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Introduction

Statistics is the art of analysing data and dealing with non-avoidable errors and uncertainties in a
concise way. In introductory and many advanced Statistics courses, various procedures such as
point estimators, statistical tests and confidence regions are introduced for different settings, but
often they seem a bit ad hoc. The purpose of Mathematical Statistics is to present these procedures
in a coherent framework and to clarify which procedures are optimal for a given task. This includes
the question of how to quantify the quality of a statistical procedure.

An indispensable tool for mathematical statistics is measure theory, including Radon-Nikodym
derivaties, conditional expectations, conditional distributions and Markov kernels. Hence, the first
part of this course is devoted to these aspects of measure theory.
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Advanced Measure Theory
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Chapter 1

Abstract Integrals

We tacitly assume that the reader is familiar with standard measure and integration theory. Some
basic notions and results are listed in Section A.1.

In standard measure theory, one starts from a measurable space (Ω,A), consisting of a set Ω and a
σ-field A over Ω. Then one constructs or defines a measure µ on A, and this leads to the integral∫
f dµ of measurable functions f : Ω → [0,∞] or f : Ω → R. If we restrict our attention to the

set L1(µ) of real-valued, measurable functions f on Ω such that
∫
|f | dµ < ∞, then the integral∫

f dµ has the following essential properties:

Linearity: The set L1(µ) is a real vector space1, and f 7→
∫
f dµ is linear in f ∈ L1(µ).

Positivity: If f ∈ L1(µ) is nonnegative, then
∫
f dµ ≥ 0.

Montone convergence: If (fn)n is a sequence of nonnegative functions in L1(µ) which is point-
wise increasing with limit f ∈ L1(µ), then

∫
fn dµ→

∫
f dµ as n→∞.

In the present section we follow the reverse route. Throughout let F be a real vector space of
real-valued functions on a set Ω. Suppose that J : F → R is a linear and positive functional
satisfying monotone convergence. Does there exist a σ-fieldA over Ω and a measure µ onA such
that F ⊂ L1(µ) and J(f) =

∫
f dµ for all f ∈ F?

1.1 Lattices and Stone Lattices

For two functions f, g : Ω → [−∞,∞], the inequalities f ≤ g or f ≥ g are always meant
pointwise. Their pointwise maximum and minimum are denoted with f∨g and f∧g, respectively,
that is,

f ∨ g(ω) := max{f(ω), g(ω)} and f ∧ g(ω) := min{f(ω), g(ω)}.

Similarly, the pointwise maximum and minimim of f and a real constant c is denoted with f ∨ c
and f ∧ c, respectively. Specifically, we write

f+ := f ∨ 0 and f− := (−f) ∨ 0 = −(f ∧ 0),

so f = f+ − f− and |f | = f+ + f−.
1with the pointwise addition of functions and the pointwise multiplication of functions with scalars

13
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Definition 1.1 (Lattice and Stone lattice). The linear function spaceF is called a lattice if |f | ∈ F
for any f ∈ F .

A lattice F is called a Stone lattice if f ∧ 1 ∈ F for arbitrary f ∈ F .

Example 1.2. Let (Ω, d) be a metric space. Then the following sets of functions f : Ω → R are
Stone lattices:

C(Ω) = {f : continuous},

Cb(Ω) = {f : continuous and bounded},

CLip(Ω) = {f : Lipschitz-continuous},

CLip,b(Ω) = {f : Lipschitz-continuous and bounded}.

Exercise 1.3 (Lattices). Show that the following three properties of a linear function space F are
equivalent:

(i) |f | ∈ F for arbitrary f ∈ F .

(ii) f+ ∈ F for arbitrary f ∈ F .

(iii) f ∨ g, f ∧ g ∈ F for arbitrary f, g ∈ F .

From now on, let F be a Stone lattice. The set of nonnegative functions in F is denoted with F+,
that is,

F+ = {f ∈ F : f ≥ 0} = {f+ : f ∈ F}.

Exercise 1.4 (Stone lattices). Show that for arbitrary f ∈ F and c ≥ 0,

f ∧ c, f ∨ (−c), (f − c)+, (f + c)− ∈ F .

Find an example of a Stone lattice F such that f ∨ 1 6∈ F for any f ∈ F .

The following families of functions and sets play an important role in connection with integrals.

Definition 1.5 (Extension of F+, F-open sets). The extension of F+ is the family F∗ of all
functions g : Ω→ [0,∞] such that

g = sup
n≥1

fn

for some sequence (fn)n≥1 in F+.

A set U ⊂ Ω is called F-open if
U = {g > 0}

for some g ∈ F∗. The family of all F-open sets is denoted with U(F).

These families F∗ and U(F) have some important properties summarized in the next three lem-
mas.

Lemma 1.6 (Extension of F+). For a function g : Ω→ [0,∞], the following three properties are
equivalent:

(i) g = supn≥1 fn for some sequence (fn)n≥1 in F+.
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(ii) g = limn≥1 fn for some sequence (fn)n≥1 in F+ which is pointwise increasing.

(iii) g =
∑

n≥1 fn for some sequence (fn)n≥1 in F+.

Lemma 1.7 (Properties of F∗). For arbitrary scalars c ≥ 0 and functions g, h, g1, g2, g3, . . . in
F∗, the following functions belong to F∗ too:

cg, g ∧ h, g ∧ c, sup
n≥1

gn,
∑
n≥1

gn.

Lemma 1.8 (F-open sets). For a set U ⊂ Ω, the following three properties are equivalent:

(i) U = {g > 0} for some function g ∈ F∗.

(ii) U = {g > c} for some function g ∈ F∗ and c ≥ 0.

(iii) 1U ∈ F∗.

Remark 1.9. Lemmas 1.7 and 1.8 imply that the family U(F) is closed under intersections and
countable unions. Moreover, the σ-fields σ(F) and σ(U(F)) coincide, where σ(F) is the smallest
σ-field over Ω such that all functions in F are measurable, and σ(U(F)) is the smallest σ-field
over Ω containing all sets in U(F).

To see the latter claim, note that any function in F∗ is a pointwise limit of a sequence in F+ ⊂ F ,
whence U(F) ⊂ σ(F), and this implies that σ(U(F)) ⊂ σ(F). On the other hand, the σ-field
σ(F) is generated by all sets {f > c} and {f < −c}, f ∈ F and c > 0. But {f > c} = {g > 0}
with g := f − f ∧ c ∈ F+, so {f > c} ∈ U(F), and {f < −c} = {−f > c} belongs to U(F)

too. This shows that σ(F) ∈ σ(U(F)).

The proofs of Lemmas 1.6 and 1.7 are left to the reader as an exercise.

Proof of Lemma 1.8. It is clear that property (i) of U implies property (ii). Suppose that U has
property (ii), that is, U = {g > c} for some function g ∈ F∗ and some scalar c ≥ 0. Let (fn)n≥1

be a pointwise increasing sequence in F+ with limit g. Then

f̃n := (n(fn − c)+) ∧ 1

defines a pointswise increasing sequence (f̃n)n≥1 with limit 1U = 1{g>c}. Thus U has prop-
erty (iii). Finally, if U has property (iii), then it has property (i) with g := 1U ∈ F∗.

1.2 Abstract and Usual Integrals

As before, let F be a Stone lattice of functions f : Ω → R with its subcone F+ of nonnegative
functions f ∈ F .

Definition 1.10 (Abstract integral). A functional J : F → R is called an abstact integral (on the
Stone lattice F) if it has the following properties:

Linearity: For f, g ∈ F and λ ∈ R,

J(λf) = λJ(f) and J(f + g) = J(f) + J(g).
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Positivity: J(f) ≥ 0 for all f ∈ F+.

