IP
(√
n(Mn − xo) ≤ r

)
≤ lim sup

n→∞
IP
(√

n
(
Ĝn(xn)−G(xn)

)
≥ yn

)
= lim sup

n→∞
Φ(−yn/τ) = Φ(rG′(xo)/τ),

lim inf
n→∞

IP
(√
n(Mn − xo) ≤ r

)
≥ lim inf

n→∞
IP
(√

n
(
Ĝn(xn)−G(xn)

)
> yn

)
= lim inf

n→∞
Φ(−yn/τ) = Φ(rG′(xo)/τ),

see also Exercise 4.27 (a).

Proof of Theorem 4.19. We apply Theorem 4.21 with Ĝn := F̂ , G := F and xo := qγ . Indeed,
for any sequence (xn)n≥1 in R with limit qγ ,

√
n
(
F̂ (xn)− F (xn)

)
→d N (0, γ(1− γ))

by the Central Limit Theorem. Precisely, the random variable on the left-hand side may be writ-
ten as

∑n
i=1 Yni with Yni := n−1/2(1[Xi≤xn] − F (xn)), and IE(Yni) = 0, |Yni| ≤ 1/

√
n, and∑n

i=1 Var(Yni) = F (xn)(1 − F (xn)) → γ(1 − γ). Thus the assumptions of Theorem 4.21 are
satisfied with τ =

√
γ(1− γ), and τ/G′(xo) = σγ .

An essential tool for the proof of Theorem 4.20 is the following special case of a general result
due to Hoeffding (1948) about so-called U-statistics:

Lemma 4.22 (Hoeffding). Let

U :=

(
n

2

)−1 ∑
1≤i<j≤n

h(Xi, Xj)

with independent, identically distributed random variablesX1, X2, . . . , Xn ∈ R and a measurable
function h : R × R → R, where h(x, y) = h(y, x) for all x, y ∈ R and IE

(
h(X1, X2)2

)
< ∞.

With h1(x) := IEh(x,X2) and h0 := IEh(X1, X2) = IEh1(X1),

U = h0 +
2

n

n∑
i=1

(
h1(Xi)− h0

)
+R,

where

IE(R2) ≤ 2 Var(h(X1, X2))

n(n− 1)
.
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Proof of Lemma 4.22. The proof is essentially an application of Fubini’s Theorem as presented
in Section A.5 in the appendix. First of all, with the distribution P of X1 we can write h1(x) =∫
h(x, y)P (dy), and h0 is equal to IEh(X1, X2) =

∫ ∫
h(x, y)P (dy)P (dx) =

∫
h1(x)P (dx) =

IEh1(X1). Now we define

h2(x, y) := h(x, y)− h1(x)− h1(y) + h0.

This function h2 is also symmetric in its two arguments, and∫
h2(x, y)P (dy) = h1(x)− h1(x)− h0 + h0 = 0.

In particular, IEh2(X1, X2) = 0. More generally, for arbitrary indices i, j, k, ` with i 6= j, k 6= `
and measurable functions g : R× R→ R with IE

(
g(Xk, X`)

2
)
<∞ we get the equation

(4.7) IE
(
h2(Xi, Xj)g(Xk, X`)

)
= 0 if {i, j} 6= {k, `}.

For in case of {i, j} ∩ {k, `} = ∅, independence of (Xi, Xj) and (Xk, X`) implies the equalities
IE
(
h2(Xi, Xj)g(Xk, X`)

)
= IEh2(Xi, Xj) IE g(Xk, X`) = 0. In case of k = i and ` 6∈ {i, j},

IE
(
h2(Xi, Xj)g(Xk, X`)

)
=

∫ ∫ ∫
h2(x, y)g(x, z)P (dy)P (dx)P (dz)

=

∫ ∫
g(x, z)

(∫
h2(x, y)P (dy)

)
P (dx)P (dz)

= 0.

Hence if we write h(x, y) = h0 + (h1(x) − h0) + (h1(y) − h0) + h2(x, y), then we obtain the
representation

U =

(
n

2

)−1 ∑
1≤i<j≤n

(
h0 + (h1(Xi)− h0) + (h1(Xj)− h0) + h2(Xi, Xj)

)
= h0 +

2

n

n∑
i=1

(h1(Xi)− h0) +R

with

R :=

(
n

2

)−1 ∑
1≤i<j≤n

h2(Xi, Xj).

According to (4.7), the random variables h2(Xi, Xj), 1 ≤ i < j ≤ n, are centered and uncorre-
lated, so

IE(R2) =

(
n

2

)−2 ∑
1≤i<j≤n

Var(h2(Xi, Xj)) =
2 Var(h2(X1, X2))

n(n− 1)
.

Moreover it follows from (4.7) that

Var(h(X1, X2)) = 2 Var(h1(X)) + Var(h2(X1, X2)),

so Var(h2(X1, X2)) ≤ Var(h(X1, X2)).

Proof of Theorem 4.20. The estimator µ̂W is a median of the empirical distribution function Ĝn
of the mn =

(
n
2

)
Walsh-means (Xi +Xj)/2, 1 ≤ i < j ≤ n. The latter function is given by

Ĝn(x) = m−1
n

∑
1≤i<j≤n

1[(Xi+Xj)/2≤x] = m−1
n

∑
1≤i<j≤n

1[Xi+Xj≤2x],
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and this is an estimator of

G(x) := IE Ĝ(x) = IP(X1 +X2 ≤ 2x).

Without loss of generality let µ = 0. Otherwise just replace Xi with Xi − µ. In that case, the Xi

have distribution function Fo, density function fo, and they are symmetrically distributed around
0. Now we want to verify the conditions of Theorem 4.21 with xo = 0.
First of all, by means of Fubini’s theorem,

G(x) = IE IP(X1 +X2 ≤ 2x |X1) = IEFo(2x−X1) = IEFo(2x+X1),

because the distribution of X1 is symmetric around 0. In particular,

G(0) = IEFo(X1) =

∫ 1

0
u du = 1/2,

because Fo(X1) is uniformly distributed on [0, 1]. To verify the latter claim, recall from Chapter 3
that X1 is distributed like F−1

o (U) with U ∼ Unif[0, 1]. Hence, continuity of Fo implies that
Fo(X1) is distributed like Fo(F−1

o (U)) = U . Furthermore, by dominated convergence,

G′(0) = lim
x→0

IE
(Fo(2x+X1)− Fo(X1)

x

)
= 2 IE fo(X1) = 2

∫
fo(t)

2 dt,

because

lim
x→0

Fo(2x+X1)− Fo(X1)

x
= 2fo(X1) and

∣∣∣Fo(2x+X1)− Fo(X1)

x

∣∣∣ ≤ 2‖fo‖∞.

Moreover, if (xn)n is any sequence converging to 0, then

Ĝ(xn) = m−1
n

∑
1≤i<j≤n

hn(Xi, Xj) with hn(x, y) := 1[x+y≤2xn].

Now we apply Hoeffding’s Lemma. With

hn,1(x) := IEhn(x,X2) = Fo(2xn − x)

we may write IEhn(X1, X2) = IEhn,1(X1) = G(xn), and

Ĝ(xn) = G(xn) +
2

n

n∑
i=1

(
Fo(2xn −Xi)−G(xn)

)
+Rn

where IE |Rn| = O(n−1). But ∣∣Fo(2xn −Xi)−G(xn)
∣∣ ≤ 1,

and another application of dominated convergence yields that

Var
(
Fo(2xn −Xi)

)
= IE

(
Fo(2xn −Xi)

2
)
−G(xn)2

→ IE
(
Fo(−X1)2)− 1/4

= IE
(
Fo(X1)2)− 1/4 =

∫ 1

0
u2 du− 1/4 = 1/12.

Thus, it follows from the Central Limit Theorem that
√
n
(
Ĝ(xn)−G(xn)

)
→d N (0, τ2) with τ := 2/

√
12.

Consequently, the conditions of Theorem 4.21 are satisfied, and τ/G′(xo) = σW .
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Proof of (4.6). Maximizing σ2
W /σ

2 is equivalent to minimizing 12σ2
(∫∞
−∞ fo(x)2 dx

)2. If one
replaces fo(x) with τ−1fo(τ

−1x) for some τ > 0, then this product remains unchanged. Thus
we may fix an arbitrary value for σ2 =

∫∞
−∞ fo(x)x2 dx and minimise

∫∞
−∞ fo(x)2 dx under this

constraint. In addition we have to remember the constraints that fo has to be non-negative, even,
bounded and continuous with

∫∞
−∞ fo(x) dx = 1.

To this end we use Lagrange’s method: We consider a linear combination of the three integrals,
namely,∫ ∞

−∞
f(x)2 dx+ a

∫ ∞
−∞

f(x)x2 dx− b
∫ ∞
−∞

f(x) dx =

∫ ∞
−∞

(
f(x)2 − f(x)(b− ax2)

)
dx

for constants a, b > 0, and minimise this expression over all measurable functions f : R →
[0,∞). Elementary calculations show that

f(x)2 − f(x)(b− ax2) ≥ −max(b− ax2, 0)2/4

with equality if and only if f(x) = f∗(x) := max(b− ax2, 0)/2. Especially for a = b = 1.5 we
obtain f∗(x) = 0.75 max(1− x2, 0), a bounded, continuous and even probability density. Hence
we know that ∫ ∞

−∞
fo(x)2 dx ≥

∫ ∞
−∞

f∗(x)2 dx

for any probability density fo with the additional property that the integral
∫∞
−∞ fo(x)x2 dx is

equal to
∫∞
−∞ f∗(x)x2 dx. Equality holds if and only if fo = f∗ almost everywhere.

These considerations show that σ2
W /σ

2 becomes maximal for fo = f∗, and elementary calcula-
tions yield the value 125/108.

4.5 Exercises

Exercise 4.1. Show that

E
( n∑
i=1

(Xi −X)2
)

= (n− 1)σ2.

Exercise 4.2 (Upper bounds for the variance). Let X be a random variable with values in a given
interval [a, b] ⊂ R. Show that

Var(X) ≤ (IE(X)− a)(b− IE(X)) ≤ (b− a)2/4.

Exercise 4.3 (An inequality for student quantiles). We consider stochastically independent ran-
dom variables Z and Y , where Z is standard Gaussian while Y > 0 and IE(Y ) = 1.
(a) Show that

IP
(
Z/
√
Y > t

)
= IE

(
Φ(−t

√
Y )
)

for arbitrary t ∈ R. For that purpose use Fubini’s theorem (Section A.5 in the appendix) or
consider the special case that Y has a discrete distribution.
(b) Suppose that IP(Y 6= 1) > 0. Show that

IP
(
Z/
√
Y > t

)
> Φ(−t)

for each t > 0. Investigate for that purpose the function [0,∞) 3 y 7→ Φ(−t√y) and apply
Jensen’s inequality (Section A.6 in the appendix).
(c) Deduce now that

tk;β > Φ−1(β)

for arbitrary k ∈ N and β ∈ (1/2, 1).
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Exercise 4.4. Use the data in Exercise 3.10 to compute an approximate 90%-confidence interval
for the mean life time of house cats.

Exercise 4.5. In our example for biased sampling we considered a population of mothers with the
variable Y = number of children and the relative proportions qk = IP(Y = k) for k = 1, 2, 3, . . ..
Now we consider the population of corresponding children and the variable

X̃ := number of older siblings (with same mother)

with the relative proportions p̃j = IP(X̃ = j) for j = 0, 1, 2, . . .. Establish a relationship between
the distributions (p̃j)j≥0 and (qk)k≥1. Show also that ν = 1/p̃0.
When interviewing n = 173 young people we obtained the following absolute frequencies H̃j =
#{i : X̃i = j}:

j 0 1 2 3 4 5 ≥ 6

H̃j 83 56 23 6 3 2 0

Compute point estimates for the probabilities qk and for ν. Further compute a 95%-confidence
interval for ν.

Exercise 4.6. Verify formula (4.1).

Exercise 4.7 (Norming of scale parameters). The various scale parameters K = K(X1, . . . , Xn)
may be viewed as point estimators of certain parametersK(P ). Suppose the unknown distribution
P is equal to N (µ, σ2), so F (r) = Φ((r − µ)/σ). Which parameters K(P ) correspond to (i)
the inter quartile range IQR, (ii) the median MAD of absolute deviations and (iii) Gini’s scale
parameter G? How should one modify these scale parameters such that they estimate σ correctly?

Exercise 4.8 (The range as an estimator). Show that the range X(n) − X(1) is a consistent esti-
mator for

range(P ) := q1(P )− q0(P ),

where q0(P ) := inf{r ∈ R : F (r) > 0} and q1(P ) := sup{r ∈ R : F (r) < 1}. More precisely,
one should show that

IP
(
[X(1), X(n)] ⊂ [q0(P ), q1(P )]

)
= 1 = lim

n→∞
IP
(
[r0, r1] ⊂ [X(1), X(n)]

)
for arbitrary fixed numbers q0(P ) < r0 < r1 < q1(P ).

Exercise 4.9 (L-statistics). A feature of the form

L(X1, . . . , Xn) :=
n∑
i=1

wiX(i)

with fixed constants w1, w2, . . . , wn ∈ R is called an L-statistic.
(a) Show that sample mean, τ -trimmed mean, sample-γ-quantile, range, inter quartile range and
Gini’s scale parameter are special L-statistics.
(b) Under which condition on thewi isL(X1, . . . , Xn) a location or scale parameter, respectively?

Exercise 4.10 (L-statistics as estimators). We consider an L-statistic of the form

L = L(X1, . . . , Xn) :=
1

n

n∑
i=1

w
( i− 0.5

n

)
X(i)

with a certain function w : (0, 1)→ R. Which parameter L(P ) is estimated by L(X1, . . . , Xn) if
one assumes P to have a density function f? Hint: (i− 0.5)/n =

(
F̂ (X(i)) + F̂ (X(i)−)

)
/2.
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Exercise 4.11 (Gamma distributions, I). Let Y ∼ Gamma(a, 1) with a > 0. Show that

IE(Y k) = Γ(a+ k)/Γ(a)

for arbitrary k > 0. Now let P = Gamma(a, b) with a, b > 0. Show that

µ(P ) = ab, σ(P ) =
√
a b

and
Skewness(P ) = 2/

√
a.

Exercise 4.12 (Moment-generating functions and shape parameters). LetX be a random variable
with distribution P on R. The moment-generating function of X (of P ) is defined as the function
R 3 t 7→ mX(t) := IE exp(tX) ∈ (0,∞]. Suppose that for some number to > 0 both mX(to)
and mX(−to) are finite.
(a) Show that the latter assumption is equivalent to IE exp(to|X|) < ∞. Then show that
IE(|X|k) <∞ for all k ∈ N and that

mX(t) =

∞∑
k=0

IE(Xj)tj/j! < ∞ for all t ∈ [−to, to].

In particular, mX is arbitrarily often differentiable on the interval [−to, to], and the k-th derivative
satisfies the equation

IE(Xk) = m
(k)
X (0).

This explains the name ‘moment-generating function’.
(b) Show that

logmX(t) = µ(P )t+ σ(P )2t2/2 +O(t3) as t→ 0.

(c) Show that the standardised random variable Z := (X − µ(P ))/σ(P ) satisfies

logmZ(t) = t2/2 + Skewness(P )t3/6 + Kurtosis(P )t4/24 +O(t5) as t→ 0.

Hint to parts (b) and (c): Use the Taylor-expansion log(1 + y) = y − y2/2 + O(y3) as y → 0.
Apply this to y = mX(t)− 1 and y = mZ(t)− 1.

Exercise 4.13 (Moments of the standard Gaussian distribution). Show that

IE exp(tZ) = exp(t2/2)

for a standard Gaussian random variable Z and t ∈ R. Now determine by means of Exercise 4.12
the moments IE(Zk), k ∈ N.

Exercise 4.14 (Gamma distributions, II). Let X be a random variable with distribution P =
Gamma(a, b), a, b > 0. Show that its moment-generating function (Exercise 4.12) is given by

mX(t) =

{
(1− bt)−a if t < 1/b,

∞ else.

Show that Z := (X − µ(P ))/σ(P ) satisfies

logmZ(t) =
∞∑
k=2

a1−k/2tk/k.

Determine now skewness and kurtosis of P .
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Exercise 4.15. Imagine a real sample X1, . . . , Xn such that q̂0.25 < q̂0.5 < q̂0.75. Let

K(X1, . . . , Xn) := log
( q̂0.75 − q̂0.5

q̂0.5 − q̂0.25

)
.

Is this a location, scale or shape parameter? What does it measure?

Exercise 4.16 (Robustness of the median). Imagine a data set with n = 11 real valuesX1, . . . , Xn.
How large or small may q̂0.5 get if one replaces an arbitrary valueXi by an arbitrary different num-
ber? (Formulate your result by means of the order statistics X(i).) Generalise your finding to
arbitrary sample sizes n and arbitrary numbers k of observations which may be modified.

Exercise 4.17 (Robustness of quantiles). Refine the considerations in the proof of Lemma 4.8 as
follows: Determine for k ∈ {1, 2, . . . , n} a maximal index ` = `(k, n) ∈ {0, 1, . . . , n} and a
minimal index m = m(k, n) ∈ {1, . . . , n, n+ 1} such that

q̂γ(Y1, Y2, . . . , Yn) ∈ [X(`), X(m)]

whenever #{i : Yi 6= Xi} ≤ k.

Exercise 4.18. Show that the median of absolute deviations has breakdown point 1/2.

Exercise 4.19 (Sign tests and Hoeffding’s inequality). Let b ∈ Rn be a fixed unit vector, i.e.
‖b‖2 :=

∑n
i=1 b

2
i = 1, and let ξ be uniformly distributed on {−1, 1}n. Now we investigate the

random variable T :=
∑n

i=1 ξibi.
(a) Show that IEh(T ) = 0 for any odd function h : R → R. In particular, IE(T k) = 0 for
k = 1, 3, 5, . . . .
Show that IE(T 2) = 1 and IE(T 4) = 3 +

∑n
i=1 b

4
i ≤ 3 + ‖b‖2∞, where ‖b‖∞ stands for

maxi=1,...,n |bi|.
(b) Show that for arbitrary s ∈ R,

(4.8) log IE exp(sT ) =
n∑
i=1

log cosh(sbi)

{
≤ s2/2,

≥
(
1− tanh(s‖b‖∞)2

)
s2/2.

Now show that for arbitrary c ≥ 0 and s ≥ 0,

IP(T ≥ c) ≤ IE exp(sT − sc) ≤ exp(s2/2− sc).

Deduce from this inequality that

IP(T ≥ c) ≤ exp(−c2/2) and IP(T ≤ −c) ≤ exp(−c2/2).

Hint for (4.8): h(x) := log cosh(x) satisfies the equations h(0) = h′(0) = 0 and h′′(x) =
1− tanh(x)2.

Exercise 4.20. Let r1, r2, . . . , rn be the ranks of real numbers x1, x2, . . . , xn. According to Exer-
cise 3.6,

∑n
i=1 ri = n(n+ 1)/2 and

∑n
i=1 r

2
i ≤ n(n+ 1)(2n+ 1)/6 with equality if the numbers

x1, x2, . . . , xn are pairwise different.
Deduce from these facts and Exercise 4.19 that the two-sided p-value for Wilcoxon’s signed-rank
test satisfies the inequality

πz(X) ≤ 2 exp
(
− 3T (X)2

N(N + 1)(2N + 1)

)
.
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1960 1970 1960 1970 1960 1970

10.1 20.4 10.6 22.1 8.2 10.2
4.9 9.8 11.5 13.7 17.3 24.7
12.4 15.4 11.1 12.7 8.6 13.3
10.0 18.4 4.4 3.9 13.0 14.0
9.3 11.1 11.7 16.9 9.1 16.2
7.9 8.2 4.5 12.6 8.1 17.8
17.7 13.1 11.0 15.6 10.8 14.7
12.5 12.6 8.9 7.9 4.4 11.2
6.4 14.9 3.8 10.5 14.2 15.3
6.6 11.4 6.2 5.5 3.3 6.6

Table 4.6: Murder rates in 30 US-american cities.

Athlete Best time for 200 m Best time for 100 m
L. Christie 20.09 9.97
J. Regis 20.32 10.31
M. Rosswess 20.51 10.40
A. Carrott 20.76 10.56
T. Bennett 20.90 10.92
A. Mafe 20.94 10.64
D. Reid 21.00 10.54
P. Snoddy 21.14 10.85
L. Stapleton 21.17 10.71
C. Jackson 21.19 10.56

Table 4.7: Best times of ten sprinters.

Exercise 4.21. Table 4.6 shows the murder rates in the years 1960 and 1970 for a random sample
of n = 30 cities in the southern USA. (These rates are the number of murders per 100’000 in-
habitants). How could one try to verify that the murder rates of these two years are systematically
different? Analyze the data with a test level of α = 0.01. If you prefer work without any statistics
software, Table 3.2 might be useful.

Exercise 4.22. Table 4.7 contains the record times (in seconds) of ten sprinters from Great Britain
over 200 m and 100 m for the year 1988. These are all runners who finished the distance of 200 m
in less than 21.20 seconds and provided a personal record for 100 m as well. One could guess
that the average spead over 200 m is higher than over 100 m because the starting phase has less
influence. On the other hand, it is possible that over a distance of 200 m one has to run more
economically than over 100 m. Analyze the data with a suitable method and test level α = 0.05
and draw a conclusion, if possible. Do you see a potential problem with the choice of the athletes?

Exercise 4.23. Consider again the data from Exercise 4.21. Let P be the distribution of the
variable ‘murder rate 1960 minus murder rate 1970’ for all cities in the southern USA.
(a) Compute a 95%-confidence interval for the median µ of P by means of the method in Sec-
tion 3.3.
(b) Now compute a 95%-confidence interval for the median µ of P under the idealised assump-
tion, that P has a continuous distribution function and is symmetric around µ. Take into account
that the data in Table 4.6 have been rounded to one decimal digit.
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Exercise 4.24. Determine the breakdown point of the Hodges–Lehmann estimator.

Exercise 4.25. In addition to µ̂W , Bickel and Lehmann (1976) proposed the scale parameter

σ̂W := Median
(
|Xi −Xj | : 1 ≤ i < j ≤ n

)
.

Write a program to compute both µ̂W and σ̂W . How should a factor c > 0 be chosen such that
cσ̂W estimates the standard deviation of a Gaussian distribution correctly?

Exercise 4.26 (Uniform convergence). Let (hn)n be a sequence of monotone increasing functions
hn : R → [0, 1] which converges pointwise to a monotone increasing function h : R → [0, 1].
Further let h be continuous with limx→−∞ h(x) = 0 and limx→∞ h(x) = 1. Show that even

lim
n→∞

sup
x∈R

∣∣hn(x)− h(x)
∣∣ = 0.

Exercise 4.27 (Convergence in distribution). Let Z1, Z2, Z3, . . . be real-valued random variables,
and let Q be a probability distribution on R with continuous distribution function H .
(a) Show that the following statements are equivalent:
(a.1) For arbitrary r ∈ R,

lim
n→∞

IP(Zn ≤ r) = H(r).

(a.2) For arbitrary r ∈ R,
lim
n→∞

IP(Zn < r) = H(r).

(a.3)
lim
n→∞

sup
intervalsB⊂R

∣∣IP(Zn ∈ B)−Q(B)
∣∣ = 0.

(b) In addition toZ1, Z2, Z3, . . . letA1, A2, A3, . . . and S1, S2, S3, . . . be further random variables
such that An →p 0 and Sn →p 1. That means, for arbitrary δ > 0,

lim
n→∞

IP(|An| ≥ δ) = 0 = lim
n→∞

IP(|Sn − 1| ≥ δ).

Show that statements (a.1-3) remain valid if Zn is replaced with Z̃n := An + SnZn.

Exercise 4.28 (Comparing three estimators). Suppose we replace each random variable Xi ∼ fo
with τXi, where τ is a fixed positive constant. What is the effect of this on µ and fo? Show that
all asymptotic variances σ2, σ2

0.5 and σ2
W increase by a factor of τ2.

Exercise 4.29 (Comparing three estimators). Compute the three asymptotic variances σ2, σ2
0.5

and σ2
W for the density function fo of the

(a) standard normal distribution, fo(x) = φ(x) = (2π)−1/2 exp(−x2/2),
(b) Laplace distribution, fo(x) = exp(−|x|)/2,
(c) logistic distribution, fo(x) = ex/(ex + 1)2,
(d) Epanechnikov distribution, fo(x) = 0.75 max(1− x2, 0).
Hint for (c): For a random variable X with logistic distribution, its moment-generating function
is given by IE(etX) = πt/ sin(πt) for |t| < 1. (This can be proved by means of the Residual
Theorem from Complex Analysis.) Now use Exercise 4.12 (a).

Exercise 4.30 (Comparing three estimators). Compute the three asymptotic variances σ2, σ2
0.5

and σ2
W for the density function fo(x) := (1−ε)φ(x)+ε2φ(εx), where φ is the standard Gaussian

density and ε ∈ (0, 1). This is the density of the mixture distribution (1−ε)N (0, 1)+εN (0, ε−2).
Deduce that σ0.5/σ → 0 and σW /σ → 0 as ε→ 0+.
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Exercise 4.31 (Other representations of variances). To illustrate Hoeffding’s Lemma 4.22 we
consider the variance σ2 = σ2(P ) and the sample variance S2. Show that

σ2(P ) = IE
((X1 −X2)2

2

)
and S2 =

(
n

2

)−1 ∑
1≤i<j≤n

(Xi −Xj)
2

2
.

Show also that

S2 =
1

n

n∑
i=1

(Xi − µ)2 +R,

where IE(R2) ≤
(
IE((X1 − µ)4) + σ4

)
/(n(n− 1)).

Exercise 4.32 (Sequential computation of sample mean and variance). Let X1, X2, X3, . . . be
real numbers, and for n = 1, 2, 3, . . . let

X̄n :=
1

n

n∑
i=1

Xi and S2
n :=

1

n− 1

n∑
i=1

(Xi − X̄n)2

with S2
1 := 0.

(a) Write X̄n+1 as a simple function of X̄n and ∆n := Xn+1 − X̄n.
(b) Write S2

n+1 as a simple function of S2
n and ∆2

n.
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Chapter 5

Numerical Variables: Density
Estimation and Model Diagnostics

In Chapter 4 we considered various characteristics of the distribution P . Now we return to visual-
izing the empirical distribution P̂ and estimation of the entire distribution P , this time under the
stronger assumption that P is given by a density function f . In addition we describe methods wo
check graphically or test whether a given model for P is plausible.

5.1 Histograms and Density Functions

The empirical distribution of a numerical variable is often visualised by means of histograms.
In the sequel we shall explain this method, discuss its advantages and disadvantages and finally
analyze it as an estimator of an underlying density function. Then we’ll describe and analyze an
alternative method, kernel density estimators.

Histograms

From the graph of the empirical distribution function F̂ one can, in principle, recover all order
statistics X(i). Thus apart from the order of observations one loses no information. This is defi-
nitely an advantage over the much more popular histograms. The latter are closely related to bar
plots and have been introduced by K. Pearson at the end of the 19th century.
One chooses pairwise disjoint, bounded and nondegenerate intervals B1, B2, . . . , BK covering all
sample values Xi; for instance,

(a0, a1], (a1, a2], (a2, a3], . . . , (aK−1, aK ]

with a0 < a1 < a2 < · · · < aK and X(1), X(n) ∈ (a0, aK ]. Then one determines for k =
1, 2, . . . ,K the absolute frequencies H(Bk) := #{i : Xi ∈ Bk} and the relative frequencies
P̂n(Bk) = H(Bk)/n.
Now one draws for each interval Bk a rectangle with horizontal baseline Bk, and vertically it goes
from zero to a certain height. For the latter there are two conventions:
Convention 1: The height equals H(Bk).
Convention 2: The height equals P̂n(Bk)/λ(Bk).
Here λ(Bk) denotes the length of the interval Bk. Convention 2 yields a rectangle whose area is
identical with the relative frequency P̂n(Bk).

111
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If all intervals Bk have the same length, both conventions yield the same picture up to a scaling
factor in vertical direction. Otherwise one should use convention 2. The latter prevents distortions,
because people tend to perceive the areas rather than the heights of the rectangles. Moreover, with
convention 2 it is easier to compare histograms of different data sets, even if the sample sizes differ
substantially.

Example 5.1. Suppose the sample contains n = 20 X-values lying in one of the following
five intervals: (150, 160], (160, 170], (170, 175], (175, 180], (180, 190]. Let the corresponding
absolute frequencies be 2, 5, 3, 6 and 4. Figure 5.1 shows the resulting histograms with both
conventions.
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Figure 5.1: A histogram with convention 1 (left) and 2 (right).

Histograms provide an impression how many sample values are in which region. However the
picture depends strongly on the choice of intervals. Even if we restrict ourselves to intervals of
the same length, varying the boundary values may alter the histogram drastically. An additional
problem are the boundary points of the intervals. There is no way of seeing whether a boundary
point belongs to the left or right adjacent interval.

Example 5.2. For the data in Example 1.18, Figure 5.2 shows four histograms of the n = 113
body heights (in cm) of female students. In the upper row we used intervals of length 3, in the
lower row intervals of length 5.

Density Functions

Recall that we consider X1, X2, . . . , Xn as independent random variables with unknown distri-
bution P , distribution function F and density function f . That means f : R → [0,∞) is an
integrable function with

∫∞
−∞ f(x) dx = 1, and for arbitrary intervals B ⊂ R,

P (B) =

∫
B
f(x) dx =

∫ sup(B)

inf(B)
f(x) dx.

