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* One guestion: Would you be concerned if dr,oppihg a
small fraction of data changed substantive conclusions?

* Challenge: Too expensive to check every data subset
 Our Solution: a fast, automated, accurate approximation

 E.g.In astudy of microcredit with ~16,500 data points, we
find a single data point that drives the sign of the effect
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 How should we drop data subsets?

 Why Is dropping data subsets computationally
expensive?

* We provide a fast & automatic approximation
 Many analyses are robust but some aren't

* Here non-robustness isn't just a product of gross
outliers, large p-values, heavy tails, etc.
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* Any useful data analysis should be sensitive to some
change in the data

 What types of sensitivity concern us”? Varies by problem

* Let's look at economics (e.g. because of the important
applications and wondertul reproducibility)

 Report a convenient proxy (e.g. mean)

« Small fractions of data often missing not-at-random
e Policy population difterent from analyzed population
 Models are necessarily misspecified

* |n all these cases, we'd be concerned it dropping a small
fraction of data changed our conclusions

e Concerns not specific to economics
 Even if doesn't bother you, should be up front about it
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Dropping data & computational cost

« Might worry if removing small fraction a € (0,1) of data:
« Changed sign of effect
* Changed significance of effect
 Changed both sign and significance, etc.

e Define
 Maximum Influence Perturbation: largest possible
change by dropping at most 100« % of the data
 Most Influential Set: data dropped to achieve MIP
* Perturbation-Inducing Proportion: Min data proportion
to achieve a certain change (or NA if none)
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Dropping data & computational cost

Might worry if removing small fraction a € (0,1) of data:
« Changed sign of effect

* Changed significance of effect

 Changed both sign and significance, etc.

4

Define

 Maximum Influence Perturbation: largest possible
change by dropping at most 100 « % of the data

 Most Influential Set: data dropped to achieve MIP

* Perturbation-Inducing Proportion: Min data proportion
to achieve a certain change (or NA if none)

How to find Maximum Influence Perturbation: re-run data

analysis w

Example:
e |f analysi

ith every appropriate subset dropped

16,000 data points, a = 0.001 = >1053 re-runs

s takes 1 second, check takes >1046 years
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* Our approximation:
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e Can re-run regression to check directly
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e Simulations from linear model with Gaussian noise

Y = 01, + €,, €n g N(0,02), =z, g N(0,0%), 0=-1
e Can we flip sign of 0 by dropping some of 10,000 points?
e Signal = size of change of interest: A =6

* Noise = estimate of the (scaled) asymptotic std dev: =
12.5- Proportion 9 X

O¢

' : | removed
Sign & Significance
10.0- significe fe-01
1e-02
7.5- I
O ¢ 1e-03
5.0+ 16-04
* |ssue: low signal-to-noise ratio
2.9 * Not decisive: misspecification,
means, heavy tails
O ; . . . . . .
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Oregon Medicaid Study

Small p-value is not decisive

Finkelstein et al 2012: again, fantastic reproducibility!

Lottery in Oregon; winners could sign up for Medicaid
Effect of lottery on health

 E.g. after one year, # days no impaired activity over
past 30 days

>21,000 data points (survey responders)
o0 < 0.01 for a positive effect

* But dropping 11 points (0.05%) changes significance
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Cash transfers

* Can be robust! Removing outliers isn’'t a panacea
* Angelucci and De Giorgi (2009): awesomely reproducible!

* Direct effect of cash transfers for poor households on
household consumption

e “Spillover” effect: non-poor households in same village
* Poor households, >10,000 data points

 Must drop 4-10% data to change sign/significance/both
* Spillover, >4,000 data points

e Original analysis deleted households with consumption
greater than 10,000 units (i.e. largest response)

e Still sensitive: can drop 3 points to change significance

 We show: in linear regression, influence score = residual
times leverage
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Our approximation is local; complementary to global

checks [Leamer 1984, 1985; Sobol 2001; Saltelli 2004; He et al. 1990; Masten
and Poirier 2020]

Complementary to other types of robustness (including
Huber or tailored checks)

» & to robustification procedures

A growing literature on approximate cross-validation and

use of influence functions for practical checks [Obuchi and

Kabashima, 2016, 2018; Beirami, Razaviyayn, Shahrampour, Tarokh 2017; Rad and
Maleki 2020; Wang, Zhou, Lu, Maleki, Mirrokni 2018; Koh and Liang 2017; Koh, Ang,
Teo, and Liang 2019; Giordano, Stephenson, Liu, Jordan, Broderick 2019;
Stephenson, Broderick 2020; Stephenson, Udell, Broderick 2020; Ghosh™,
Stephenson®, Nguyen, Desphande, Broderick 2020]

e (Cf. the classical “infinitesimal jackknife” [Jaeckel 1972; Clarke
1983]
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 We present a metric to check it there is a small fraction of
data you can drop to change conclusions

Paper: T Broderick, R Giordano, R Meager “An Automatic

Finite-Sample Robustness Metric: Can Dropping a Little

Data Change Conclusions?” 2020
https://arxiv.org/abs/2011.14999

Code, readme, and examples:
https://github.com/rgiordan/zaminfluence

Try it out on your data analysis and email us!
tbroderick@mit.edu,
rgiordan(@mit.edu,
r.meager@lse.ac.uk

Aside: “Transparency and Reproducibility in Artificial
Intelligence,” Nature Matters Arising, 2020.



Try 1t out!

 We present a metric to check it there is a small fraction of
data you can drop to change conclusions

* Paper: T Broderick, R Giordano, R Meager “An Automatic
Finite-Sample Robustness Metric: Can Dropping a Little
Data Change Conclusions?” 2020

https://arxiv.org/abs/2011.14999

 Code, readme, and examples:

https://github.com/rgiordan/zaminfluence

e See also:
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R Giordano, T Broderick, Ml Jordan. Linear Response Methods for
Accurate Covariance Estimates from Mean Field Variational Bayes. NeurlPS
2015.

R Giordano, T Broderick, Ml Jordan. Covariances, Robustness, and
Variational Bayes. JMLR 2018.

R Giordano, W Stephenson, R Liu, Ml Jordan, T Broderick. A Swiss Army
infinitesimal jackknife. AISTATS 2019.