Monotone convergence: Let (fn)n be a pointwise increasing sequence of functions fn ∈ F+ with
limit f ∈ F . Then,

lim
n→∞

J(fn) = J(f).

Linearity and positivity of an abstract integral J on F imply that

J(f) ≤ J(g) whenever f, g ∈ F with f ≤ g.

This follows from g = f + h with h = g − f ∈ F+, so J(g) = J(f) + J(h) ≥ J(f).

Exercise 1.11. Let F be the set of all functions (sequences) f : N → R such that limω→∞ f(ω)

exists in R. Verify that F is a Stone lattice. Does J(f) := limω→∞ f(ω) define an abstract
integral on F?

From now on, let J : F → R be an abstract integral. In view of our goal to achieve, we extend J
to a functional on the extension F∗ of F+. For g ∈ F∗, let

J(g) := sup
f∈F+ : f≤g

J(f).

Note that if g ∈ F+, then J(f) ≤ J(g) for all f ∈ F+ such that f ≤ g, so the new definition of
J(g) yields the former value of J(g). It is also obvious that for g, h ∈ F∗,

J(g) ≤ J(h) if g ≤ h,

because g ≤ h implies that {f ∈ F+ : f ≤ g} ⊂ {f ∈ F+ : f ≤ h}. The next lemma provides
an alternative representation of J(g) which is often convenient.

Lemma 1.12. If g = limn→∞ fn with a pointwise increasing sequence (fn)n inF+, then J(g) =

limn→∞ J(fn).

Proof of Lemma 1.12. Since (fn)n is pointwise increasing, the sequence (J(fn))n is increasing,
and fn ≤ g for each n, whence J(g) ≥ limn→∞ J(fn).

On the other hand, if f is any fixed function in F+ such that f ≤ g, then (fn ∧ f)n is pointwise
increasing with limit f . Consequently,

lim
n→∞

J(fn) ≥ lim
n→∞

J(fn ∧ f) = J(f),

and this shows that J(g) ≤ limn→∞ J(fn).

The next lemma shows that J , as a functional on F∗, has various desirable properties, where we
use the convention that 0 · ∞ := 0.

Lemma 1.13. For arbitrary c ≥ 0 and functions g, g1, g2, g3, . . . ∈ F∗,

J(cg) = cJ(g) and J
(∑
n≥1

gn

)
=
∑
n≥1

J(gn).

If (gn)n≥1 is pointwise increasing with limit g, then

J(g) = lim
n→∞

J(gn).
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Proof of Lemma 1.13. Let (fn)n≥1 be a pointwise increasing sequence inF+ with limit g. Then,
cfn ∈ F+ and cfn ↑ cg as n→∞, whence

J(cg) = lim
n→∞

J(cfn) = c lim
n→∞

J(fn) = cJ(g).

For each n ≥ 1, let (fn,k)k≥1 be a pointwise increasing sequence in F+ with limit gn. Then

fN :=
N∑
n=1

fn,N

defines a pointwise increasing sequence (fN )N≥1 in F+ with limit
∑

n≥1 gn, because for any
fixed integer No ≥ 1 and N ≥ No,

∑
n≥1

gn ≥ fN ≥
No∑
n=1

fn,N →
No∑
n=1

gn as N →∞,

and
∑No

n=1 gn ↑
∑

n≥1 gn as No →∞. Consequently, for any fixed No ≥ 1,

J
(∑
n≥1

gn

)
= lim

N→∞
J(fN ) = lim

N→∞

N∑
n=1

J(fn,N )


≤
∑
n≥1

J(gn),

≥
No∑
n=1

J(gn),

and letting No →∞ reveals that J
(∑

n≥1 gn
)

=
∑

n≥1 J(gn).

Suppose that (gn)n≥1 is pointwise increasing with limit g. It is tempting to write g =
∑

n≥1 g̃n

with g̃n := gn − gn−1, g0 := 0, and refer to the previous result about countable sums. But note
that in general, g̃n 6∈ F∗. However,

fN := max
n≤N

fn,N

defines a pointwise increasing sequence (fN )N≥1 inF+ with limit g, because for any fixed integer
No ≥ 1 and N ≥ No,

g ≥ gN ≥ fN ≥ max
n≤No

fn,N ↑ gNo

as N →∞, and gNo ↑ g as No →∞. Consequently, for any fixed No ≥ 1,

J(g) = lim
N→∞

J(fN )

≤ lim
N→∞

J(gN ),

≥ J(gNo),

and letting No →∞ reveals that J(g) = limN→∞ J(gN ).

Now we have some essential ingredients for the proof of the following theorem.

Theorem 1.14 (Daniell–Port–Stone). There exists a unique measure µ on the σ-field σ(F) with
the following properties: F ⊂ L1(µ),

J(f) =

∫
f dµ for all f ∈ F ,
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and for any set B ∈ σ(F),

µ(B) = inf
{
µ(U) : U ∈ U(F), U ⊃ B

}
with inf(∅) :=∞.

Proof of Theorem 1.14. The proof is divided into six steps.

Step 1. For S ⊂ Ω let

µ(S) := inf{J(g) : g ∈ F∗, g ≥ 1S}.

This defines an outer measure on Ω.

Proof: Since 1∅ ≡ 0 ∈ F∗ and J(0) = 0, we see that µ(∅) = 0. To verify that µ is an outer
measure, it remains to verify that for arbitrary sets S, S1, S2, S3, . . . ⊂ Ω with S ⊂

⋃
n≥1 Sn,

µ(S) ≤
∑
n≥1

µ(Sn).

This is obvious if µ(Sn) = ∞ for some n ≥ 1. Otherwise, for an arbitrary fixed (small) number
ε > 0 and any index n ≥ 1, there exists a function gn ∈ F∗ such that gn ≥ 1Sn and J(gn) ≤
µ(Sn) + 2−nε. But then the definition of µ and Lemma 1.13 imply that

µ(S) ≤ J
(

sup
n≥1

gn

)
≤ J

(∑
n≥1

gn

)
=
∑
n≥1

J(gn) ≤
∑
n≥1

µ(Sn) + ε.

As ε ↓ 0, we obtain the desired inequality.

Step 2. µ(U) = J(1U ) for any U ∈ U(F).

Proof: By Lemma 1.8, 1U ∈ F∗, and J(g) ≥ J(1U ) for any g ∈ F∗ such that g ≥ 1U .

Step 3. Every set U ∈ U(F) is µ-measurable, that is,

µ(S) = µ(S ∩ U) + µ(S \ U).

In particular, by Carathéodory’s theory of outer measures, the restriction of µ to σ(F) defines a
measure on that σ-field.

Proof: Since µ is an outer measure, it suffices to show that µ(S) ≥ µ(S ∩ U) + µ(S \ U) in
case of µ(S) < ∞. Let g ∈ F∗ with g ≥ 1S . Let (gn)n≥1 and (fn)n≥1 be pointwise increasing
sequences in F+ with limits g and g ∧ 1U , respectively. Without loss of generality let gn ≥ fn for
all n ≥ 1. On the one hand,

µ(S ∩ U) ≤ J(g ∧ 1U ) = lim
n→∞

J(fn).

On the other hand, for any fixed no ≥ 1,

1S\U = 1S(1− 1U ) ≤ g(1− 1U ) ≤ g − g ∧ 1U ≤ g − fno .
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But g − fno is the limit of the pointwise increasing sequence (gn − fno)n≥no in F+, whence
g − fno ∈ F∗ and

µ(S \ U) ≤ J(g − fno) = lim
n→∞

J(gn − fno)

= lim
n→∞

J(gn)− J(fno)

= J(g)− J(fno).