Equivalently,

F (r) =

∫ r

−∞
f(x) dx
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Figure 5.2: Four histograms of one data vector.

for arbitrary r ∈ R.
Distributions with densities are idealised models for real distributions. For a distribution P with
density f ,

P ({x}) = 0 for arbitrary x ∈ R.

For any continuity point x of f and nondegenerate intervals B ⊂ R,

P (B)

λ(B)
→ f(x) as inf(B), sup(B)→ x,

and
f(x) = F ′(x).

Thus a possible estimator for f(x) would be

f̂(x) :=
P̂n(Bn(x))

λ(Bn(x))

with a certain interval Bn(x) containing x.
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As we’ll see later, estimating the density function f is substantially more difficult than estimating
the distribution function F . The quality of an arbitrary density estimator f̂ = f̂(· | data) at a point
x will be quantified by the root mean squared error,

RMSE(x) :=

√
IE
((
f̂(x)− f(x)

)2)
;

see also Chapter 1. As usual, this quantity is split into bias and standard deviation. Precisely,

RMSE(x) =
√

Bias(x)2 + SD(x)2

with

Bias(x) := IE
(
f̂(x)

)
− f(x) (Bias of f̂(x)),

SD(x) :=

√
Var
(
f̂(x)

)
(standard deviation of f̂(x)).

The empirical distribution P̂ is an unbiased estimator of P in the sense that IE(P̂ (B)) = P (B)
for any Borel setB ⊂ R. For the density function f there is no unbiased estimator, and one should
try to balance both error sourced Bias2 and SD2. Typically, a decrease of Bias(x)2 leads to an
increase of SD(x)2 and vice versa.

5.2 Histograms as Density Estimators

One may interpret histograms following convention 2 as estimators for the density function f .
Precisely, the histogram produced with intervals B1, B2, . . . , BK corresponds to the histogram
function f̂ with

f̂(x) =
P̂ (Bk)

λ(Bk)
for x ∈ Bk, 1 ≤ k ≤ K

and f̂(x) = 0 for x 6∈
⋃K
k=1Bk.

In the special case that Bk = (ak−1, ak] with real numbers a0 < a1 < · · · < aK one may write

f̂(x) =
F̂ (ak)− F̂ (ak−1)

ak − ak−1
for x ∈ (ak−1, ak], 1 ≤ k ≤ K.

Thus one approximates the non-differentiable distribution function F̂ by a continuous, piecewise
linear function whose left-sided derivative is equal to the histogram function f̂ .

Example 5.3. In Figure 5.2 we saw already four different histograms of n = 113 observations
(body heights in cm). Figure 5.3 depicts the underlying empirical distribution function and the
corresponding four approximations by a continuous, piecewise linear function.

From now on we restrict our attention to histograms with intervals of equal length. For an offset
a ∈ R and an interval length h > 0 we consider the intervals

Ba,h,z := (a+ zh, a+ zh+ h] (z ∈ Z)

and define

f̂(x) = f̂a,h(x) :=
P̂ (Ba,h,z)

h
for x ∈ Ba,h,z, z ∈ Z.

Here Bias(x)2 tends to be larger and SD(x)2 tends to be smaller if h is increased. The following
theorem provides explicit inequalities and approximations for Bias(x), SD(x) and RMSE(x)
under certain regularity assumptions on f .
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Figure 5.3: Empirical distribution function with four approximations.

Theorem 5.4 (Precision of histograms). Let f̂ be the histogram function f̂a,h. Suppose that f is
differentiable with f ≤M0 and |f ′| ≤M1. Then

Bias(x) =
(
f ′(x)S

(x− a
h

)
+ r1(x, a, h)

)
h,

|Bias(x)| ≤ M1h

2
,

SD(x)2 =
f(x) + r2(x, a, h)

nh
≤ M0

nh
,

where r1(x, a, h), r2(x, a, h)→ 0 as h ↓ 0, uniformly in a ∈ R, and

S(y) := dye − y − 0.5.

In case of h = Cn−1/3 for some constant C > 0,

RMSE(x) ≤ C̃n−1/3

with C̃ :=
√
M2

1C
2/4 +M0/C.
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Figure 5.4: Two histograms f̂ together with IE(f̂), SD and RMSE for h = 0.5.

This theorem shows that for suitable interval length h = h(n) and well-behaved densities f the
estimation error f̂(x)− f(x) is of order Op(n−1/3). Roughly saying this means: To decrease the
estimation error by a factor of 2 one has to increase the sample size by a factor of 8. For a decrease
by a factor of 10 one needs even 1000n instead of n observations.
The ‘sawtooth function’ S in Theorem 5.4 is periodic, namely, S(z + u) = 0.5 − u for arbitrary
z ∈ Z and u ∈ (0, 1].
Figures 5.4 and 5.5 illustrate the previous considerations. In both figures we consider two simu-
lated data sets of size n = 100. On the left hand side one sees for offset a = 0 and a certain interval
length h > 0 the corresponding histograms of both samples. The samples themselves are depicted
by line plots just below the horizontal axis. The underlying true density function is depicted as a
dashed line. On the right hand side one sees the corresponding expected value, x 7→ IE

(
f̂(x)

)
.

Below that one sees x 7→ SD(x) (darker area, step function) as well as x 7→ RMSE(x) (total gray
area). One sees clearly that for larger h the main contribution to RMSE(x) is the systematic error
Bias(x). For smaller h the standard deviation SD(x) plays a major role.

Proof of Theorem 5.4. Let x ∈ Ba,h,z for some z ∈ Z. Then f̂(x) = P̂ (Ba,h,z)/h, and

Bias(x) =
P (Ba,h,z)

h
− f(x) =

1

h

∫ a+hz+h

a+hz
(f(y)− f(x)) dy.

Now we write x = a+hz+hu and y = a+hz+hv for certain u, v ∈ (0, 1]. Then y = x+h(v−u),
and

Bias(x) =

∫ 1

0

(
f(x+ h(v − u))− f(x)

)
dv.

The mean value theorem for differentiable functions and the definition of f ′(x) imply that

|f(x+ t)− f(x)| ≤ M1|t| and f(x+ t)− f(x) =
(
f ′(x) + ρ(x, t)

)
t
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Figure 5.5: Two histograms f̂ together with IE(f̂), SD and RMSE for h = 1.0.

for arbitrary t ∈ R, where limt→0 ρ(x, t) = 0. Consequently,

|Bias(x)| ≤
∫ 1

0
M1h|v − u| dv ≤ M1h/2.

On the other hand,

Bias(x) =

∫ 1

0

(
f ′(x) + ρ(x, h(v − u))

)
(v − u) dv h

=
(
f ′(x)(0.5− u) + r1(x, a, h)

)
h,

where

|r1(x, a, h)| ≤
∫ 1

0

∣∣ρ(x, h(v − u))
∣∣|v − u| dv ≤ sup

t∈[−h,h]
|ρ(x, t)|/2.

Moreover,

0.5− u = 0.5− x− a
h

+ z = 0.5− x− a
h

+
⌈x− a

h

⌉
− 1 = S

(x− a
h

)
.

Concerning the standard deviation SD(x), the fact that nP̂ (Ba,h,z) follows Bin(n, P (Ba,h,z))
implies that

SD(x)2 =
Var(P̂ (Ba,h,z))

h2
=

P (Ba,h,z)(1− P (Ba,h,z))

nh2

=
IE
(
f̂(x)

)(
1− h IE

(
f̂(x)

))
nh

.

On the one hand, IE
(
f̂(x)

)
= h−1

∫ a+hz+h
a+hz f(y) dy ≤M0, so

SD(x)2 ≤
IE
(
f̂(x)

)
nh

≤ M0

nh
.
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On the other hand,

IE
(
f̂(x)

)(
1− h IE

(
f̂(x)

))
= f(x) + r2(x, a, h)

with |r2(x, a, h)| ≤ |Bias(x)|+ IE
(
f̂(x)

)2
h ≤ (M1/2 +M2

0 )h.

The inequality for RMSE(x) in case of h = Cn−1/3 follows from plugging in the upper bounds
for Bias(x)2 and SD(x)2.

5.3 Kernel Density Estimation

Starting from histograms we derive now another class of density estimators.

Consideration 1. Theorem 5.4 shows that for the histogram estimator f̂a,h, the function x 7→
RMSE(x) tends to be larger at the boundaries and smaller in the middle of the intervals Ba,h,z .
The reason for that phenomenon is the special sawtooth-shape of the bias. Thus to estimate f(x)
at a particular point x by means of a histogram, one should choose the intervals such that x is a
midpoint of one of them. This consideration leads to the estimator

f̂h(x) := f̂x−h/2,h(x) =
F̂ (x+ h/2)− F̂ (x− h/2)

h
.

Alternatively one may write

f̂h(x) =
1

n

n∑
i=1

1

h
1[x−h/2<Xi≤x+h/2] =

1

n

n∑
i=1

1

h
R
(x−Xi

h

)
with

R(y) := 1[−0.5≤y<0.5].

Consideration 2. When computing a histogram function f̂a,h, one has to choose suitable pa-
rameters a ∈ R and h > 0. How should one choose the offset a for a given interval length
h > 0? Indeed, different choices of a may lead to rather different functions f̂a,h; see Figure 5.2.
A possible way out is to average the histogram over various choices for a. Precisely we consider

(5.1) f̂h(x) :=
1

h

∫ b+h

b
f̂a,h(x) da

for an arbitrary real number b. Since f̂a+zoh,h = f̂a,h for arbitrary integers zo, the choice of b has
no effect. But one can show that

(5.2) f̂h(x) =
1

n

n∑
i=1

1

h
∆
(x−Xi

h

)
with

∆(y) := max
(
1− |y|, 0

)
,

see Exercise 5.3.
Both considerations lead to kernel density estimators which are defined as follows:
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Definition 5.5 (Kernel density estimator). Let K : R → R be an integrable function such that∫∞
−∞K(y) dy = 1. The kernel density estimator with kernel function K and bandwidth h > 0 is

defined as the data-dependent function f̂h with

f̂h(x) = f̂h(x,data) :=
1

n

n∑
i=1

Kh(x−Xi).

Here Kh is a rescaled version of K,

Kh(y) :=
1

h
K
(y
h

)
.

It follows from K integrating to one that
∫∞
−∞Kh(x) dx =

∫∞
−∞ f̂h(x) dx = 1 for arbitrary

bandwidths h > 0. In case of a continuous kernel function K, the estimator f̂h is continuous, too.
In case ofK ≥ 0, the estimator f̂h ≥ 0 is a probability density. At this point it may seem a strange
idea to use kernel functions with negative values, but later we shall see the potential benefits of
such a choice.

Examples. Consideration 1 yielded the rectangular kernel R with

R(y) := 1[−0.5≤y<0.5].

Consideration 2 led to the triangular kernel ∆ with

∆(y) := max(1− |y|, 0).

Other examples are the Gaussian kernel φ = Φ′, i.e.

φ(y) = (2π)−1/2 exp(−y2/2),

and the Epanechnikov kernel Ko with

Ko(y) := 0.75 ·max(1− y2, 0).

Connection between P̂ and f̂h. The empirical distribution P̂ is the arithmetic mean of the n
probability distributions δX1 , δX2 , . . . , δXn , where δXi(B) := 1[Xi∈B]. For the computation of
f̂h with non-negative kernel K each point mass δXi is replaced with a probability distribution
with density Kh(· −Xi). Figure 5.6 shows the kernel density estimator f̂h resulting from n = 8
observations, where h = 0.6 and K = φ. One sees the functions n−1Kh(· −Xi) as well as their
sum f̂h.

A physical interpretation. Kernel density estimators f̂h with Gaussian kernel φ have an explicit
interpretation in Physics: Imagine the real axis as an arbitrarily long thin wire. At time zero,
each point1 Xi is heated up to a certain temperature while the rest of the wire has a constant
lower temperature. Now one lets the heat diffuse along the wire. Measuring temperature and
time in appropriate units, f̂h(x) is the difference between actual and initial temperature at point
x 6∈ {X1, X2, . . . , Xn} at time h2 > 0. Behind this is the fact that f̂√t(x), viewed as a function
of (t, x) ∈ (0,∞)× R solves the heat equation.
As in case of histogram estimators, Bias(x)2 tends to be increasing and SD(x)2 tends to be de-
creasing in h > 0. Again one may derive explicit bounds and approximations for bias and standard
deviation of f̂h under certain regularity assumptions on f .

1an infinitesimal neighborhood thereof
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Figure 5.6: From P̂ to f̂ .

Theorem 5.6 (Precision of kernel density estimators). Let f̂ be the kernel density estimator
f̂h with kernel function K ≥ 0 and bandwidth h > 0. Suppose that f is twice differen-
tiable with f ≤ M0 and |f ′′| ≤ M2. Further let

∫∞
−∞ yK(y) dy = 0, and suppose that both

CB := 2−1
∫∞
−∞ y

2K(y) dy and CSD :=
∫∞
−∞K(y)2 dy are finite. Then

Bias(x) =
(
CBf

′′(x) + r1(x, h)
)
h2,

|Bias(x)| ≤ CBM2 h
2,

SD(x)2 =
CSDf(x) + r2(x, h)

nh
≤ CSDM0

nh
,

where limh↓0 rj(x, h) = 0 for j = 1, 2.
In case of h = Cn−1/5 for some constant C > 0,

RMSE(x) ≤ C̃n−2/5

with C̃ :=
√
C2

BM
2
2C

4 + CSDM0/C.

In case of a sufficiently smooth function f we obtain a density estimator with RMSE(x) =
O(n−2/5) which is substantially better than the rate O(n−1/3) for histogram estimators. The
aforementioned examples of kernel functions K fulfil the requirements in Theorem 5.6.
To illustrate the preceding considerations and to compare kernel density estimators with his-
tograms, we consider the same two data sets as in Figures 5.4 and 5.5. Figures 5.7 and 5.8 show for
a fixed bandwidth h > 0 the following functions: On the left hand side one sees the kernel density
estimators f̂h with triangular kernel ∆. On the upper right hand side one sees the corresponding
expected value, x 7→ IE(f̂(x)). On the lower right side one sees x 7→ SD(x) (darker part) and
x 7→ RMSE(x) (total gray area).
Again one sees clearly that for smaller bandwidths h, RMSE(x) is caused mainly by the standard
deviation SD(x), while for larger bandwidths h the systematic error |Bias(x)| starts dominating.
Particularly interesting is a comparison of Figures 5.5 and 5.7. This shows clearly the improve-
ment by averaging the histogram estimator f̂a,h with respect to the offset parameter a; see Con-
sideration 2. For bandwidth h = 2 (Figure 5.8) the systematic error is rather large. Nevertheless
the two local maxima and the local minimum in between are still detected with reasonably high
probability.
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Figure 5.7: Two kernel density estimators f̂ as well as IE(f̂), SD and RMSE for h = 1.0.

Proof of Theorem 5.6. Since X1, X2, . . . , Xn are independent and identically distributed, the
same is true for fixed x ∈ R and the random variables Kh(x−Xi), 1 ≤ i ≤ n. For the arithmetic
mean f̂h(x) = n−1

∑n
i=1Kh(x−Xi) this implies that

IE
(
f̂h(x)

)
= IE(Kh(x−X1)),

Var
(
f̂h(x)

)
=

1

n
Var
(
Kh(x−X1)

)
=

1

n

(
IE(Kh(x−X1)2)− IE

(
f̂h(x)

)2)
.

Moreover,

IE
(
Kh(x−X1)j

)
=

∫ ∞
−∞

1

hj
K
(x− z

h

)j
f(z) dz

= h1−j
∫ ∞
−∞

K(y)jf(x− hy) dy

for j ∈ N. Here we used the transformation y = (x− z)/h, so z = x− hy and dz = −h dy.
For the bias of f̂ = f̂h this implies the expression

Bias(x) =

∫ ∞
−∞

K(y)
(
f(x− hy)− f(x)

)
dy.

It follows from Taylor’s formula that

f(x+ t)− f(x) = f ′(x)t+ 2−1f ′′(ξ(x, t)) t2

for a suitable point ξ(x, t) in the interval
[
x± |t|

]
, and f ′′(ξ(x, t))→ f ′′(x) as t→ 0. (The latter
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Figure 5.8: Two kernel density estimators f̂ as well as IE(f̂), SD and RMSE for h = 2.0.

claim is true even if f ′′ is not continuous.) Consequently,

Bias(x) = −f ′(x)h

∫ ∞
−∞

yK(y) dy +
h2

2

∫ ∞
−∞

y2K(y)f ′′(ξ(x,−hy)) dy

=
h2

2

∫ ∞
−∞

y2K(y)f ′′(ξ(x,−hy)) dy,

because
∫∞
∞ yK(y) dy = 0. In particular, |f ′′| ≤ M2 implies that |Bias(x)| ≤ CBM2h

2, and by
dominated convergence, r1(x, h) := h−2 Bias(x)− CBf

′′(x) converges to zero as h ↓ 0.
For the standard deviation SD(x) we obtain the expression

SD(x)2 =
1

nh

(∫ ∞
−∞

K(y)2f(x− hy) dy − h IE
(
f̂h(x)

)2)
.

Obviously the right hand side is not greater than

1

nh

∫ ∞
−∞

K(y)2f(x− hy) dy ≤ CSDM0

nh
.

On the other hand, 0 ≤ IE
(
f̂h(x)

)
≤M0, and it follows from dominated convergence that

lim
h↓0

∫ ∞
−∞

K(y)2f(x− hy) dy = CSDf(x).

Thus r2(x, h) := nhSD(x)2 − CSDf(x) converges to zero as h ↓ 0.

Choosing the bandwidth h. In explicit applications it is not clear how to choose h > 0. If the
kernel density estimators are used as an exploratory tool to visualise the empirical distribution of
the data, one should plot f̂h for different values of h > 0 to get a feeling for P̂ .
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There is a huge literature on data-driven choice of bandwidths, i.e. h = h(data) > 0. One
could even try to choose different bandwidths at different positions, leading to estimators f̂(x) =
f̂h(x,data)(x,data). Subsequently we describe three proposals for the choice of a (global) band-
width.

Normal distributions as gold standard. Under the implicit assumption that P is similar to a Gaus-
sian distribution, we choose

h =
IQR(data)

2Φ−1(3/4)
h(n).

The factor IQR(data)/(2Φ−1(3/4)) is a robust estimator of the Here h(n) > 0 is chosen such
that the kernel density estimator f̂h(n) would be ‘optimal’ in case of P being the standard nor-
mal distribution. Possible notions of optimality would be to minimze supx∈R RMSE(x)2 or∫
R RMSE(x)2 dx in case of f being the standard Gaussian density φ. Since we do not have

explicit formulae for RMSE(x)2, we could replace it with its approximation provided by Theo-
rem 5.6. Indeed, if h(n) = Cn−1/5 with C > 0, then

lim
n→∞

n4/5RMSE(x)2 = C2
Bφ
′′(x)2C4 + CSDφ(x)C−1.

Thus we could choose C such that the supremum or the integral of this limit over the real line
becomes minimal.

Kolmogorov-Smirnov criterion. In addition to the true distribution function F and the empirical
distribution function F̂ we consider the distribution function F̂h of the kernel density estimator
f̂h, i.e.

F̂h(r) :=

∫ r

−∞
f̂h(x) dx.

Since IE ‖F̂ − F‖∞ = O(n−1/2), we choose for a constant c > 0 (for instance, c = 0.5) the
bandwidth h = h(data) as large as possible such that∥∥F̂ − F̂h∥∥∞ ≤ c√

n
.

Weak smoothing of F̂ . If our main goal is to visualise the empirical distribution P̂ , that means,
to get an impression in which regions there are few or many observations, we may use rather small
bandwidths. Suppose we are working with the Gaussian kernel K = φ. If we view the data
as fixed, f̂h is the density function of X̂ + hZ with stochastically independent random variables
X̂ ∼ P̂ and Z ∼ N (0, 1). In particular, IE(X̂ + hZ) = X and

Var(X̂ + hZ) = σ(P̂ )2 + h2 = (1− n−1)S2 + h2.

Hence choosing h = n−1/2S leads to a distribution with mean X and variance S2. The resulting
density estimators tend to have too many local minima and maxima. Nevertheless one gets a good
impression about the empirical distribution of the data.

Optimal (nonnegative) kernels. Theorem 5.6 suggests to minimise both quantities CB(K) =
2−1

∫∞
−∞ y

2K(y) dy and CSD(K) =
∫∞
−∞K(y)2 dy. If one would replace K(y) with Knew(y) =

τ−1K(τ−1y) for some τ > 0, we would obtain the characteristics CB(Knew) = τ2CB(K) and
CSD(Knew) = τ−1CSD(K), and f̂h with kernel Knew would be equal to f̂τh with the original
kernel K. Thus one may fix an arbitrary value for CB(K) and try to minimise CSD(K) under
that constraint. This problem was already solved in the proof of (4.6), and it turned out that the
Epanechnikov kernel Ko or any rescaled version of it is optimal.
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Kernels of higher order. If we consider kernels K with possibly negative values, the preceding
results may be generalised as follows:

Theorem 5.7. Let f̂ be the kernel density estimator f̂h with bandwidth h > 0 and kernel function
K. Suppose that for an even integer J ≥ 2 the density f is J times differentiable with f ≤ M0

and |f (J)| ≤MJ . Further suppose that∫ ∞
−∞

yjK(y) dy = 0 for j = 1, . . . , J − 1,

and that both C̄B := (J !)−1
∫∞
−∞ y

J |K(y)| dy and CSD :=
∫∞
−∞K(y)2 dy are finite. With CB :=

(J !)−1
∫∞
−∞ y

JK(y) dy,

Bias(x) =
(
CBf

(J)(x) + r1(x, h)
)
hJ ,

|Bias(x)| ≤ C̄BMJ h
J ,

SD(x)2 =
CSDf(x) + r2(x, h)

nh
≤ CSDM0

nh
,

where limh↓0 rj(x, h) = 0 for j = 1, 2.
In case of h = Cn−1/(2J+1) for some constant C > 0,

RMSE(x) ≤ C̃n−J/(2J+1)

with C̃ :=
√
C̄2

BM
2
JC

2J + CSDM0/C.

The proof of this theorem is analogous to the proof of Theorem 5.6. This time one uses Taylor’s
formula

f(x+ t)− f(x) =

J−1∑
j=1

f (j)(x)

j!
tj +

f (J)(ξ(x, t))

J !
tJ

for a suitable point ξ(x, t) within [x± |t|], where f (J)(ξ(x, t))→ f (J)(x) as t→ 0. Now

Bias(x) =
hJ

J !

∫ ∞
−∞

yJK(y)f (J)(ξ(x,−hy)) dy.

A kernel function K with the property that
∫∞
−∞ y

jK(y) dy = 0 for 1 ≤ j < J is called a kernel
of order J . Hence Theorem 5.6 refers to kernels of order tow. An example for a kernel of order
four is given by the ‘sombrero function’ K∗ with

(5.3) K∗(y) :=
3− y2

2
φ(y).

Figure 5.9 shows its graph.

Computation and visualisation of kernel density estimators. The explicit computation of f̂h
at a single point x is straightforward. Less obvious is the computation and visualisation of the
whole function f̂h. Depending on the kernel function K there are different options.
In case of the Gaussian kernel φ or the sombrero function K∗ in (5.3) the function f̂h is smooth.
Thus it suffices to compute f̂ on a fine grid of points and interpolate linearly.
Now we describe a particular method to compute f̂h in case of the triangular kernel ∆. Each
summand ∆((x−Xi)/h)/(nh) of f̂h(x) is a continuous and piecewise linear function of x with
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Figure 5.9: The sombrero kernel function.

changes of slope at the three points Xi − h,Xi, Xi + h. Hence f̂h is continuous and piecewise
linear with potential changes of slope at the points in

{Xi − h,Xi, Xi + h : 1 ≤ i ≤ n}.

If y1 < y2 < . . . < ym denote the m ≤ 3n different elements of the latter set, then f̂h = 0
on (−∞, y1] ∪ [ym,∞), and it suffices to compute f̂h(yj) for 1 < j < m. Other values can be
obtained via linear interpolation.
For the computation of (f̂h(yj))

m
j=1 we consider now the left-sided derivative f̂h′(y−) of f̂h at a

point y. Note that f̂h(y1) = 0 and

f̂h(yj) = f̂h(yj−1) + (yj − yj−1)f̂h
′(yj −) for j = 2, 3, . . . ,m.

Once we have computed
(
f̂h
′(yj −)

)m
j=2

, the vector (f̂h(yj))
m
j=1 may be computed easily in O(n)

steps. An explicit expression for the derivative f̂h′(y−) is

f̂h
′(y−) =

1

nh

n∑
i=1

lim
x↑y

∆((y −Xi)/h)−∆((x−Xi)/h)

y − x

=
1

nh2

n∑
i=1

(
1[Xi−h<y≤Xi] − 1[Xi<y≤Xi+h]

)
=

1

nh2

n∑
i=1

(
1[Xi−h<y] − 2 · 1[Xi<y] + 1[Xi+h<y]

)
=

1

nh2
D(y)

with
D(y) := #{i : X(i) − h < y} − 2#{i : X(i) < y}+ #{i : X(i) + h < y}.

The vectors X̃ := (X(i))
n+1
i=1 of order statistics and y := (yj)

m
j=2 may be determined inO(n log n)

steps. Then it is possible to compute D := (D(yj))
m
j=2 in O(n) steps. For with X(0) = −∞ and
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`1 ← 0
`2 ← 0
`3 ← 0
for j ← 2 to m do

while X(`1+1) + h < yj do
`1 ← `1 + 1

end
while X(`2+1) < yj do

`2 ← `2 + 1
end
while X(`3+1) − h < yj do

`3 ← `3 + 1
end
D(yj)← `1 + `3 − 2`2

end

Table 5.1: Auxiliary code for kernel densitiy estimator with triangular kernel.

X(n+1) =∞ one may write
D(yj) = `j,1 − 2`j,2 + `j,3,

where

`j,1 := max
{
i ∈ {0, 1, . . . , n+ 1} : X(i) + h < yj

}
,

`j,2 := max
{
i ∈ {0, 1, . . . , n+ 1} : X(i) < yj

}
,

`j,3 := max
{
i ∈ {0, 1, . . . , n+ 1} : X(i) − h < yj

}
.

Table 5.1 contains corresponding pseudocode.

Remark 5.8. Kernel density estimators have been introduced by M. Rosenblatt (1956) and E.
Parzen (1962), and numerous authors extended this method and theory. Optimality of the Epanech-
nikov kernel was proved by V.A. Epanechnikov (1969). The problem of bandwidth choice is still
a topic of research; see the review paper of M. C. Jones, J. S. Marron and S. J. Sheather (1996).
The monograph B. W. Silverman (1986) presents various approaches to density estimation.

5.4 Checking Model Assumptions

In some applications it is important to check whether P belongs to a given class (Pθ)θ∈Θ of
distributions. For instance, often people are wondering whether P is a normal distribution, that
means P = Pθ with θ = (µ, σ) ∈ Θ = R × (0,∞) and Pθ = N (µ, σ2). To check such an
assumption, one could compute histograms or kernel density estimators to check its plausibility.
But these methods tend to be rather imprecise; in particular, it is difficult to investigate the tails of
distributions in this fashion.
Just some bad news at the very beginning: It is impossible to verify that a particular model (Pθ)θ∈Θ

is adequate. Nevertheless it is possible to check the plausibility of a certain model. Sometimes
one can also falsify a certain model with given confidence by means of statistical tests.
In the sequel we assume that the distributions Pθ are given by continuous distribution functions
Fθ. We describe two graphical methods and a formal test for the plausibility of the model (Pθ)θ∈Θ.
We start with some considerations about order statistics. According to Lemma 3.11, (Xi)

n
i=1 has

the same distribution as
(
F−1(Ui)

)n
i=1

with independent random variables U1, U2, . . . , Un which
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are uniformly distributed on [0, 1]. For the order statistics X(k) of the Xi and U(k) of the Ui this
implies that

(X(k))
n
k=1 and

(
F−1(U(k))

)n
k=1

have the same distribution. If F is continuous, then F (F−1(u)) = u for all u ∈ (0, 1), so(
F (X(k))

)n
k=1

and (U(k))
n
k=1

have the same distribution. In Exercise 5.6 it is shown that

IE(U(k)) = uk :=
k

n+ 1
and(5.4)

Var(U(k)) =
uk(1− uk)
n+ 2

≤ 1

4(n+ 2)
.(5.5)

P-P-plots. Under the assumption that P = Pθ for an unknown parameter θ ∈ Θ, let θ̂ = θ̂(data)
be a corresponding estimator. In view of (5.4) and (5.5) we expect that F

θ̂
(X(k)) ≈ uk. Thus we

consider a scatter plot of the points
(
uk, Fθ̂(X(k))

)
, 1 ≤ k ≤ n, a so-called P-P-plot (probability-

probability-plot). If indeed P
θ̂

is a good approximation of P , these points should be close to the
straight line {(x, x) : x ∈ R}.

Q-Q-plots, version 1. In view of (5.4) and (5.5), X(k) should be close to F−1

θ̂
(uk) whenever

P
θ̂

is a good approximation of P . Thus we consider a scatter plot of the points
(
F−1

θ̂
(uk), X(k)

)
,

1 ≤ k ≤ n, a so-called Q-Q-plot (quantile-quantile-plot). Again these points should be close to
the straight line {(x, x) : x ∈ R}.

