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Summary

� Today plants often flower earlier due to climate warming. Herbarium specimens are excel-

lent witnesses of such long-term changes. However, the magnitude of phenological shifts

may vary geographically, and the data are often clustered. Therefore, large-scale analyses of

herbarium data are prone to pseudoreplication and geographical biases.
� We studied over 6000 herbarium specimens of 20 spring-flowering forest understory herbs

from Europe to understand how their phenology had changed during the last century. We

estimated phenology trends with or without taking spatial autocorrelation into account.
� On average plants now flowered over 6 d earlier than at the beginning of the last century.

These changes were strongly associated with warmer spring temperatures. Flowering time

advanced 3.6 d per 1°C warming. Spatial modelling showed that, in some parts of Europe,

plants flowered earlier or later than expected. Without accounting for this, the estimates of

phenological shifts were biased and model fits were poor.
� Our study indicates that forest wildflowers in Europe strongly advanced their phenology in

response to climate change. However, these phenological shifts differ geographically. This

shows that it is crucial to combine the analysis of herbarium data with spatial modelling when

testing for long-term phenology trends across large spatial scales.

Introduction

Since the industrial revolution, anthropogenic global change
threatens species and ecosystems. Climate warming, in particular,
can cause shifts in the timing of annual life-history events of
plants and animals (Root et al., 2003; Menzel et al., 2006;
Cleland et al., 2007). Such phenological changes, including ear-
lier leaf-out or flowering of plants, are some of the most striking
large-scale biological responses to ongoing climate change
(Cleland et al., 2007). To understand why and how phenology shifts,
it is critical to infer which attributes of the environment are the
triggers (cues) or proximate causes (drivers) of life cycle events.
As their phenology links plants to their environments, changes in
the phenology can affect the local persistence and biotic interac-
tions of plants (Inouye, 2008; Willis et al., 2008; Wheeler et al.,
2015; Cerdeira Morellato et al., 2016). For instance, Willis et al.
(2008) found that plant species whose flowering time poorly
tracked temperature variation declined in abundance during the
last century. Conversely if leaf-out or flowering advances too
much, the risk of late-frost damage can increase (Wipf et al.,
2006; Inouye, 2008; Zohner et al., 2020). Unequal shifts of
interacting organisms in trophic interactions can result in pheno-
logical ‘mismatches’, for example when the timing of the activity
of consumers aligns less well with the availability of their
resources, or when the phenology of plants and pollinators shift

differently (Renner & Zohner, 2018; Visser & Gienapp, 2019).
Such mismatches can have severe demographic and evolutionary
consequences (reviewed e.g. in Renner & Zohner, 2018; Visser
& Gienapp, 2019). Changes in plant phenology can even influ-
ence ecosystem functions such as productivity or carbon cycling
(Menzel et al., 2006; Cleland et al., 2007; Piao et al., 2019).

When studying phenological changes over time, we should
keep in mind that phenology, and magnitudes of phenological
responses to climate change, not only vary among species but also
vary across space. At smaller scales, that is within regions or local
sites, phenology can vary because of microclimatic differences
(Hwang et al., 2011; Ward et al., 2018; Willems et al., 2021)
and, at larger scales, that is across broad regions, both (baseline)
phenology as well as phenological responses are expected to vary
because of macroclimatic variation, because the magnitudes of
climatic changes differ geographically (Klein Tank et al., 2002;
IPPC, 2019) and because phenological sensitivities to cues such
as temperature may differ between regions (Riihimäki &
Savolainen, 2004; Ibáñez et al., 2010; Zohner & Renner, 2014;
Prevéy et al., 2017; Kopp et al., 2020; Zohner et al., 2020).
Robust studies on phenology and climate change therefore
require a larger scale perspective, with spatial variation and auto-
correlation explicitly taken into account. However, many previ-
ous studies on plant phenological responses to climate change
have had a limited geographical scope (Pau et al., 2011).
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In this context, herbaria offer unique opportunities, because
they allow tracking phenology at large temporal as well as spatial
scales. Herbarium specimens are usually collected when plants
flower, and most herbarium sheets provide collection dates and
locations (Fig. 1). With many herbaria dating back to some 200
yr, and hundreds of millions of specimens worldwide, herbaria
are a tremendous treasure for studying phenology changes both
long term and large scale. Previous studies have indeed found
strong patterns of long-term phenology changes in herbarium
data (Primack et al., 2004; Miller-Rushing et al., 2006; Davis
et al., 2015; Willis et al., 2017; Lang et al., 2019; Park et al.,
2019; reviewed by Jones & Daehler, 2018), and they have also
demonstrated that phenology trends estimated from herbarium
data are comparable to those from field observations (Davis et al.,
2015; Jones & Daehler, 2018; Miller et al., 2021). However,
almost all previous studies have been carried out in the USA, and
there has been little work so far on herbaria and plant phenology
in Europe (but please refer to Robbirt et al., 2011; Diskin et al.,
2012; Molnar et al., 2012). Most previous studies also did not
consider geographic variation in phenology and spatial correla-
tion of herbarium samples (but please refer to Matthews &
Mazer, 2016; Park et al., 2019; Kopp et al., 2020).

In Europe, climatic conditions vary substantially across the
ranges of many plant species, especially from north to south, and

not only the overall timing of phenological events but also phe-
nological responses (i.e. sensitivities to cues or drivers) may differ
across this latitudinal gradient. For a similar climatic gradient in
the eastern USA, Park et al. (2019) found that long-term pheno-
logical responses estimated from herbarium specimens substan-
tially differed among climatic zones, with greater mean climate
sensitivities, as well as greater among-species variability in sensi-
tivities, in the warm and mixed-temperate climatic regions than
in the cool-temperate northeast and the Appalachians. Similarly,
for the Pacific Northwest region of North America, Kopp et al.
(2020) found that sensitivity to temperature was greater at low
elevations and in the maritime (western) regions.