Consequently, µ(S ∩ U) + µ(S \ U) ≤ J(g) + limn→∞ J(fn) − J(fno), and as no → ∞, we
obtain the inequality

µ(S ∩ U) + µ(S \ U) ≤ J(g)

for any g ∈ F∗ such that g ≥ 1S . This implies the desired inequality µ(S∩U)+µ(S\U) ≤ µ(S).

Step 4. F ⊂ L1(µ) and J(f) =
∫
f dµ for all f ∈ F .

Proof: It suffices to show that J(f) =
∫
f dµ for any f ∈ F+. For n ≥ 1 let

fn := 2−n
∑
k≥1

1{f>2−nk}.

For any ω ∈ {f > 0}, fn(ω) is the largest point on the grid {2−nz : z ∈ N0} which is strictly
smaller than f(ω). Since {2−nz : z ∈ N0} ⊂ {2−(n+1)z : z ∈ N0} and fn = 0 on {f = 0}, the
function sequence (fn)n≥1 is pointwise increasing with limit f . For any constant c ≥ 0, the set
{f > c} is F-open, and

J(1{f>c}) = µ({f > c}) =

∫
1{f>c} dµ.

Consequently, fn ∈ F∗, so by Lemma 1.13 and monotone convergence for usual integrals,

J(f) = lim
n→∞

J(fn) and
∫
f dµ = lim

n→∞

∫
fn dµ.

But for any fixed n, Lemma 1.13 and standard properties of usual integrals reveal that

J(fn) = 2−n
∑
k≥1

J
(
1{f>2−nk}

)
= 2−n

∑
k≥1

∫
1{f>2−nk} dµ =

∫
fn dµ.

This shows that J(f) =
∫
f dµ.

Step 5. For any set S ⊂ Ω,

µ(S) = µ̃(S) := inf
{
µ(U) : U ∈ U(F), U ⊃ S

}
.

Proof: Since U ⊃ S is equivalent to 1U ≥ 1S , and since 1U ∈ F∗ for any U ∈ U(F), we obtain
the inequality µ(S) ≤ µ̃(S).

On the other hand, for any fixed number c ∈ (0, 1) and arbitrary functions g ∈ F∗ with g ≥ S,

c−1g ≥ 1{g>c} ≥ 1S .

Since {g > c} ∈ U(F), this implies that

J(g) ≥ cµ({g > c}) ≥ cµ̃(S).
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Letting c ↑ 1 reveals that J(g) ≥ µ̃(S), whence µ(S) ≥ µ̃(S).

Step 6. A measure µ on σ(F) with the stated properties is unique.

Proof: The measure µ is uniquely determined by its values µ(U), U ∈ U(F). But for each
U ∈ U(F) there exists a pointwise increasing sequence (fn)n≥1 in F+ with limit 1U , so

µ(U) =

∫
1U dµ = lim

n→∞

∫
fn dµ = lim

n→∞
J(fn).

Thus, the measure µ is uniquely determined by the given functional J : F → R.

1.3 Representations of Dual Spaces

Suppose for the moment that F is an arbitrary real vector space, equipped with a seminorm ‖ · ‖.
The dual space of (F , ‖ · ‖) is the space of linear functionals L : F → R which are continuous
with respect to the seminorm ‖ · ‖. Continuity of L is equivalent to

sup
f∈F : ‖f‖≤1

|L(f)| < ∞.

In Functional Analysis, an important question is how the dual space can be represented explicitly.
Many of the known results are called a Riesz representation, honoring the hungarian mathemati-
cian Frigyes Riesz (1880-1956) who (co-)derived many of these results.

Specifically, let F be a Stone lattice of functions on a set Ω. Suppose in addition that there is a
seminorm ‖ · ‖ on F satisfying the following two properties:

‖f‖ ≤ ‖g‖ whenever f, g ∈ F+ with f ≤ g.

For any pointwise decreasing sequence (fn)n≥1 in F+ with limit 0,

lim
n→∞

‖fn‖ = 0.

The next theorem shows that any continuous linear functional on (F , ‖·‖) can be represented with
certain integrals.

Theorem 1.15. For any functional L in the dual space of (F , ‖ · ‖) there exist measures µ+, µ−

on σ(F) such that F ⊂ L1(µ+ + µ−) and

L(f) =

∫
f dµ+ −

∫
f dµ− for all f ∈ F .

Here is a first special case of this theorem:

Theorem 1.16 (Riesz–Markov–Kakutani). Let (Ω, d) be a compact metric space, and let C(Ω)

be the family of continuous functions f : Ω → R with respect to d, equipped with the supremum
norm ‖ · ‖∞, that is, ‖f‖∞ = maxω∈Ω |f(ω)|. Let L : C(Ω)→ R be a linear functional which is
continuous with respect to ‖ · ‖∞. Then there exist finite measures µ+, µ− on Borel(Ω) such that

L(f) =

∫
f dµ+ −

∫
f dµ− for all f ∈ C(Ω).
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Once we have learned more about signed measures, the conclusion of Theorem 1.16 can be refor-
mulated as follows: There exists a probability measure P on Borel(Ω) and a bounded, measurable
function h : Ω→ R such that

L(f) =

∫
fh dP for all f ∈ C(Ω).

The proof of Theorem 1.15 uses the following two auxiliary results.

Lemma 1.17 (From additive, nonnegative to linear functionals). Suppose that J : F+ → [0,∞)

is a functional which is additive in the sense that J(f + g) = J(f) + J(g) for all f, g ∈ F+.
Then,

L(f) := J(f+)− J(f−)

defines a linear functional L : F → R such that L ≡ J on F+.

Lemma 1.18 (From linear to additive, nonnegative functionals). Suppose that L : F → R is a
linear functional. For f ∈ F+ let

J(f) := sup
{
L(h) : h ∈ F+, h ≤ f

}
,

K(f) := sup
{
−L(h) : h ∈ F+, h ≤ f

}
.

These two functionals J,K : F+ → [0,∞] are additive in the sense that J(f + g) = J(f) +J(g)

and K(f + g) = K(f) +K(g) for all f, g ∈ F+.

They satisfy the equations J = K + L and K = J − L. In particular, J is real-valued if and only
if K is real-valued.

If J and K are real-valued, then for arbitrary f ∈ F ,

L(f) = LJ(f)− LK(f),

where LJ(f) := J(f+)− J(f−) and LK(f) := K(f+)−K(f−).

The proof of Lemma 1.17 is left to the reader as an exercise.

Proof of Lemma 1.18. Since J(f) ≥ L(0) = 0, the functional J is nonnegative. Let f1, f2 ∈
F+. For arbitrary h1, h2 ∈ F+ with h1 ≤ f1 and h2 ≤ f2,

J(f1 + f2) ≥ L(h1 + h2) = L(h1) + L(h2),

and letting L(hj) ↑ J(fj) for j = 1, 2 reveals that

J(f1 + f2) ≥ J(f1) + J(f2).

On the other hand, if h ∈ F+ with h ≤ f1 + f2, then h = h1 + h2 with the functions

h1 := h ∧ f1 ≤ f1 and h2 := (h− f1)+ ≤ f2

in F+. Hence,
L(h) = L(h1) + L(h2) ≤ J(f1) + J(f2),
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and letting L(h) ↑ J(f1 + f2) reveals that

J(f1 + f2) ≤ J(f1) + J(f2).

Replacing L with −L reveals that K is also a nonnegative, additive functional on F+.

For f ∈ F+,

J(f) = sup
{
L(h) : h ∈ F+, h ≤ f

}
= sup

{
L(f)− L(f − h) : h ∈ F+, h ≤ f

}
= L(f) + sup

{
−L(f − h) : h ∈ F+, h ≤ f

}
= L(f) + sup

{
−L(h) : h ∈ F+, h ≤ f

}
= L(f) +K(f),

where the second to last step uses the fact that the sets {f − h : h ∈ F+, h ≤ f} and {h ∈
F+ : h ≤ f} coincide. Thus, J = K + L on F+, and this is equivalent to K = J − L.