Q-Q-plots, version 2. Consider the special case of a location-scale family. That means, Θ =
R × (0,∞), and for θ = (µ, σ) let Fθ(r) = Fo((r − µ)/σ) with a given continuous distribution
function Fo. Then F−1

θ (v) = µ + σF−1
o (v), and (X(k))

n
k=1 has the same distribution as

(
µ +

σF−1
o (U(k))

)n
k=1

. Thus we consider a scatter plot of the points(
F−1
o (uk), X(k)

)
(version 2a)

or of the points (
F−1
o (uk),

X(k) − µ̂
σ̂

)
(version 2b),

1 ≤ k ≤ n. Under the assumption that P = Pµ,σ, these n points should be close to the straight
line

{
(x, µ+ σx) : x ∈ R

}
(version 2a) or {(x, x) : x ∈ R} (version 2b).

In case of Pµ,σ = N (µ, σ2), obvious estimators for µ and σ would be µ̂ = X and σ̂ = S, respec-
tively. Alternatively one could use robust estimators such as, say, µ̂ = Median(X1, . . . , Xn) and
σ̂ := MAD(X1, . . . , Xn)/Φ−1(0.75).

An informal test. The requirement that the points of a P-P-plot or Q-Q-plot (version 1 or 2b)
should be close to the straight line {(x, x) : x ∈ R} is rather vague, of course. To get a feeling for
the typical shape of such a plot in case of the location-scale family being correct, one could sim-
ulate data vectors (X̃i)

n
i=1 with independent components following Fo and compare their P-P- or

Q-Q-plots with the corresponding plot based on the original data. If the latter plot is substantially
different from the plots for the simulated data, this is evidence against our model assumption.
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Formal tests. Statistical tests of the null hypothesis that P belongs to a given location-scale
family are easy to implement. Let T = T (X1, X2, . . . , Xn) be a test statistic which is also a
shape parameter. That means, T (a + bX1, a + bX2, . . . , a + bXn) = T (X1, X2, . . . , Xn) for
arbitrary a ∈ R and b > 0. This constraint is natural since we are mainly interested in the shape
of the distribution, not the particular parameter (µ, σ). Moreover, the distribution of T under the
null hypothesis does not depend on the particular parameter (µ, σ). With the distribution function

Go(r) := IP
(
T (X̃1, X̃2, . . . , X̃n) ≤ r

)
for stochastically independent random variables X̃1, X̃2, . . . , X̃n with distribution Fo, a p-value
of the null hypothesis that P belongs to (Pθ)θ∈Θ is given by 1−Go(T −). Obviously one can also
devise Monte-Carlo versions of this test.
Concerning the test statistic T , the following choices would be closely related with P-P-plots and
Q-Q-plots, respectively:

T1 := max
k=1,2,...,n

∣∣∣Fo(X(k) − µ̂
σ̂

)
− uk

∣∣∣,
T2 :=

1

n

n∑
k=1

∣∣∣X(k) − µ̂
σ̂

− F−1
o (uk)

∣∣∣.
But the reader may design different quantities. The only important point is that µ̂(·) and σ̂(·)
should be location and scale parameters, respectively. Then any function of

(
(Xk − µ̂)/σ̂

)n
k=1

is
automatically a shape parameter.

Example 5.9 (Log-Returns). Let Ki be the value of a share or a portfolio of shares by the
end of the i-th trading day. A simple model in financial mathematics assumes that the log-
returns Xi := log10(Ki+1/Ki) are stochastically independent random variables with distribution
N (µ, σ2), where µ ∈ R and σ > 0 are unknown parameters. In particular, this model is used
when determining the value of option by means of the celebrated Black–Scholes formula.
Figure 5.10 shows on the left hand side the log-values log10(Ki) of a certain portfolio of Ger-
man shares at all 3246 trading days in the years 1981-1993. On the right hand side one sees the
corresponding n = 3245 log-Returns Xi.
Figure 5.11 shows for the Gaussian location-scale model the resulting P-P-plot (left), based on
the sample median µ̂ = 2.785 · 10−4 and σ̂ = MAD/Φ−1(0.75) = 3.272 · 10−3. On the right
hand side one sees the corresponding Q-Q-plot (version 2b). While the P-P-plot looks okay at first
glance, the Q-Q-plot shows strong deviations from the straight line {(x, x) : x ∈ R}. Comparisons
with simulated data vectors (not shown here) show clearly that these deviations are significant. A
formal test based on the test statistic T1 = 3.042 · 10−2 yields Monte-Carlo p-values smaller than
10−4 (if the number of simulations is sufficiently high). Hence the assumption of independent,
identically distributed log-returns with Gaussian distribution is wrong with high confidence.
A model which seems to fit the data much better assumes the distribution function Fo of a student
distribution tg. Trying different degrees g of freedom showed that for g = 3 (or g = 4) the
approximation is quite good. Figure 5.12 shows the corresponding P-P- and Q-Q-plot. Here we
used the scale parameter σ̂ = IQR/(2tg;0.75).
In Section 8.3 we shall look at this data example once more and show that the log-returns are
significantly stochastically dependent.
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Figure 5.10: Log-transformed share values and log-returns.
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Figure 5.11: P-P- and Q-Q-plots for normal distributions and log-returns.
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Figure 5.12: P-P- and Q-Q-Plot for t3 distribution and log-returns.

5.5 Exercises

Exercise 5.1. For fixed k ∈ N0 let

F (r) :=

1− e−r
k∑
i=0

ri

i!
for r ≥ 0,

0 for r ≤ 0.

Show that F is a distribution function and determine the corresponding density function f . (Do
you recognise a standard distribution?)

Exercise 5.2. Suppose we lost the data X1, X2, . . . , Xn. Even the sample size is unknown, the
only available information are two histograms following convention 2; see Figure 5.13. The first
histogram corresponds to the intervals (0, 1], (1, 2], . . . , (4, 5], the second one to the intervals
(−0.5, 0.5], (0.5, 1.5], (1.5, 2.5], . . . , (4.5, 5.5].
(a) What do you learn about the graph of the empirical distribution function F̂ from a single
histogram? Deduce from each histogram a picture with shaded regions indicating where the graph
of F̂ has to be, ignoring for the moment the other histogram.
(b) Now combine the information from both histograms. Determine a histogram corresponding
to the intervals (−0.5, 0], (0, 0.5], (0.5, 1], . . . , (4.5, 5], (5, 5.5], and provide a refined picture for
the graph of F̂ .

Exercise 5.3 (Histograms and triangular kernel). Show that the histogram estimator f̂a,h can be
written as

f̂a,h(x) =
1

n

n∑
i=1

1

h
ga,h(x,Xi)

with a certain function ga,h : R × R → {0, 1} such that ga+zoh,h(x, y) = ga,h(x, y) for arbitrary
x, y ∈ R and zo ∈ Z. Then verify formula (5.2) for the average histogram f̂h(x) in (5.1) by
showing that for any b ∈ R,

1

h

∫ b+h

b
ga,h(x, y) da = max

(
1− |x− y|

h
, 0
)
.
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Figure 5.13: Two histograms of a lost data set.
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Exercise 5.4 (Estimation of f ′). Let f̂h be the kernel density estimator with a continuously dif-
ferentiable kernel function K. Show that under the assumptions of Theorem 5.6,

sup
x∈R

IE
∣∣f̂h′(x)− f ′(x)

∣∣ = O(n−1/5),

provided that h = Cn−1/5 for some constant C > 0 and∫ ∞
−∞

K ′(y)2 dy < ∞, lim
y→±∞

K(y) = 0.

Exercise 5.5 (Order of the sombrero kernel). Show that the sombrero kernel K∗(y) = (3 −
y2)φ(y)/2 is a kernel of order 4. That means,∫

yjK∗(y) dy =

{
1 for j = 0,

0 for 1 ≤ j < 4.

Determine a kernel of order 6. Hint: Exercise 2.5.

Exercise 5.6 (Moments of uniform order statistics). Let U(1) < U(2) < · · · < U(n) be the order
statitics of independent random variables U1, U2, . . . , Un with uniform distribution on [0, 1]. Show
that for k ∈ {1, 2, . . . , n},

IE(U(k)) = uk :=
k

n+ 1
and Var(U(k)) =

uk(1− uk)
n+ 2

≤ 1

4(n+ 2)
.

Hint: Remark 3.8 shows that U(k) has density function fk−1,n−k on [0, 1], where generally

f`,m(u) :=
(`+m+ 1)!

`!m!
u`(1− u)m

for `,m ∈ N0. Since
∫ 1

0 fk−1,n−k(u) du = 1, we obtain the equation∫ 1

0
u`(1− u)m du =

`!m!

(`+m+ 1)!
.

Now compute IE(U(k)) and IE(U2
(k)).

Exercise 5.7 (Exponential distributions). How could one check the model assumption that P is
an exponential distribution with unknown mean b > 0, graphically or formally? Here Fb(r) =
max(1− exp(−r/b), 0).

Exercise 5.8 (Q-Q-curves). For growing sample size n the Q-Q-plot (version 2a) resembles more
and more the curve (0, 1) 3 u 7→

(
F−1
o (u), F−1(u)

)
. Plot this curve for Fo = Φ and the

distribution function F of P = Gamma(a, 1) with different shape parameters a > 0 and P = tk
with different degrees k ≥ 1 of freedom.



Chapter 6

Comparing Samples

Quite often one is analyzing two or more samples corresponding to several studies or experiments.
The question is whether these samples are substantially different with respect to a particular vari-
able. In the present chapter we focus on numerical variables. Let Xki ∈ R be our i-th observation
in the k-th sample. Here 1 ≤ k ≤ K and 1 ≤ i ≤ nk. We consider all N = n1 + n2 + · · ·+ nK
observations as stochastically independent random variables and assume that Xki follows an un-
known distribution Pk with distribution function Fk. Now the question is whether and how these
distributions P1, P2, . . . , PK differ.
Sometimes we consider only one sample with a numerical variable and a categorical variable.
Precisely, let (X1, G1), (X2, G2), . . . , (XN , GN ) be our observations with values Xi ∈ R and
Gi ∈ {g1, g2, . . . , gK}. Now we may reorganise these observations such that (Xki)

nk
i=1 contains

all values Xj such that Gj = gk. Assuming that the observations (Xj , Gj) are stochastically
independent and identically distributed random variables, the vector (nk)

K
k=1 has a multinomial

distribution. If we condition on the random variables Gj , the random variables Xki are stochas-
tically independent, and Pk is the conditional distribution of Xj , given Gj = gk. The question
whether Gj and Xj are stochastically dependent is equivalent to the question whether the condi-
tional distributions P1, P2, . . . , PK differ.
In the next section we describe a simple graphical method to compare several (sub)samples. Then
we focus on the case of K = 2 (sub)samples or distributions. In that context we also introduce the
important concept of stochastic order. Finally we consider settings with K ≥ 3 samples.

6.1 Box Plots and Box-Whisker Plots

In principle one could visualise and compare theK samplesXk = (Xki)
nk
i=1 by means of empirical

distribution functions, histograms or kernel density estimators. But this may be cumbersome, in
particular, if K is larger than three, say. John W. Tukey introduced a very simple but useful
graphical display, the so-called box plots and box-and-whiskers plots.

Box plots. For a single sampleXk we determine five features, namely its minimum (Q0), its first
quartile (Q1), its median (Q2), its third quartile (Q3) and its maximum (Q4). These five features
are now depicted as follows: The vertical axis corresponds to the potential values. Now we draw
a rectangle with bottom line at Q1 and top line at Q3. This box is divided into two subboxes by an
additional line at Q3. In addition we draw a single line from Q1 to the minimum Q0 and from Q3

to the maximum Q4.
Despite this reduction to only five features, box plots provide a good first impression of the empir-
ical distribution of the values Xki, 1 ≤ i ≤ nk. In particular, the height of the box is equal to the

133
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inter quartile range IQR = Q3 −Q1.
Drawing the box plots for all K samplesX1,X2, . . . ,XK side by side allows us to spot empirical
differences between the samples, for instance, differences of medians or inter quartile ranges.
Whether or not such differences are significant has to be analyzed by means of different methods.

Example 6.1. Suppose that the sorted components of X1 are 0, 1, 5, 6, 7, 7, 8, 10, 14 and 18
while the sorted components of X2 are −3, 2, 4.5, 6, 7, 7.5, 8, 8.5, 11 and 15, so n1 = n2 = 10.
The 2× 5 characteristics are then

Q0 Q1 Q2 Q3 Q4

X1 0 5 7 10 18

X2 −3 4.5 7.25 8.5 15

The corresponding box plots are shown on the left hand side of Figure 6.1.

X1 X2

0
5

10
15

X1 X2

0
5

10
15

Figure 6.1: Box plot (left) and box-whiskers plot (right) for a simple data example.

Box-and-whiskers plots. A potential weakness of box plots is missing information for the
ranges outside [Q1, Q3]. To represent observations in this region more precisely one defines a
sample value as
◦ ‘suspiciously small’ if it is smaller than Q1 − 1.5 · IQR,
◦ ‘suspiciously large’ if it is larger than Q3 + 1.5 · IQR,
◦ ‘non-suspicious’ if it lies within

[
Q1 − 1.5 · IQR, Q3 + 1.5 · IQR

]
.

Now we replace the single line between minimumQ0 and first quartileQ1 by a single line from the
smallest non-suspicious observation to Q1. Analogously the single line between third quartile Q3

and maximum Q4 is replaced by a single line from Q3 to the largest non-suspicious observation.
Suspiciously small or large observations, if there are any, are depicted as single points.

Example 6.2 (Example 6.1 continued). In the sample X1, values outside of
[
5 − 1.5 · 5, 10 +

1.5 · 5
]

= [−2.5, 17.5] are suspicious. This concerns only the component 18; the smallest non-
suspicious value is 0 while the largest non-suspicious value is 14. In the sampleX2, values outside
of
[
4.5−1.5·4, 8.5+1.5·4

]
= [−1.5, 14.5] are suspicious. This concerns the values−3 and 15; the

smallest non-suspicious value is 2 while the largest non-suspicious value is 11. The corresponding
box-whiskers plots are shown on the right hand side of Figure 6.1.
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Remark 6.3. The thresholds Q1−1.5 · IQR and Q3 + 1.5 · IQR themselves are not drawn. They
serve only to classify observations as non-suspicious or suspicious. For small samples or in case
of many tied observations the box(-and-whiskers) plot may degenerate in the sense that certain
single lines are missing or the median coincides with the first or third quartile.
The factor 1.5 for the IQR may be motivated as follows: In Exercise 6.1 it is shown that the sample
mean lies always within the interval[Q0 +Q1 +Q2 +Q3

4
,
Q1 +Q2 +Q3 +Q4

4

]
.

to guarantee that the sample mean is at least within the box, i.e. the interval [Q1, Q3], the following
two inequalities should be satisfied:

Q0 ≥ 3Q1 −Q2 −Q3 = Q1 − IQR− (Q2 −Q1),

Q4 ≤ 3Q3 −Q2 −Q1 = Q3 + IQR + (Q3 −Q2).

If the median (Q2) is precisely the midpoint between first and third quartile, these conditions read

Q0 ≥ Q1 − 1.5 · IQR,

Q4 ≤ Q3 + 1.5 · IQR.

Hence observations outside these thresholds are potentially problematic.

We end this section with multiple box-(whisker) plots for two larger data sets.

Example 6.4 (Income of professional baseball players). We consider a data set with the annual
incomes of N = 263 US-american baseball players in the professional league. In addition to the
variable X = income (in 1000 USD) this data set contains an ordinal variable G = years speci-
fiying the number of seasons (including the current one) a player has played professionally. Since
only 25 players have been playing for more than 14 years, we combine these observations into one
category. The multiple box-whiskers plot of X with respect to this modified group variable G is
shown in Figure 6.2. One sees clearly that the income tends to increase during the first three-four
years. After that no clear trend is visible. Note also that in various groups there are remarkably
large values. There are some ‘freshmen’ earning more than several senior guys.
The existence of very large big values, the non-existence of very small values and the fact that in
many groups the median is closer to the first than to the third quartile indicate that the empirical
distributions of incomes are right-skewed. Considering log10(X) in place of X ameliorates these
non-symmetries, and the development of incomes during the first few years becomes easier to
grasp.

Example 6.5 (Hamburg-Marathon 2000). Now we consider the net running times (X , in hours)
of the N = 13049 finishers of the Hamburg Marathon 2000. (About 16000 people registered.)
At first we show the empirical distribution function of this variable X in Figure 6.4. The fastest
runner reached the finish line after 2 hours, 11 minutes and 6 seconds; the slowest runner came
in after 5 hours, 32 minutes and 21 seconds. The median of all running times equals X(6525), 3
hours, 52 minutes and 10 seconds. From the organisers’ viewpoint this distribution function is
very interesting. It helps planning the size of facilities for showering, drinking and food. Another
interesting phenomenon is the subtle kink of the empirical distribution function at 3, 3.5 and 4.
Presumably this is due to the fact that many runners are wearing a watch and planning to reach the
finish line in a little less than 3 hours or 3.5 hours or 4 hours.
Now we are interested in the dependence of the running time on the participants’ age, for male
and female runners separately. The data set contains a variable ‘Altersklasse (age class)’. For the
NM = 11203 men this variable has the following potential values:
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Figure 6.2: Box-whisker plots of annual incomes of baseball players versus experience.

MJ : Participant turned 18 or 19 during 2000,
MH : Participant turned 20-29 during 2000,
M30 : Participant turned 30-34 during 2000,
M35 : Participant turned 35-39 during 2000,

...
...

M75 : Participant turned 75-79 during 2000.

The oldest participant was born in 1923. Since only two men started in age class M75, we combine
age classes M70 and M75 to a new class M70+. Figure 6.5 shows the corresponding multiple box
plot of the men’s running times versus age class.
Interestingly the median is not monotone increasing with age. In age class MJ it is higher then
in age class MH, and in age class MH it is still higher than in age classes M30, M35, M40 and
M40. Over the latter groups the median is almost constant while for the higher age classes it starts
increasing. This phenomenon is wellknown from sport science. Even professional runners reach
their peak performance over long distances at age between 25 and 35 years.
Now we show in Figure 6.6 the running times of the NW = 1846 women: Here there were the
analogous age classes WJ, WH, W30, . . . , W65. (The oldest female participant was born in 1931.)
Since age class W65 comprised only six runners, we combined age classes W60 and W65 to a
new class W60+. Again we see an almost constant median in the age classes W30, W35 and W40.

6.2 Comparing Two Means

Now we consider K = 2 samples X1,X2 and assume that the Xki have unknown mean µk
and unknown but finite standard deviation σk. Obvious estimators of µk and σk are the sample
mean Xk := n−1

k

∑nk
i=1Xki and the sample standard deviation Sk :=

(
(nk − 1)−1

∑nk
i=1(Xki −

Xk)
2
)1/2. Here IE(Xk) = µk, so

IE(X1 −X2) = µ1 − µ2,
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Figure 6.3: Box-whisker plots of log10-incomes of baseball players versus experience.

and

Std(X1 −X2) =

√
σ2

1

n1
+
σ2

2

n2
.

In case of Gaussian observations Xki, Theorem 4.3 of Gosset–Fisher implies that the four random
variables X1, X2, S1 and S2 are stochastically independent, where Xk ∼ N

(
µk, σ

2
k/nk

)
and

(nk − 1)S2
k/σ

2
k ∼ χ2

nk−1. This will be used subsequently.

Case 1: Identical standard deviations σ1 and σ2. If all N = n1 + n2 observations Xki have
one and the same standard deviation σ, then

Std(X1 −X2) = σ

√
n−1

1 + n−1
2 .

A possible estimator for σ is given by

(6.1) σ̂ :=

√
(n1 − 1)S2

1 + (n2 − 1)S2
2

N − 2
.

In case of Gaussian observations,

(N − 2) σ̂2/σ2 ∼ χ2
N−2,

and it is stochastically independent from X1 −X2. Hence

X1 −X2 − µ1 + µ2

σ̂
√
n−1

1 + n−1
2

∼ tN−2.

This implies the following confidence regions for µ1 − µ2: The lower bound

X1 −X2 − σ̂

√
n−1

1 + n−1
2 tN−2;1−α,
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Figure 6.4: Empirical distribution function of the net running times (in hours), Hamburg Marathon
2000

the upper confidence bound

X1 −X2 + σ̂

√
n−1

1 + n−1
2 tN−2;1−α

or the confidence interval [
X1 −X2 ± σ̂

√
n−1

1 + n−1
2 tN−2;1−α/2

]
.

The confidence level is precisely 1− α if the observations Xki have Gaussian distribution. Other-
wise the confidence level is approximately 1− α as min(n1, n2)→∞.

Case 2: Welch’s method for arbitrary standard deviations σ1 and σ2. For the general case
we mentioned already that X1 − X2 has expected value µ1 − µ2 and standard deviation τ :=√
σ2

1/n1 + σ2
2/n2. In case of Gaussian observations we know that the standard error

τ̂ :=
√
S2

1/n1 + S2
2/n2

and the estimator X1−X2 are stochastically independent, and one can show that the standardised
quantity

X1 −X2 − µ1 + µ2

τ̂

is approximately student-distributed with

k = k(n1, n2, σ1, σ2) :=
τ4

σ4
1/(n

2
1(n1 − 1)) + σ4

2/(n
2
2(n2 − 1))

degrees of freedom; see below. This number k involves the unknown parameters σ1, σ2, so it is
estimated by k̂ = k(n1, n2, S1, S2). In general, neither k nor k̂ is an integer. In this case one uses
a generalised definition of student-distributions (see Section A.7 in the appendix), or one rounds
these numbers to the next integer below. Finally this leads to the following confidence regions for
µ1 − µ2 with approximate confidence level (1− α): The lower bound

X1 −X2 − τ̂ t
k̂;1−α,
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Figure 6.5: Multiple box plot of men’s running times (in hours) versus age class.

the upper bound
X1 −X2 + τ̂ t

k̂;1−α

or the confidence interval [
X1 −X2 ± τ̂ t

k̂;1−α/2

]
.

Justifications of Welch’s method. At first let us consider the student distribution tk, i.e. the dis-
tribution of

Z0

/√√√√1

k

k∑
i=1

Z2
i

with stochastically independent, standard Gaussian random variables Z0, Z1, Z2, Z3, . . . . The
random quantity k−1

∑k
i=1 Z

2
i has mean 1, variance 2/k and is approximately Gaussian as k →

∞; see Exercise 6.2.
With these considerations in mind we consider the ratio (X1 − X2 − µ1 + µ2)/τ̂ . In case of
Gaussian observations it is distributed as

Z0

/√√√√ 1

τ2

( σ2
1

n1(n1 − 1)

n1−1∑
i=1

Z2
i +

σ2
2

n2(n2 − 1)

n1+n2−2∑
i=n1

Z2
i

)
.

The term inside the square root is a random variable with mean 1, with variance

1

τ4

( 2σ4
1

n2
1(n1 − 1)

+
2σ4

2

n2
2(n2 − 1)

)
=

2

k(n1, n2, σ1, σ2)
,

and as min(n1, n2)→∞ it is approximately normally distributed.

Example 6.6 (North-south gradient of body height.). As a numerical example for Welch’s method
we consider the mean body height µ1 of all Swiss men and µ2 of all men in northern Germany
at age around 18–30. When interviewing n1 = 145 male students at the university of Bern we
obtained X1 = 178.938 and S1 = 6.2363. Interviewing n2 = 26 male students at the University
of Lübeck yielded X2 = 183.962 and S2 = 7.5497. This entails the estimator

X1 −X2 = −5.024
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Figure 6.6: Multiple box plot of women’s running times (in hours) versus age class.

for µ1 − µ2, and its standard deviation τ is estimated by the standard error

τ̂ =

√
6.23632

145
+

7.54972

26
= 1.5686.

For k̂ we obtained here the (rounded) value 31, and t31;0.975 = 2.0395. Hence an approximate
95%-confidence interval for the difference µ1 − µ2 is given by

[−5.024 ± 1.5686 · 2.0395] = [−8.223,−1.825].

Thus we may claim with confidence about 95% that (a) the mean body height µ1 is smaller than
the mean body height µ2 and that (b) the absolute difference is between 1.8 and 8.3 cm. (The
problem that we didn’t obtain true random samples from the two populations is ignored here.)

6.3 Stochastic Order

Before treating additional procedures to compare samples we introduce the important concept of
stochastic order. In what follows we always consider random variables X1, X2 with distributions
P1, P2 and distribution functions F1, F2. The vague statement that X1 tends to be smaller than X2

may be specified in various equivalent ways:

Lemma 6.7. The following four statements are equivalent:
(i) For arbitrary x ∈ R,

F1(x) ≥ F2(x).

(ii) For arbitrary u ∈ (0, 1),
F−1

1 (u) ≤ F−1
2 (u).

(iii) There exists a probability space (Ω,A, IP) with random variables X̃1 ∼ P1 and X̃2 ∼ P2

such that X̃1 ≤ X̃2 almost surely.
(iv) For any monotone increasing and bounded or non-negative function h : R→ R,

IEh(X1) ≤ IEh(X2).



6.4. SMIRNOV’S TEST FOR EMPIRICAL DISTRIBUTION FUNCTIONS 141

The proof of this lemma is Exercise 6.6. The conditions stated therein lead to the following
definition:

Definition 6.8 (Stochastic order). The distribution P1 is stochastically smaller than or equal to
the distribution P2 if the conditions stated in Lemma 6.7 are satisfied. Sometimes we also say that
the random variable X1 or distribution function F1 is stochastically smaller than or equal to the
random variable X2 or distribution function F2. We write briefly P1 ≤st. P2 or X1 ≤st. X2 or
F1 ≤st. F2.
If in addition P1 6= P2, that means, F1(x) > F2(x) for ar least one x ∈ R, then we call P1 or X1

or F1 stochastically smaller than P2 or X2 or F2. The corresponding brief notation is P1 <st. P2

or X1 <st. X2 or F1 <st. F2.

Examples. Subsequently we give some examples for stochastic order. The respective proofs are
left to the reader as exercises.
(a) Let Z be a real-valued random variable. For real constants µ1, µ2, µ1 +Z <st. µ2 +Z if and
only if µ1 < µ2.
(b) Let Z be a real-valued random variable with density function fo such that fo(−x) = fo(x)
for all x ≥ 0 and fo is non-increasing on [0,∞). For instance let Z ∼ N (0, 1). For real constants
µ1, µ2, |µ1 + Z| <st. |µ2 + Z| if and only if |µ1| < |µ2|.
(c) For n ∈ N and p1, p2 ∈ [0, 1], Bin(n, p1) <st. Bin(n, p2) if and only if p1 < p2.
(d) Bin(n1, p) <st. Bin(n2, p) for 0 < p ≤ 1 and natural numbers n1 < n2.
(e) For θ > 0 let Fθ be defined as in Lemma 2.7, where #{k ≥ 0 : wk > 0} ≥ 2. For θ1, θ2 > 0,
Fθ1 <st. Fθ2 if and only if θ1 < θ2.
(f) Let X1 and X2 be random variables with density functions f1 and f2 on R, respectively.
Suppose that f2(x) = h(x)f1(x) for some non-decreasing function h : R → [0,∞). Then
X1 ≤st. X2.

6.4 Smirnov’s Test for Empirical Distribution Functions

Now we consider N = n1 + n2 stochastically independent random variables Xki for k = 1, 2
and i = 1, 2, . . . , nk, where Xki follows distribution function Fk. The corresponding empirical
distribution functions are denoted with F̂k, i.e.

F̂k(x) :=
1

nk

nk∑
i=1

1[Xki≤x].

In many applications one would like to verify the working hypothesis that F1 >st. F2 with a
certain confidence. Strictly speaking this is impossible, unless one assumes that either F1 <st. F2

or F1 ≡ F2 or F1 >st. F2. For the null hypothesis

Ho : F1 ≤st. F2

there exist reasonable tests one of which we’ll describe now. The first characterisation of stochastic
order in Lemma 6.7 motivates the test statistic

TSm := sup
x∈R

(
F̂2(x)− F̂1(x)

)
.

The following result shows how to construct critical values or p-values for this test statistic.
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Lemma 6.9. Let M be uniformly distributed on the set of all subsets of {1, 2, . . . , N} with n2

elements. For ` ∈ {1, 2, . . . , N} let

H` :=
N

n1n2
#(M ∩ {1, . . . , `})− `

n1
.

Under the null hypothesis Ho above, for arbitrary c ≥ 0,

IP(TSm ≥ c) ≤ IP
(

max
`=1,2,...,N

H` ≥ c
)
.

Equality holds true if F1 and F2 are identical and continuous.
In the special case that n1 = n2 = n,

IP
(

max
`=1,2,...,N

H` ≥ c
)

=

(
N

n+ dnce

)/(N
n

)
.

With GSm
n1,n2

(c) := IP
(
max`H` ≥ c

)
, a p-value for the null hypothesis Ho above is given by

GSm
n1,n2

(TSm). In case of n1 = n2 = n this equals(
N

n+ nTSm

)/(N
n

)
.

Proof of Lemma 6.9. Let U1, U2, . . . , UN be independent random variables with uniform distri-
bution on [0, 1]. It follows from Lemma 3.11 that the observations Xki have the same distribution
as

X̃ki :=

{
F−1

1 (Ui) if k = 1,

F−1
2 (Un1+i) if k = 2.