Another problem with large-scale herbarium data is that they
are often, for historical reasons, strongly clustered, that is speci-
mens are more frequently collected where collectors live, and
around academic institutions (Daru et al., 2017). However,
when modelling across a spatial range, standard methods such as
linear regression ignore the spatial dependency between sampling
locations and treat all data points as independent. This assump-
tion is very likely to be not correct, as the proximity of spatial
locations is usually related to their environmental similarity
(Tobler, 1970), and, as explained above, this is certainly true for
climatic conditions. Ignoring spatial dependency, therefore,
results in pseudoreplication and it can strongly bias model results.

(a) (b)

*

Fig. 1 (a) Example of an herbarium specimen, with the collection date and location on the herbarium label. This Anemone nemorosawas flowering on
16 April (day of the year (DOY) = 107) in 1895, and it was collected in the Metzinger Wald forest close to Tübingen (lighter purple point in the map).
(b) Sampling locations of the 6131 herbarium specimens included in our analyses.
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The solution to this, spatial modelling with explicit incorporation
of spatial structure and therefore spatial autocorrelation, is com-
putationally challenging, and it has therefore hardly been used in
analyses of herbarium data. However, recent advances in statisti-
cal methods now allow modelling of these spatial data, for exam-
ple using stochastic partial differential equations (SPDE) and
integrated nested Laplace approximations (INLA), as imple-
mented in the R package R-INLA (Rue et al., 2017; Bakka et al.,
2018). It is therefore possible to take the next step in herbarium
studies and analyse large-scale phenology in relation to climate
change in a spatially explicit framework.

Here, we analysed long-term and large-scale trends in the flow-
ering time of 20 common forest understory wildflowers, and their
relationships with climate change, across Europe, using over a
century of herbarium data. We focused on early-flowering under-
story plants, because they have a very distinct phenology, with a
critical time window for flowering before the leaf-out of decidu-
ous trees. Because of this, they may be particularly sensitive to cli-
mate change and phenology shifts. Forest understory plants may
also be exposed differently to climate change because climate
warming is buffered under forest canopies (De Frenne et al.,
2019). In our analyses, we used R-INLA (Rue et al., 2009, 2017;
Bakka et al., 2018) to account for spatial clustering and autocor-
relation of climate and phenology data. We asked two main ques-
tions: (1) Did forest understory plants advance their flowering
phenology during the last c. 100 yr? (2) If yes, are these pheno-
logical shifts associated with climate change in Europe? We
answered both questions with or without accounting for spatial
correlation in the statistical models, and therefore also addressed
the question of how important doing this was for the results and
conclusions of our study.

Materials and Methods

Phenological data

We mined three large German herbaria and the Global Biodiver-
sity Information Facility (GBIF) for all European specimens of
20 common spring-flowering forest understory herbs (please refer
to Supporting Information Table S1). The three herbaria were at
the University of Tübingen (herbarium code TUB), University
of Jena (JE) and at the State Museum of Natural History in
Stuttgart (STU). Our criteria for including herbarium specimens
were that: (1) they had flowers, and that open flowers represented
at least 50% of the reproductive structures, (2) they had an exact
collection date and (3) information on the sampling location that
we could use to estimate GPS coordinates, and (4) they were col-
lected in Europe. In addition, we obtained all digital specimens
of the same 20 species from GBIF (2020) that were from Europe
and also had (1) an exact collection date and (2) GPS coordinates
of the sampling location, using the RGBIF package (Chamberlain
& Boettiger, 2017) in R (R Core Team, 2018). This resulted in
an initial 3930 specimens from the three herbaria and 3511 spec-
imens from GBIF, with the collection years ranging from 1807
to 2017. However, as reliable, gridded climate data were not
available before 1901 we decided to restrict our analyses to data

from 1901 onwards. Moreover, because there were only very few
specimens from outside of these limits, we truncated our data to
40° to 65° northern latitude and −5° to 30° longitude, covering
a broad geographic area in mainly central and northern Europe,
but also western and south-eastern Europe (Fig. 1a). We further
discarded all specimens with dates outside the normal flowering
range of our 20 study species (before day of the year (DOY) 50
and after DOY 200), because we suspected these to be recording
mistakes. Also, the GBIF data contained unusually many speci-
mens from 1 May and 1 June (DOYs 121 and 152, respectively),
which strongly indicated that they were from specimens without
exact collection dates that were arbitrarily assigned to the first day
of a month, and we excluded these data from our analyses. Lastly,
we discarded six datapoints for which the assigned elevation value
was below −10 m. Our final set of phenology data contained
6131 herbarium specimens, with 46–600 records per species
(Table S1).

Climate and elevation data

For associating plant phenology variation with long-term tempo-
ral and spatial variation in climate, we used gridded estimates of
historic monthly air temperature (°C) and precipitation (mm)
that were available for 1901–2017 and with a 0.5° × 0.5° grid
resolution from the Climate Research Unit (CRU, https://
crudata.uea.ac.uk; Harris et al., 2020; version cru_ts4.04). We
used these data to calculate mean winter (December to February)
and spring (March to May) temperatures, as well as annual pre-
cipitation values for each year and grid cell. Each herbarium spec-
imen was then assigned to a specific set of values of these three
climate variables, based on its collection year and the geographic
grid cell it was located in, using custom-made scripts in PYTHON

(Van Rossum & Drake, 2009). We also estimated the elevation
above sea level (asl) of each herbarium specimen using the RASTER

package in R (Hijmans & van Etten, 2020).

Statistical analyses

Our statistical analyses generally had a two-step logic, relating to
the two main questions of our study. We first tested for overall
phenological shifts, that is temporal trends in flowering time,
across our 20 study species, using a simpler statistical model
(model A), and we then tested for phenology–climate associations
with a more complex model B (details below). Both models were
run with and without accounting for spatial correlation.