Now suppose that J and K are real-valued on F+. Then we know from Lemma 1.17 that
LJ(f) := J(f+) − J(f−) and LK(f) := K(f+) − K(f−) define linear functionals on F .
Since L = J −K on F+,

L(f) = L(f+)− L(f−) = J(f+)−K(f+)− J(f−) +K(f−) = LJ(f)− LK(f)

for any function f ∈ F .

Proof of Theorem 1.15. Continuity of L means that |L(f)| ≤ C‖f‖ for all f ∈ F and some real
constant C = C(L) ≥ 0. The additional properties of the seminorm ‖ · ‖ imply that for f ∈ F+,

J(f) := sup
{
L(h) : h ∈ F+, h ≤ f

} {≥ max{0, L(f)},
≤ C‖f‖,

K(f) := sup
{
−L(h) : h ∈ F+, h ≤ f

} {≥ max{0,−L(f)},
≤ C‖f‖.

Consequently, J and K are additive functionals F+ with values in [0,∞), and LJ , LK are well-
defined linear functionals on F with L = LJ − LK , see Lemmas 1.18 and 1.17. The sequential
continuity property of ‖ · ‖ implies that LJ , LK are abstract integrals on F . Indeed, if (fn)n≥1 is
a pointwise increasing sequence in F+ with limit f ∈ F+, then for M = J,K,

LM (fn) = LM (f)− LM (f − fn) = LM (f)−M(f − fn)

{
≥ LM (f)− C‖f − fn‖,
≤ LM (f).

As n→∞, f−fn ↓ 0, whence ‖f−fn‖ → 0 and, consequently, LM (fn)→ LM (f). According
to Theorem 1.14, there exist measures µ+, µ− on U(F) such that for arbitrary f ∈ F , LJ(f) =∫
f dµ+ and LK(f) =

∫
f dµ−, which implies the asserted representation of L.

The proof of Theorem 1.16 uses a well-known result from analysis about pointwise and uniform
convergence.
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Lemma 1.19 (Dini). Let (Ω, d) be a compact metric space, and let (fn)n≥1 be a pointwise de-
creasing sequence of continuous functions with limit 0. Then ‖fn − f‖∞ → 0 as n→∞.

Proof of Lemma 1.19. For any ε > 0, the sets {fn < ε} are open subsets of Ω with {f1 < ε} ⊂
{f2 < ε} ⊂ {f3 < ε} ⊂ · · · , and Ω =

⋃
n≥1{fn < ε}. But compactness of Ω implies that

Ω =
⋃
n≤n(ε){fn < ε} = {fn(ε) < ε} for some integer n(ε) ≥ 1, and this implies that ‖fn‖∞ < ε

for all n ≥ n(ε).

Proof of Theorem 1.16. In view of Theorem 1.15, note first that the supremum norm ‖ · ‖∞ has
the additional required properties. It is obvious that ‖f‖∞ ≤ ‖g‖∞ for functions 0 ≤ f ≤ g, and
the second property about sequences follows from Lemma 1.19. Thus we can apply Theorem 1.15
and conclude that there exist measures µ+ and µ− on σ(C(Ω)) such that F ⊂ L1(µ+ + µ−) and
L(f) =

∫
f dµ+ −

∫
f dµ−. Since 1 ∈ F , these measures µ± are finite. Moreover, σ(C(Ω))

coincides with Borel(Ω). On the one hand, {f > r} is an open subset of Ω for all f ∈ C(Ω) and
r ∈ R, whence σ(C(Ω)) ⊂ Borel(Ω). On the other hand, if U is a nonvoid proper subset of Ω,
then f(x) := inf{d(x, y) : y ∈ Ω \ A} defines a continuous function such that U = {f > 0}.
Hence, Borel(Ω) ⊂ σ(C(Ω)).
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Chapter 2

Signed Measures

2.1 The Hahn–Jordan Decomposition

For simplicity we restrict our attention to finite signed measures. Throughout this section let
(Ω,A) be a measurable space. That means, Ω is a nonvoid set equipped with a σ-field A over Ω,
the family of measurable subsets of Ω.

Definition 2.1 (Finite signed measure). A function ν : A → R is called a finite signed measure
on (Ω,A), if

(SM.1) ν(∅) = 0 and
(SM.2) ν is σ-additive, that is, for arbitrary disjoint sets A1, A2, A3, . . . in A,

ν
( ∞⋃
n=1

An

)
=

∞∑
n=1

ν(An).

Note that the only difference to a finite measure is that ν(A) may be negative for some setsA ∈ A.

Example 2.2. A standard example of a finite signed measure is ν := Q−P with finite measures
P,Q on (Ω,A). Properties (SM.1-2) follow immediately from analogous properties of measures.

Example 2.3. Another example is given by

ν(A) :=

∫
A
f dµ =

∫
1Af dµ

with a measure µ on (Ω,A) and a function f ∈ L1(µ). That means, f : Ω→ R̄ is A-measurable
with

∫
|f | dµ < ∞. Here one can verify properties (SM.1-2) by means of linearity of integrals

and dominated convergence.

Later on it will be shown that any finite signed measure may be represented as in Examples 2.2
and 2.3.

Remark 2.4 (Additivity). A finite signed measure ν is additive in the sense that

ν
( N⋃
n=1

An

)
=

N∑
n=1

ν(An)

25
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for arbitrary N ∈ N and disjoint sets A1, . . . , AN ∈ A. This follows from (SM.1-2) by setting
An = ∅ for n > N .

Exercise 2.5 (Continuity properties of signed measures). Let ν be a finite signed measure on
(Ω,A). Show that for arbitrary sets B1 ⊂ B2 ⊂ B3 ⊂ · · · in A,

ν
( ∞⋃
n=1

Bn

)
= lim

n→∞
ν(Bn).

Show that for arbitrary sets C1 ⊃ C2 ⊃ C3 ⊃ · · · in A,

ν
( ∞⋂
n=1

Cn

)
= lim

n→∞
ν(Cn).

The next definition introduces two important concepts for the subsequent results.

Definition 2.6 (Positive and negative sets). Let ν be a finite signed measure on (Ω,A). A set
A∗ ⊂ Ω is called ν-positive if A∗ ∈ A and

ν(A) ≥ 0 for all A ∈ A with A ⊂ A∗.

A set A∗ ⊂ Ω is called ν-negative, if A∗ ∈ A and

ν(A) ≤ 0 for all A ∈ A with A ⊂ A∗.

Since −ν is a finite signed measure too, a set A∗ ⊂ Ω is ν-positive or ν-negative if and only if it
is (−ν)-negative or (−ν)-positive, respectively.

Here is a key result for the main theorems in this and the next section.

Proposition 2.7 (Existence of nontrivial positive sets). Let ν be a finite signed measure on (Ω,A),
and letA0 ∈ A with ν(A0) > 0. Then there exists a ν-positive setA∗ ⊂ A0 with ν(A∗) ≥ ν(A0).

Proof of Proposition 2.7. We define

δ0 := sup
{
−ν(B) : B ∈ A, B ⊂ A0

}
≥ 0.

Then we write A0 = A1 ∪B1 with disjoint measurable sets A1 and B1 such that

−ν(B1) ≥ min{δ0/2, 1}.

This procedure can be iterated. After k steps we have measurable sets A0 ⊃ A1 ⊃ · · · ⊃ Ak, and
we consider the number

δk := sup
{
−ν(B) : B ∈ A, B ⊂ Ak

}
≥ 0.