Under the null hypothesis, F1 ≥ F2 pointwise, and TSm has the same distribution as

sup
x∈R

( 1

n2

N∑
j=n1+1

1[F−1
2 (Uj)≤x] −

1

n1

n1∑
i=1

1[F−1
1 (Ui)≤x]

)

= sup
x∈R

( 1

n2

N∑
j=n1+1

1[Uj≤F2(x)] −
1

n1

n1∑
i=1

1[Ui≤F1(x)]

)

≤ sup
x∈R

( 1

n2

N∑
j=n1+1

1[Uj≤F1(x)] −
1

n1

n1∑
i=1

1[Ui≤F1(x)]

)

= sup
v∈F1(R)

( 1

n2

N∑
j=n1+1

1[Uj≤v] −
1

n1

n1∑
i=1

1[Ui≤v]

)

≤ sup
v∈[0,1]

( 1

n2

N∑
j=n1+1

1[Uj≤v] −
1

n1

n1∑
i=1

1[Ui≤v]

)
=: T oSm.

Obviously equality holds if F1 and F2 are identical and continuous.
Now we investigate the random variable T oSm in more detail. With probability one the values
U1, U2, . . . , UN are pairwise different. If U(1) < U(2) < . . . < U(N) denote the corresponding
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order statistics and R1, R2, . . . , RN the corresponding ranks, then

T oSm = max
`=1,2,...,N

( 1

n2

N∑
j=n1+1

1[Uj≤U(`)] −
1

n1

n1∑
i=1

1[Ui≤U(`)]

)

= max
`=1,2,...,N

( 1

n2

N∑
j=n1+1

1[Rj≤`] −
1

n1

n1∑
i=1

1[Ri≤`]

)

= max
`=1,2,...,N

( 1

n2

N∑
j=n1+1

1[Rj≤`] −
1

n1

(
`−

N∑
i=n1+1

1[Ri≤`]

))
= max

`=1,2,...,N

( N

n1n2
#(M ∩ {1, . . . , `})− `

n1

)
with the random set M := {Rn1+1, . . . , RN}. In the third step we used the fact that (Ri)

N
i=1

contains the numbers 1, 2, . . . , N whence
∑N

i=1 1[Ri≤`] = `. For symmetry reasons the order of
the numbers R1, R2, . . . , RN is completely at random (Exercise 3.7), and this implies that M is
uniformly distributed on the set of subsets of {1, 2, . . . , N} with n2 elements.
It remains to derive the distribution of T oSm in the special case of n1 = n2 = n. To this end we
define H0 := 0 and note that the tuple H = (H`)

N
`=0 lies in the set

HN :=
{

(h`)
N
`=0 : h0 = 0 and |h` − h`−1| = 1/n for 1 ≤ ` ≤ N

}
.

Precisely, H is uniformly distributed on the set {h ∈ HN : hN = 0
}

. The latter set consists
of
(
N
n

)
different tuples, because one has to specify n “time points” ` ∈ {1, 2, . . . , N} at which

h`−h`−1 = 1/n. The question is how many tuples h ∈ HN with hN = 0 reach or exceed a given
value c ∈ {1/n, 2/n, . . . , 1}. Here we apply the mirror principle: For an arbitrary tuple h ∈ HN
we define a tuple h̃ = (h̃`)

N
`=0 via

h̃` :=

{
h` if maxj≤` hj < c,

c− (h` − c) if maxj≤` hj ≥ c.

This defines a bijective mapping h 7→ h̃ fromHN toHN , and

hN = 0 and max
`≤N

h` ≥ c if and only if h̃N = 2c.

Figure 6.7 illustrates this mapping: For n1 = n2 = 50 and c = 7/50 one sees a tuple h ∈ H100

and its image h̃. In general there are precisely
(

N
n+nc

)
tuples h ∈ HN with hN = 2c. For hN

equals 2c if and only if h` − h`−1 = 1/n for n+ nc “time points” ` while h` − h`−1 = −1/n for
n− nc “time points” `. These considerations show that indeed

IP
(

max
`=1,2,...,N

H` ≥ c
)

=

(
N

n+ nc

)/(N
n

)
for c = 0, 1/n, 2/n, . . . , 1.

Example 6.10. Smirnov’s test is even applicable if instead of the precise N = n1 + n2 values
Xki one knows only their ranks. Here is an explicit example: For a particular type of sports (e.g.
long distance swimming) a new training method has been developed. To verify its usefulness,
N = 2n test persons are divided randomly into two groups of equal size n. People in group 1
train as usual while people in group 2 use the new method. After a certain time the N people
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Figure 6.7: The mirror principle.

compete in a swimming race and their order of reaching the finish line is noted. With the set
M ⊂ {1, 2, . . . , N} of ranks from people in group 2 we compute the test statistic

TSm := max
`=1,2,...,N

H` with H` =
2

n
#(M ∩ {1, . . . , `})− 1

n
.

Under the null hypothesis that the two methods of training are equivalent, IP(TSm ≥ c) = GSm
n,n(c).

Under the working hypothesis that people from group 2 tend to be faster than people from group 1,
M tends to contain smaller numbers. Then TSm tends to take larger values, soGSm

n,n(T ) is a suitable
p-value for the null hypothesis.

6.5 Rank Sum Tests

Starting from K = 2 samples X1,X2 and the corresponding distribution functions we want to
quantify to what extentX1 contains larger values thanX2.
To motivate this goal let us think again about two groups of sports people who may gain certain
scores Xki in a certain discipline (e.g. decathlon). The question is how to assess which team
performs better. There is no canonical answer. One could compute Smirnov’s test statistic, but
this is difficult to explain to non-statisticians. Another obvious measure would be the difference
X1 −X2 of sample means. But this quantity is sensitive to outliers. For instance, it could happen
that all members of group 1 reach higher scores than all but one member of group 2. But if the
best result in group 2 is very large, the difference X1 − X2 could be negative, see the left part
of Figure 6.8. To avoid this problem one could take the difference of sample medians. But this
quantity could be too non-sensitive. For instance, it could happen that the sample medians are
identical although many scores in group 1 are strictly larger than a majority of scores in group 2
and many scores in group 2 are strictly smaller than a majority of scores in group 1, see the right
part of Figure 6.8.
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X1 X2 X1 X2

Figure 6.8: Problems with “fair comparisons” of two samples.

The Mann–Whitney U-statistic. To quantify the tendency of X1 having larger components
than X2 one could compare each component of X1 with each component of X2 and count how
many times the former value is larger than the latter. This leads to the test statistic introduced by
H.B. Mann and D. Whitney (1947):

TU :=

n1∑
i=1

n2∑
j=1

h(X1i, X2j)

with

h(x, y) :=


1 if x > y,

1/2 if x = y,

0 if x < y.

In other words, the statistic

û :=
TU
n1n2

specifies the probability that a randomly chosen component ofX1 is larger than a randomly chosen
component ofX2. One may view û as an estimator of the theoretical quantity

IE(û) = u(F1, F2) := IEh(X1, X2)

with stochastically independent random variables X1 ∼ F1 and X2 ∼ F2. Exercise 6.12 estab-
lishes a connection between Smirnov’s test statistic TSm and the rescaled Mann–Whitney statistic
û.

Wilcoxon’s rank sum statistic. The test statistics TU and û have a clear interpretation and are
convenient to analyze theoretically. For explicit calculations the following rank sum statistic TW ,
proposed by F. Wilcoxon (1945), has its merits: On combinesX1 andX2 to a pooled sample

X = (X11, X12, . . . , X1n1 , X21, X22, . . . , X2n2).

with N = n1 + n2 components. For this one determines the ranks R1, R2, . . . , RN and defines

TW :=

n1∑
i=1

Ri,
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that is the sum of ranks of X1i, 1 ≤ i ≤ n1, within the pooled sample. Computing this test
statistic is rather easy, because the ranks may be determined in O(N logN) steps via a suitable
sorting routine.

The connection between TW and TU . We have the simple equation

TW =
n1(n1 + 1)

2
+ TU .

For

Ri = #{j ≤ N : Xj < Xi}+
1

2
+

#{j ≤ N : Xj = Xi}
2

=
1

2
+

N∑
j=1

h(Xi, Xj),

so

TW =

n1∑
i=1

(1

2
+

N∑
j=1

h(Xi, Xj)
)

=
n1

2
+

n1∑
i=1

n1∑
j=1

h(Xi, Xj) +

n1∑
i=1

n2∑
j=1

h(X1i, X2j)

=
n1

2
+

n1∑
i=1

n1∑
j=1

h(Xi, Xj) + TU .

But
n1∑
i=1

n1∑
j=1

h(Xi, Xj) =

n1∑
i=1

h(Xi, Xi)︸ ︷︷ ︸
=1/2

+
∑

1≤i<j≤n1

(
h(Xi, Xj) + h(Xj , Xi)

)︸ ︷︷ ︸
=1

=
n1

2
+
n1(n1 − 1)

2
=

n2
1

2
,

whence TW = n1/2 + n2
1/2 + TU = n1(n1 + 1)/2 + TU indeed.

Wilcoxon’s rank sum test. With the test statistic TW or TU one could perform the permutation
tests introduced in a later chapter, and this would lead to exact p-values for the null hypothesis

Ho : F1 ≡ F2.

Now we make the simplifying assumption that the distribution functions F1, F2 are continuous.
Under the null hypothesis Ho, (R1, R2, . . . , RN ) is uniformly distributed on the set of all permu-
tations of (1, 2, . . . , N). Hence for arbitrary numbers x,

IP(TU ≤ x) = Gn1,n2(x),

where

Gn1,n2(x) := IP
( n1∑
i=1

n2∑
j=1

1[Π(i)>Π(n1+j)] ≤ x
)

= IP
( n1∑
i=1

Π(i) ≤ n1(n1 + 1)

2
+ x
)
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with a random permutation Π of {1, 2, . . . , N}. This distribution function has an interesting
symmetry property: If we define Π̃ via Π̃(i) := N + 1 − Π(i), then Π̃ is also a random per-
mutation of {1, 2, . . . , N}. Replacing Π with Π̃ in the definition of Gn1,n2(·) and noting that
1[Π̃(i)>Π̃(n1+j)] = 1− 1[Π(i)>Π(n1+j)] shows that

1−Gn1,n2(x−) = Gn1,n2(n1n2 − x)

for arbitrary x.
Depending on the user’s working hypothesis, one of the following p-values are useful: For the
working hypothesis that F1 <st. F2 the left-sided p-value

π`(X1,X2) := Gn1,n2(TU ),

and for the working hypothesis that F1 >st. F2 the right-sided p-value

πr(X1,X2) := 1−Gn1,n2(TU −) = Gn1,n2(n1n2 − TU ).

If one only wants to verify that F1 6≡ F2, without any a priori guess of the direction, the two-sided
p-value would be appropriate, i.e. the minimum of the two one-sided p-values times two. Indeed
one may view the one-sided p-values as p-values for more general null hypotheses. One can show
(Exercise 6.8) that for arbitrary numbers α ∈ (0, 1),

IP
(
π`(X1,X2) ≤ α

)
≤ α if F1 ≥st. F2,(6.2)

IP
(
πr(X1,X2) ≤ α

)
≤ α if F1 ≤st. F2.(6.3)

Thus π`(X1,X2) is a p-value for the null hypothesis that F1 ≥st. F2, and πr(X1,X2) is a p-value
for the null hypothesis that F1 ≤st. F2.

If the distribution functions F1 and F2 are not necessarily continuous, one should perform a per-
mutation test as described later or redefine the p-values as π`(X1,X2) = Gn1,n2(dTUe) and
πr(X1,X2) = Gn1,n2(n1n2−bTUc). The latter p-values tend to be conservative (i.e. larger) than
p-values obtained with permutations tests, so one is on the safe side.

Computation of the distribution function Gn1,n2 . If the sample sizes n1 and n2 are large, one
may use the fact that Gn1,n2 describes approximately a Gaussian distribution with mean n1n2/2
and variance n1n2(N+1)/12, see also Exercise 6.10 and Section A.9 in the appendix. This yields
the approximation

Gn1,n2(x) ≈ Φ
( x− n1n2/2 + 0.5√

n1n2(N + 1)/12

)
for x ∈ Z.

The extra summand ‘+0.5’ in the enumerator is a correction taking into account that Gn1,n2 is a
distribution on the integers; this enhances the quality of the approximation considerably.
For the exact computation of Gn1,n2 one may use the following recursion formula: For arbitrary
integers x,

Gn1,n2(x) =
n1

N
Gn1−1,n2(x− n2) +

n2

N
Gn1,n2−1(x).

To verify this, we construct the random tuple
(
Π(1),Π(2), . . . ,Π(n)

)
in two steps. In the first step

we choose a random position J at which the numberN should be. Then we fill the remainingN−1
positions from left to right with the components of a random permutation Π̃ of {1, . . . , N − 1},
independently from J . In case of J ≤ n1, which happens with probability n1/N ,

n1∑
i=1

n2∑
j=1

1[Π(i)>Π(n1+j)] = n2 +

n1−1∑
i=1

n2∑
j=1

1[Π̃(i)>Π̃(n1−1+j)],
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and the double sum on the right hand side has distribution function Gn1−1,n2 . In case of J > n1,
which happens with probability n2/N ,

n1∑
i=1

n2∑
j=1

1[Π(i)>Π(n1+j)] =

n1∑
i=1

n2−1∑
j=1

1[Π̃(i)>Π̃(n1+j)],

und the double sum on the right hand side follows Gn1,n2−1.

Example 6.11 (Hamburg Marathon, continuation of Example 6.5). We want to test whether the
performance of younger male participants (age classes MJ and MH) is significantly different from
the performance of mature male participants (age classes M40 and M45), where we aim for a
confidence of 99% which corresponds to the test level α = 1%. The data set contains the results
of n1 = 1551 runners in age classes MJ and MH as well as n2 = 3399 runners in age classes M40
and M45.
The data analysis involves n1n2 = 5271849 pairwise comparisons, yielding TU = 2786811 and
û = TU/(n1n2) ≈ 0.5286. For sample sizes nk at least 50, the approximations by means of
Gaussian distributions are excellent. Here this leads to the one-sided p-values

π` = Φ
(TU − n1n2/2 + 0.5√

n1n2(N + 1)/12

)
≈ Φ(3.2353) ≈ 0.9994,

πr = Φ
(n1n2/2− TU + 0.5√

n1n1(N + 1)/12

)
≈ Φ(−3.2353) ≈ 0.0006,

whence πz = 2 · πr ≈ 0.0012. Hence we may conclude with confidence 99% that the two age
groups perform differently. The analysis indicates that the mature runners tend to be faster than
the younger runners.

Remark 6.12. Wilcoxon’s rank sum test (i.e. the Mann–Whitney test) is also applicable if the ob-
servationsXki are values of an ordinal variable. But in such situations one tends to have numerous
identical sample values, and the test should be executed as a permutation test as described later.

Confidence bounds for a shift parameter. Wilcoxon’s rank sum test may be inverted, too, to
obtain confidence regions for an unknown shift parameter. Suppose that F2 ≡ F and F1(x) =
F (x − µ) for x ∈ R with an unknown continuous distribution function F and an unknown real
shift parameter µ.
A special case of this model are Gaussian observations Xki with unknown standard deviation
σ > 0 and unknown means ν + µ for k = 1 and ν for k = 2.
We define

TU (m) :=

n1∑
i=1

n2∑
j=1

h(X1i −m,X2j) =

n1∑
i=1

n2∑
j=1

h(X1i −X2j ,m)

for arbitrary m ∈ R, so TU (0) = TU . Then TU (µ) follows the distribution function Gn1,n2 .
Moreover, m 7→ TU (m) is non-increasing in m ∈ R. Hence the inequality

IP
(
TU (µ) ≤ G−1

n1,n2
(1− α)

)
≥ 1− α

yields the lower (1− α)-confidence bound

aα = aα(data) := inf
{
m ∈ R : TU (m) ≤ G−1

n1,n2
(1− α)

}
.
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Analogously, since n1n2 − TU (µ) ∼ Gn1,n2 , too, we obtain the upper (1− α)-confidence bound

bα = bα(data) := sup
{
m ∈ R : TU (m) ≥ n1n2 −G−1

n1,n2
(1− α)

}
.

If
M1 ≤M2 ≤ · · · ≤Mn1n2

denote the sorted differences X1i −X2j , where 1 ≤ i ≤ n1, 1 ≤ j ≤ n2, augmented by M0 :=
−∞ and Mn1n2+1 := ∞, then TU (m) = n1n2 − s for Ms < m < Ms+1 and 0 ≤ s ≤ n1n2.
This implies that

aα = Mk(α) and bα = M`(α),

where

k(α) = k(α, n1, n2) := n1n2 −G−1
n1,n2

(1− α),

`(α) = `(α, n1, n2) := G−1
n1,n2

(1− α) + 1 = n1n2 + 1− k(α).

A corresponding estimator for µ is given by the median µ̂ of these values M1,M2, . . . ,Mn1n2 . It
satisfies the equality TU (µ̂) = n1n2/2.

6.6 Multiple Tests and Comparisons of Several Samples

Multiple Tests. In some statistical analyzes one is testing several null hypotheses H1, H2, . . . ,
Hm simultaneously. For j = 1, 2, . . . ,m let πj = πj(data) be a p-value for Hj . Suppose we
test all null hypotheses at level α. If we generate a list of all null hypotheses whose p-values
are smaller than or equal to α, then the probability that at least one of them is true exceeds α in
general.
Suppose one wants to ensure that the probability of committing some error of the first kind is at
most α. For this purpose one should adjust the single p-values suitably. Our goal is to construct
adjusted p-values π̄j = π̄j(data) such that with the unknown set

Jo :=
{
j ∈ {1, 2, . . . ,m} : Hj is true

}
we can guarantee that

(6.4) IP
(
π̄j ≤ α for at least one j ∈ Jo

)
≤ α.

Example 6.13. Suppose we want to compare K ≥ 2 samples X1, X2, . . . , XK . Precisely, for
k, ` ∈ {1, 2, . . . ,K} with k 6= ` we want to test the null hypothesis

Hk,` : Fk ≤st. F`.

For this purpose we compute the right-sided p-value πk,` = πk,`(Xk,X`) forHk,` with Smirnov’s
test or Wilcoxon’s rank sum test. Then we replace these m = K(K − 1) single p-values πk,` with
adjusted p-values π̄k,` satisfying (6.4). Then we may claim with confidence 1 − α that all null
hypotheses Hk,` with π̄k,` ≤ α are false. In view of our choice of test statistics, π̄k,` ≤ α indicates
that Fk >st. F`, but this is a claim one can never prove with nontrivial confidence.
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The Bonferroni adjustment. To achieve (6.4) one could replace the single p-values with

π̄j := mπj or π̄j := min(mπj , 1).

In both cases

IP
(
π̄j ≤ α for at least one j ∈ Jo

)
≤
∑
j∈Jo

IP (π̄j ≤ α) =
∑
j∈Jo

IP (πj ≤ α/m) ≤ #Jo · α/m ≤ α.

Truncating the adjusted p-values at 1 is only for cosmetic reasons.

Holm’s adjustment. The Bonferroni adjustment tends to be very conservative in the sense
that too many errors of the second kind are committed and our list of false null hypotheses
turns out too short. A refined adjustment method has been developed by S. Holm (1979): At
first the null hypotheses are rearranged such that the corresponding p-values are non-decreasing.
Let H(1), H(2), . . . ,H(m) be the rearranged null hypotheses with corresponding p-values π(1) ≤
π(2) ≤ · · · ≤ π(m). Then one replaces π(j) with

π̄(j) := max
i≤j

min
(
(m+ 1− i)π(i), 1

)
.

Obviously π̄(j) ≤ maxi≤j min(mπ(i), 1) = min(mπ(j), 1) with equality for j = 1. Thus the
Bonferroni adjustment is more conservative than Holm’s adjustment. If mπ(1) exceeds α, both
methods reject none of the null hypotheses.

Proof of (6.4) for Holm’s method. Let mo = #Jo, the number of true hypotheses be strictly
positive. After rearrangement let H(J(1)), . . . ,H(J(mo)) be the true null hypotheses with random
indices J(1) < · · · < J(mo). Then the probability that π̄j ≤ α for at least one j ∈ Jo equals

IP
(
π̄(J(a)) ≤ α for at least one a ∈ {1, . . . ,mo}

)
= IP

(
π̄(J(1)) ≤ α

)
≤ IP

(
(m+ 1− J(1))π(J(1)) ≤ α

)
≤ IP

(
moπ(J(1)) ≤ α

)
= IP

(
πj ≤ α/mo for at least one j ∈ Jo

)
≤ α.

Here in the first step we used the inequalities π̄(1) ≤ π̄(2) ≤ · · · ≤ π̄(m), in the second step the
inequality π̄(j) ≥ (m+ 1− j)π(j), and in the third step the fact that J(1) ≤ m+ 1−mo.

Example 6.14 (Hamburg Marathon, continuation of Example 6.5). Now we want to compare
more than two age groups. To limit the total number of comparisons we combine the original
twelve age classes to broader classes:

M18-29 : n1 = 1551 (MJ, MH)
M30-39 : n2 = 4289 (M30, M35)
M40-49 : n3 = 3399 (M40, M45)
M50-59 : n4 = 1502 (M50, M55)
M60+ : n5 = 460 (M60, M65, M70, M75)
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Now we analyze these data as in example Example 6.13. In the following table one sees for
each pair (k, `) of two different indices k, ` ∈ {1, 2, 3, 4, 5} the normed Mann–Whitney statistic
ûk,` = TU (Xk,X`)/(nkn`) as well as the right-sided approximative p-value

πk,` = Φ
(nkn`/2− TU (Xk,X`) + 0.5√

nkn`(nk + n` + 1)/12

)
,

all values rounded to five digits. Entries with p-value no larger than 1% are highlighted:

M18-29 0.52819 0.52862 0.47794 0.37205
0.00049 0.00061 0.98258 1

0.47181 M30-39 0.49975 0.44732 0.34349
0.99951 0.51532 1 1

0.47138 0.50025 M40-49 0.44630 0.34104
0.99939 0.48468 1 1

0.52206 0.55268 0.55370 M50-59 0.38882
0.01742 0.00000 0.00000 1

0.62795 0.65651 0.65896 0.61118 M60+
0.00000 0.00000 0.00000 0.00000

To adjust theseK(K−1) = 20 p-values we have to sort them. This leads to the following numbers
(again rounded to five digits):

j ≤ 6 7 8 9 10 ≥ 11

π(j) 0.00000 0.00049 0.00061 0.01742 0.48468 > 0.5

π̄(j) via Bonf. 0.00000 0.00982 0.01215 0.34842 1 1

π̄(j) via Holm 0.00000 0.00688 0.00790 0.20905 1 1

Replacing the original p-values with the Holm-adjusted ones leads to the following table:

M18-29 0.52819 0.52862 0.47794 0.37205
0.00688 0.00790 1 1

0.47181 M30-39 0.49975 0.44732 0.34349
1 1 1 1

0.47138 0.50025 M40-49 0.44630 0.34104
1 1 1 1

0.52206 0.55268 0.55370 M50-59 0.38882
0.20905 0.00000 0.00000 1

0.62795 0.65651 0.65896 0.61118 M60+
0.00000 0.00000 0.00000 0.00000

Now one may claim with confidence 99% that Hk,` is false for the following combinations (k, `)
at least: k = 1 and ` = 2, 3; k = 4 and ` = 2, 3; k = 5 and ` = 1, 2, 3, 4. This indicates that the
running times in the highest age group tend to be higher than in the four others, that the running
times in age group M50-59 are higher than in groups M30-39 and M40-49, and that the running
times in age group M18-29 are higher than in groups M30-39 and M40-49.
At this point one should say something about the modelling of the data and interpretation of
tests: Each marathon race has its own special features. The participants are influenced by various
factors such as weather and ground conditions, inclinations, spirits of audience and many more,
some of which are random. Insofar the assumption of fixed distribution functions F1, F2, . . . , FK
is certainly unrealistic. Alternatively one could postulate the existence of random distribution
functions F1, F2, . . . , FK and assume that the observed running times are independent withXki ∼
Fk conditional on the functions Fk. The null hypothesisHk,` could be modified to read Fk ≤st. F`
almost surely.
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Remark 6.15. In various text books, different procedures are proposed for the comparison of
K ≥ 3 samples. When comparing means, these are so-called F -tests and Analyses of Variance.
An analogue of Wilcoxon’s rank sum test is the Kruskal–Wallis test. A disadvantage of these
procedures is that they can only reject the null hypothesis that all means or distribution functions
are identical. But they don’t provide further information as to which samples differ significantly
in what way from others. We encountered a similar problem in connection with the chi-squared
goodness-of-fit test.

6.7 Exercises

Exercise 6.1 (Bounds for the mean). Suppose that you know only the box-plot of the observation
vectorX = (Xi)

n
i=1, i.e. its minimumQ0, its three sample quartilesQ1, Q2, Q3 and its maximum

Q4. Even the sample size n is unknown. Show that

Q0 +Q1 +Q2 +Q3

4
≤ X̄ ≤ Q1 +Q2 +Q3 +Q4

4
.

Hint 1: The quantities Q0, . . . , Q4 remain the same if each component of X is replaced with k
copies, leading to a sample of size kn. Thus you may assume without loss of generality that the
sample size n is an arbitrarily large multiple of 4.
Hint 2: One can solve this exercise via the formula

X = X(1) +

∫ X(n)

X(1)

(1− F̂ (x)) dx.

But then one should verify the latter.

Exercise 6.2 (Chi-squared distributions). Let S2
k have distribution χ2

k. Determine the mean and
standard deviation of S2

k (Hint: Exercise 2.5).
Show by virtue of the Central Limit Theorem that the standardised random variable

(S2
k − IE(S2

k))/Std(S2
k)

is asymptotically standard Gaussian as k →∞.

Exercise 6.3 (Welch’s method). Show that the number

k(n1, n2, σ1, σ2) :=
(σ2

1/n1 + σ2
2/n2)2

σ4
1/(n

2
1(n1 − 1)) + σ4

2/(n
2
2(n2 − 1))

is always contained in the interval
[
min(n1 − 1, n2 − 1), N − 2

]
.

Verify that τ̂−1(X1−X2−µ1+µ2) has asymptotic distribution tn1−1 and that k(n1, n2, σ1, σ2)→
n1 − 1 as σ2/σ1 → 0.

Exercise 6.4 (Example for Welch’s method). Consider once more Exercise 3.12. Compute with
that data an approximate 95%-confidence interval for the difference µ1 − µ2, where µ1 and µ2

denote the mean BMI of women and men, respectively, in the whole population.

Exercise 6.5 (Combining several estimators). One specific goal of this exercise is to show that
the special variance estimator σ̂2 in (6.1) has a certain optimality property.
(a) Let Y1, Y2, . . . , YK be stochastically independent random variables with unknown mean ν =
IE(Yk). Further let Var(Yk) = ckτ

2 with unknown τ > 0 but given factors c1, c2, . . . , cK > 0.
Now we consider estimators for ν of type

ν̂ :=

K∑
k=1

wkYk
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X1 X2 X1 X2

Figure 6.9: Box plots for Exercise 6.7.

with certain weights w1, w2, . . . , wK . Determine weights wk such that IE(ν̂) = ν and Var(ν̂) is
minimal. (If you cannot handle the general case, try the special case K = 2.)
(b) Now we consider stochastically independent random variables Xki, 1 ≤ k ≤ K, 1 ≤ i ≤ nk.
Suppose that Xki ∼ N (µk, σ

2) with unknown parameters µ1, µ2, . . . , µK ∈ R and σ2 > 0.
Consider the sample variances S2

k := (nk − 1)−1
∑nk

i=1(Xki − Xk)
2. Combine these sample

variances by means of part (a) to a good unbiased estimator for σ2. What can you say about its
distribution?

Exercise 6.6. Prove Lemma 6.7. The implication “(i) =⇒ (ii)” is a consequence of the definition
of quantile functions. For the implication “(ii) =⇒ (iii)” one can use the quantile transformation,
see Lemma 3.11.

Exercise 6.7 (Mann–Whitney U-statistic and box plots). Figure 6.9 shows two examples of box
plots of two samplesX1 andX2 with unknown sample sizes. Determine lower and upper bounds
for the normalised Mann–Whitney U-statistic û.

Exercise 6.8. Verify inequalities (6.2) and (6.3) with a suitable coupling, similarly as in the proof
of Lemma 6.9.

Exercise 6.9 (Linear permutation statistics, I). For an integer N ≥ 2 let Π be uniformly dis-
tributed on the set of all permutations of {1, 2, . . . , N}. For fixed vectors a, b ∈ RN we consider
the random sum T :=

∑N
i=1 aibΠ(i).

(i) Show that
IE(T ) = Nab

with v := N−1
∑N

i=1 vi for v = a, b.
(ii) Show that

Var(T ) =
(‖a‖2 −Na2)(‖b‖2 −Nb2)

N − 1
.
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Hint: Consider first the special case a = b = 0.
(iii) Show that T − IE(T ) and IE(T ) − T have the same distribution whenever bi + bN+1−i is
constant in i ∈ {1, 2, . . . , N}. Hint: If you are helpless, look at Exercise 8.1.

Exercise 6.10. Apply the results of Exercise 6.9 to Wilcoxon’s rank sum test: Show that

IE(TW ) =
n1(N + 1)

2
, IE(TU ) =

n1n2

2

and

Var(TW ) = Var(TU ) =
n1n2(N + 1)

12
,

if the underlying distribution functions F1 and F2 are identical and continuous.

Exercise 6.11. In a medical study a physiological parameter (urinary thromboglobulin excretion)
has been measured for 12 diabetes patients and 12 healthy people. The question is whether there is
a systematic difference between diabetes patients and healthy people with respect to this parameter.
(a) Compute the test statistics TW and TU for the explicit data:

diabetes 11.5 12.1 16.1 17.8 24.0 28.8
33.9 40.7 51.3 56.2 61.7 69.2

no diabetes 4.1 6.3 7.8 8.5 8.9 10.4
11.5 12.0 13.8 17.6 24.3 37.2

(b) Compute an approximate two-sided p-value for this data example.