To test for temporal trends in flowering time (model A) we
modelled flowering phenology during the last 120 yr as a func-
tion of the year of collection, while accounting for the effects of
elevation and species. Model A was specified as:

Y ij ∼ Interceptþ βijχij þ S i þ T i � Yearij þ U i þ ϵij

where Yij is the day of flowering of herbarium specimen i of
species j, χij is a vector containing all covariates (model A: collec-
tion year and elevation) as linear fixed effects, βij is the vector of
estimated parameters (regression slopes), S ðiÞ ∼ N 0, σ2species

� �
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the species random intercept, T ðiÞ ∼ N 0, σ2species

� �
the species

random slope, both with a Gaussian distribution, and
ϵij ∼ N 0, σ2ð Þ the residuals. The species random intercept allows
species to differ in their mean flowering times, and the species
random slope means that temporal trends can be species specific,
for example because species respond differently to climate
change. U ðijÞ ∼ N 0,Ωð Þ represents the spatial structure (as
described in the following paragraphs) that is additionally
included as a random effect in the models accounting for spatial
correlation. In model A, the slope of the linear relationship
between the collection dates (= DOY of flowering) of specimens
and their collection year is the formal test for long-term pheno-
logical shifts.

To test for phenology–climate associations (model B) we addi-
tionally included spring temperature, winter temperature and
precipitation, plus the interactions between spring temperature
(usually considered a key driver of spring phenology) and all
other variables into the model described above. We kept year in

the model to be able to test for an interaction between year and
spring temperature, which could indicate temporal changes in
temperature sensitivities, for example if selective pressures were
shifting population phenotypes (please refer to Table 1 for more
detailed explanations of the variables, and their expected effects
on phenology). χij again included all these covariates and βij are
their respective effects, that is regression slopes. We therefore
modified the model equation to:

Y ij ∼ Interceptþ βijχij þ S i þ T i � SpringTempij þ U i þ ϵij

In model B the slopes of the linear relationships between the
collection dates (= DOY of flowering) of specimens and the tem-
perature or precipitation at the corresponding location and year
estimate the sensitivities of phenology to climate changes. Here,
the species random slopes are the species-specific shifts with tem-
perature (T ðiÞ), accounting for the fact that some species might
be more temperature sensitive than others. As for model A, we

Table 1 All explanatory variables (fixed and random effects) that were included in our analyses, together with the reasonings for including them, and their
expected effects on plant phenology.

Variable Why did we include it? What do we expect?

Elevation Climate conditions, including snow-melt patterns, vary with
altitude, which should influence flowering patterns (Inouye,
2008; Bucher & Römermann, 2020).

Plants flower later at higher altitudes.

Year Long-term trends of rising temperatures should result in
corresponding long-term trends in plant phenology.

Plants advanced their flowering during the last century.

Spring temperature Temperature drives plant phenology (Tang et al., 2016; Piao
et al., 2019). For early flowering understory plants, spring
temperature should be particularly relevant.

Plants flower earlier with warmer temperatures.

Winter temperature To start leaf-out or flowering in spring, some plant species
depend on a preceding chilling period (vernalisation)
indicating that winter has passed (Tang et al., 2016; Piao
et al., 2019).

Unclear, if winter chilling requirements are still meet,
plants will flower earlier with warmer temperatures if
not later.

Precipitation As plant growth depends on water availability, precipitation
could also influence plant phenology (Peñuelas et al., 2004;
Matthews & Mazer, 2016).

Precipitation effect alone unclear; maybe temperature-
dependent.

Spring temperature ×
Winter temperature

If plants experience insufficient chilling in warm winters they
can be less sensitive to warm spring temperatures (Tang et al.,
2016).

We expect a negative interaction, with plants flowering
earliest when winters are sufficiently cold but springs
are warm.

Spring temperature ×
Precipitation

AS plant growth depends on both temperature and
precipitation, phenology may be driven by the interaction of
the two. Matthews & Mazer (2016) showed that (in western
North America) phenological responses to warming were
strongest where precipitation was high.

We expect a positive interaction, with plants flowering
earliest where both temperature and precipitation are
increasing.

Spring temperature ×
Elevation

Previous studies suggested, that that plants at high elevation
are more sensitive to temperature changes (Čufar et al., 2012;
Chapman, 2013; Liu et al., 2014; but please refer to Vitasse
et al., 2010; Dai et al., 2014).

We expect a positive interaction, with greater
temperature sensitivity at higher elevations.

Spring temperature × Year If plants have evolved in response to climate change, then
sensitivity to spring temperature might have changed over the
years.

We expect an interaction between temperature and
collection year.

Spatially dependent random
intercept (Uij)

Environmental conditions are variable and correlated across
space. Plants that are closer to each other experience more
similar conditions, and may also show more similar
phenological responses (Park et al., 2019).

We expect substantial geographic variation, and that this
will influence model estimates for other covariates.

Species (random intercept
and slope) (Si, Ti)

Flowering time, as well as its sensitivity to climate, differs
between plant species.

There is variation in mean phenology (intercept) and
phenological responses (slopes) of the study species.

Model A included elevation, year and the two random factors, model B also the climate variables, and the interactions of spring temperature with the other
covariates.
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also fitted model B with and without including the spatial struc-
ture Uij.