Then we write Ak = Ak+1 ∪Bk+1 with disjoint measurable sets Ak+1 and Bk+1 such that

−ν(Bk+1) ≥ min{δk/2, 1}.
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This construction yields a non-increasing sequence (Ak)k≥0 and the disjoint setsBk = Ak−1\Ak,
k ≥ 1. We may write

A0 = A∗ ∪B∗

with the disjoint sets
A∗ =

⋂
k≥0

Ak and B∗ =
⋃
k≥1

Bk.

Since ν(B∗) =
∑∞

k=1 ν(Bk) with nonpositive summands ν(Bk), we obtain the inequality

ν(A∗) = ν(A0)− ν(B∗) ≥ ν(A0).

Moreover, the sequence (ν(Bk))k≥1 converges to 0, so the inequalities 0 ≤ min{δk/2, 1} ≤
−ν(Bk+1) imply that limk→∞ δk = 0. Consequently, for any measurable set A ⊂ A∗,

−ν(A) ≤ inf
k≥0

sup
{
−ν(A′) : A′ ∈ A, A′ ⊂ Ak

}
= inf

k≥0
δk = 0,

whence ν(A) ≥ 0. This shows that A∗ is a ν-positive set.

Exercise 2.8 (Unions of positive sets). Let ν be a finite signed measure on (Ω,A). Let (An)n≥1

be a sequence of ν-positive sets. Show that A∗ :=
⋃
n≥1An is also ν-positive and satisfies

ν(A∗) ≥ sup
n≥1

ν(An).

With Proposition 2.7 and Exercise 2.8 one can prove the following representation of signed mea-
sures:

Theorem 2.9 (Hahn–Jordan decomposition). Let ν be a finite signed measure on (Ω,A). Then
Ω = Ω+∪Ω− with disjoint sets Ω+,Ω− such that Ω+ is ν-positive and Ω− is ν-negative. In other
words,

ν+(A) := ν(A ∩ Ω+) and ν−(A) := −ν(A ∩ Ω−)

defines two finite measures ν+, ν− on (Ω,A) such that ν = ν+ − ν−, and these two measures
have disjoint support in the sense that ν+(Ω−) = ν−(Ω+) = 0.

Example 2.10. Before proving Theorem 2.9, we revisit Example 2.3, i.e. ν(A) =
∫
A f dµ for

some measure µ on (Ω,A) and a function f ∈ L1(µ). Here a Hahn–Jordan decomposition is
given by

Ω+ := {f ≥ 0} and Ω− := {f < 0}.

The corresponding measures ν± are given by

ν±(A) =

∫
A
f± dµ

with f±(ω) = max{±f(ω), 0}.

Remark 2.11. Theorem 2.9 implies that any finite signed measure ν may be represented as in
Example 2.3. Indeed, let ν, Ω+, Ω−, ν+ and ν− be as in Theorem 2.9. Then

ν(A) =

∫
A
f dµ for all A ∈ A,

with the finite measure µ := ν+ + ν− and the measurable function f := 1Ω+ − 1Ω− .
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Proof of Theorem 2.9. Let (An)n≥1 be a sequence of measurable sets such that

lim
n→∞

ν(An) = C+ := sup
{
ν(A) : A ∈ A

}
.

According to Proposition 2.7, we may assume without loss of generality that all sets An are ν-
positive. But then,

Ω+ :=
⋃
n≥1

An

is a ν-positive set such that ν(Ω+) = C+, see Exercise 2.8. In particular, C+ < ∞. Moreover,
Ω− := Ω \ Ω+ is a ν-negative set. Indeed, if ν(A0) > 0 for some measurable set A0 ⊂ Ω−, then
ν(Ω+ ∪A0) = ν(Ω+) + ν(A0) > C+, a contradition to the definition of C+.

Exercise 2.12. Let Ω = Ω+ ∪ Ω− as in Theorem 2.9. Show that this partition of Ω is essentially
unique in the following sense: If Ω = B+ ∪B− with a ν-positive set B+ and a ν-negative set B−,
then

ν(A) = 0 for any measurable A ⊂ (Ω+4B+) ∪ (Ω−4B−).

Remark 2.13. Theorem 2.9 implies, that any finite signed measure ν may be represented as the
difference of two finite measures. The next exercise shows that the particular measures ν± are
minimal in a certain sense.

Exercise 2.14. Let ν be a finite signed measure on (Ω,A) with Hahn–Jordan decomposition
ν = ν+ − ν−.

(a) Show that −ν−(A) ≤ ν(A) ≤ ν+(A) for arbitrary A ∈ A.

(b) Let ν = µ+ − µ− with finite measures µ+, µ− on (Ω,A). Show that there exists a finite
measure µo on (Ω,A) such that µ+ = ν+ + µo and µ− = ν− + µo. Deduce from the latter fact
that ν+ and ν− are “minimal” in the sense that

µ+ + µ− ≥ ν+ + ν−

with equality if and only if µ+ = ν+ and µ− = ν−.

Exercise 2.15. Let P and Q be finite measures on R with densities f and g, respectively, with
respect to Lebesgue measure. Determine a Hahn–Jordan decomposition of ν := Q − P in terms
of f and g.

Illustrate your solution graphically in case of P = N (0, 1) and Q = N (0, 22).

2.2 Radon–Nikodym Derivatives

In this section we consider measures P and Q on (Ω,A) and investigate under which conditions
Q has a density f with respect to P . That means, f : Ω → [0,∞) is an A-measurable function
such that

(2.1) Q(A) =

∫
A
f dP for all A ∈ A.
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Such a function f is also called a Radon–Nikodym derivative of Q with respect to P , and (2.1) is
sometimes abbreviated as

f =
dQ

dP
.

If a density of Q with respect to P exists, arbitrary integrals with respect to Q may be rewritten as
integrals with respect to P .

Lemma 2.16. Suppose that Q has a density f with respect to P in the sense of (2.1). Then for
arbitrary A-measurable functions h : Ω→ R̄,

(2.2)
∫
h dQ =

∫
hf dP

whenever one of the two integrals is well-defined in R̄.

Proof of Lemma 2.16. We follow a standard route in measure theory, also known as “measure-
theoretic induction”. Assumption (2.1) is equivalent to (2.2) for arbitrary indicator functions h =

1A, A ∈ A. By linearity of integrals, (2.2) holds true for “simple functions” h, that means,
functions h =

∑m
j=1 λj1Aj with m ∈ N, constants λj ≥ 0 and sets Aj ∈ A. For an arbitrary

measurable function h : Ω → [0,∞], there exists a sequence (hn)n of simple functions such that
(hn)n ↑ h pointwise. A standard construction is given by

hn(ω) := 2−n
n2n∑
j=1

1[h(ω)≥2−nj].

But then (hnf)n ↑ hf , so by monotone convergence,∫
h dQ = lim

n→∞

∫
hn dQ = lim

n→∞

∫
hnf dP =

∫
hf dP.

Finally, any measurable function h : Ω→ R̄ may be written as h = h+−h− with h± = (±h)∨0.
Then (hf)± = h±f , because f ≥ 0, and

∫
h± dQ =

∫
(hf)± dP . Hence∫

h dQ =

∫
h+ dQ−

∫
h− dQ =

∫
(fh)+ dP −

∫
(hf)− dP =

∫
hf dP,

whenever these differences are well-defined in R̄.

Corollary 2.17. Let P , Q and R be measures on (Ω,A) such that densities f = dQ/dP and
g = dR/dQ exist. Then fg = dR/dP . Furthermore, if f > 0, then f−1 = dP/dQ.

Proof of Corollary 2.17. For any set A ∈ A,∫
A
fg dP =

∫
1Ag f dP =

∫
1Ag dQ =

∫
A
g dQ = R(A),

where the second step follows from Lemma 2.16 applied to h = 1Ag.