Exercise 6.12 (Connection between Smirnov’s and the Mann–Whitney statistic). Let X1 =
(X1i)

n1
i=1 andX2 = (X2j)

n2
j=1 be data vectors such that the pooled sample

X = (X11, . . . , X1n1 , X21, . . . , X2n2)

consists of N different numbers. With the empirical distribution functions F̂1 and F̂2 of X1 and
X2, Smirnov’s test statistic equals

max
`=1,2,...,N

(
F̂2(X`)− F̂1(X`)

)
.

Show that
1

N

N∑
`=1

(
F̂2(X`)− F̂1(X`)

)
=

TU
n1n2

− 1

2
.

Exercise 6.13 (Two-sided binomial tests as multiple tests). Let H ∼ Bin(n, p) with given pa-
rameter n ∈ N and unknown parameter p ∈ [0, 1]. For a given po ∈ (0, 1) one could test the null
hypothesis that p = po with the two-sided p-value

πz(H) := 2 ·min
{
Fn,po(H), 1− Fn,po(H − 1)

}
,

where Fn,po stands for the distribution function of Bin(n, po). Refine and re-interpret this pro-
cedure as a multiple test: Show that π`(H) := Fn,po(H) is a p-value for the null hypothesis
H1 : p ≥ po and that πr(H) := 1−Fn,po(H−1) is a p-value for the null hypothesis H2 : p ≥ po.
What conclusion may be drawn in case of πz(H) ≤ α with a confidence of 1− α?



Chapter 7

Odds Ratios and Two-by-Two Tables

This chapter is about special but very important topics. These include the comparison of two
probability parameters or potential dependencies between two dichotomous variables. In both
cases so-called odds ratios play an important role, and the data analysis involves two-by-two tables.

7.1 Comparing Two Binomial Parameters

For k = 1, 2 let pk ∈ (0, 1) be the probability of a certain event Ak, for instance the success of
a certain medical treatment. To quantify the difference between p1 and p2 one could consider the
difference p1 − p2 or the ratio p1/p2. As we shall see later, one should rather consider the odds
pk/(1− pk) of event Ak and infer something about the odds ratio

ρ :=
p1

1− p1

/ p2

1− p2

=
p1(1− p2)

(1− p1)p2

.

Since (0, 1) 3 p 7→ p/(1− p) ∈ (0,∞) is continuous and strictly increasing,

ρ

{>
=
<

}
1 if and only if p1

{>
=
<

}
p2.

Suppose that for estimating the two probabilities p1, p2 two independent random variables H1 ∼
Bin(n1, p1) and H2 ∼ Bin(n2, p2) are available.
An explicit example is a randomised clinical trial in which N = n1 +n2 test persons are assigned
randomly to two groups: All nk persons in group k receive treatment k, and with Hk we denote
the number of successes in this group. If we view the N test persons as a random sample from
a large population, the model above is plausible with pk denoting the probability of success with
treatment k for a randomly chosen person from the population.
As in the first chapter we summarise the data as a two-by-two table:

H1 n1 −H1 n1

H2 n2 −H2 n2

H+ N −H+ N

The row sums n1, n2 are fixed, but the column sums H+ = H1 + H2 and N −H+ are random.
As we’ll see later, the conditional distribution of H1, given H+, depends only on N , n1, H+ and
ρ.
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7.2 Correlation of two Binary Variables

Consider a random experiment yielding two binary random variables X ∈ {x1, x2} and Y ∈
{y1, y2}.
As an explicit example consider a population of humans. Now we choose randomly a person from
the population and determine two binary features X and Y , for instance the presence or absence
of a certain genetic disposition (X = x1, x2) and the presence or absence of a certain disease
(Y = y1, y2).
The joint distribution of X and Y is given by the four probabilities p11, p12, p21, p22 with

pk` := IP(X = xk, Y = y`).

These may be arranged as a two-by-to table:

p11 p12 p1+

p21 p22 p2+

p+1 p+2 1

with the row sums pk+ = pk1 + pk2 = IP(X = xk) and the columns sums p+` = p1` + p2` =
IP(Y = y`). The corresponding odds ratio is defined as

ρ =
p11p22

p12p21

.

Possible interpretations are

ρ =
Odds(X = x1 |Y = y1)

Odds(X = x1 |Y = y2)
=

Odds(Y = y1 |X = x1)

Odds(Y = y1 |X = x2)
,

because IP(X = xk |Y = y`) = pk`/p+` and IP(Y = y` |X = xk) = pk`/pk+. In case of
ρ 6= 1 we talk about a true association or dependence between X and Y . This is justified by the
following lemma (Exercise 7.2).

Lemma 7.1. (a) For arbitrary indices k, ` ∈ {1, 2}, the following three statements are equivalent:
(a.1) ρ = 1.
(a.2) pk` = pk+p+`.
(a.3) X and Y are stochastically independent.
(b) For arbitrary indices k, ` ∈ {1, 2} with k 6= `, the following three inequalities are equivalent:
(b.1) ρ >(<) 1.
(b.2) pkk >(<) pk+p+k.
(b.2) pk` <(>) pk+p+`.

Suppose we observe N independent copies (X1, Y1), (X2, Y2), . . . , (XN , YN ) of (X,Y ). Now
we determine the absolute frequencies Hk` := #{i ≤ N : Xi = xk, Yi = y`} and arrange them
as a two-by-two table:

H11 H12 H1+

H21 H22 H2+

H+1 H+2 N

Here we complemented the table by the row sumsHk+ = Hk1+Hk2 = #{i ≤ N : Xi = xk} and
the column sumsH+` = H1`+H2` = #{i ≤ N : Yi = y`}. The quadruple (H11, H12, H21, H22)
follows a multinomial distribution with parameters N and (p11, p12, p21, p22).
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Consider once more the explicit example of a population with two binary features X and Y ,
where X refers to a certain genetic disposition and Y to a certain disease. Suppose that in a cross-
sectional study these two features are determined for a sample from the population of size N .
Under the assumption that the sample has been drawn completely at random we obtain a random
quadrupel (H11, H12, H21, H22) with the stated distribution.
If in this example the relative frequencies p1+ or p+1 are very small, other types of study are more
appropriate: In a cohort study one recruits n1 people with X = x1 and n2 people with X = x2.
Then Hk1 ∼ Bin(nk, pk) with pk := pk1/pk+, Hk2 = n2 − Hk1, and the entries H11, H21 are
stochastically independent. Thus we obtain data as in Section 7.1, and

(7.1)
p1(1− p2)

(1− p1)p2
=

p11p22

p12p21
.

The same is true in case of a case-control study: Here one recruits n1 persons with the disease
under consideration (‘cases’, Y = y1) and n2 persons without this disease (‘controls’, Y = y2).
Then H1` ∼ Bin(n`, p`) with p` := p1`/p+`, H2` = n` − H1`, and the entries H11, H12 are
stochastically independent. Again, (7.1) holds true.

7.3 Confidence Bounds for Odds Ratios

We consider a two-by-two table
H11 H12 H1+

H21 H22 H2+

H+1 H+2 N

with fixed total sum N = H1+ +H2+ = H+1 +H+2. Moreover we assume that we are in one of
the following two situations:

Situation 1 (Section 7.1): The row sums H1+, H2+ are fixed numbers, and the entries H11, H21

are stochastically independent with Hk1 ∼ Bin(Hk+, pk), where 0 < pk < 1. Moreover, Hk2 =
Hk+ −Hk1. Here we consider the odds ratio ρ = p1(1− p2)/((1− p1)p2).

Situation 2 (Section 7.2): The quadruple (H11, H12, H21, H22) has a multinomial distribution
with parameters N and (p11, p12, p21, p22). Here we consider ρ = p11p22/(p12p21).

The empirical odds ratio is defined as

ρ̂ :=
H11H22

H12H21
.

To avoid division by zero, some authors propose to add 0.5 to each entry Hk`. This is a point
estimator of the underlying true odds ratio ρ.
Instead of a point estimator ρ̂ we now derive confidence bounds for ρ. Similarly as in Chapter 1
we consider the conditional distribution of H11, given the row and columns sums. Since H+2 =
N −H+1 and H2+ = N −H1+ it suffices to condition on the pair (H1+, H+1). As we’ll show
soon, this conditional distribution is of the following type:

Definition 7.2 (Exponentially weighted hypergeometric distributions). For integers N ≥ 1 and
`, n ∈ {0, 1, . . . , N} we define

fρ,N,`,n(x) := C−1
ρ,N,`,n

ρx

x!(`− x)!(n− x)!(N − `− n+ x)!
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if x ∈
{

max(0, `+ n−N), . . . ,min(`, n)
}

, and fρ,N,`,n(x) := 0 otherwise, where

Cρ,N,`,n :=

min(`,n)∑
j=max(0,`+n−N)

ρj

j!(`− j)!(n− j)!(N − `− n+ j)!
.

The corresponding distribution function is denoted by Fρ,N,`,n.

Remark 7.3. The probability weights above may be rewritten as

fρ,N,`,n(x) = C̃−1
ρ,N,`,n

(
`

x

)(
N − `
n− x

)
ρx = C̃−1

ρ,N,n,`

(
n

x

)(
N − n
`− x

)
ρx

with suitable norming constants C̃ρ,N,`,n, C̃ρ,N,n,`. In case of ρ = 1 we obtain the hypergeomet-
ric distribution Hyp(N, `, n) = Hyp(N,n, `). This explains the name ‘exponentially weighted
hypergeometric distributions’.

Lemma 7.4. In the situations 1 and 2 just described, for arbitrary integers `, n ∈ {0, 1, . . . , N}
with IP(H+1 = `,H1+ = n) > 0 and x ≥ 0,

IP(H11 = x |H+1 = `,H1+ = n) = fρ,N,`,n(x).

Proof of Lemma 7.4. Generally IP(H11 = x |H+1 = `,H1+ = n) is equal to

IP(H11 = x,H21 = `− x,H12 = n− x,H22 = N − `− n+ x)

IP(H+1 = `,H1+ = n)
,

and the denominator IP(H+1 = `,H1+ = n) equals

min(`,n)∑
j=max(0,`+n−N)

IP(H11 = j,H21 = `− j,H12 = n− j,H22 = N − `− n+ j).

In situation 1 it suffices to consider n = H1+, and H2+ = N − n. Moreover, H11 and H21 are
stochastically independent with H11 ∼ Bin(n, p1), H21 ∼ Bin(N − n, p2). Thus

IP(H11 = j,H21 = `− j,H12 = n− j,H22 = N − `− n+ j)

= IP(H11 = j,H21 = `− j)
= IP(H11 = j) IP(H21 = `− j)

=

(
n

j

)
pj1(1− p1)n−j

(
N − n
`− j

)
p`−j2 (1− p2)N−n−`+j

= C
ρj

j!(`− j)!(n− j)!(N − `− n+ j)!

with C := n!(N − n)!(1 − p1)n(1 − p2)N−n−`. Consequently, IP(H1+ = n,H+1 = `) equals
C · Cρ,N,`,n, and IP(H11 = x |H+1 = `,H1+ = n) = fρ,N,`,n(x).
In situation 2 the definition of the multinomial distribution yields the formula

IP(H11 = j,H21 = `− j,H12 = n− j,H22 = N − `− n+ j)

=
N !

j!(`− j)!(n− j)!(N − `− n+ j)!
pj11p

`−j
21 pn−j12 pN−`−n+j

22

= C
ρj

j!(`− j)!(n− j)!(N − `− n+ j)!

with C := N ! p`21p
n
12p

N−`−n
22 . Thus IP(H+1 = `,H1+ = n) equals C · Cρ,N,`,n, and again

IP(H11 = x |H+1 = `,H1+ = n) = fρ,N,`,n(x).
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Lemma 7.4 shows that at least in situations 1 and 2, the conditional distribution function of H11,
given that H+1 = ` and H1+ = n, is equal to Fρ,N,`,n. Together with Lemma 1.4 this leads to
exact confidence bounds for ρ. For

IP
(
Fρ,N,H+1,H1+(H11) ≤ α

)
=

N∑
`,n=0

IP(H+1 = `,H1+ = n) IP
(
Fρ,N,`,n(H11) ≤ α

∣∣H+1 = `,H1+ = n
)

≤
N∑

`,n=0

IP(H+1 = `,H1+ = n)α

= α,

and analogously,
IP
(
Fρ,N,H+1,H1+(H11 − 1) ≥ 1− α

)
≤ α.

Further it follows from Lemma 2.7 that{
ρ ∈ (0,∞) : Fρ,N,H+1,H1+(H11) > α

}
= (0, bα),{

ρ ∈ (0,∞) : Fρ,N,H+1,H1+(H11 − 1) < 1− α
}

= (aα,∞).

Here bα = bα(N,H+1, H1+, H11) is the unique solution ρ ∈ (0,∞) of the equation

Fρ,N,H+1,H1+(H11) = α

provided that H11 < min(H+1, H1+). Otherwise we set bα := ∞. This is an upper (1 − α)-
confidence bound for ρ. Moreover, aα = aα(N,H+1, H1+, H11) is the unique solution ρ ∈
(0,∞) of the equation

Fρ,N,H+1,H1+(H11 − 1) = 1− α

provided that H11 > max(0, H+1 + H1+ − N). Otherwise we set aα := 0. This is a lower
(1− α)-confidence bound for ρ.

Example 7.5. In a randomised study, thirty patients with a certain skin rash received pills with a
new drug or a placebo. The working hypothesis was that the new drug has a positive impact on
the patients’ skin. The treatment results turned out as follows:

Improvement No improvem.
New drug 12 3 15

Placebo 5 10 15

17 13 30

Now we consider the probabilities p1 and p2 of an improvement with the new drug and with
placebo, respectively, in the population of all people with the given skin rash. To verify possibly
the working hypothesis, we compute a lower 95%-confidence bound for the odds ratio ρ. To this
end we consider the function ρ 7→ Fρ,N,H+1,H1+(H11 − 1) = Fρ,30,17,15(11). Figure 7.1 shows
this function and the resulting lower 95%-confidence bound a0.05(30, 17, 15, 12) ≈ 1.531. Thus
we may claim with confidence 95% that the odds of an improvement with the new drug are at least
1.53 times the odds with placebo only. This confirms the working hypothesis.
By the way, Fisher’s exact test yields the (right-sided) p-value 1− F1,30,17,15(11) ≈ 0.0127.
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Figure 7.1: Example for the computation of a lower confidence bound for ρ.

Remark 7.6 (Connection with Fisher’s exact test). These confidence bounds for ρ are closely
related to Fisher’s exact test. Namely, the lower bound aα(N,H+1, H1+, H11) for ρ is larger than
1 if and only if the right-sided p-value 1− FN,H+1,H1+(H11 − 1) is smaller than α. Analogously
the upper bound bα(N,H+1, H1+, H11) is smaller than 1 if and only if the left-sided p-value
FN,H+1,H1+(H11) is smaller than α.

Remark 7.7 (Warning). It is not always clear whether for a given two-by-two table there exists a
well-defined underlying odds ratio ρ. There are situations in which Fisher’s exact test is applicable
while a proper definition of ρ and thus a clean interpretation of ρ̂ or the confidence bounds for ρ is
unclear. For Fisher’s exact test one only needs to justify that for given row and column sums the
entry H11 follows a hypergeometric distribution with parameters N , H+1 and H1+.
Two examples in which Fisher’s exact test is applicable without an obvious definition of an odds
ratio ρ are provided in Exercises 1.3 and 1.14.

7.4 Simpson’s Paradox

In connection with several two-by-two tables sometimes an interesting phenomenon occurs: If one
combines and analyses several data sets without taking their origin into account, one could end up
with a two-by-two table contradicting the analyses of the single data sets. This phenomenon has
been described, among others, by E. E. Simpson (1951). We illustrate it with a well-known data
example.

Example 7.8 (Admissions to graduate programs at UC Berkeley). In the year 1973 the University
of California at Berkeley hit the headlines because for graduate programs the admission numbers
among men were substantially higher than among women. More precisely, 44% of the 8442 male
applicants were admitted, but only 35% of the 4321 female applicants. The underlying data had
been analyzed by Bickel et al. (1975) among others. In particular they considered the admission
numbers of the six largest departments. The absolute numbers are listed in the first four columns
of Table 7.1. Column 5 provides the empirical odds ratios for admission of men versus women
(rounded to five digits). In addition one sees 95%-confidence intervals for an underlying true
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Men Women
Dept. Admitted Not admitted Admitted Not admitted ρ̂ a0.025 b0.025

A 512 313 89 19 0.3496 0.1970 0.5920

B 353 207 17 8 0.8028 0.2945 2.0040

C 120 205 202 391 1.1329 0.8452 1.5163

D 138 279 131 244 0.9214 0.6790 1.2505

E 53 138 94 299 1.2212 0.8065 1.8385

F 22 351 24 317 0.8281 0.4333 1.5756

Total 1198 1493 557 1278 1.8409 1.6214 2.0912

Table 7.1: Admission numbers at UC Berkeley 1973.

odds ratio. Admittedly the definition of the latter is rather dubious, but these confidence intervals
indicate potential associations between gender and admission.
Surprisingly, only in two departments the empirical odds ratio is slightly larger than 1, and clearly
smaller than the overall empirical odds ratio ρ̂ = 1.8409. In four departments the empirical odds
ratio turned out to be smaller than 1, and in one case this difference was even significant at test
level α = 5%. This stunning discrepancy results from the fact that women tended to apply for
subjects with low overall admission rates while men tended to apply for programs with higher
odds of admission.
The computation of an empirical odds ratio or even a confidence interval for the total numbers
wouldn’t make sense, because the decisions about acceptance or rejection are made within depart-
ments and follow different criteria, respectively. Also the populations of potential applicants are
presumably different from department to department.
If for a single department the empirical odds ratio is significantly different from one, this indicates
a true association between gender and admission. This could be due to systematic differences in
the qualification of male and female applicants. It does not prove a gender bias on behalf of the
department.

7.5 Exercises

Exercise 7.1. We consider the odds ratio ρ for two probabilities p1, p2 ∈ (0, 1). Show that both
p1/p2 and (1− p2)/(1− p1) are always between 1 and ρ. Furthermore, show that

| log(ρ)| ≥ 4|p1 − p2|.

Sketch the set of all pairs (p1, p2) with ρ = 0.5 and ρ = 2, respectively.

Exercise 7.2. Prove Lemma 7.1.

Exercise 7.3. Subsequently we describe three cross-sectional studies. Define in each case a suit-
able odds ratio and decide whether a lower or upper bound or a confidence interval would be
appropriate. Then analyze the data with test level α = 5% and formulate a conclusion. The data
are given in Table 7.2.
(a) To verify a possible association between acute bronchitis during early childhood and respi-
ratory diseases during adolescence, n = 1319 fourteen year old children and their parents had
been interviewed. On the one hand, the parents were asked whether their child suffered from
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(a) Cough No cough
Acute bronchitis 26 44

No acute bronch. 247 1002

(b) Male Female
Right-handed 934 1070

Left-handed 113 92

(c) Herniated discs No hern. discs
Professional driver 4 4

No profess. driver 13 77

Table 7.2: Data for Exercise 7.3.

Victim Suspect Death penalty Prison sentence
white white 53 414

black 11 37

black white 0 16
black 4 139

Table 7.3: Data example for Simpson’s paradox.

acute bronchitis during the first five years. The second question was whether the child coughed
frequently during the day or night.
(b) When interviewing n = 2209 Australians at age of 25-34 years, they were asked about their
gender (male/female) and handedness (right-handed/left-handed), among other things.
(c) A cross-sectional study among older male employees was conducted to investigate whether
working as a driver (buses or trucks) increases the risk of herniated vertebral discs.

Exercise 7.4. Table 7.3 contains numbers related to law suits for the years 1976-1987 in the state
of Florida, US (see Agresti, 2002, and Radelet and Pierce, 1991). The underlying raw data are
all law suits involving murder with the three dichotomous variables X = color of skin of suspect
(black or white), Y = penalty (death penalty or prison sentence) and Z = color of skin of victim.
Discuss empirical associations between two of these three variables, with and without splitting the
data by means of the remaining third variable.

Exercise 7.5. Construct a fictitious data example for Simpson’s paradox: Suppose one compares
a new medical treatment M1 with a standard treatment M2 in two randomised clinical trials, one
in a hospital K1 and one in a hospital K2. Suppose method M1 is indeed better than method M2.
Invent two two-by-two tables confirming this fact. But try to choose the numbers such that the
sum of the two tables yields an empirical odds ratio contradicting this fact. This may happen if,
for instance, hospital K1 tends to take over the more difficult cases and at the same time applies
method M1 more frequently than method M2.



Chapter 8

Tests for Association

The two previous chapters covered the association between a categorical or binary and another
variable. The latter was numerical in Chapter 6 and binary in Chapter 7. In the present chapter we
treat testing for association between two variables in a rather general framework. We start with a
rather abstract testing principle in the next section and then turn to permutation tests.

8.1 A General Principle of Nonparametric Tests

Both the sign tests in Section 4.3 as well as the permutation tests treated later are special cases of a
rather general testing paradigm. The starting point is a data setD(ω) ∈ D which was derived from
raw data ω ∈ Ω. We consider a finite group G of bijective mappings g : D → D. That means,
with two mappings g, h ∈ G, their composition h ◦ g, i.e. the mapping d 7→ h(g(d)), as well as
the inverse mapping g−1 belong to G, too.1 Now we discuss a special property of the distribution
of D.

Lemma 8.1 (G-Invariance). LetG be uniformly distributed on G, stochastically independent from
D. Then the following two conditions are equivalent:
(i) For arbitrary fixed g ∈ G, the random variables g(D) and D are identically distributed.
(ii) The random variables G(D) and D are identically distributed.

Null hypothesisHo (G-Invariance) The random variableD is G-invariant (in distribution). That
means, it satisfies the conditions described in Lemma 8.1.

Example 8.2 (Sign tests). Let the data set D be a difference vector X = Y − Z ∈ Rn as in
Section 4.3. For an arbitrary sign vector s ∈ {−1, 1}n we consider the bijection

x 7→ gs(x) := (sixi)
n
i=1

from Rn to Rn. For an additional sign t ∈ {−1, 1}n,

gt ◦ gs = gts

with the coordinate-wise product ts = (tisi)
n
i=1. Thus G :=

{
gs : s ∈ {−1, 1}n

}
is an Abelian

group of 2n bijective mappings, and sign symmetry is equivalent to G-invariance.

1Again we hide measurability issues: To D belongs a σ-field B, D is a (D,B)-valued random variable, and all
mappings g ∈ G are B-B-measurable.
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Proof of Lemma 8.1. We argue similarly as in the proof of Lemma 4.11. For any measurable set
B ⊂ D,

IP(G(D) ∈ B) =
∑
g∈G

IP(G = g, g(D) ∈ B) =
1

#G
∑
g∈G

IP(g(D) ∈ B).

Hence Condition (i) implies Condition (ii).
For any fixed h ∈ G,

IP
(
h(G(D)) ∈ B

)
= IP

(
(h ◦G)(D) ∈ B

)
= IP(G(D) ∈ B),

because h ◦ G is uniformly distributed on G, too; see Exercise 8.1. Consequently, Condition (ii)
implies that IP(h(D) ∈ B) = IP(D ∈ B), and this entails Condition (i).

Exact tests ofHo. To testHo we choose a test statistic T : D → R and compute one of the three
p-values π`(D), πr(D) or πz(D), depending on our working hypothesis. Here

π`(d) := #
{
g ∈ G : T (g(d)) ≤ T (d)

}
/#G,

πr(d) := #
{
g ∈ G : T (g(d)) ≥ T (d)

}
/#G

and πz(d) := 2 · min
{
π`(d), πr(d)

}
for an arbitrary data set d ∈ D. With a random variable G

having uniform distribution on G we may also write

π`(d) = IP
(
T (G(d)) ≤ T (d)

)
,

πr(d) = IP
(
T (G(d)) ≥ T (d)

)
.

Lemma 8.3. Let π(D) be one of the three p-values just described. Under the null hypothesis Ho,

IP
(
π(D) ≤ α

)
≤ α

for arbitrary α ∈ [0, 1].

Proof of Lemma 8.3. The proof is almost identical with the proof of Lemma 4.13. Under Ho,

IP
(
π(D) ≤ α

)
= #G−1

∑
g∈G

IP
(
π(g(D)) ≤ α

)
= IE

(
#G−1

∑
g∈G

1[π(g(D))≤α]

)
.

Hence it suffices to show that for any fixed data set d ∈ D,

#G−1
∑
g∈G

1[π(g(d))≤α] = IP
(
π(G(d)) ≤ α

)
≤ α.

To this end we consider the random variable X := T (G(d)). Then

IP(X ≤ x) = #
{
g ∈ G : T (g(d)) ≤ y

}
/#G =: Fd(x)

for arbitrary x ∈ R. This distribution function Fd(·) remains the same if we replace d with any
transformation h(d), h ∈ G. For the mapping g 7→ g ◦h is bijective from G to G, see Exercise 8.1.
In particular, FG(d)(·) ≡ Fd(·) and

π`(G(d)) = Fd(X),

πr(G(d)) = 1− Fd(X −),

πz(G(d)) = 2 ·min{Fd(X), 1− Fd(X −)}.

Consequently it follows from Lemma 1.4 that IP
(
π(G(d)) ≤ α

)
≤ α.
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Monte Carlo tests of Ho. Sometimes the computation of the exact p-values π`(D), πr(D) is
too involved. A possible way out are Monte Carlo p-values: We simulate random variables G(1),
G(2), . . . , G(m) which are independent, uniformly distributed on G and independent fromD. Then
we compute

π̂`(D) :=
#
{
s ∈ {1, 2, . . . ,m} : T (G(s)(D)) ≤ T (D)

}
+ 1

m+ 1
,

π̂r(D) :=
#
{
s ∈ {1, 2, . . . ,m} : T (G(s)(D)) ≥ T (D)

}
+ 1

m+ 1

or π̂z(D) := 2 ·min
{
π̂`(D), π̂r(D)

}
. As shown in the next lemma, these Monte Carlo p-values

are a viable surrogate for the exact ones.

Lemma 8.4. Let π̂(D) be one of the p-values just defined (with true random variables G(s)).
Under the null hypothesis Ho,

IP
(
π̂(D) ≤ α

)
≤ b(m+ 1)αc

m+ 1
≤ α

for arbitrary α ∈ [0, 1].

Proof of Lemma 8.4. Let G(0) be an additional random variable with uniform distribution on G
and independent from D, G(1), . . . , G(m). Under Ho, the random data sets G(0)(D) and D are
identically distributed. Hence the tuple(

T (D), T (G(1)(D)), . . . , T (G(m)(D))
)

has the same distribution as(
T (G(0)(D)), T (G(1) ◦G(0)(D)), . . . , T (G(m) ◦G(0)(D))

)
.

But the tuples (G(0), G(1) ◦ G(0), . . . , G(m) ◦ G(0)) and (G(0), G(1), . . . , G(m)) are identically
distributed: For arbitrary elements g0, g1, . . . , gm of G,

IP
(
G(0) = g0, G

(1) ◦G(0) = g1, . . . , G
(m) ◦G(0) = gm

)
= IP

(
G(0) = g0, G

(1) = g1 ◦ g−1
0 , . . . , G(m) = gm ◦ g−1

0

)
= (#G)−(m+1).

Hence the tuple
(
T (D), T (G(1)(D)), . . . , T (G(m)(D))

)
has the same distribution as

(T0, T1, . . . , Tm) :=
(
T (G(0)(D)), T (G(1)(D)), . . . , T (G(m)(D))

)
.

The latter satisfies the assumption of Lemma 2.11 whence

IP
(
π̂r(D) ≤ α

)
≤ b(m+ 1)αc

m+ 1
.

With −T in place of T we obtain the analogous inequality for π̂`(D). Then we may argue that
two-sided p-value π̂(D) satisfies

IP
(
π̂z(D) ≤ α

)
≤ IP

(
π̂`(D) ≤ α/2

)
+ IP

(
π̂r(D) ≤ α/2

)
≤ 2b(m+ 1)α/2c

m+ 1
≤ b(m+ 1)αc

m+ 1
.
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8.2 Permutation Tests

Now we consider two variables X and Y with values in X and Y , respectively. We would like
to verify, if correct, that there is a true association between these two variables. The starting
point is a data set with N data pairs (X1, Y1), (X2, Y2), . . . , (XN , YN ), i.e. with two data vectors
X = (Xi)

N
i=1 ∈ XN and Y = (Yi)

N
i=1 ∈ YN .

In what follows SN stands for the set of all permutations of {1, 2, . . . , N}. For an arbitrary tuple
y = (yi)

N
i=1 and a permutation σ ∈ SN we write

σy := (yσ(i))
N
i=1.

The null hypothesis that there is no true association between X- and Y -values may be formalised
as follows:

Null hypothesis Ho (Exchangeability) The vector Y = (Yi)
N
i=1 is exchangeable with respect

toX = (Xi)
N
i=1 (in distribution). That means, for an arbitrary fixed permutation σ ∈ SN , the data

sets (X, σY ) and (X,Y ) have the same distribution.

Example 8.5 (Stochastic independence). Let the data pairs (X1, Y1), (X2, Y2), . . . , (XN , YN ) be
independent and identically distributed random variables. The working hypothesis is that X1 and
Y1 are stochastically dependent. If they are stochastically independent, the data vectors X and Y
satisfy the null hypothesis Ho.