To estimate spatial dependency, we used INLA, an approxi-
mate Bayesian technique and faster alternative to MCMC meth-
ods for fitting Bayesian models (Bakka et al., 2018). A key
challenge with spatial models is that the Gaussian random field,
the most common tool for capturing spatial dependency, is hard
to use with large data. R-INLA solves this problem through SPDEs
that allowed the modelling of Gaussian random fields fast and
efficiently, and handling of complex spatial data (Lindgren et al.,
2011). The SPDE is the mathematical solution to the Matérn
covariance function describing the statistical covariance between
values at two different points. The covariance matrix of the Gaus-
sian field is approximated as a Gaussian Markov Random Field
(GMRF) using a Matérn covariance structure (Bakka et al.,
2018). The GMRF models spatial dependence by defining a
neighbourhood structure on a mesh that divides the study area
(in our case Europe) into nonoverlapping triangles (Fig. S1). The
data points (in our case sampling locations of herbarium speci-
mens) are then assigned to the adjacent nodes of the mesh
according to their proximities (or to only one if they fall directly
onto one). This creates an observation matrix for estimating the
GMRF (Bivand et al., 2015; Cosandey-Godin et al., 2015). The
mesh can have different shapes and sizes, and we used the default
constrained Delaunay triangulation (a particular way to divide an
area into triangles) together with vague priors that have little
effect on the posterior distributions of the fixed effects. To select
the mesh size, we compared models with different meshes and
chose the finest mesh (with a maximum triangle edge length of
20 km and a minimum edge length of 5 km) as it resulted in the
lowest deviance information criterion/widely applicable informa-
tion criterion (DIC/WAIC) values. The derived GMRF is then
represented by the term Uij in the model above, a smooth spatial
effect that links observations to spatial locations, with the covari-
ance structure Ω estimated via the Matérn correlation. The term
Uij is therefore spatially variable and captures spatial patterns not
already modelled by the fixed covariates, ensuring that the residu-
als εij are independent. We compared the results of models with
and without including Uij.

To avoid biased parameter estimates because of unequal scales,
we fitted covariates in the following forms: year expressed in
decades, spring precipitation in mm 10–1, elevation in hundred
metres (100 m) and spring and winter temperature in degree Cel-
sius (°C) We also mean-centred all covariates, because this estimated
the regression slopes of each covariate with all other covariates at
their mean values (rather than zero; Dalal & Zickar, 2012), which
greatly helped to interpret the results of the regression analyses.

For both models we checked whether the residuals were nor-
mally distributed, plotted the distribution of residuals against fit-
ted values and explanatory variables to check for heterogeneity or
other patterns in the variances, and we plotted the observed vs fit-
ted data to evaluate model fit and performance (Zuur et al.,
2017). All statistical analyses were performed in R v.3.6.2 (R
Core Team, 2018) using the R-INLA package (http://www.r-inla.
org, please refer to also: Rue et al., 2009; Lindgren et al., 2011;
Bakka et al., 2018).

Results

Model validation and spatial correlation

The herbarium data analysed in our study covered a broad geo-
graphical range in Europe, but their spatial distribution was
heterogenous (Fig. 1) and, in addition, the flowering time data
were spatially correlated up to a distance of c. 200 km and 100
km in models A and B, respectively (Fig. S2). If this spatial corre-
lation was not included in the analyses, then the model residuals
were clearly nonrandom in space, especially in model A (Fig. S3),
and there were other violations of model assumptions, in particu-
lar nonrandom distribution of residuals in relation to several
covariates (Figs S4, S5). Including spatial correlation solved these
problems. Moreover, models that included spatial correlation
also generally had a better fit (please refer to Fig. S6 for a com-
parison of DIC values and regression parameter estimates of
model B with and without spatial correlation), and the fitted val-
ues were closer to the observed values (r = 0.78 vs 0.57 for
Model A and r = 0.82 vs 0.70 for Model B; Fig. S7). Overall,
residual variation was reduced when spatial correlation was
accounted for (Fig. S8). Therefore, models that explicitly incor-
porate spatial correlation between data points are not only more
statistically sound, but they are also stronger and more informa-
tive. In the next sections, we show that taking spatial correlation
into account also substantially affects the model estimates answer-
ing the main questions of our study.

Temporal shifts in plant phenology

Overall, the herbarium data indicated that the studied 20 forest
understory plants significantly advanced their flowering time dur-
ing the last century (Fig. 2a,b; Table 2). The estimated advance-
ment of flowering time was −0.56 d per decade (credible
interval: −0.74 to −0.39; please refer to Table 2) according to
model A with accounting for spatial correlation, and these
responses were different from zero (posterior probability > 0.95)
for all 20 species. For species-specific residuals please refer to Fig.
S9 and, for a summary of all hyperparameters, please refer to
Table S2. The observed phenology shifts corresponded with
increasingly warmer spring temperatures during the last century
(Fig. 2c). If model A ignored spatial correlation, it severely over-
estimated the overall magnitude of phenology shifts, with an esti-
mated −1.34 d per decade (CI: −1.69 to −0.98; Table S3;
Fig. 2b), that is it estimated an average shift of c. 2 wk during the
last century, more than twice as much as in model A with spatial
correlation. One reason for this discrepancy was that datapoints
from northern vs southern Europe were unevenly distributed in
time, with more earlier data from the north, and an overrepresen-
tation of southern data during the last decades (Fig. 2c). When
spatial information is ignored in model A, this latitudinal bias
therefore distorts the estimated shift over time. The opposite is
true for the relationship with elevation: in model A with spatial
correlation plants flower later at higher altitudes (2.44 d/100 m;
95% CI 1.98–2.89; Table 2; Fig. 2b), but when spatial correla-
tion is ignored there is no relationship between elevation and
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flowering time (Table S3; Fig. 2b). Even with including spatial
correlation, and after the effects of the covariates year and eleva-
tion have been accounted for, there is still strong spatial variation
in flowering time in model A, with plants from northern and
eastern Europe flowering up to c. 60 d later than plants from cen-
tral and southern Europe (Fig. 5).

Relationships with climate change

Across the European sampling locations included in our study,
spring temperatures increased during the last century (Fig. 2c),
and the phenology of the plants was related to these climatic
changes. Overall, plants flowered c. 3.6 d earlier per +1°C (for a

summary of all hyperparameters, see Tables 2, S3; Figs 3, 4). If
spatial correlation was not included in model B, the strength of
this relationship was overestimated with 5.4 d per +1°C (Figs 3,
4). The general temperature–phenology relationship was consis-
tent across the 20 studied species, with negative slopes credibly
different from zero (posterior probability > 0.95) for all (Fig. 3).