In case of f > 0, for any A ∈ A,

P (A) =

∫
1A dP =

∫
1Af

−1f dP =

∫
1Af

−1 dQ =

∫
A
f−1 dQ

by Lemma 2.16 applied to h = 1Af
−1.
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Exercise 2.18. Let P be a measure on (Ω,A), and for a fixed Ωo ∈ A let Po(A) := P (A ∩ Ωo).
Show that Po defines a measure on (Ω,A) with Po(Ω) = P (Ωo) and Po(Ω \ Ωo) = 0. Determine
a version of dPo/dP . Then deduce that for arbitrary measurable functions h : Ω→ R̄,∫

h dPo =

∫
Ωo

h dP

whenever one (and thus both) of these integrals is well-defined in R̄.

Exercise 2.19 (Transformations). Let (Ω,A) and (Ω̃, Ã) be measurable spaces, and let τ : Ω →
Ω̃ be a bijective mapping such that τ and τ−1 are measurable.

(a) Let M be a measure on (Ω,A), and let M̃ := M ◦ τ−1, a measure on (Ω̃, Ã). Show that∫
h̃ dM̃ =

∫
h̃ ◦ τ dM

for arbitrary measurable functions h̃ : Ω̃ → R̄ such that one of these integrals is well-defined in
R̄.

(b) Let P and Q be measures on (Ω,A) such that a density f = dQ/dP exists. Show that
Q̃ := Q ◦ τ−1 has density f̃ := f ◦ τ−1 with respect to P̃ := P ◦ τ−1.

2.2.1 Finite measures

Now we consider the case of finite measures P and Q in more detail. The next lemma implies that
a density of Q with respect to P , if it exists, is P -almost everywhere unique.

Lemma 2.20 (Uniqueness of densities). Let P be a finite measure on (Ω,A), and for j = 1, 2 let
Qj : A → R be given by Qj(A) :=

∫
A fj dP with a function fj ∈ L1(P ). If Q1 ≤ Q2 on A,

then
P ({f1 > f2}) = 0.

Exercise 2.21. Prove Lemma 2.20.

In what follows, we shall construct a density of Q with respect to P . The main idea for the
construction results from an elementary consideration in the next exercise.

Exercise 2.22 (Superlevel sets). Let P and Q be finite measures on (Ω,A) such that Q has a
density f ∈ L1(P ) with respect to P . Show that for any λ > 0, a set A ∈ A with {f > λ} ⊂
A ⊂ {f ≥ λ} maximizes

A 3 A 7→ Q(A)− λP (A).

More generally, show that a set A ∈ A maximizes Q− λP if and only if

P (A ∩ {f < λ}) = 0 = P ({f > λ} \A).

Now we state and prove the first main result of this section.

Theorem 2.23. Let P and Q be finite measures on (Ω,A). There exist a set B∗ ∈ A with
P (B∗) = 0 and a nonnegative function f ∈ L1(P ) such that

Q(A) = Q(A ∩B∗) +

∫
A
f dP for arbitrary A ∈ A.
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Proof of Theorem 2.23. Motivated by Exercise 2.22, we consider for any λ > 0 the finite signed
measureQ−λP . According to Theorem 2.9, there exists a setAλ ∈ A such thatAλ is (Q−λP )-
positive and Ω \Aλ is (Q− λP )-negative. Now we could try to combine all these sets and define
a function f via {f > λ} = Aλ. But this is easier said than done. The problem is that we are
dealing with uncountably many sets Aλ.

The precise construction starts from a countable dense subset Λ of (0,∞), for instance, Λ =

Q ∩ (0,∞). For any λ ∈ Λ let Aλ ∈ A be chosen as above. Now we “clean up” these sets as
follows: For t ≥ 0 let

Bt :=
⋃

λ∈Λ:λ>t

Aλ.

Note that {Aλ : λ ∈ Λ, λ > t} is a countable family of (Q− tP )-positive sets, becauseQ−λP ≤
Q−tP for λ > t. Hence,Bt is measurable and (Q−tP )-positive, too, see Exercise 2.8. Moreover,
for any measurable subset A of Ω \Bt =

⋂
λ∈Λ:λ>t Ω \Aλ,

(Q− tP )(A) = sup
λ∈Λ:λ>t

(Q− λP )(A) ≤ 0,

because Ω \Aλ is (Q− λP )-negative. Hence Ω \Bt is a (Q− tP )-negative set. In particular,

Q(Ω \B0) = 0.

Note also that by construction,

Bs ⊃ Bt for 0 ≤ s < t

and
Bs =

⋃
t>s

Bt for s ≥ 0,

because
Bs =

⋃
λ∈Λ:λ>s

Aλ =
⋃
t>s

⋃
λ∈Λ:λ>t

Aλ =
⋃
t>s

Bt.

The intersection
B∗ :=

⋂
t>0

Bt

satisfies P (B∗) = 0, because

0 ≤ P (B∗) ≤ inf
t>0

P (Bt) ≤ inf
t>0

Q(Bt)/t ≤ inf
t>0

Q(Ω)/t = 0.

Next we define a function f̄ : Ω→ [0,∞] via

f̄(ω) :=

{
0 if ω ∈ Ω \B0,

sup{t ≥ 0 : ω ∈ Bt} if ω ∈ B0.

Note that {f̄ =∞} = B∗. Note also that

{f̄ > t} =
⋃
s>t

Bs = Bt for all t ≥ 0,
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so f̄ is measurable. Our goal is to show that Q(A) = Q(A ∩B∗) +
∫
A f̄ dP for arbitrary A ∈ A.

For any fixed parameter γ > 1, the set Ω may be partitioned into the disjoint sets Ω \B0, B∗ and

B0 \B∗ =
⋃
z∈Z

Cz with Cz := Bγz \Bγz+1 .

Note that f̄ = 0 on Ω\B0 and γz < f̄ ≤ γz+1 on Cz , z ∈ Z. Moreover, Cz is (Q−γzP )-positive
and (Q− γz+1P )-negative. Hence, for any set A ∈ A,

Q(A \B0) = 0 =

∫
A\B0

f̄ dP,

and

Q(A ∩ Cz)


≤ γz+1P (A ∩ Cz) ≤ γ

∫
A∩Cz

f̄ dP,

≥ γzP (A ∩ Cz) ≥ γ−1

∫
A∩Cz

f̄ dP.

Consequently,

Q(A \B∗) =
∑
z∈Z

Q(A ∩ Cz)


≤ γ

∑
z∈Z

∫
A∩Cz

f̄ dP = γ

∫
A\B∗

f̄ dP,

≥ γ−1
∑
z∈Z

∫
A∩Cz

f̄ dP = γ−1

∫
A\B∗

f̄ dP,

and for γ → 1 we obtain the desired equation(s)

Q(A) = Q(A ∩B∗) +

∫
A\B∗

f̄ dP = Q(A ∩B∗) +

∫
A
f̄ dP.

The latter equation follows from the fact that P (B∗) = 0. Indeed, this representation ofQ remains
valid if we replace f̄ with the real-valued function f := 1Ω\B∗ f̄ . Setting A = Ω yields the
equation

∫
f dP = Q(Ω)−Q(B∗) <∞, whence f ∈ L1(P ).

Theorem 2.23 shows that Q is the sum of two measures, a “singular part with respect to P ”,

A 7→ Q(A ∩B∗),

and an “absolutely continuous part with respect to P ”,

A 7→
∫
A
f dP.

The singular part is nontrivial if and only if Q(B∗) > 0. Otherwise Q is “absolutely continuous
with respect to P ” as defined in the next paragraph.