Suppose that X1, X2, . . . , XN are fixed given values, for instance, N different and consecutive
time points or N dosages of a certain substance in increasing order. Then one could simplify the
null hypothesis as follows:

Null hypothesis H ′o (Exchangeability) The vector Y = (Yi)
N
i=1 is exchangeable (in distribu-

tion). That means, for any fixed permutation σ ∈ SN , the data vectors σY and Y are identically
distributed.

Example 8.6 (Independent, identically distributed random variables). LetX1 < X2 < · · · < XN

be fixed time points, and at time Xi one observes a random variable Yi ∈ Y . Now we want to
verify, if the Y -values are really time-dependent. This could mean, for instance, that there is a
certain trend, or that two consecutive observations are stochastically dependent. If the random
variables Y1, Y2, . . . , YN are independent and identically distributed, the data vector Y satisfies
the null hypothesis H ′o.

Remark 8.7. Both null hypotheses Ho and H ′o are special cases of G-invariance as introduced in
Section 8.1. In case of Ho we consider a data set D = (X,Y ) in D = XN × YN , and σ ∈ SN
induces a bijection

(x,y) 7→ gσ(x,y) := (x, σy)

from XN ×YN to XN ×YN . In case ofH ′o we consider only the data vectorD = Y inD = YN ,
and σ ∈ S induces the bijection

y 7→ gσ(y) := σy

from YN to YN . In both cases one can easily verify that for two permutations σ, τ ∈ SN ,

gτ ◦ gσ = gσ◦τ .

Thus G := {gσ : σ ∈ SN} is indeed a group of bijections.
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An equivalent description of the null hypothesisHo reads as follows: The original data set (X,Y )
has the same distribution as (X,ΠY ), where Π is uniformly distributed on SN and stochastically
independent from (X,Y ).
Analogously, the null hypothesis H ′o is equivalent to the following statement: With Π as above,
the original data vector Y has the same distribution as ΠY .

Permutation tests. The null hypothesis Ho may be tested as described in Section 8.1. One
chooses a test statistic T : XN × YN → R and computes one of the p-values π` = π`(X,Y ),
πr = πr(X,Y ) or πz = πz(X,Y ) = 2 min{π`, πr}. Here

π`(x,y) := #
{
σ ∈ SN : T (x, σy) ≤ T (x,y)

}/
N !

= IP
(
T (x,Πy) ≤ T (x,y)

)
,

πr(x,y) := #
{
σ ∈ SN : T (x, σy) ≥ T (x,y)

}/
N !

= IP
(
T (x,Πy) ≥ T (x,y)

)
for arbitrary tuples x ∈ X n and y ∈ Yn while Π is a random variable with uniform distribution
on SN .
When testingH ′o, the latter formulae become simpler in that we work with test statistics T : YN →
R and omit the argumentsX and x, respectively.
Since the cardinality N ! of SN is huge for moderate or large sample sizes N , we often resort to
Monte Carlo p-values.
In principle only two questions remain to be answered: (i) Which test statistic T (X,Y ) quantifies
the potential deviations fromHo we are interested in? This depends on our working hypothesis, of
course. (ii) How can we compute the p-values for our given test statistic T (X,Y ) without going
through all N ! permutations in SN? This issue is relevant whenever one wants to avoid Monte
Carlo p-values.

8.3 Binary Variables: Trends and Runs

We consider first the null hypothesis H ′o of exchangeability for a random vector Y with compo-
nents Yi ∈ {0, 1}. Explicitly one may think of equidistant time points X0 < X1 < · · · < XN ,
and Yi indicates whether in the time interval (Xi−1, Xi] a certain catastrophe (e.g. an earthquake)
occurred (Yi = 1) or not (Yi = 0). Potential questions are whether
(i) the frequency of such catastrophes tends to increase or decrease over time,
(ii) these events occur in clusters or, on the contrary, are distributed rather evenly.

Tests for monotone trends. In order to quantify for a vector y ∈ {0, 1}N to what extent indices
i with yi = 1 tend to be rather small or rather large, one can use the test statistic

T (y) :=

N∑
i=1

yi · i.

The computation of the resulting p-values may be achieved with Wilcoxon’s rank sum test. For
it is shown in Exercise 8.2 that the random set

{
i ∈ {1, 2, . . . , N} : yΠ(i) = 1

}
has the same

distribution as
{

Π(1), . . . ,Π(y+)
}

, where y+ :=
∑N

i=1 yi. Hence for arbitrary x ∈ R,

IP(T (Πy) ≤ x) = IP
( y+∑
i=1

Π(i) ≤ x
)

= Gy+,N−y+

(
x− y+(y+ + 1)

2

)
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with the distribution functions Gn1,n2(·) for Wilcoxon’x rank sum test in Section 6.5. This leads
to

π`(y) = Gy+,N−y+

(
T (y)− y+(y+ + 1)

2

)
,

πr(y) = 1−Gy+,N−y+
(
T (y)− y+(y+ + 1)

2
− 1
)
.

Tests for clustering or even distribution. Now we want to judge for a vector y ∈ {0, 1}N
whether the indices i with yi = 1 (or yi = 0) tend to form clusters or tend to be well separated,
leading to a rather even distribution. This may be achieved with the runs test statistic

T (y) :=
N−1∑
i=1

1[yi 6=yi+1].

We encountered it already in Example 1.17 in Section 1.4. A ‘run’ in y is a maximal block of
adjacent indices i with identical values yi. Thus T (y) + 1 is the number of ‘runs’ in y.
When applying this test statistic to our random vector Y , we expect rather small values in case of
clustering of ‘events’ (indices i with yi = 1) and rather larger values in case of evenly distributed
‘events’.
The distribution of T (Πy) is none of the well-known discrete distributions, but it can be easily
computed numerically. Thus the exact computation of the p-values π` and πr poses no problem.
The expected value and standard deviation of T (Πy) are derived in Exercise 8.3.

Lemma 8.8. Let y ∈ {0, 1}N with 0 < y+ < N . Then for integers k ≥ 1,

IP(T (Πy) = 2k − 1)

= 2

(
y+ − 1

k − 1

)(
N − y+ − 1

k − 1

)/(N
y+

)
,

IP(T (Πy) = 2k)

=

[(
y+ − 1

k

)(
N − y+ − 1

k − 1

)
+

(
y+ − 1

k − 1

)(
N − y+ − 1

k

)]/(N
y+

)
.

Proof of Lemma 8.8. Instead of considering all permutations of a vector with y+ entries 1 and
N−y+ entries 0 we just consider the

(
N
y+

)
possible vectors which may result from that. Each such

vector ỹ consists of T (ỹ) + 1 blocks of adjacent zeros or adjacent ones.
To cut a series of y+ ones into k blocks one has to ‘activate’ k − 1 of the y+ − 1 interspaces. For
instance, a series of y+ = 7 ones may be cut into k = 3 blocks as follows:

(1 1 1 1 1 1 1)  (1 1 | 1 | 1 1 1 1).

For this cutting there exist
(y+−1
k−1

)
possibilities. Analogously there are

(N−y+−1
k−1

)
possibilities to

cut a series of N − y+ zeros into k blocks.
The equation T (ỹ) = 2k − 1 is equivalent to ỹ consisting of 2k blocks, namely k blocks of ones
and k blocks of zeros. Having specified these blocks already, one only has to combine them via
alternate merging. For this step there are two possibilities, depending on whether one starts with a
block or ones or a block of zeros. Here is an example for y+ = 7, N − y+ = 5 and k = 3:

(
1 1 1 1 1 1 1

0 0 0 0 0

)
 

(
1 1 | 1 | 1 1 1 1

0 | 0 0 | 0 0

)
 


(1 1 | 0 | 1 | 0 0 | 1 1 1 1 | 0 0)

or
(0 | 1 1 | 0 0 | 1 | 0 0 | 1 1 1 1).
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Figure 8.1: log-return today versus log-return tomorrow, raw values (left) and ranks (right)

Thus there are

2

(
y+ − 1

k − 1

)(
N − y+ − 1

k − 1

)
possible vectors ỹ ∈ {0, 1}N with ỹ+ = y+ and T (ỹ) = 2k − 1.
The equation T (ỹ) = 2k means that either ỹ contains k + 1 blocks of ones which are separated
by k blocks of zeros, or ỹ contains k+ 1 blocks of zeros which are separated by k blocks of ones.
Thus there are (

y+ − 1

k

)(
N − y+ − 1

k − 1

)
+

(
y+ − 1

k − 1

)(
N − y+ − 1

k

)
possible vectors ỹ ∈ {0, 1}N with ỹ+ = y+ and T (ỹ) = 2k.

Example 8.9 (Log-returns, continued). We re-analyze the data of Example 5.9 with the share
index values Ki on 3246 consecutive trading days. In Figure 5.10 we saw already the time series
(log10(Ki))

3256
i=1 of the log-transformed values and the times series of the N = 3245 log-returns

Li := log10(Ki+1/Ki).

Figure 8.1 shows on the left hand side a scatter plot of the N − 1 pairs (Li, Li+1) for 1 ≤ i <
N , and on the right hand side the same picture after replacing the values L1, L2, . . . , LN with
their ranks. Both plots suggest that it is difficult to predict a log-return from the previous one.
Nevertheless the density of points close to the first main diagonal and in the upper left corner
seems to be slightly increased.
A true time-dependency may be verified as follows: We reduce the log-returns to the following
binary quantities:

Y
(1)
i := 1[Li>0] and Y

(2)
i := 1[|Li|>M ]

with M := Median(|L1|, . . . , |LN |). The vector Y (1) specifies trading days with increase or de-
crease of the share index value. The vector Y (2) emphasises more the volatility of the share index
values, i.e. the modulus of the log-returns. If the original vector (Li)

N
i=1 would be exchangeable

in distribution, both binary vectors Y (1),Y (2) would inherit this property.

However, T (Y (1)) = 1494 with Y (1)
+ = 1734 ones and N − Y (1)

+ = 1511 zeros, and by means of
Lemma 8.8 we obtain the following p-values: π`(Y (1)) = 1.0852 · 10−5 und πr(Y (1)) = 0.999,
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so
πz(Y

(1)) = 2.1704 · 10−5.

This shows that the zeros and ones tend to occur in clusters somewhat, although this effect is
hardly visible on short time intervals. This confirms our empirical finding of an increased density
of points close to the first main diagonal in Figure 8.1 (right hand side).
Also the vector Y (2) violates exchangeability with high confidence: Here T (Y (2)) = 1494 again,
where Y (2)

+ = 1622 and n − Y (2)
+ = 1623. This yields the p-values π`(Y (1)) = 3.4474 · 10−6,

πr(Y
(1)) > 0.999, so

πz(Y
(1)) = 6.8948 · 10−6.

This confirms our impression from Figure 5.10. There seem to be periods of high and periods of
low volatility of log-returns, and this leads to an increased density of points in three of the four
corners in Figure 8.1 (right hand side).

8.4 Categorical Variables: Contingency Tables

Now we consider two categorical variables

X ∈ {x1, x2, . . . , xK} and Y ∈ {y1, y2, . . . , yL}.

Thus the data pairs (Xi, Yi) have only KL potential values, and we summarise the data as a
contingency table: For k ∈ {1, . . . ,K} and ` ∈ {1, . . . , L} we define

Hk,` = Hk,`(X,Y ) := #
{
i ∈ {1, . . . , N} : Xi = xk and Yi = y`

}
.

Then the contingency table has the general form

y1 y2 · · · yL

x1 H1,1 H1,2 · · · H1,L

x2 H2,1 H2,2 · · · H2,L
...

...
...

...
xK HK,1 HK,2 · · · HK,L

Often it is complemented with the row sums

Hk,+ :=
L∑
`=1

Hk,` = #
{
i ∈ {1, . . . , N} : Xi = xk

}
and column sums

H+,` :=

K∑
k=1

Hk,` = #
{
i ∈ {1, . . . , N} : Yi = y`

}
.

This leads to
y1 y2 · · · yL

x1 H1,1 H1,2 · · · H1,L H1,+

x2 H2,1 H2,2 · · · H2,L H2,+
...

...
...

...
...

xK HK,1 HK,2 · · · HK,L HK,+

H+,1 H+,2 · · · H+,L N

In case of two binary variables, i.e. K = L = 2, we get a two-by-two table again.
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Fisher’s exact tests. A possible test statistic for the null hypothesis Ho would be T (X,Y ) =
Hk,` for a fixed index pair (k, `) ∈ {1, . . . ,K} × {1, . . . , L}. It follows from Exercise 8.5 that
for given data (X,Y ), the random variable T (X,ΠY ) has a hypergeometric distribution with
parameters N , Hk,+ and H+,`. Thus we obtain the p-values

π` = FN,Hk,+,H+,`
(Hk,`),

πr = 1− FN,Hk,+,H+,`
(Hk,` − 1).

In case of binary variables (K = L = 2) it is sufficient to consider just one index pair (k, `).
In Chapter 1 we saw already various applications of Fisher’s exact test. Now we discuss an erro-
neous application of this method:

Example 8.10 (A devastating application of Fisher’s exact test). In a sensation causing trial, the
dutch nurse Lucia de Berk had been convicted of murder in several cases and sentenced to lifelong
imprisonment. This trial was triggered by several cases of unexplained deaths in a hospital for
children. Some staff members realised that Lucia da Berk was present in all corresponding shifts.
During the trial a self-proclaimed expert in statistics presented a two-by-two table summarizing
all N = 1029 shifts of the hospital in a certain time interval:

Death case No death case
L. de Berk present 9 133 142

L. de Berk not present 0 887 887

9 1020 1029

(In addition he presented two analogous two-by-two tables of different hospitals in which Lucia
de Berk worked previously, but the case numbers had been very low.) Applying Fisher’s exact test
to this two-by-two table yields the extremely small two-sided p-value

πz = 2πr = 2(1− F1029,142,9(8)) ≈ 2.9024 · 10−8,

indicating an association between Lucia de Berk’s presence and the occurence of deaths. One
should, however, take into account that in this time period 26 nurses worked in the same ward,
and one could have produced and tested a two-by-two table for each of them. Thus the present p-
value should be adjusted with a factor of 26, which results in the p-value 52(1−F1029,142,9(8)) ≈
7.5462 · 10−7, see also Section 6.6.
The expert made clear that this extremely significant association does not prove murder. It could
have been possible that due to her experience, Lucia de Berk has been put into particularly chal-
lenging shifts. Or maybe she is just a bad nurse, though without bad intentions. All these expla-
nations had been dismissed by her and her principals.
This example shows what damage can be caused by ‘hobby statistics’. As soon as the data structure
is okay, statistical procedures and software produce output, no matter whether the procedures are
justified or not. In particular, Fisher’s exact test is often sold as a procedure to possibly verify a
‘true association’ between two binary variables. But ‘no true association’ is only an incomplete
description of the null hypothesis we are testing. Strictly speaking, Fisher’s exact test concerns
the null hypothesis that, conditional on the row and colums sums, the entry Hk,` follows the
hypergeometric distribution Hyp(N,Hk,+, H+,`). A sufficient condition for the latter condition
would be exchangeability of the Y -values versus the X-values or vice versa. But in the present
case this is questionable. Personal shift schedules in hospitals follow certain regular patterns in
order to obey various constraints. There is also empirical evidence that the time points of deaths in
hospitals are not distributed randomly. Presumably the present two-by-two table shows only that
both the shift schedule of Lucia de Berk and the time points of deaths were somehow correlated
with the third variable ‘time’, but without any causal relationship.
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A second weakness of the analysis above is the somewhat arbitrary choice of time interval. Before
it there was a longer period without any death cases. Moreover it turned out retrospectively that
the underlying raw data were not correct. A careful re-investigation led to the table

Death case No death case
L. de Berk present 7 135 142

L. de Berk not present 4 883 887

11 1018 1029

which yields a two-sided p-value of 2(1 − F1029,142,11(6)) ≈ 2.515 · 10−5 and, after Bonferroni
adjustment, 52(1−F1029,142,11(6)) ≈ 6.5411 · 10−4. These values are still rather small but not as
spectacular as the ones presented during the trial.
Richard Gill and other Dutch and European scientists got involved with this case and succeeded in
getting it re-opened. Medical experts made clear again that in none of the death cases an external
influence had been verified. The new trial ended with a complete acquittal of Lucia de Berk.

The Chi-squared test. Under the null hypothesis Ho we expect the entry Hk,` to be close to

H̄k,` :=
Hk,+H+,`

n
.

Precisely,
H̄k,` = IE

(
Hk,`(X,ΠY )

∣∣X,Y
)
,

where IE(· |X,Y ) stands for conditional expectations, given the data X,Y . That means, we
consider X,Y as fixed objects, and only Π is chosen completely at random. This formula for
H̄k,` is a consequence of Exercise 8.5. The following chi-squared test statistic due to Karl Pearson
quantifies the deviations of the entries Hk,` from these idealised values H̄k,`:

T (X,Y ) :=
K∑
k=1

L∑
`=1

(Hk,` − H̄k,`)
2

H̄k,`
=

K∑
k=1

L∑
`=1

H2
k,`

H̄k,`
−N.

The latter equation follows from the fact that both
∑K

k=1

∑L
`=1Hk,` and

∑K
k=1

∑L
`=1 H̄k,` are

equal to N . We refer to H̄k,` as ‘idealised value’, because a contingency table with entries Hk,` ≈
H̄k,` would show no association at all:

Lemma 8.11. For a contingency table (Hk,`)k,` the following conditions are equivalent:
(i) All rows (resp. columns) are proportional;
(ii) Hk,` = H̄k,` for arbitrary index pairs (k, `).

Under the null hypothesis Ho one may expect T (X,Y ) to be of size (K − 1)(L − 1), because
(Exercise 8.7)

(8.1) IE
(
T (X,ΠY )

∣∣X,Y
)

=
N

N − 1
(K − 1)(L− 1).

Unfortunately, the conditional distribution function of T (X,ΠY ), given the data (X,Y ), is not
easy to compute. But one can show that this conditional distribution converges weakly to

χ2
(K−1)(L−1)

as
min

{
H1,+, H2,+, . . . ,HK,+, H+,1, H+,2, . . . ,H+,L

}
→ ∞.
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Hence whenever all row and column sums are at least 5, one often uses the approximation

πr ≈ 1− F(K−1)(L−1)(T (X,Y )),

where F(K−1)(L−1) denotes the distribution function of χ2
(K−1)(L−1). Otherwise one could com-

pute Monte-Carlo p-values.

Remark 8.12. If one of the tests in this chapter rejects the null hypothesis Ho, one may conclude
that there is a true association between X- and Y -values. But this does not imply a causal rela-
tionship. For instance, it could be the case that both variables depend on one or more additional
variables. This effect is called “confounding”, and such latent variables causing associations are
called ‘confounders’.

Remark 8.13. If the chi-squared test rejects the null hypothesisHo, one may claim with a certain
confidence that there is a true association betweenX- and Y -values. But this does not specify how
the two variables are correlated. Sometimes it is thus more informative to extract from the original
contingency table a two-by-two table by merging or deleting certain values in {x1, . . . , xK} or
{y1, . . . , yL}. This two-by-two table may then be analyzed with (a two-sided version of) Fisher’s
exact test. Or one computes a confidence interval for the underlying odds ratio, if the latter is
well-defined.

Example 8.14 (Snoring and heart diseases). In a medical cross-sectional study about the potential
association between snoring and heart deseases, N = 2484 men have been investigated. On the
one hand it was checked whether they suffered from a heart desease or not. This corresponds to
a binary variable X with possible values ‘diseased’ and ‘healthy’. Moreover the men’s spouses
were asked to categorise their partners with respect to snoring. This yielded an ordinal variable
Y with possible values ‘never’, ‘sometimes’, ‘often’ (at least every second night) and ‘always’
(every night). Here is the corresponding contingency table:

never sometimes often always
diseased 24 35 21 30 110

healthy 1355 603 192 224 2374

1379 638 213 254 2484

The group of diseased men is (fortunately) much smaller than the group of healthy men, and the
group of never snoring men is much larger than the three other groups of snoring men. Hence it is
difficult to judge from this contingency table whether there is empirical evidence for an association
between snoring and heart diseases. To get a clearer picture we consider the same table with
normalised rows (to three decimal digits):

never sometimes often always
diseased 0.218 0.318 0.191 0.273

healthy 0.571 0.254 0.081 0.094

0.555 0.257 0.086 0.102

Now it is clear that the relative proportions of often or always snoring men is much higher among
the diseased men than among the healthy men. Normalising the columns shows a similar phe-
nomenon:

never sometimes often always
diseased 0.017 0.055 0.099 0.118 0.044

healthy 0.983 0.945 0.901 0.882 0.956

The relative proportion of diseased men increases with the ordinal variable Y .
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Now we test the null hypothesis Ho that there is no true association between the two variables at
level α = 1%: Here is the contingency table, augmented by the idealised values H̄j,k:

never sometimes often always
diseased 24 35 21 30 110

(61.1) (28.3) (9.4) (11.2)

healthy 1355 603 192 224 2374
(1317.9) (609.7) (203.6) (242.8)

1379 638 213 254 2484

The chi-squared statistic equals T (X,Y ) = 72.782, which is substantially larger than the ex-
pected value (K − 1)(L − 1) = 3 under Ho. Indeed, the corresponding approximate p-value
equals

1− F3(72.782) ≈ 1.1102 · 10−15,

and the corresponding Monte-Carlo p-values were extremely small, too.
As already mentioned, this does not prove a causal relationship between snoring and heart diseases.
It could be the case that (i) snoring leads to heart diseases, (ii) heart diseases cause snoring or
(iii) both snoring and heart diseases are influenced by common genetic or environmental factors.
Furthermore, the χ2 test statistics does not indicate any ‘direction’ of the association.
To get a clear statement including a ‘direction’, we merge the first two categories ‘never’ and
‘sometimes’ of Y to a new category ‘rarely’, and the two categories ‘often’ and ‘always’ are
combined to ‘frequently’. This yields the two-by-two table

rarely frequently
diseased 59 51 110

healthy 1958 416 2374

2017 467 2484

The underlying odds ratio ρ may be interpreted in two ways: One could consider the odds of
finding a rarely snoring man, among diseased men and among healthy men. Alternatively one
could consider the odds of finding a man with a heart disease, among rare snorers and among
frequent snorers. The empirical odds ratio equals ρ̂ = 0.2458, and a 99%-confidence interval for
ρ is given by [0.1448, 0.4201]. Since the upper bound is smaller than one, we may conclude with
confidence 99% that there is a positive association between snoring and heart diseases.

8.5 Numerical Variables: Sample Comparisons and Correlations

Sample comparisons. Suppose that X is a categorical variable with values in {x1, x2, . . . , xK}
while Y is a numerical variable. In this case we could analyze the data with procedures intro-
duced in Chapter 6. (There we talked about (G,X) instead of (X,Y ).) With an arbitrary test
statistic T (X,Y ) which quantifies differences between the subsamples Y k := (Yi)i :Xi=xk for
k = 1, 2, . . . ,K we may perform a permutation test of the null hypothesis Ho.
In the special case of K = 2, for instance, one could use Wilcoxon’s rank sum test: We determine
the ranks RY,1, RY,2, . . . , RY,N of Y1, Y2, . . . , YN , and then we compute

TW (X,Y ) :=
∑

i :Xi=x1

RY,i.

With this test statistic one could compute a p-value via a permutation test. That means, we don’t
have to assume continuous distribution functions of the variables Yi as in Section 6.5.
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In case of K ≥ 3 one may combine several tests for the comparison of two tests as described
in Section 6.6 at the end of Chapter 6. Again it is advisable to apply permutation tests for the
K(K − 1) one-sided comparisons.

Simple Linear Regression and Correlation

Now we consider the case of two numerical variables. The original question of a true association
between X- and Y -values is modified as follows: We want to investigate whether the Y -values
may be approximated by a linear function of the X-values. Before introducing explicit tests, let
us start with some theoretical considerations.

Linear prediction. Let X and Y be random variables with known joint distribution. Suppose
we want to predict the value of Y by a linear function of X . More precisely, we want to determine
real parameters a, b such that the mean squared prediction error

IE((Y − a− bX)2)

is minimal. Here we assume that 0 < Std(X),Std(Y ) <∞.

Lemma 8.15. For arbitrary real numbers a and b,

IE((Y − a− bX)2) ≥ Var(Y )− Cov(X,Y )2/Var(X).

Equality holds if and only if

b = b∗ := Cov(X,Y )/Var(X) and a = a∗ := IE(Y )− b∗ IE(X).

The optimal parameters involve only the expectated values of X and Y , the variance of X and the
covariance

Cov(X,Y ) := IE
(
(X − IE(X))(Y − IE(Y ))

)
= IE(XY )− IE(X) IE(Y )

of X and Y . With their correlation

Corr(X,Y ) :=
Cov(X,Y )

Std(X) Std(Y )

one may also write

b∗ =
Std(Y )

Std(X)
Corr(X,Y ),

and the mean squared prediction error equals

IE((Y − a∗ − b∗X)2) = Var(Y )(1− Corr(X,Y )2).

The factor Var(Y ) is the mean squared prediction error if we ignore X and predict Y by the
constant IE(Y ). It is reduced by the factor 1− Corr(X,Y )2 if we predict Y by

a∗ + b∗X = IE(Y ) + b∗(X − IE(X)).

Proof of Lemma 8.15. If we fix an arbitrary value b, then V := Y − bX satisfies the equation

IE((Y − a− bX)2) = IE((V − a)2) = Var(V ) + (IE(V )− a)2.
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As a function of a ∈ R it has the unique minimiser a∗(b) = IE(V ) = IE(Y ) − b IE(V ). When
plugging in this value a∗(b) for a, we obtain the equation

IE((Y − a∗(b)− bX)2) = IE
[(

(Y − IE(Y ))− b(X − IE(X))
)2]

= Var(Y )− 2bCov(X,Y ) + b2 Var(X).

With b∗ = Cov(X,Y )/Var(X) the right hand side equals

Var(Y )− Cov(X,Y )2/Var(X) + Var(X)(b− b∗)2.

This shows that b∗ is the unique optimal value of b.

Regression lines. Now we consider a data set with observation vectorsX,Y ∈ RN . We exclude
trivial situations and assume that the corresponding sample standard deviations SX and SY are
strictly positive. Now we aim for real parameters a and b such that the sum of squares

N∑
i=1

(Yi − a− bXi)
2 = ‖Y − a1− bX‖2

is minimal. Here 1 denotes the vector (1, 1, . . . , 1)> ∈ RN , and ‖ · ‖ is the standard Euclidean
norm on RN , ‖w‖ :=

√
〈w,w〉 with the standard inner product 〈·, ·〉. Our considerations about

linear prediction imply the following conclusions:

Lemma 8.16. With the centered vectors X̃ := (Xi−X)Ni=1 and Ỹ := (Yi−Y )Ni=1, for arbitrary
real numbers a and b,

‖Y − a− bX‖2 ≥ ‖Ỹ ‖2(1− ρ̂2)

with the sample correlation coefficient

ρ̂ = ρ̂(X,Y ) :=
〈X̃, Ỹ 〉
‖X̃‖‖Ỹ ‖

.

Equality holds if and only if

b = b̂ :=
〈X̃, Ỹ 〉
‖X̃‖2

=
SY
SX

ρ̂ and a = â := Y − b̂X.

Proof. We consider X and Y as fixed vectors. With a random variable J with uniform distribu-
tion on {1, 2, . . . , N} we define the random pair (X,Y ) := (XJ , YJ). Then

‖Y − a1− bX‖2 = N IE((Y − a− bX)2).

Now the claims follow essentially from Lemma 8.15 and the following identities: IE(X) = X ,
Var(X) = ‖X̃‖2/N , IE(Y ) = Y , Var(Y ) = ‖Ỹ ‖2/N and Cov(X,Y ) = 〈X̃, Ỹ 〉/N .

The regression line consists of all pairs (x, y) satisfying the equation

y = â+ b̂x = Y +
SY
SX

ρ̂ (x−X).

One can also write
y − Y
SY

= ρ̂
x−X
SX

.
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In particular, the regression line passes through the barycentre (X,Y ) of all observations (Xi, Yi).
The sample correlation coefficient ρ̂ is the cosine of the angle between the centered data vectors
X̃ and Ỹ . The Cauchy–Schwarz inequality implies that |ρ̂| ≤ 1. Equality holds if and only if
Ỹ = b̂X̃ with b̂ 6= 0. This is equivalent to all observations (Xi, Yi) sitting on the regression line,
where sign(̂b) = sign(ρ̂). In general the slope parameter b̂ = ρ̂ SY /SX is always contained in the
interval [−SY /SX , SY /SX ].
The square ρ̂2 is sometimes called ‘measure of determination’. It is a descriptive measure of how
well the Y -values may be approximated by a linear function of the X-values.

Remark 8.17 (ρ̂ as an estimator). Suppose the observations (X1, Y1), (X2, Y2), . . . , (XN , YN )
are stochastically independent and identically distributed. Then the regression quantities just in-
troduced may be interpreted as point estimators of theoretical quantities related to the distribution
of (X,Y ) := (X1, Y1). On the one hand, X , Y , SX = ‖X̃‖/

√
N − 1 and SY = ‖Ỹ ‖/

√
N − 1

are estimators of IE(X), IE(Y ), Std(X) and Std(Y ), respectively. Furthermore, 〈X̃, Ỹ 〉/(N−1)
and ρ̂ are estimators of Cov(X,Y ) and Corr(X,Y ), respectively.