In addition to the relationship with spring temperature, there
was a significant, albeit weaker, relationship with winter tempera-
ture, but no relationship with precipitation, in the model B with
spatial correlation (Table 2; Fig. 4). There were further relation-
ships of phenology with elevation and the year of sampling
(Table 2; Fig. 4). The direction of these results – later flowering
at higher altitudes and earlier flowering in more recent specimens

(a)

(c)(b)

(1
00

 m
)

(D
ec

ad
es

)

(°C)

Fig. 2 Temporal trends of flowering time and spring temperature over the last century, and the results of model A. (a) Shifts of flowering time since 1901
estimated by model A with spatial correlation (solid blue line) and without spatial correlation (dashed magenta line). With spatial correlation, plants
advanced their flowering on average by c. 6 d, and the responses were different from zero (posterior probability > 0.95) for all 20 species (thin grey lines).
In the model without spatial correlation the estimated phenology shift is more than twice as large. (b) Differences in parameter estimates (posterior
probability distributions) for model for model A without (magenta) and with (blue) spatial correlation. (c) Long-term trends in spring temperature in the
locations of the studied herbarium specimens, separately for southern, central and northern European data. The histograms at the bottom show the
temporal distributions of these data. The dashed black trend line shows the mean across all regions.
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– was as in model A, only with smaller effect sizes. This is
because both the year of sampling and elevation are systemati-
cally related to temperature, so the larger effects in model A are
partly temperature effects. None of the interaction terms
between spring temperature and the other covariates were signif-
icant (Table 2). Ignoring the spatial locations of specimens also
substantially affected these parameter estimates: in model B
without spatial correlation the relationship with elevation was
underestimated, whereas the relationship with winter tempera-
ture was lost, and there was now a relationship with precipita-
tion, and several significant interactions between covariates
(Table S5; Fig. 4).

As in model A, there was significant spatial variation in flower-
ing time after the covariates and their interactions had been
accounted for (Fig. 5, right panel). Although the residual spatial
correlation was clearly much less and more small scale than in
model A, there were still several regions with clustering of posi-
tive or negative residuals, showing the importance of incorporat-
ing spatial correlation also in model B.

Discussion

Herbaria are unique archives for studying long-term responses of
plant phenology to anthropogenic climate change. Here, we stud-
ied herbarium specimens of 20 early-flowering forest herbs across
Europe and show that these plants advanced their flowering dur-
ing the last century, most likely in response to increasing spring
temperatures. However, our analysis showed that phenology did
not advance the same everywhere in Europe. The herbarium data
we used were substantially autocorrelated in space – even after
accounting for elevation, climate and year – and the inclusion of
this spatial structure in our statistical models significantly
improved the model fit and parameter estimates. One reason for
this is that herbarium specimens are not evenly distributed in
space and time (Daru et al., 2017). This is particularly critical

when spatial and temporal heterogeneity are confounded, that is
some regions are more or less well sampled during particular time
periods than others. For instance, in our study there were gener-
ally more data points from northern Europe for the first half of
the 20th century and more data points from southern Europe for
the second half of the century (please refer to Fig. 2c). Given this
spatio-temporal variation, we discuss only the results from mod-
els that accounted for spatial correlation.

Temporal shifts in plant phenology

We found that forest understory herbs from central Europe
advanced their flowering by an average of 6 d during the last cen-
tury (−0.6 d per decade). Previous herbarium studies conducted
in the temperate zone estimated flowering time shifts between
−0.4 and −1.5 d per decade (Primack et al., 2004; Miller-
Rushing et al., 2006; Molnar et al., 2012; Panchen et al., 2012;
Bertin, 2015; Bertin et al., 2017). All of these studies were geo-
graphically very restricted and, except for one study from Hun-
gary (Molnar et al., 2012), all came from the northeastern USA.
There have been other longer-term studies on phenology trends
in Europe, but these were based on field observations, and they
did not go back further than the 1970s. The trends reported in
these observational studies tend to be stronger (−2.5 to −4.5 d
per decade; Fitter & Fitter, 2002; Menzel et al., 2006), indicat-
ing that phenological changes may have accelerated during the
last decades in response to more rapid climate changes (European
Environmental Agency, 2020).

Relationships with climate warming

The long-term changes in plant phenology we detected are likely
to be responses to climate change, in particular rising spring tem-
peratures. For each 1°C of temperature increase, the herbarium
specimens were on average collected −3.6 d earlier. In Europe,
land temperatures have increased c. 1.5°C since 1900 (Luter-
bacher et al., 2004; Harris et al., 2014; European Environmental
Agency, 2020), so the magnitude of overall phenological changes
we observed is similar to what would be expected based on cli-
mate change and the observed temperature sensitivities (1.5°C ×
3.6 d/°C = 5.4 d, vs our observed average shift of c. 6 d). Previ-
ous herbarium studies from the temperate zone estimated similar
flowering-time advancements of −2.4 to −6.3 d per 1°C temper-
ature increase (Primack et al., 2004; Miller-Rushing et al., 2006;
Panchen et al., 2012; Calinger et al., 2013; Hart et al., 2014;
Bertin, 2015; Davis et al., 2015; Bertin et al., 2017). Again, most
of these studies were from the northeastern USA, and they were
often geographically very restricted. Two previous herbarium
studies from Europe found stronger shifts of −6 to −13 d per
1°C (Robbirt et al., 2011; Diskin et al., 2012), but both were
based on single species in rather restricted geographic areas. More
robust European data found a similar average advancement of
plant phenology of 2.5 d per 1°C temperature increase (Menzel
et al., 2006). A long-term field observation in the UK found
advances of −1.7 to −6.0 d per 1°C across 385 plant species (Fit-
ter & Fitter, 2002). In a field monitoring study of a subset of 16

Table 2 Model estimates (slopes), with standard deviations and 95%
credible intervals, for all variables included in models A and B with spatial
autocorrelation.