2.2.2 Absolute continuity and σ-finite measures

Definition 2.24 (Absolute continuity). Let P and Q be measures on (Ω,A). The measure Q is
called absolutely continuous with respect to P ifQ(A) = 0 for all setsA ∈ A such that P (A) = 0.
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Definition 2.25 (σ-finiteness). A measure P on (Ω,A) is called σ-finite if there exists a sequence
(An)n≥1 in A such that Ω =

⋃
n≥1An and P (An) <∞ for all n ≥ 1.

A standard example of a σ-finite measure is Lebesgue measure on R. Here Ω = R is the union of,
say, all intervals An := [−n, n], n ∈ N.

Many results for finite measures may be extended to σ-finite measures by means of the following
observation.

Lemma 2.26. For a nonzero measure P on (Ω,A), the following two statements are equivalent:

(i) P is σ-finite.

(ii) There exist a probability measure Po on (Ω,A) and anA-measurable function p : Ω→ (0,∞)

such that
P (A) =

∫
A
p dPo for all A ∈ A.

Proof of Lemma 2.26. Suppose first that P may represented as in part (ii). Then Ω =
⋃
n≥1An

with An := {p ≤ n}, and P (An) ≤ nPo(An) ≤ n for all n. Thus, P is σ-finite. Moreover,
P (Ω) > 0 because Ω =

⋃
m≥1{p ≥ m−1}, so P ({p ≥ m−1}) ≥ m−1Po({p ≥ m−1}) > 0 for

sufficiently large m.

Now suppose that P is nonzero and σ-finite. In case of P (Ω) <∞, condition (ii) is satisfied with
Po := P (Ω)−1P and p ≡ P (Ω). In case of P (Ω) = ∞, let Ω =

⋃∞
n=1An with sets An ∈ A

such that P (An) < ∞, we may assume without loss of generality that these sets An are pairwise
disjoint with P (An) > 0. But then

Po(A) :=
∞∑
n=1

2−nP (An)−1P (A ∩An)

defines a probability measure on (Ω,A), and for any A ∈ A,

P (A) =

∞∑
n=1

2nP (An)Po(A ∩An) =

∫
A
p dPo

with p(ω) :=
∑∞

n=1 2nP (An)1An(ω) > 0.

Theorem 2.23 implies the following result about σ-finite measures.

Theorem 2.27 (Radon–Nikodym). Let P and Q be σ-finite measures on (Ω,A). Then the fol-
lowing two conditions are equivalent:

(i) Q is absolutely continuous with respect to P .

(ii) There exists a density f of Q with respect to P .

In case of (i–ii), the density f is P -almost everywhere unique. That means, if f̃ is another density
of Q with respect to P , then P ({f̃ 6= f}) = 0.

Proof of Theorem 2.27. If condition (ii) is satisfied, then P (A) = 0 implies that Q(A) equals∫
A f dP = 0, so condition (i) holds true as well.
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Suppose that condition (i) is satisfied. If P andQ are finite, the existence of a density f = dQ/dP

is a consequence of Theorem 2.23. In the general case, let Po and Qo be probability measures
on (Ω,A) such that there exist strictly positive densities p = dP/dPo and q = dQ/dQo. Then
p−1 = dPo/dP and q−1 = dQo/dQ, see Corollary 2.17. Hence, for arbitrary sets A ∈ A,

P (A) = 0 if and only if Po(A) = 0,

Q(A) = 0 if and only if Qo(A) = 0.

Thus condition (i) implies thatQo is absolutely continuous with respect to Po. Consequently, there
exists a density fo = dQo/dPo. But then Lemma 2.16 implies that for anyA-measurable function
h : Ω→ [0,∞), ∫

h dQ =

∫
h q dQo =

∫
h qfo dPo =

∫
h qfop

−1 dP,

so f := qfop
−1 = dQ/dP .

Suppose that f̃ is another version of dQ/dP . Then, f̃o := q−1f̃p is another version of dQo/dPo,
and {f̃o 6= fo} = {f̃ 6= f}. According to Exercise 2.20, 0 = Po{f̃o 6= fo} = Po{f̃ 6= f},
whence P{f̃ 6= f} =

∫
{f̃ 6=f} p dPo = 0.

Exercise 2.28. Let P be a σ-finite measure on (Ω,A), and for some measurable function f :

Ω→ [0,∞), let Q(A) :=
∫
A f dP for A ∈ A. Show that Q is σ-finite too.

2.3 Another Riesz Representation

Combining the Radon–Nikodym theorem with Theorem 1.15 leads to a well-known representation
theorem for Lp-spaces. Let (Ω,A, µ) be a σ-finite measure space. For p ∈ [1,∞) let Lp(µ) be
the set of measurable functions f : Ω→ R such that

‖f‖p,µ :=
(∫
|f |p dµ

)1/p
< ∞.

It is well-known that Lp(µ) is a Stone lattice and ‖ · ‖p,µ defines a seminorm on Lp(µ). The same
is true for the set L∞(µ) of measurable functions f : Ω→ R such that

‖f‖∞,µ := inf
{
r ≥ 0 : µ({|f | > r}) = 0

}
< ∞.

Theorem 2.29. For an arbitrary p ∈ [1,∞), let L : Lp(µ) → R be linear and continuous with
respect to ‖ · ‖p,µ. Then there exists an function h ∈ Lq(µ), where q = p/(p− 1) ∈ (1,∞], such
that

L(f) =

∫
fh dµ for all f ∈ Lp(µ),

and

sup
f∈Lp(µ) : ‖f‖p,µ≤1

|L(f)| = ‖h‖q,µ.

The function h is unique µ-almost everywhere.
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In the proof of this theorem, the following result is useful.

Lemma 2.30 (Hölder). Let p ∈ [1,∞) and q = p/(p−1) ∈ (1,∞]. For any function h ∈ Lq(µ),

sup
f∈Lp(µ) : ‖f‖p,µ≤1

∣∣∣∫ fh dµ
∣∣∣ = ‖h‖q,µ.

Proof of Lemma 2.30. If ‖h‖q,µ = 0, the assertion is obvious, because µ({h 6= 0}) = 0. Thus
let 0 < ‖h‖q,µ <∞.

In case of p = 1, it follows from µ({|h| > ‖h‖∞,µ}) = 0 that∣∣∣∫ fh dµ
∣∣∣ ≤ ‖f‖1,∞‖h‖∞,µ.

On the other hand, µ({|h| ≥ C}) > 0 for any fixed 0 < C < ‖h‖∞,µ, and σ-finiteness of
µ implies that 0 < λ := µ({|h| ≥ C} ∩ B) < ∞ for some B ∈ A. If we define f :=

λ−1 sign(h)1{|h|≥C}∩B , then ‖f‖1,µ = 1 and∫
fh dµ ≥ C.

Hence, the supremum of
∣∣∫ fh dµ∣∣ over all f ∈ L1(µ) with ‖f‖1,µ ≤ 1 equals ‖h‖∞,µ.

In case of p > 1, the well-known Hölder inequality states that∣∣∣∫ fh dµ
∣∣∣ ≤ ‖f‖p,µ‖h‖q,µ

for arbitrary f ∈ Lp(µ). Consequently,
∣∣∫ fh dµ∣∣ is no larger than ‖h‖q,µ whenever ‖f‖p,µ ≤ 1.

It suffices to show that we have equality for a suitable f . To this end, let f := λ sign(h)|h|q−1 =

λ sign(h)|h|1/(p−1) for some λ > 0. Then ‖f‖p,µ = λ‖h‖q/pq,µ , so λ = ‖h‖−q/pq,µ = ‖h‖−1/(p−1)
q,µ

yields a function with ‖f‖p,µ = 1, and∫
fh dµ = ‖h‖−1/(p−1)

q,µ

∫
|h|q dµ = ‖h‖q,µ.