Permutation tests. To verify a true association between X- and Y -values, one may conduct a
permutation test with the test statistic T (X,Y ) := 〈X,Y 〉 or T (X,Y ) := 〈X̃, Ỹ 〉 = 〈X,Y 〉−
N X Y . Since Y is invariant under permutations of Y , the resulting p-values are identical in both
cases. Moreover, Π̃Y = ΠỸ , and Exercise 6.9 implies the equations

IE
(
〈X̃,ΠỸ 〉

∣∣X,Y
)

= 0 and Var
(
〈X̃,ΠỸ 〉

∣∣X,Y
)

=
‖X̃‖2‖Ỹ ‖2

N − 1
.

Hence one could also use the standardised test statistic T (X,Y ) :=
√
N − 1 ρ̂. Indeed, Theo-

rem A.13 in Section A.9 of the appendix justifies the following approximations:

π` ≈ Φ
(√
N − 1 ρ̂

)
and πr ≈ Φ

(
−
√
N − 1 ρ̂

)
whenever maxi=1,...,N |Xi−X|/‖X̃‖ and maxi=1,...,N |Yi−Y |/‖Ỹ ‖ are sufficiently small. This
is admittedly somewhat vague, but the approximations are a good first step before computing exact
(Monte-Carlo) p-values.

Remark 8.18 (â and b̂ as estimators and a classical test). Suppose, X1, X2, . . . , XN are fixed
numbers, for instance, doses or concentrations of a certain substance. Further let

Yi = a∗ + b∗Xi + εi for 1 ≤ i ≤ N

with unknown parameters a∗, b∗ ∈ R and random errors ε1, ε2, . . . , εn such that IE(εi) = 0 for
1 ≤ i ≤ n. Under these assumptions, â and b̂ are unbiased estimators of a∗ and b∗:

IE(â) = a∗ and IE(̂b) = b∗.

To prove this we write Y = a∗1 + b∗X + ε, Y = a∗ + b∗X + ε and Ỹ = b∗X̃ + ε − ε1. In
particular,

b̂ =
〈X̃, Ỹ 〉
‖X̃‖2

= b∗ +
〈X̃, ε− ε1〉
‖X̃‖2

= b∗ +
〈X̃, ε〉
‖X̃‖2

,

because 〈X̃,1〉 = 0. Consequently IE(̂b) = b∗, since IE〈X̃, ε〉 =
∑N

i=1 X̃i IE(εi) = 0. Further-
more,

â = Y − b̂X = a∗ + (b∗ − b̂)X + ε,

so IE(â) = a∗, since IE(b∗ − b̂) = IE(ε) = 0.
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Under the stronger assumption that ε1, ε2, . . . , εn are stochastically independent with distribution
N (0, σ2), σ > 0 unknown, √

n− 1 ρ̂√
1− ρ̂2

∼ tn−2 if b∗ = 0.

This result may be proved with similar arguments as in the proof of Theorem 4.3. It implies a
classical test of R. A. Fisher: The null hypothesis that b∗ = 0 is rejected at level α if

√
n− 1 |ρ̂|√
1− ρ̂2

≥ tn−2;1−α/2.

These considerations are just a glimpse into the important and wide field of linear models and
regression methods.

Rank Correlation

The sample correlation coefficient ρ̂ quantifies the empirical linear association between X- and
Y -values. This is sometimes too restrictive. It could happen, for instance, that the Y -values may
be very well approximated by a monotone increasing or monotone decreasing function of the X-
values, but this monotonic function is non-linear. In such situations one could replace the original
data vectors X and Y with their rank vectors RX and RY , respectively. Since the sample mean
of a rank vector for N observations is always (N + 1)/2 (see Exercise 3.6), we obtain Spearman’s
rank correlation coefficient

ρ̂(Sp) = ρ̂(Sp)(X,Y ) :=
〈RX ,RY 〉 −N(N + 1)2/4√

‖RX‖2 −N(N + 1)2/4
√
‖RY ‖2 −N(N + 1)2/4

.

If both the X-values and the Y -values are pairwise different, then ‖RW ‖2 − N(N + 1)2/4 =∑N
i=1 i

2 −N(N + 1)2/4 = N(N2 − 1)/12 for W = X,Y , whence

ρ̂(Sp) =
〈RX ,RY 〉 −N(N + 1)2/4

N(N2 − 1)/12
.

In general we know that ‖RW ‖2 ≤
∑N

i=1 i
2 (see Exercise 4.20), whence

|ρ̂(Sp)| ≥
∣∣〈RX ,RY 〉 −N(N + 1)2/4

∣∣
N(N2 − 1)/12

.

Again one could conduct permutation tests based on the test statistic T (X,Y ) := 〈RX ,RY 〉.
Approximations for the corresponding p-values are given by

π` ≈ Φ
(√
N − 1 · ρ̂(Sp)

)
and πr ≈ Φ

(
−
√
N − 1 · ρ̂(Sp)

)
,

provided that maxi=1,...,N |RW,i − (N + 1)/2|/‖RW ‖ is sufficiently small for W = X,Y .

Remark 8.19 (Properties of ρ̂(Sp)). Spearman’s rank correlation coefficient has some properties
which distinguish it from the sample correlation coefficient ρ̂:
• ρ̂(Sp) is invariant under strictly monotone increasing transformations of the X-values or the
Y -values.
• ρ̂(Sp) equals ξ ∈ {−1, 1} if and only if

sign(Yi − Yj) = ξ · sign(Xi −Xj) for 1 ≤ i < j ≤ N.
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This is equivalent to Yi = ξ ·u(Xi) for a strictly monotone increasing function u : [X(1), X(N)]→
R.
• ρ̂(Sp) is robust against a few outliers in the raw data.
• One can compute ρ̂(Sp) for ordinal rather than numerical variables.

Remark 8.20 (ρ̂(Sp) as an estimator). Suppose that the observations (Xi, Yi) are stochastically
independent and identically distributed, where X = X1 and Y = Y1 have continuous distribution
functions F and G, respectively. Then RX,i/(N +1) and RY,i/(N +1) may be viewed as proxies
for F (Xi) and G(Yi), respectively, and ρ̂(Sp) is an estimator for the correlation

ρ(Sp) := Corr
(
F (X), G(Y )

)
.

The transformations X 7→ F (X) and Y 7→ G(Y ) yield a random variable
(
F (X), G(Y )

)
with

values in [0, 1] × [0, 1], and both components are uniformly distributed on [0, 1]. In particular,
IE(F (X)) = IE(G(Y )) = 1/2 and Var(F (X)) = Var(G(Y )) = 1/12, so

ρ(Sp) = 12
(
IE
(
F (X)G(Y )

)
− 1/4

)
.

Example 8.21. We consider once more Example 6.4 with professional baseball players. For a
generic player let X be the number of years he is playing in the professional league and Y his
annual salary (in kUSD). Both variables are now viewed as numerical.
The N = 263 observations yielded the regression parameters â ≈ 260.234 (unit: kUSD), b̂ ≈
37.705 (unit: kUSD/year) and ρ̂ ≈ 0.401. Here one may interpret b̂ as mean increase of income
per year. Figure 8.2 shows a scatter plot of these data plus regression line. The sample meansX , Y
and the lines through (X,Y ) with slopes ±SY /SX are indicated as well. As probably expected,
the slope b̂ is positive, but the association between X and Y seems to be nonlinear rather than
linear. The measure of determination has the relatively low value ρ̂2 ≈ 0.161.
The sample correlation ρ̂ is invariant under monotone increasing linear transformations of the
X-values or Y -values. But it may change under monotone increasing nonlinear transformations.
For instance, if we replace Y with log10(Y ), then we obtain the larger value ρ̂ ≈ 0.537 and
ρ̂2 ≈ 0.289; see Figure 8.3. Still the scatter plot indicates a monotone but nonlinear relationship
between X and log10(Y ).
Now let’s consider rank correlation: Neither the X-values nor the Y -values are pairwise different.
Here ‖RX‖2 = 6089630, ‖RY ‖2 = 6098224 and 〈RX ,RY 〉 = 5528264. Moreover, N(N +
1)2/4 = 263 · 2642/4 = 4582512. Consequently,

ρ̂(Sp) =
(5528264− 4582512)√

(6089630− 4582512)(6098224− 4582512)
≈ 0.626

and (ρ̂(Sp))2 ≈ 0.392. Interestingly Spearman’s rank correlation coefficient is larger than the
sample correlation coefficient for the original variables X and Y (or log10(Y )). Figure 8.4 shows
a scatter plot of the rank pairs (RX,i, RY,i) plus regression line.
Computing the standardised correlation coefficients indicates already that the empirical positive
correlation betweenX and Y is significant: For the raw data,

√
N − 1 ρ̂ ≈ 6.4852, after replacing

Y with log10(Y ) we even get
√
N − 1 ρ̂ ≈ 8.698, and

√
N − 1 ρ̂(Sp) ≈ 10.129. In all three cases,

corresponding two-sided (Monte-Carlo) p-values with m ≥ 9′999 simulations turned out to be no
larger than 10−5.

8.6 Exercises

Exercise 8.1 (Groups). Let (G, ∗) be an arbitrary group and h any element of G. Show that the
mappings g 7→ g ∗ h, g 7→ h ∗ g and g 7→ g−1 are bijective from G to G.
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Figure 8.2: Salary versus years of employment for baseball players.

Now let #G <∞, and letG be uniformly distributed on G. Explain why each of the three random
variables h ∗G, G ∗ h and G−1 is uniformly distributed on G, too.

Exercise 8.2. Each vector y ∈ {0, 1}N is uniquely determined by the set
{
i ∈ {1, 2, . . . , n} :

yi = 1
}

. Suppose that 1 ≤ y+ =
∑N

i=1 yi < N . Let Π be uniformly distributed on the set SN .
Show that

{
i ∈ {1, 2, . . . , N} : yΠ(i) = 1

}
and

{
Π(1), . . . ,Π(y+)

}
are identically distributed,

namely, uniformly on the set of all
(
N
y+

)
subsets of {1, 2, . . . , N} with exactly y+ elements.

Exercise 8.3 (Moments of the runs test statistic). Prove the following (in)equalities for the runs
test statistic T (y) =

∑n−1
i=1 1[yi 6=yi+1], y ∈ {0, 1}N :

IE(T (Πy)) = 2y+(N − y+)/N ≤ N/2,

Var(T (Πy)) = IE(T (Πy))
(
IE(T (Πy))− 1

)
/(N − 1),

Std(T (Πy)) ≤ IE(T (Πy))/
√
N ≤

√
N /2.

Exercise 8.4 (Good vintages and exchangeability). A vintage is considered to be good if it is
better than both its predecessor and its successor. Among wine experts it is well-known that about
every third vintage is a good one. At first glance this indicates a mysterious three-year rhythm.
But there is also a rather simple explanation:
Let Y0, Y1, . . . , YN , YN+1 be random variables which are almost surely pairwise different. Sup-
pose that the tuple of these N + 2 random variables is exchangeable (in distribution). Show that
the random variable Z :=

∑N
i=1 1[Yi>max(Yi−1,Yi+1)] satisfies

IE(Z/N) = 1/3

and
Std(Z/N) = O(N−1/2).
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Figure 8.3: log10(Salary) versus years of employment for baseball players.

Exercise 8.5 (Linear permutation statistics, II). As in Exercise 6.9 let T :=
∑N

i=1 aibΠ(i) with
fixed vectors a, b ∈ RN and a random permutation Π with uniform distribution on SN .
(i) Show that the distribution of T remains unchanged if we interchange the vectors a and b or
permute the components of a or b.
(ii) Suppose that a, b ∈ {0, 1}N . Show that T has a hypergeometric distribution with parameters
N , a+ =

∑N
i=1 ai and b+ =

∑N
i=1 bi. Now deduce from Exercise 6.9 that

IE(T ) =
a+b+
N

and Var(T ) =
a+b+(N − a+)(N − b+)

N2(N − 1)
.

Exercise 8.6. Prove Lemma 8.11.

Exercise 8.7. Prove Equation (8.1) by means of Exercise 8.5 (ii).

Exercise 8.8 (Order of siblings and personality). It is a well-known stereotype that within fam-
ilies with several children the youngest kids are often the most comic ones. To test this working
hypothesis one could obtain the data of n families of comedians with at least one sibling. Then
the data set would consist of pairs (G1,K1), (G2,K2), . . . , (Gn,Kn), where Gi ≥ 2 would be
the total number of kids in the family of the i-th comedian, and Ki ∈ {1, . . . , Gi} would specify
its order with respect to age. How could one test the working hypothesis?
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Figure 8.4: Rank(Salary) versus Rank(Years) for baseball players.



Appendix A

Complements

This appendix contains background information on some topics covered in the lecture notes.
Moreover it contains some material which is of interest for students who are planning to delve
further into statistics.

A.1 Hints for R

For statistical analyses and simulations as well as for the implementation of new procedures the
software and programming environment R [22] is very suitable. This is an open-source software
based on the programming language S which is available for all major operating systems.

Chapter I. The most important distributions are implemented in R, in each case by means of
four functions:

• dfamily(x, θ): Weight function (for discrete distributions) or density function (for absolutely
continuous distributions) at point x ∈ R;

• pfamily(x, θ): Distribution function at point x ∈ R;

• qfamily(u, θ): Quantile function at point u ∈ [0, 1];

• rfamily(n, θ): Simulation of n independent random variables.

Here family is a place holder for the explicit distribution family, and θ denotes the parameter(s):

• hyper (hypergeometric distributions): Hyp(N, `, n) corresponds to
hyper(·, `,N − `, n) or hyper(·,m = `, n = N − `, k = n)!

• binom (binomial distributions): Bin(n, p) corresponds to
binom(·, n, p) or binom(·, size = n, prob = p).

• norm (Normal distributions): N (µ, σ2) corresponds to
norm(·, µ, σ) or norm(·,mean = µ, sd = σ)!

• t (Student distributions): tk corresponds to
t(·, k) or t(·, df = k).

• gamma (Gamma distributions): Gamma(a, b) corresponds to
gamma(·, shape = a, scale = b) oder gamma(·, shape = a, rate = 1/b)!

Concerning Fisher’s exact test we refer to the hints for Chapter VII.

183
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Chapter II. The Clopper–Pearson confidence bounds for a binomial parameter p may be ob-
tained with the built-in function binom.test(·). Precisely,

binom.test(x = H, n = n, conf.level = 1− α)

yields (among other things) the (1 − α)-confidence interval
[
aα/2(H), bα/2(H)

]
for p, based on

the observation H ∼ Bin(n, p). The argument conf.level is optional with default 95%. The
one-sided confidence bounds may be obtained as follows:

binom.test(x = H, n = n, conf.level = 1− α, alternative = ′greater′)

yields the interval
[
aα(H), 1

]
and

binom.test(x = H, n = n, conf.level = 1− α, alternative = ′less′)

the interval
[
0, bα(H)

]
for p.

The function binom.test(·) has another optional parameter p with default 0.5. This is a hypotheti-
cal value of p which is to be tested. Precisely, for an arbitrary value po ∈ [0, 1] one may determine
p-values for the following testing problems:
Null hypothesis “p = po”, working hypothesis “p 6= po”:

binom.test(x = H, n = n, p = po).

Null hypothesis “p ≥ po”, working hypothesis “p < po”:

binom.test(x = H, n = n, p = po, alternative = ′less′).

Null hypothesis “p ≤ po”, working hypothesis “p > po”:

binom.test(x = H, n = n, p = po, alternative = ′greater′).

The chi-squared goodness-of-fit test may be carried out with the commands

chisq.test(x = X, p = po) or chisq.test(x = H, p = po).

Thus one may use the raw data vector X = (Xi)
n
i=1 or the vector H = (Hk)

K
k=1 of absolute fre-

quencies as first argument. By the way, the latter vectorH may be determined with the command
table(X). The argument p is optional with default (1/K)Kk=1. To compute a Monte-Carlo p-value
by means of m simulations, one can write

chisq.test(x = X, p = po, simulate.p.value = TRUE,B = m).

Chapter III. For a vector X = (Xi)
n
i=1 of real-valued observations, sort(X) yields the vector

(X(i))
n
i=1 of its order statistics. With range(X) one obtains the pair (X(1), X(n)). The empirical

distribution function F̂ may be plotted, for instance, with

plot.ecdf(X) or plot.ecdf(X, verticals = TRUE).

The sample γ-quantile q̂γ is obtained with

quantile(X, probs = γ, type = 2).

Here type = 2 indicates our convention to use the arithmetic mean of the smallest and largest
sample γ-quantile.
To draw confidence bands, the functions stepfun(·) and plot(stepfun(·)) might be useful. For
Monte-Carlo simulations in connection with confidence bands and elsewhere the function runif(·)
is essential. Precisely, runif(n) simulates a vector of n independent random variables with uniform
distribution on [0, 1].
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Chapter IV. Sample mean and sample standard deviation of a data vector X are obtained with
mean(X) and sd(X). The function

t.test(X, conf.level = 1− α)

yields the (1 − α)-confidence interval
[
X̄ ± tn−1;1−α/2SX/

√
n
]

for the underlying theoretical
mean. Similarly as with binom.test(·) one may specify the additional parameter alternative =
′greater′ or alternative = ′less′ to get one-sided bounds.
We mentioned already the function quantile(·) for sample quantiles; the sample median is also
implemented separately as median(·). The trimmed mean Xτ of X can be determined with
mean(X, trim = τ).
The median of absolute deviations (from the median) is implemented as mad(·), the inter quartile
range as IQR(·). We defined the range of X to be the difference X(n) − X(1), but range(X)
provides the pair(X(1), X(n)).
For a vectorX = Y −Z of observation differences, Wilcoxon’s signed-rank test may be executed
with the command wilcox.test(X) or wilcox.test(x = Y , y = Z, paired = TRUE). This function
yields the test statistic To(X) (!) and an exact p-value πz(X). However, all moduli |Xi| have
to be pairwise different and non-zero. Otherwise a warning is issued, and R uses a normal ap-
proximation. The confidence bounds for the centre of a symmetric distribution may be computed
in principle with wilcox.test(x = X, conf.int = TRUE), but for sample sizes n ≥ 50 certain
approximations are used.

Chapter V. For a data vectorX and a vector a = (ak)
K
k=0 of break points a0 < a1 < · · · < aK ,

the corresponding histogram is generated by means of{
hist(X, breaks = a, freq = TRUE) (Convention 1),

hist(X, breaks = a, freq = FALSE) (Convention 2).

The kernel density estimator f̂h with Gaussian kernelK = φmay be depicted on the interval [a, b]
with

density(X, bw = h, from = a, to = b).

Different kernel functions K may be specified with the optional argument kernel. They are all
standardised such that

∫∞
−∞K(y)y2 dy = 1.

Q-Q-Plots are easily implemented. In particular for Gaussian distributions one can also use the
function qqnorm(·).

Chapter VI. The multiple box-and-whiskers plot of K ≥ 2 data vectors X1, X2, . . . , XK can
be generated via

boxplot(X1,X2, . . . ,XK).

The single box plots are denoted with the numbers 1, 2, . . . ,K. With the optional parameter names
one may specify alternative annotations:

boxplot(X1,X2, . . . ,XK , names = g).

Here g is a vector of K numbers or character strings (in the latter case with quotation marks), for
instance g = c(′Basel′,′ Bern′,′ Chur′, . . .). If the data are provided as a numerical vector X and
a categorical vectorG with entries Gi ∈ {g1, g2, . . . , gK}, then

boxplot(X ∼ G)
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provides a multiple box-and-whiskers plot for the corresponding subvectors Xk = (Xi)i:Gi=gk ,
1 ≤ k ≤ K.
Suppose one wants to compute confidence bounds for the difference µ1 − µ2 of the means µ1 and
µ2 underlying two data vectors X1 and X2, respectively. Again the function t.test is applicable.
If one assumes identical standard deviations σ1 = σ2, then

t.test(x = X1, y = X2, alternative = . . . , conf.level = 1− α, var.equal = TRUE)

yields corresponding student confidence bounds. Welch’s method for arbitrary standard deviations
σ1, σ2 is applied when typing

t.test(x = X1, y = X2, alternative = . . . , conf.level = 1− α),

or one replaces var.equal = TRUE with var.equal = FALSE.

Chapter VII und VIII. With the command table(X,Y ) one can generate a contingency ta-
ble from categorical data vectors X and Y . To ensure that the potential values of Xi and Yi
are listed completely and in a specific order, one can replace the data vectors X and Y with
factor(X, levels = c(x1, x2, . . . , xK)) and factor(Y , levels = c(y1, y2, . . . , yL)), respectively.
Especially a two-by-two tableH may be analyzed with the commands fisher.test(H) or

fisher.test(H, alternative = . . . , conf.level = 1− α).

Alternatively one could write fisher.test(x = X, y = Y ) or

fisher.test(x = X, y = Y , alternative = . . . , conf.level = 1− α).

This yields a two-sided p-value with Fisher’s exact test for the null hypothesis that ρ = 1, com-
bined with a (1− α)-confidence interval for ρ.
Analogously, the chi-squared test for association may be applied with the command

chisq.test(H) or chisq.test(x = X, y = Y ).

These commands yield the numerical value of the chi-squared test statistic and an approximate
p-value via the chi-squared distribution with (K − 1)(L− 1) degrees of freedom. If some row or
column numbers are rather small, a corresponding warning is issued. The variant

chisq.test(. . . , simulate.p.value = TRUE,B = m)

leads to a Monte-Carlo p-value for a permutation test with m pseudo-random permutations.
If one wants to implement a Monte-Carlo permutation test by oneself, one may use the function
sample(). The command sample(Y ) simulates a random permutation ΠY , and with sample(n)
one can simulate a random permutation Π ∈ Sn, represented as a tuple (Π(i))ni=1.
The parameters of the regression line for data vectors X,Y ∈ Rn are computed when typing
lm(Y ∼X).1 The corresponding correlation coefficients are provided by

cor(x = X, y = Y ) or cor(x = X, y = Y ,method = ′spearman′).

With cor.test(. . .) instead of cor(. . .) one obtains p-values for the null hypothesis that there is no
true association between X- and Y -values. In particular,

cor.test(x = X, y = Y ,method = ′spearman′, exact = TRUE)

performs an exact permutation test, provided the components of both X and Y are pairwise
different.

1The function lm(. . .) offers many more methods for so-called linear models.



A.2. AFFINE TRANSFORMATIONS OF RANDOM VARIABLES 187

A.2 Affine Transformations of Random Variables

Let X be a real-valued random variable with distribution function F , and let

Y = a+ bX

with constants a ∈ R and b > 0. This is equivalent to saying that

X =
Y − a
b

.

Since Y ≤ y if and only if X ≤ (y − a)/b, the distribution function G of Y is given by

G(y) := IP(Y ≤ y) = F
(y − a

b

)
.

The corresponding quantile functions F−1 and G−1 satisfy

G−1(u) = a+ bF−1(u)

for 0 < u < 1.
If F is given by a density f , i.e. F (x) =

∫ x
−∞ f(t) dt, then G is given by the density

g(y) :=
1

b
f
(y − a

b

)
.

In case of a continuous density f , this follows from computing G′ via the chain rule. In general,
with t(v) := (v − a)/b for v ∈ R,

G(y) =

∫ (y−a)/b

−∞
f(t) dt =

∫ y

−∞
f(t(v))t′(v) dv =

∫ y

−∞
f((v − a)/b)/b dv.

A.3 Weak Convergence of Distributions

For n = 1, 2, 3, . . . let Xn be a random variable with distribution Pn on Rd (equipped with its
Borel σ-field). Further let X be a random variable with distribution P on Rd.

Definition A.1 (Convergence in distribution; weak convergence). One says that “Xn converges
in distribution to X (as n→∞)” and writes

Xn →L X

if
lim
n→∞

IE(f(Xn)) = IE(f(X))

for any bounded and continuous function f : Rd → R.
This is equivalent to the following statement about the distributions Pn: One says that “Pn con-
verges weakly to P (as n→∞)” and writes

Pn →w P

if
lim
n→∞

∫
f(x)Pn(dx) =

∫
f(x)P (dx)

for any bounded and continuous function f : Rd → R.
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In statistics, these facts are often stated as “Xn has asymptotic distribution P (as n → ∞)”.
Sometimes one also writes “Xn →L P ”.
To verify these statements, it suffices to consider functions f : Rd → R which are infinitely often
differentiable and have compact support. Here is yet another characterisation:
The sequence (Xn)n converges in distribution to X if and only if

lim sup
n→∞

IP(Xn ∈ A) ≤ IP(X ∈ A)

for arbitrary closed sets A ⊂ Rd. This is equivalent to the statement that

lim inf
n→∞

IP(Xn ∈ U) ≥ IP(X ∈ U)

for arbitrary open sets U ⊂ Rd.
In the special case d = 1, convergence in distribution and weak convergence may be characterised
by means of the distribution functions Fn and F of Xn and X , respectively:

(A.1) lim
n→∞

Fn(x) = F (x)

for any point x ∈ R at which F is continuous. If the distribution function F is continuous, then
property (A.1) is even equivalent to

lim
n→∞

sup
intervals B ⊂ R

∣∣Pn(B)− P (B)
∣∣ = 0.

A.4 Lindeberg’s Central Limit Theorem

The univariate case. The Central Limit Theorem specifies the vague statement that a sum of
independent random variables has approximately a Gaussian distribution if each single summand
has only small influence on the total sum.

Theorem A.2. Let Y1, Y2, . . . , Yn be stochastically independent random variables with IE(Yi) =
0 and

n∑
i=1

Var(Yi) =

n∑
i=1

IE(Y 2
i ) = 1.

Further let

L :=
n∑
i=1

IE
(
Y 2
i min(1, |Yi|)

)
.

Then
sup

intervals B⊂R

∣∣IP(Y ∈ B)−N (0, 1)(B)
∣∣ → 0 as L→ 0.

The quantity L measures the influence of the single summands Yi on the total sum. For instance,
if |Yi| ≤ κ almost surely for all indices i and a constant κ, then

L ≤
n∑
i=1

IE(Y 2
i κ) = κ.

The previous formulation of the Central Limit Theorem is similar in spirit to the versions of J.W.
Lindeberg2 and A.M. Ljapunov3 . Ljapunov considered the critical quantity

∑n
i=1 IE(|Yi|3) ≥ L.

2Jarl W. Lindeberg (1876-1932): Finnish mathematician.
3Alexander M. Ljapunov (1857-1918): Russian mathematician and physicist.
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Example A.3 (Binomial distributions). If X ∼ Bin(n, p), then the standardised quantity Y :=
(X−np)/

√
np(1− p) has approximately a standard Gaussian distribution as np(1−p)→∞. To

verify this, we write Y =
∑n

i=1 Yi with summands Yi := (Xi−p)/
√
np(1− p) and stochastically

independent, {0, 1}-valued random variables X1, X2, . . . , Xn, where IP(Xi = 1) = IE(Xi) = p,
so Var(Xi) = p(1− p). Obviously, |Yi| ≤ 1/

√
np(1− p), whence L ≤ 1/

√
np(1− p).

Example A.4 (Sample means). LetX1,X2, . . . ,Xn be stochastically independent and identically
distributed random variables with mean µ and standard deviation σ > 0. Then

Y := n1/2(X̄n − µ)/σ =
n∑
i=1

Yi

with Yi := n−1/2(Xi − µ)/σ, and

L = IE
((X1 − µ)2

σ2
min

(
1,
|X1 − µ|√

nσ

))
.

For fixed distribution of X1, the latter quantity converges to zero as n→∞.

The multivariate case. For a random vector Y = (Yk)k ∈ RK and a random matrix M =
(Mk`)k,` ∈ RK×L, their expectation is defined component-wise, i.e. IE(Y ) :=

(
IE(Yk)

)
k

and
IE(M) :=

(
IE(Mk`)

)
k,`

.

Theorem A.5. For n ∈ N let Yn =
∑n

i=1 Yni with stochastically independent random vectors
Yni ∈ RK such that IE(Yni) = 0 and IE

(
‖Yni‖2

)
< ∞. Suppose that the following two condi-

tions as satisfied as n→∞:

Σn :=

n∑
i=1

IE(YniY
>
ni ) → Σ

for a symmetric, positive semidefinite matrix Σ ∈ RK×K , and

Ln :=
n∑
i=1

IE
(
‖Yni‖2 min(1, ‖Yni‖)

)
→ 0.

Then Yn converges in distribution to a Gaussian random vector Y with mean 0 and covariance
matrix Σ.

The statement that a random vector Y ∈ RK is Gaussian with mean µ and covariance matrix
Σ may be circumscribed as follows: If we write Σ as a sum

∑K
k=1 λkuku

>
k with eigenvalues

λ1, . . . , λK ≥ 0 and orthonormal eigenvectors u1, . . . ,uK , then Y has the same distribution as
µ+

∑K
k=1

√
λk Zk uk with independent, standard Gaussian random variables Z1, . . . , ZK ∈ R.

Example A.6 (Multinomial distributions). For n ∈ N let Xn1, Xn2, . . . , Xnn be stochastically
independent random variables with values in {1, 2, . . . ,K}, where IP(Xni = k) = pnk > 0 for
1 ≤ k ≤ K. Then Hn = (Hnk)

K
k=1 with Hnk := #{i ≤ n : Xni = k} follows a multinomial

distribution with parameters n and pn = (pnk)
K
k=1 ∈ (0, 1)K .

Suppose that the sequence (pn)n converges to a probability vector p = (pk)
K
k=1 ∈ [0, 1]K , where

lim
n→∞

min
k=1,2,...,K

npnk = ∞.