Estimate SD 95% CI

Model A
Intercept 136.09 4.07 128.02, 144.03
Years (decades) −0.56 0.09 −0.74, −0.39
Elevation (100 m) 2.57 0.24 2.08, 3.02
Model B
Intercept 138.62 2.52 133.57, 143.48
Spring temperature (°C) −3.61 0.22 −4.04, −3.18
Winter temperature (°C) −1.05 0.13 −1.31, −0.79
Precipitation (mm/10) 0.07 0.15 −0.23, 0.37
Elevation (100 m) 1.42 0.21 1.00, 1.84
Year (decade) −0.22 0.09 −0.40, −0.04
Spring temperature × Year 0.05 0.04 −0.03, 0.13
Spring temperature × Elevation 0.06 0.05 −0.04, 0.16
Spring temperature × Precipitation −0.04 0.06 −0.16, 0.07
Spring temperature × Winter
temperature

−0.06 0.03 −0.12, 0.01
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of our study’s species, we recently showed that flowering time
was −4.5 d earlier per 1°C temperature increase of the local
microclimate (Willems et al., 2021). So the overall pattern of
3–4 d earlier phenology per degree of warming appears quite
robust across a range of species and temperate regions, and our
study strongly indicates that this large-scale biological response to
anthropogenic climate change has also been taking place in
Europe during the last century. That the plants in our study also
flowered earlier with warmer winter temperatures suggests that
their potential chilling requirements (indicating that winter has
passed) are however still fulfilled. However, this might change if
winter temperatures keep rising.

Other drivers of phenology variation

While temperature may be a key driver of phenology, it is not the
only one, and often does not explain all observed phenology vari-
ation (Marchin et al., 2015; Piao et al., 2019). We found that,

across the study area, plants flowered later at higher elevation,
and this pattern remained significant even if temperature was
included as explanatory variable. Therefore, the later flowering at
higher elevations must be more than a temperature effect, and it
indicates that phenology advances are slower at higher altitudes,
maybe because plants at higher elevation are less sensitive to tem-
perature changes (Vitasse et al., 2010; Dai et al., 2014). Con-
versely, the residual spatial variation in our model B indicates
that, in some mountainous regions (especially the Alps), plants
flowered earlier than expected (after accounting for all covariates)
and therefore, by contrast, might be more sensitive to tempera-
ture changes (Chapman, 2013; Liu et al., 2014). A solution for
this apparent contradiction could be that the relationship
between elevation and phenology is nonlinear, or confounded
with other environmental variables. Previous studies that related
phenology to altitude found mixed results, from slower to faster
phenology changes at high elevations (Defila & Clot, 2005;
Ziello et al., 2009; Čufar et al., 2012; Kopp et al., 2020).

Fig. 3 Relationships between the spring (March–May) temperature in the year of collection and the date of collection (= flowering day) of European
herbarium specimens of 20 early-flowering forest understory plants. The blue and magenta lines indicate slope estimates from statistical models with and
without taking spatial autocorrelation into account, respectively.
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Clearly, the relationship between elevation and phenology
changes is not well understood, and large-scale herbarium plus
climate data that correct for spatial autocorrelation have the
potential to shed more light on this.

In addition to temperature, another climate factor that could
potentially influence plant phenology is precipitation. We had
expected a significant interaction with temperature, with the
strongest phenology advances for which both temperature and
precipitation were increasing, but there was no evidence for pre-
cipitation effects in our data at all. Previous research found that
changes in rainfall and water availability can influence phenology
but with substantial geographical differences, for example in
Mediterranean forests and shrublands (Peñuelas et al., 2004).
Another complication with precipitation effects is that if precipi-
tation occurs as snow this may influence phenology in different
ways than rainfall. Increased snowfall often delays plant growth
and flowering (Park & Mazer, 2018), another potential explana-
tion for why, overall, plants flowered later at higher elevations in
our study. As global warming is expected to change snowmelt
more severely at higher elevations, it might have quite different
effects on species at higher altitudes than on those at lower eleva-
tion (Cornelius et al., 2013), which in turn can cause problems
for migrating or hibernating animal species across altitudinal
gradients (Inouye et al., 2000).

Spatial variation in phenology

Spatial autocorrelation has so far been largely ignored in
herbarium-based studies of long-term phenology changes. How-
ever, it is important to take spatial variation into account not
only because herbarium data are generally strongly spatially clus-
tered, but also because neither phenology nor phenological
responses to climate change are expected to be spatially homoge-
nous across larger geographic scales. For previous studies that
were geographically very restricted (Bertin, 1982; Primack et al.,
2004; Miller-Rushing et al., 2006; Miller-Rushing & Primack,
2008; Bertin et al., 2017) the problem may have been minor, but
larger scale analyses will be required to take spatial variation into
account. Recently, Park & Mazer (2018) studied phenological
shifts across several climatic zones and Park et al. (2019) and
Kopp et al. (2020) explicitly tested for geographic differences in
phenological sensitivities in North America. To our knowledge,
our study is the first herbarium-based study that modelled and
mapped such spatial variation as a continuous variable in an anal-
ysis of large-scale phenology variation.

The most conspicuous pattern in the residual spatial variation
of our data was that there appeared to be systematic differences in
phenology associated with latitude, even when accounting for cli-
matic variation. In particular, plants from central Europe

(Decades)