Then the random vector
Yn :=

(Hnk − npnk√
npnk

)
k
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converges in distribution to a Gaussian random vector Y with mean 0 and covariance matrix

Σ := I −√p√p>,

where
√
p :=

(√
pk
)K
k=1

. This particular limit distribution may be described as follows: If we
complement the unit vector

√
p to an orthonormal basis b1, b2, . . . , bK−1,

√
p of RK , then Y has

the same distribution as
K−1∑
j=1

Zjbj

with independent, standard Gaussian random variables Z1, Z2, . . . , ZK−1.
That Yn converges in distribution to Y follows from the Central Limit Theorem. For Yn =∑n

i=1 Yni with the independent random vectors

Yni :=
(1[Xni=k] − pnk√

npnk

)
k

which have the following properties:

IE(Yni) = 0, IE(YniY
>
ni ) = n−1

(
I −√pn

√
pn
>),

and

‖Yni‖ ≤ κn :=

√(
min

k=1,2,...,K
npnk

)−1
+ n−1.

In particular, Σn = I − √pn
√
pn
> converges to Σ, and Ln ≤ Spur(Σn)κn converges to 0 as

n→∞.

A.5 Fubini’s Theorem

Fubini’s4 theorem is a general result from measure theory. Here we restrict ourselves to a version
involving independent random variables.
Let Z1 and Z2 be stochastically independent random variables with values in measurable spaces
(Z1,B1) and (Z2,B2), respectively. Further let H = h(Z1, Z2) with a measurable function h :
Z1 ×Z2 → R such that h ≥ 0 or IE(|H|) <∞. For fixed points zj ∈ Zj let

h1(z1) := IE(h(z1, Z2)) and h2(z2) := IE(h(Z1, z2)).

Fubini’s theorem says that for j = 1, 2, the set Bj of all zj ∈ Zj such that hj(zj) is well-defined,
satisfies IP(Zj ∈ Bj) = 1, and

IE(H) = IE(h1(Z1)) = IE(h2(Z2)).

Instead of hj(zj) one often writes IE(H |Zj = zj), and hj(Zj) is often written as IE(H |Zj).
Thus

IE(H) = IE
(
IE(H |Zj)

)
.

In particular for events A which can be defined in terms of Z1 and Z2,

IP(A) = IE
(
IP(A |Z1)

)
= IE

(
IP(A |Z2)

)
.

4Guido Fubini (1879-1943): Italian mathematician.
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A.6 Jensen’s Inequality

Jensen’s5 Inequality is one of the most important inequalities in probability theory and analysis.
We consider a random variable X with values in an interval J ⊂ R and finite expectation IE(|X|).
Then IE(X) is necessarily a number in J , and for any convex function ψ : J → R,

IE(ψ(X)) ≥ ψ(IE(X)).

If ψ is even strictly convex, then

IE(ψ(X)) > ψ(IE(X)) or IP(X = IE(X)) = 1.

Proof of Jensen’s inequality. A function ψ : J → R is called convex if for arbitrary x0, x1 ∈ J
and λ ∈ [0, 1],

ψ((1− λ)x0 + λx1) ≤ (1− λ)ψ(x0) + λψ(x1).

One calls ψ strictly convex if the preceding inequality is strict whenever x0 6= x1 and 0 < λ < 1.
Suppose that µ := IE(X) equals a := inf(J) or b := sup(J). This implies that IP(X = µ) = 1,
and the stated inequality is trivial. Hence let a < µ < b. One can derive from convexity of ψ that
the function

J \ {µ} 3 x 7→ ψ(x)− ψ(µ)

x− µ
is monotone increasing. In particular the two limits

ψ′(µ−) := lim
x↑µ

ψ(x)− ψ(µ)

x− µ
and ψ′(µ+) := lim

x↓µ

ψ(x)− ψ(µ)

x− µ

exist in R, where ψ′(µ−) ≤ ψ′(µ+). For any number ψ′(µ) ∈
[
ψ′(µ−), ψ′(µ+)

]
and x ∈ J

this implies the inequality
ψ(x) ≥ ψ(µ) + ψ′(µ)(x− µ).

Consequently,
IE(ψ(X)) ≥ IE

(
ψ(µ) + ψ′(µ)(X − µ)

)
= ψ(µ).

In case of a strictly convex function ψ, the difference ratio (ψ(x)−ψ(µ))/(x−µ) is even strictly
monotone increasing in x ∈ J \ {µ}, whence ψ(x) > ψ(µ) + γ(x − µ) for x ∈ J \ {µ}. Then
IE(ψ(X)) > ψ(µ), unless IP(X 6= µ) = 0.

A.7 Technical Details about Student Distributions

We first note that chi-squared distributions are special gamma distributions:

Theorem A.7. For any natural number k,

χ2
k = Gamma(k/2, 2).

The student distribution with k ∈ N degrees of freedom, tk, was defined as the distribution of

Z0

/√√√√1

k

k∑
i=1

Z2
i

with independent, standard Gaussian random variables Z0, Z1, . . . , Zk. With Theorem A.7 in
mind, one can extend this definition to non-integer parameters k:

5Johan Jensen (1859-1925): Danish mathematician and engineer.
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Definition A.8 (Student distributions in general). Student’s t distribution with k > 0 degrees of
freedom, denoted by tk, is defined as the distribution of

Z
/√

Gk/k

with stochastically independent random variables Z ∼ N (0, 1) and Gk ∼ Gamma(k/2, 2). Its
β-quantile is denoted with tk;β .

Now we derive and investigate the density functions and quantiles of these distributions tk:

Theorem A.9. For each k > 0, the student distribution tk has a density function fk given by

fk(x) =
Γ((k + 1)/2)√
kπΓ(k/2)

(
1 +

x2

k

)−(k+1)/2
.

For each x ∈ R,

lim
k→∞

fk(x) = φ(x),

and ∫ ∞
−∞

∣∣fk(x)− φ(x)
∣∣ dx = O(k−1/2).

Since student distributions are obviously symmetric around zero, they satisfy tk;1/2 = 0 and

tk;1−β = −tk;β.

From the last statement of Theorem A.9 and strict monotonicity of Φ one can easily deduce that

lim
k→∞

tk;β = Φ−1(β).

Furthermore, student quantiles and densities satisfy certain monotonicity properties with respect
to the parameter k > 0:

Theorem A.10. For 1/2 < β < 1, the quantile tk;β is strictly monotone decreasing in k > 0,
while fk(0) is strictly monotone increasing in k > 0.

Proof of Theorem A.7. Essentially we have to show that the random sum Y :=
∑k

i=1 Z
2
i /2 with

independent, standard Gaussian random variables Zi has a gamma distribution with parameters
k/2 and 1. That means,

(A.2) IP(Y ≤ y) = Γ(k/2)−1

∫ y

0
xk/2−1e−x dx for y > 0.

The random vector Z := (Zi)
k
i=1 has density function

φk(z) := Cke
−‖z‖2/2

on Rk, where Ck = (2π)−k/2. Now we use polar coordinates, i.e. we write z ∈ Rk \ {0} as
z = ru with radius r = ‖z‖ and directional vector u = r−1z. For functions h : [0,∞)→ [0,∞)
it is well-known that

∫
Rk h(‖z‖) dz = C ′k

∫∞
0 rk−1h(r) dr with a certain constant C ′k > 0. Hence
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for arbitrary y > 0,

IP(Y ≤ y) = Ck

∫
Rk

1[‖z‖2/2≤y]e
−‖z‖2/2 dz

= CkC
′
k

∫ ∞
0

rk−11[r2/2≤y]e
−r2/2 dr

= 2(k−1)/2CkC
′
k

∫ ∞
0

(r2/2)(k−1)/21[r2/2≤y]e
−r2/2 dr

= 2(k−1)/2CkC
′
k

∫ ∞
0

x(k−1)/21[x≤y]e
−x (2x)−1/2dx

= 2k/2−1CkC
′
k

∫ y

0
xk/2−1e−x dx.

Here in the second last step we employed the transformation x = r2/2, so r = (2x)1/2 and
dr = (2x)−1/2dx. As y → ∞, the probability IP(Y ≤ y) converges to 1, and we obtain the
formula 2k/2−1CkC

′
k = Γ(k/2)−1. This implies for fixed y > 0 the asserted equation (A.2).

Proof of Theorem A.9. We consider the random variable Z/
√
Ya/a with independent random

variables Z ∼ N (0, 1) and Ya ∼ Gamma(a, 1), where a := k/2. Stochastic independence
of Z and Ya and Fubini’s theorem imply that the distribution function Fk of Z/

√
Ya/a has the

following form:

Fk(x) := IP
(
Z
/√

Ya/a ≤ x
)

= IP
(
Z ≤ x

√
Ya/a

)
=

∫ ∞
0

IP
(
Z ≤ x

√
y/a
)
ga(y) dy

=

∫ ∞
0

Φ
(
x
√
y/a
)
ga(y) dy.

Here ga denotes the density function of Gamma(a, 1). But the derivative of Φ(x
√
y/a) with

respect to x equals φ(x
√
y/a)

√
y/a, so Φ(x

√
y/a) =

∫ x
−∞ φ(t

√
y/a)

√
y/a dt. Hence a further

application of Fubini’s theorem yields

Fk(x) =

∫ ∞
0

∫ x

−∞
φ(t
√
y/a)

√
y/a ga(y) dt dy

= Ck

∫ x

−∞

∫ ∞
0

y(k+1)/2−1e−(1+t2/k)y dy dt

= Ck

∫ x

−∞
(1 + t2/k)−(k+1)/2

∫ ∞
0

ỹ(k+1)/2−1e−ỹ dỹ dt

= C ′k

∫ x

−∞
(1 + t2/k)−(k+1)/2 dt

with Ck :=
(√
kπΓ(k/2)

)−1 and C ′k := Γ((k + 1)/2)Ck. Here in the second last step we used
the transformation y 7→ ỹ := (1+t2/k)y, and the last step involves the definition of Γ((k+1)/2).
Concerning the additional statements about the density functions fk,

IE(Y u
a ) =

Γ(a+ u)

Γ(a)
for u > −a.

This, together with the well-known identity Γ(b + 1) = bΓ(b), yields the equations IE(Ya) = a
and E(Y 2

a ) = (a+ 1)a, whence Var(Ya) = a. Now we may write

fk(0) =
Γ((k + 1)/2)√
kπΓ(k/2)

=
IE
(√

Ya/a
)

√
2π

,
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and this converges to φ(0) as k →∞. For∣∣IE(√Ya/a)− 1
∣∣ ≤ IE

(∣∣√Ya/a− 1
∣∣) ≤ IE(|Ya/a− 1|) ≤ Std(Ya/a) = 1/

√
a.

Now for an arbitrary fixed number x ∈ R one can write

fk(x) = fk(0) exp
(
−(k + 1) log(1 + x2/k)/2

)
= (φ(0) + o(1)) exp

(
−(k + 1)(x2/k +O(k−2))/2

)
= (φ(0) + o(1)) exp

(
−x2/2 +O(k−1)

)
→ φ(x) (k →∞).

Finally, to verify that
∫∞
−∞
∣∣fk(x)− φ(x)

∣∣ dx = O(k−1/2), we note first that∫ ∞
−∞

∣∣fk(x)− φ(x)
∣∣ dx =

∫
{fk>φ}

(
fk(x)− φ(x)

)
dx+

∫
{fk≤φ}

(
φ(x)− fk(x)

)
dx

= 2

∫
{fk≤φ}

(
φ(x)− fk(x)

)
dx

because
∫∞
−∞
(
fk(x)− φ(x)

)
dx = 0, and∫

{fk≤φ}

(
φ(x)− fk(x)

)
dx =

∫
{fk≤φ}

fk(x)
( φ(x)

fk(x)
− 1
)
dx ≤ sup

x∈R

φ(x)

fk(x)
− 1.

But

sup
x∈R

φ(x)

fk(x)
= sup

x∈R
exp
(
(k + 1) log(1 + x2/k)/2− x2/2

) φ(0)

fk(0)

= exp
(

sup
y≥0

(
(k + 1) log(1 + y/k)− y

)
/2
)/

IE
(√

Ya/a
)

= exp
((

(k + 1) log(1 + 1/k)− 1
)
/2
)/(

1 +O(a−1/2)
)

≤ exp((2k)−1)
/(

1 +O(k−1/2)
)

= 1 +O(k−1/2).

The proof of Theorem A.10 is essentially an application of the following lemma about gamma
random variables.

Lemma A.11. For a > 0 let Ya be a random variable with distribution Gamma(a, 1). For any
convex, non-linear function ψ : (0,∞) → R, the expectation IE(ψ(Ya/a)) is strictly monotone
decreasing in a > 0.

Proof of Lemma A.11. For x > 0 we have IP(Ya/a ≤ x) = Γ(a)−1
∫ ax

0 ya−1e−y dy. Differen-
tiating this with respect to x shows that Ya/a has density function

g̃a(x) := Γ(a)−1aaxa−1e−ax, x > 0.

Thus for fixed parameters 0 < a < b and arbitrary numbers x > 0,

ρ(x) :=
g̃b(x)

g̃a(x)
= C · (xe−x)b−a,

where C = C(a, b) > 0. This likelihood ratio ρ is continuous, and it is strictly monotone in-
creasing on (0, 1] and strictly decreasing on [1,∞) with limit 0 as x → 0 or x → ∞. Moreover,
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ρ(1) > 1 because otherwise
∫∞

0 g̃b(x) dx =
∫∞

0 ρ(x)g̃a(x) dx < 1. Hence there exist numbers
0 < x1 < x2 with

ρ(x)

{
> 1 for x ∈ (x1, x2),

< 1 for x ∈ (0,∞) \ (x1, x2).

Now we utilise that IE(Ya/a) = IE(Yb/b) = 1, so
∫∞

0 x(ρ(x) − 1)g̃a(x) dx = 0 =
∫∞

0 (ρ(x) −
1)g̃a(x) dx. Consequently,

IE(ψ(Yb/b))− IE(ψ(Ya/a)) =

∫ ∞
0

ψ(x)g̃a(x)(ρ(x)− 1) dx

=

∫ ∞
0

(ψ(x)− c− dx)(ρ(x)− 1)g̃a(x) dx

for arbitrary c, d ∈ R. If we choose c and d such that c+dx1 = ψ(x1) and c+dx2 = ψ(x2), then
it follows from convexity of ψ that

ψ(x)− c− dx

{
≤ 0 for x ∈ [x1, x2],

≥ 0 for x ∈ (0, x1] ∪ [x2,∞).

In particular, (ψ(x)−c−dx)(ρ(x)−1) ≤ 0 for arbitrary x > 0, so IE(ψ(Yb/b))−IE(ψ(Ya/a)) ≤
0. Equality may hold only if ψ(x) = c + dx for almost all x > 0. By convexity of ψ this would
be equivalent to ψ(x) = c+ dx for all x > 0.

Proof of Theorem A.10. Let Z and Ya be stochastically independent, where Z ∼ N (0, 1) and
Ya ∼ Gamma(a, 1) with a = k/2. Then Z/

√
Ya/a has distribution tk, and in the proof of

Theorem A.9 we saw that
fk(0) = IE

(√
Ya/a

)
/
√

2π.

According to Lemma A.11, this is strictly monotone increasing in k > 0, because −
√
x is strictly

convex in x ≥ 0.
Now we consider the distribution function Fk of tk at a fixed point t > 0. In the proof of Theo-
rem A.9 we showed that

Fk(t) = 1− IE
(
Φ
(
−t
√
Ya/a

))
.

Elementary calculations show that Φ(−t√y) is a strictly convex function of y ≥ 0. Thus it follows
from Lemma A.11 that Fk(t) is strictly monotone increasing in k > 0. For k′ > k this implies
that β = Fk(tk;β) < Fk′(tk;β), whence tk′;β < tk;β .

A.8 Consistency of Empirical Distribution Functions

The results about ‖F̂ − F‖∞ stated at the end of Chapter 3 are based on the theory of empirical
processes, a field at the intersection of probability theory and statistics. In particular, it is shown
there that for large sample sizes n, the stochastic process (the random function)

√
n(F̂ − F )

behaves essentially like
B ◦ F

with a Brownian bridgeB = (B(t))t∈[0,1]. The latter is a stochastic process with remarkable prop-
erties. For instance,B is continuous withB(0) = B(1) = 0, but it is nowhere differentiable. Such
results are beyond the scope of this book, but we illustrate them by means of a few simulations:
Figure A.1 shows for two samples of size n = 100 and n = 1000, respectively, from the Gaussian
distribution N (100, 152) the functions F and F̂ in the upper panels. In the lower panels one sees
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Figure A.1: Distribution functions F, F̂ and empirical processes
√
n(F̂ − F ) for n = 100 (left)

and n = 1000 (right).

√
n(F̂ − F ). The plots of F and F̂ show clearly the impact of the different sample sizes. But the

standardised process
√
n(F̂ − F ) looks rather similar in both situations.

Inequality 3.5 implies that
IE
(∥∥F̂ − F∥∥∞) = O

(
n−1/2

)
.

However, the proof of (3.5) is quite involved. Alternatively we shall derive a weaker inequality
but of similar type:

Theorem A.12. For arbitrary sample sizes n ∈ N, distribution functions F and constants c ≥ 0,

IP
(
‖F̂ − F‖∞ ≥ c

)
≤ e2 exp(−nc2).

This result and the subsequent proof are presented in the monograph of Shorack and Wellner [27].
In the fourth step of proof we employ a trick of J.H.B. Kemperman.

Proof of Theorem A.12. The proof consists of four steps.
1st step: According to Lemma 3.11 (b) it suffices to consider the case of a continuous distri-
bution function F . Then one easily verifies that sup(F̂ − F ) and − inf(F̂ − F ) are identi-
cally distributed; just replace all variables Xi with −Xi. Here we use the shorthand notation
sup(h) := supx∈R h(x) and inf(h) := infx∈R h(x). This leads to the following inequality:

IP
(
‖F̂ − F‖∞ ≥ c

)
= IP

(
sup(F̂ − F ) ≥ c or − inf(F̂ − F ) ≥ c

)
≤ 2 IP

(
sup(F̂ − F ) ≥ c

)
.

2nd step: Eventually we want to apply Lemma 6.9. Hence we consider independent random
variables X1, . . . , Xn, Xn+1, . . . , X2n with continuous distribution function F and define, in ad-
dition to F̂ , the empirical distribution function F̌ of the variables Xn+1, . . . , X2n. According to
Lemma 6.9, for arbitrary c ≥ 0,

IP
(
sup
(
F̂ − F̌ ) ≥ c

)
=

(
2n

n+ dnce

)/(2n

n

)
,



A.8. CONSISTENCY OF EMPIRICAL DISTRIBUTION FUNCTIONS 197

and now we shall show that the right hand side is no larger than

(e/2) exp(−nc2).

It suffices to consider the case c ≤ 1, so z := dnce ∈ {1, 2, . . . , n}. Then
(

2n
n+z

)/(
2n
n

)
is equal to

n!n!

(n+ z)!(n− z)!
= (1 + z/n)−1

z−1∏
i=1

n− i
n+ i

= exp
(
− log(1 + z/n) +

z−1∑
i=1

log
(1− i/n

1 + i/n

))
≤ exp

(
− log(1 + z/n)− 2

z−1∑
i=1

i/n
)

= exp
(
− log(1 + z/n)− (z − 1)z/n

)
= exp(z/n− log(1 + z/n)− z2/n)

≤ exp(1− log(2)− z2/n)

≤ (e/2) exp(−nc2).

The first inequality is based on the known identity log
(
(1−x)/(1+x)

)
= −2

∑∞
k=0 x

2k+1/(2k+
1) ≤ −2x for x ∈ [0, 1). In the second inequality we used the fact that x− log(1+x) is monotone
increasing in x ∈ [0, 1].
3rd step: Now we show that sup(F̂ − F ) tends to get larger if F is replaced with F̌ . Precisely,
let ψ : R → R be a monotone increasing and convex function, e.g. ψ(x) := max(x − b, 0) with
b ∈ R. Then

IE
(
ψ
(
sup(F̂ − F )

))
≤ IE

(
ψ
(
sup(F̂ − F̌ )

))
.

For F̂ (x)− F (x) may be viewed as conditional expectation

IE
(
F̂ (x)− F̌ (x)

∣∣X).
Here IE(· |X) means that X = (Xi)

n
i=1 is treated temporarily as a fixed vector, and we average

only over the potential values of (Xi)
2n
i=n+1. Thus

IE
(
ψ
(
sup(F̂ − F )

))
= IE

(
ψ
(

sup
x∈R

IE
(
F̂ (x)− F̌ (x)

∣∣X)))
= IE

(
sup
x∈R

ψ
(
IE
(
F̂ (x)− F̌ (x)

∣∣X)))
≤ IE

(
sup
x∈R

IE
(
ψ
(
F̂ (x)− F̌ (x)

) ∣∣X))
≤ IE

(
IE
(

sup
x∈R

ψ
(
F̂ (x)− F̌ (x)

) ∣∣∣X))
= IE

(
IE
(
ψ
(
sup(F̂ − F̌ )

) ∣∣∣X)))
= IE

(
ψ
(
sup(F̂ − F̌ )

))
.

Here the second and second last step rely on the fact that ψ(sup(h)) = sup(ψ ◦ h) because ψ is
non-decreasing and continuous. In the third step we used Jensen’s inequality, and the last step is
based on Fubini’s theorem.
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Final step: For fixed c > 0, arbitrary numbers b ∈ [0, c) and z ∈ R we have the inequality
1[z≥c] ≤ max(z − b, 0)/(c− b). Consequently

IP
(
sup(F̂ − F ) ≥ c

)
≤ 1

c− b
IE
(
max

(
sup(F̂ − F )− b, 0

))
≤ 1

c− b
IE
(
max

(
sup(F̂ − F̌ )− b, 0

))
=

1

c− b

∫ ∞
0

IP
(

max
(
sup(F̂ − F̌ )− b, 0

)
≥ t
)
dt

=
1

c− b

∫ ∞
b

IP
(
sup(F̂ − F̌ ) ≥ s

)
ds

≤ e/2

c− b

∫ ∞
b

exp(−ns2) ds.

Here we applied the result from the third step with the particular function ψ(z) := max(z −
b, 0). Then we applied the standard formula IE(Z) =

∫∞
0 IP(Z ≥ t) dt for nonnegative random

variables Z ≥ 0 and finally the exponential inequality from the second step. But exp(−ns2) ≤
exp(−nc2 − 2nc(s− c)) for arbitrary s ∈ R, whence

1

c− b

∫ ∞
b

exp(−ns2) ds ≤ 1

c− b

∫ ∞
b

exp(−2nc(s− c)) ds exp(−nc2)

≤ 1

c− b

∫ ∞
b−c

exp(−2nct) dt exp(−nc2)

=
exp(2nc(c− b))

2nc(c− b)
exp(−nc2).

Elementary calculations show that exp(x)/x ≥ exp(1)/1 = e for all x > 0. Hence if 2nc(c−b) =
1 and b ≥ 0, that means, b = c− 1/(2nc) ≥ 0, then

IP
(
‖F̂ − F‖∞ ≥ c

)
≤ e2 exp(−nc2).

The restriction b = c − 1/(2nc) ≥ 0 is equivalent to c2 ≥ 1/(2n). But for c2 ≤ 1/(2n),
the expression e2 exp(−nc2) ≥ exp(3/2) is greater than one, rendering the asserted inequality
trivial.

A.9 Normal Approximation of Linear Permutation Statistics

For two fixed vectors a, b ∈ RN and a permutation Π of {1, 2, . . . , N} drawn completely at
random let

T :=

N∑
i=1

aibΠ(i).

This random variable has the same distribution as
∑N

i=1 aΠ(i)bi. In particular, in Exercise 6.9 it is
shown that

IET = Nāb̄ and Var(T ) =

(
‖a‖2 −Nā2

)(
‖b‖2 −Nb̄2

)
N − 1

.

As shown in the following Theorem, the standardised random quantity

T̃ :=
T − IET

Std(T )

has approximately a standard Gaussian distribution under certain conditions on the vectors a and
b. Of course we assume that Std(T ) > 0, that means, a 6= (ā)Ni=1 and b 6= (b̄)Ni=1.
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Theorem A.13 (Hájek6).

sup
intervals B⊂R

∣∣IP(T̃ ∈ B)−N (0, 1)(B)
∣∣ → 0

as
maxi=1,...,N (ai − ā)2∑N

j=1(aj − ā)2
+

maxi=1,...,N (bi − b̄)2∑N
j=1(bj − b̄)2

→ 0.

This is a classical result from nonparametric statistics. Its proof is treated in detail in the mono-
graph of Hájek and Šidak [10]. Subsequently we sketch the essential considerations.

Sketch of proof for Theorem A.13. Without loss of generality let
∑N

i=1 ai =
∑N

i=1 bi = 0. For

T − IET =
N∑
i=1

(ai − ā)bΠ(i) =
N∑
i=1

(ai − ā)(bΠ(i) − b̄),

so we may replace a and b with (ai − ā)Ni=1 and (bi − b̄)Ni=1, respectively. Then the critical
quantities mentioned in the theorem are ‖a‖2∞/‖a‖2 and ‖b‖2∞/‖b‖2 with the maximum norm
‖ · ‖∞ and the usual Euclidean norm ‖ · ‖.
Now we represent the random permutation Π as follows: Let U1, U2, . . . , UN be stochastically
independent random variables with uniform distribution on [0, 1]. Then we define

Π(i) :=
N∑
j=1

1[Uj≤Ui] and Π̌(i) := dNUie.

In other words, Π contains the ranks of the random variables U1, U2, . . . , UN . The random
variables Π̌(1), Π̌(2), . . . , Π̌(N) are independent and uniformly distributed on {1, 2, . . . , N}.
Now we show that Ť :=

∑N
i=1 aibΠ̌(i)

and T differ by a small amount only. With elementary
calculations, similarly as in Exercise 6.9, one can show that

IE
(
(Ť − T )2

)
= ‖a‖2 IE

(
(b

Π̌(1)
− bΠ(1))

2
)

− ‖a‖2 IE
(
(b

Π̌(1)
− bΠ(1))(bΠ̌(2)

− bΠ(2))
)

≤ 2‖a‖2 IE
(
(b

Π̌(1)
− bΠ(1))

2
)
.

The latter inequality is just a consequence of the Cauchy–Schwarz inequality. On the other hand,
Ť is a sum of independent random variables with

IE(Ť ) = 0 and Var(Ť ) = ‖a‖2‖b‖2/N =
N − 1

N
Var(T ).

Without loss of generality one may arrange the components of b such that b1 ≤ b2 ≤ · · · ≤ bN .
Then it follows from Lemma A.14 below that

IE
(
(b

Π̌(1)
− bΠ(1))

2
)
≤ 23/2‖b‖∞‖b‖/N,

whence
IE
(
(Ť − T )2

)
Var(Ť )

≤ 25/2‖b‖∞/‖b‖.

6Jaroslav Hájek (1926-1974): Czech mathematician who contributed substantially to mathematical statistics.
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All in all these considerations show that

T

Std(T )
=

√
N

N − 1

T

Std(Ť )
=

√
N

N − 1

Ť

Std(Ť )
+R

with IE(R2) = O
(
‖b‖∞/‖b‖

)
. With the Central Limit Theorem one can show that the ran-

dom variable Ť /Std(Ť ) has asymptotically a standard Gaussian distribution as ‖a‖∞/‖a‖ and
‖b‖∞/‖b‖ tend to 0. Thus the same conclusion is true for T/ Std(T ).

Lemma A.14 (Hájek 1961). For Π and Π̌ as in the proof of Theorem A.13 and arbitrary vectors
b ∈ Rn with b1 ≤ b2 ≤ · · · ≤ bN ,

IE
(
(b

Π̌(1)
− bΠ(1))

2
)
≤ 23/2 max

i=1,...,N
|bi − b̄|

( N∑
i=1

(bi − b̄)2
)1/2/

N.

Proof of Lemma A.14 in a special case. We prove this lemma only in case of b = (1[i>q])
N
i=1

with a number q ∈ {1, . . . , N − 1}. For the general case we refer to the original paper of Hájek
(1961) or the monograph of Hájek and Šidak [10].
For symmetry reasons, the N random pairs

(
Π(i), Π̌(i)

)
=
(
Π(i), dNUie

)
, 1 ≤ i ≤ N , are

identically distributed. In case of Π(i) = j, bΠ(i) = 1[j>q] and bΠ̌(i) = 1[U(j)>q/N ]. Consequently

IE
(
(b

Π̌(1)
− bΠ(1))

2
)

= IE
( 1

N

N∑
i=1

(b
Π̌(i)
− bΠ(i))

2
)

= IE
( 1

N

N∑
j=1

(1[U(j)>q/N ] − 1[j>q])
2
)
.

With elementary considerations one can show that

1

N

N∑
j=1

(1[U(j)>q/N ] − 1[j>q])
2 = |Ĝ(q/N)− q/N |

with the empirical distribution function Ĝ(v) := N−1#{i : Ui ≤ v} of the uniform random
variables Ui. Consequently,

IE
(
(b

Π̌(1)
− bΠ(1))

2
)

= IE
(
|Ĝ(q/N)− q/N |

)
≤ Std

(
Ĝ(q/N)

)
=
√
q(1− q/N)/N

=
( N∑
i=1

(bi − b̄)2
)1/2/

N.

Moreover,
max

i=1,...,N
|bi − b̄| = max(q/N, 1− q/N) ≥ 1/2.

Thus our special vector b satisfies the asserted inequality with 2 instead of 23/2.
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