Fig. 4 Model coefficient estimates for relationships between different covariates (climate in the year of collection, year of collection, elevation of collection
site) and the date of collection (= flowering time) of herbarium specimens of 20 forest wildflowers in Europe. The blue vs magenta curves show the
differences between the parameter estimates (posterior probability distributions) from model B with and without taking spatial autocorrelation into
account.
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(especially around the Alps) flowered earlier than predicted by
our model. Such deviations indicate that we were either missing
an important driver, or that plant responses to some of the
covariates in the model differed geographically. Previous studies
often found phenology shifts at high latitudes to be stronger in
absolute terms (Root et al., 2005; Parmesan, 2007; Ge et al.,
2015) but weaker in relative terms (= per degree warming) than
at low latitudes. This is usually explained by stronger temperature
increases in northern regions (IPCC, 2014), but lower tempera-
ture sensitivity of northern populations (Dai et al., 2014; Ge
et al., 2015; Shen et al., 2015; Wang et al., 2015a,b; Park et al.,
2019; but please refer to Pudas et al., 2008; Wolkovich et al.,
2012; Dai et al., 2014). The latter may be a (late frost) risk-
avoiding adaptation to variable, less reliable climates, causing
plants populations to rely more on photoperiod (Renner &
Zohner, 2018). However, some studies also found that plants
from (far) northern regions are more sensitive to temperature and
require less warming to trigger leaf-out or flowering (Riihimäki
& Savolainen, 2004; Pudas et al., 2008; Liang & Schwartz,
2014; Prevéy et al., 2017), ensuring that plants start growing as
soon as growth conditions become good in early spring, which
may be crucial in cold regions with short growing seasons. Conse-
quently, phenological sensitivity to temperature might decrease
from southern to mid-northern latitudes, but increase again in far-
northern or high elevation regions. This could indeed explain the
earlier-than-expected phenology that we observed in central
Europe and the Alps. The missing consensus among studies about
the association between latitude and phenology may be partially
due to differences in spatial scale and because their relationship is
complex, confounded with other environmental factors such as

temperature and elevation, or nonlinear (Riihimäki & Savolainen,
2004; Chmura et al., 2019; Kopp et al., 2020). Such challenges
can be tackled by analysing geographic patterns via a continuous
spatial field (as we did here, using R-INLA) that explicitly maps
differentiated geographic variability of phenology.

Conclusions

The flowering time of forest herbs in Europe has substantially
advanced during the last century, and these advances are strongly
associated with climate warming. While this may to some extent
be considered good news, because plants so far were able to track
climate change (Munguia-Rosas et al., 2011), the observed phe-
nological shifts will have further consequences for the species and
their associated ecological communities. Our study demonstrates
how herbarium specimens, together with spatial modelling, can
be used to expand not only the temporal but also geographic and
taxonomic scope of phenology research, and contribute to under-
standing global environmental change (Wolkovich et al., 2014).
Herbarium data from large geographic ranges are particularly
powerful, but they also come with challenges, and we showed
that accounting for spatial autocorrelation significantly improved
model fits and parameter estimates. Phenology as well as pheno-
logical responses to climate change can vary substantially across
large scales, and failing to account for this might draw a biased
picture of how climate change affects plants and their associated
communities and ecosystems. Future studies should more fre-
quently employ spatial modelling when analysing large-scale phe-
nology variation and its different drivers, ideally across multiple
climatic regions.

500 km

(a) (b)

Days

Fig. 5 Spatial variation in flowering time in model A (a) and model B (b) after the effects of the covariates (model A: year and elevation; model B: year,
elevation, spring and winter temperature, and spring precipitation) have been accounted for. The values are numbers of days deviation from model
predictions.
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shifts in leaf phenology of beech (Fagus sylvatica) depend on elevation. Trees 26:
1091–1100.

Dai J, Wang H, Ge Q. 2014. The spatial pattern of leaf phenology and its

response to climate change in China. International Journal of Biometeorology 58:
521–528.

Dalal DK, Zickar MJ. 2012. Some common myths about centering predictor

variables in moderated multiple regression and polynomial regression.

Organizational Research Methods 15: 339–362.
Daru BH, Park DS, Primack RB, Willis CG, Barrington DS, Whitfeld TJS,

Seidler TG, Sweeney PW, Foster DR, Ellison AM et al. 2017.Widespread

sampling biases in herbaria revealed from large-scale digitization. New
Phytologist 217: 939–955.

Davis CC, Willis CG, Connolly B, Kelly C, Ellison AM. 2015.Herbarium

records are reliable sources of phenological change driven by climate and

provide novel insights into species’ phenological cueing mechanisms. American
Journal of Botany 102: 1599–1609.

De Frenne P, Zellweger F, Rodriguez-Sanchez F, Scheffers BR, Hylander K,

Luoto M, Vellend M, Verheyen K, Lenoir J. 2019. Global buffering of

temperatures under forest canopies. Nature Ecology & Evolution 3: 744–
749.

Defila C, Clot B. 2005. Phytophenological trends in the Swiss Alps, 1951–2002.
Meteorologische Zeitschrift 14: 191–196.

Diskin E, Proctor H, Jebb M, Sparks T, Donnelly A. 2012. The phenology of

Rubus fruticosus in Ireland: herbarium specimens provide evidence

for the response of phenophases to temperature, with implications

for climate warming. International Journal of Biometeorology 56: 1103–
1111.

European Environmental Agency. 2020. Global and European temperatures.
[WWW document] URL https://www.eea.europa.eu/ims/global-and-

european-temperatures [accessed 1 December 2021].

Fitter AH, Fitter RSR. 2002. Rapid changes in flowering time in British plants.

Science 296: 1689–1691.
GBIF. 2020. GBIF.org (17 July 2020) GBIF occurrence download. doi: 10.15468/
dl.5ckxxb.

Ge Q, Wang H, Rutishauser T, Dai J. 2015. Phenological response to

climate change in China: a meta-analysis. Global Change Biology 21: 265–
274.

� 2022 The Authors

New Phytologist� 2022 New Phytologist Foundation

New Phytologist (2022)
www.newphytologist.com

New
Phytologist Research 11

https://orcid.org/0000-0001-7504-6511
https://orcid.org/0000-0001-7504-6511
https://orcid.org/0000-0001-7504-6511
https://orcid.org/0000-0003-1650-2008
https://orcid.org/0000-0003-1650-2008
https://orcid.org/0000-0003-1650-2008
https://orcid.org/0000-0002-5481-3686
https://orcid.org/0000-0002-5481-3686
https://orcid.org/0000-0002-5481-3686
https://www.bexis.uni-jena.de/
https://www.bexis.uni-jena.de/
https://doi.org/10.25829/bexis.31230-10
http://GBIF.org
https://doi.org/10.15468/dl.5ckxxb
https://crudata.uea.ac.uk
https://crudata.uea.ac.uk
https://www.eea.europa.eu/ims/global-and-european-temperatures
https://www.eea.europa.eu/ims/global-and-european-temperatures
https://doi.org/10.15468/dl.5ckxxb
https://doi.org/10.15468/dl.5ckxxb


Harris I, Jones PD, Osborn TJ, Lister DH. 2014. Updated high-resolution grids

of monthly climatic observations – the CRU TS3.10 Dataset. International
Journal of Climatology 34: 623–642.

Harris I, Osborn TJ, Jones P, Lister D. 2020. Version 4 of the CRU TS

monthly high-resolution gridded multivariate climate dataset. Scientific
Data 7: 109.

Hart R, Salick J, Ranjitkar S, Xu J. 2014.Herbarium specimens show

contrasting phenological responses to Himalayan climate. Proceedings of the
National Academy of Sciences, USA 111: 10615–10619.

Hijmans RJ, van Etten J. 2020. RASTER: geographic data analysis and modeling. R
package v.3.4-5. [WWW document] URL http://CRAN.R-project.org/

package=raster [accessed 15 January 2020].

Hwang T, Song CH, Vose JM, Band LE. 2011. Topography-mediated controls

on local vegetation phenology estimated from MODIS vegetation index.

Landscape Ecology 26: 541–556.
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A, Mileta M, Pashiardis S, Hejkrlik L, Kern-Hansen C et al. 2002. Daily

dataset of 20th-century surface air temperature and precipitation series for the

European Climate Assessment: European temperature and precipitation series.

International Journal of Climatology 22: 1441–1453.
Kopp CW, Neto-Bradley BM, Lipsen LPJ, Sandhar J, Smith S. 2020.

Herbarium records indicate variation in bloom-time sensitivity to temperature

across a geographically diverse region. International Journal of Biometeorology
64: 873–880.

Lang PLM, Willems FM, Scheepens JF, Burbano HA, Bossdorf O. 2019.

Using herbaria to study global environmental change. New Phytologist
221: 110–122.

Liang L, Schwartz MD. 2014. Testing a growth efficiency hypothesis with

continental-scale phenological variations of common and cloned plants.

International Journal of Biometeorology 58: 1789–1797.
Lindgren F, Rue H, Lindström J. 2011. An explicit link between Gaussian fields

and Gaussian Markov random fields: the stochastic partial differential

equation approach. Journal of the Royal Statistical Society: Series B (Statistical
Methodology) 73: 423–498.

Liu L, Liu L, Liang L, Donnelly A, Park I, Schwartz MD. 2014. Effects of

elevation on spring phenological sensitivity to temperature in Tibetan Plateau

grasslands. Chinese Science Bulletin 59: 4856–4863.
Luterbacher J, Dietrich D, Xoplaki E, Grosjean M, Wanner H. 2004. European

seasonal and annual temperature variability, trends, and extremes since 1500.

Science 303: 1499–1503.
Marchin RM, Salk CF, Hoffmann WA, Dunn RR. 2015. Temperature alone

does not explain phenological variation of diverse temperate plants under

experimental warming. Global Change Biology 21: 3138–3151.
Matthews ER, Mazer SJ. 2016.Historical changes in flowering phenology are

governed by temperature × precipitation interactions in a widespread perennial

herb in western North America. New Phytologist 210: 157–167.
Menzel A, Sparks TH, Estrella N, Koch E, Aasa A, Ahas R, Alm-kübler K,

Bissolli P, Braslavská O, Briede A et al. 2006. European phenological

response to climate change matches the warming pattern. Global Change
Biology 12: 1969.

Miller TK, Gallinat AS, Smith LC, Primack RB. 2021. Comparing fruiting

phenology across two historical datasets: Thoreau’s observations and herbarium

specimens. Annals of Botany 128: 159–170.
Miller-Rushing AJ, Primack RB, Primack D, Mukunda S. 2006.

Photographs and herbarium specimens as tools to document phenological

changes in response to global warming. American Journal of Botany 93:
1667–1674.

Miller-Rushing AJ, Primack RB. 2008. Global warming and flowering times in

Thoreau’s Concord: a community perspective. Ecology 89: 332–341.
Molnar A, Tokolyi J, Vegvari Z, Sramko G, Sulyok J, Barta Z. 2012.

Pollination mode predicts phenological response to climate change in

terrestrial orchids: a case study from central Europe. Journal of Ecology
100: 1141–1152.

Morellato LPC, Alberton B, Alvarado ST, Borges B, Buisson E, Camargo

MGG, Cancian LF, Carstensen DW, Escobar DFE, Leite PTP et al. 2016.
Linking plant phenology to conservation biology. Biological Conservation 195:
60–72.

Munguia-Rosas MA, Ollerton J, Parra-Tabla V, De-Nova JA. 2011.Meta-

analysis of phenotypic selection on flowering phenology suggests that early

flowering plants are favoured. Ecology Letters 14: 511–521.
Panchen ZA, Primack RB, Anisko T, Lyons RE. 2012. Herbarium

specimens, photographs, and field observations show Philadelphia area

plants are responding to climate change. American Journal of Botany 99:

751–756.
Park DS, Breckheimer I, Williams AC, Law E, Ellison AM, Davis CC. 2019.

Herbarium specimens reveal substantial and unexpected variation in

phenological sensitivity across the eastern United States. Philosophical
Transactions of the Royal Society of London. Series B: Biological Sciences 374:
20170394.

Park IW, Mazer SJ. 2018.Overlooked climate parameters best predict flowering

onset: assessing phenological models using the elastic net. Global Change
Biology 24: 5972–5984.

Parmesan C. 2007. Influences of species, latitudes and methodologies on

estimates of phenological response to global warming. Global Change Biology
13: 1860–1872.

Pau S, Wolkovich EM, Cook BI, Davies TJ, Kraft NJB, Bolmgren K,

Betancourt JL, Cleland EE. 2011. Predicting phenology by integrating

ecology, evolution and climate science. Global Change Biology 17: 3633–
3643.
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