Proof of Theorem 2.29. As in the proof of Theorem 1.15 one can show that there exist two mea-
suresM1 andM2 on σ(Lp(µ)) such that Lp(µ) ⊂ L1(M1 +M2) and L(f) =

∫
f dM1−

∫
f dM2

for any f ∈ Lp(µ). Furthermore, for some constant C,
∫
f dMj ≤ C‖f‖p,µ for all nonnegative

functions f ∈ Lp(µ) and j = 1, 2.

First of all, σ(Lp(µ)) = A. On the one hand, σ(Lp(µ)) ⊂ A, because all functions f ∈ Lp(µ) are
A-measurable. On the other hand, if Ω =

⋃
m≥1Bm with sets Bm ∈ A such that µ(Bm) < ∞,

then any set A ∈ A can be written as A =
⋃
m≥1A ∩ Bm, and 1A∩Bm ∈ Lp(µ) for all m ≥ 1,

whence A ∈ σ(Lp(µ)), that is, A ⊂ σ(Lp(µ)).

Thus for j = 1, 2, Mj is a measure on A such that
∫
f dMj ≤ C‖f‖p,µ for all nonnegative

f ∈ Lp(µ). In particular, if f = 1A for some A ∈ A with µ(A) = 0, then Mj(A) = 0.
Consequently, by the Radon–Nikodym theorem, there exists a density hj of Mj with respect
to µ, and

∫
f dMj =

∫
fhj dµ ≤ C‖f‖p,µ for all nonnegative f ∈ Lp(µ). But this implies
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that ‖hj‖q,µ < ∞. Indeed, let Ω =
⋃
m≥1Bm with sets B1 ⊂ B2 ⊂ B3 ⊂ · · · such that

µ(Bm) < ∞. Then hjm := 1Bm(hj ∧ m) ∈ Lq(µ) satisfies hjm ↑ hj pointwise as m → ∞,
whence ‖hjm‖q,µ → ‖h‖q,µ as m→∞. For any nonnegative f ∈ Lp(µ) with ‖f‖p,µ ≤ 1,

C ≥
∫
fhj dµ ≥

∫
fhjm dµ,

and for a suitable such function f , the integral on the right hand side equals ‖hjm‖q,µ, see the
proof of Lemma 2.30. This shows that ‖hj‖q,µ ≤ C.

All in all, h := h1 − h2 is a function in Lq(µ) such that

L(f) =

∫
fh dµ for all f ∈ Lp(µ),

and it follows from Lemma 2.30 that the supremum of |L(f)| over all f ∈ Lp(µ) with ‖f‖p,µ ≤ 1

is equal to ‖h‖q,µ.

Essential uniqueness of h can be verified as follows: If h, h̃ ∈ Lq(µ) such that L(f) =
∫
fh dµ =∫

fh̃ dµ for all f ∈ Lp(µ), then
∫
f(h − h̃) dµ = 0 for all f ∈ Lp(µ). Then it follows from

Lemma 2.30 that ‖h− h̃‖q,µ = 0, that is, µ({h 6= h̃}) = 0.



Chapter 3

Conditional Expectations

Throughout this chapter let (Ω,A, P ) be a probability space, and let X be a random variable in
L1(P ). That means, X : Ω→ R is A-measurable, and

∫
|X| dP <∞.

3.1 Conditional expectations with respect to a sub-σ-field

Let Ao be a sub-σ-field of A. One could think about a rather complex random experiment de-
scribed by (Ω,A, P ), and the subfield Ao represents some partial aspects of it.

Theorem 3.1. There exists a random variable Xo ∈ L1(P |Ao) such that

(3.1)
∫
Ao

Xo dP =

∫
Ao

X dP for all Ao ∈ Ao.

This random variableXo is almost everywhere unique: If X̃o is another random variable satisfying
(3.1), then P (X̃o 6= Xo) = 0.

Definition 3.2 (Conditional expectation, I). A random variable Xo as in Theorem 3.1 is called (a
version of the) conditional expectation of X , given the sub-σ-field Ao. A function Xo satisfying
(3.1) is denoted by IE(X | Ao).

Proof of Theorem 3.1. Uniqueness ofXo almost everywhere follows from Lemma 2.20 (withAo
in place of A), so it suffices to prove existence of Xo.

Let X = X+ −X− with X± = max(±X, 0). Then

Q±(A) :=

∫
A
X± dP

defines finite measures on (Ω,A) with density X± with respect to P . This implies that Q±|Ao is
absolutely continuous with respect to P |Ao . Hence, by the Radon–Nikodym theorem, there exist
densitiesX(±)

o ∈ L1(P |Ao) ofQ±|Ao with respect to P |Ao . This implies thatXo := X
(+)
o −X(−)

o

has the desired property (3.1).

37
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Example 3.3 (Countable partitions). Let Ω =
⋃
n≥1Bn with a sequence (Bn)n≥1 of disjoint

measurable sets, and let Ao be the smallest σ-field containing all these sets Bn, n ≥ 1. Then

IE(X | Ao) =
∑
n≥1

IE(X |Bn) · 1Bn almost surely

with the numbers

IE(X |B) :=

P (B)−1

∫
B
X dP if P (B) > 0,

IE(X) else.

(The definition IE(X |B) := IE(X) in case of P (B) = 0 is somewhat arbitrary.) Indeed, the
function Xo :=

∑
n≥1 IE(X |Bn) · 1Bn is constant on each set Bn, n ≥ 1, so it isAo-measurable.

Moreover, any set Ao ∈ Ao may be written as Ao =
⋃
n∈M Bn with M ⊂ N, so∫

Ao

X dP =
∑
n∈M

∫
Bn

X dP =
∑
n∈M

P (Bn) IE(X |Bn) =
∑
n∈M

∫
Bn

Xo dP =

∫
Ao

Xo dP.

Remark 3.4 (Properties of conditional expectations). In what follows, let X,Y ∈ L1(P ).

(a) For real numbers a, b,

IE(aX + bY | Ao) = a IE(X | Ao) + b IE(Y | Ao) almost surely.

This is a simple consequence of linearity of integrals.

(b) If X ≤ Y almost surely, then

IE(X | Ao) ≤ IE(Y | Ao) almost surely.

This is essentially a consequence of Lemma 2.20: It follows from X ≤ Y almost surely that∫
Ao

IE(X | Ao) dP =

∫
Ao

X dP ≤
∫
Ao

Y dP =

∫
Ao

IE(Y | Ao) dP for all Ao ∈ Ao.

Hence, P
(
IE(X | Ao) > IE(Y | Ao)

)
= 0.

(c) The mapping X 7→ IE(X | Ao) is a weak contraction in the sense that∣∣IE(X | Ao)
∣∣ ≤ IE(|X| | Ao) almost surely.

This follows from properties (a–b): Writing X = X+ −X− with X± = max(±X, 0), one may
write |X| = X+ +X−, and we know that almost everywhere,

IE(X± | Ao) ≥ 0 (property (b)),

IE(X | Ao) = IE(X+ −X− | Ao) = IE(X+ | Ao)− IE(X− | Ao) (property (a)),

IE(|X| | Ao) = IE(X+ +X− | Ao) = IE(X+ | Ao) + IE(X− | Ao) (property (a)),

whence ∣∣IE(X | Ao)
∣∣ ≤ IE(|X| | Ao).
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(d) It follows from properties (a) and (c) that∫ ∣∣IE(X | Ao)− IE(Y | Ao)
∣∣ dP ≤ ∫

|X − Y | dP.

(e) For any bounded, Ao-measurable random variable Zo : Ω→ R,

(3.2)
∫
XZo dP =

∫
IE(X | Ao)Zo dP.

Indeed, by definition of IE(X | Ao), equation (3.2) is true for indicator functions Zo = 1Ao , Ao ∈
Ao. By linearity of integrals, (3.2) is even true for Ao-measurable functions Zo : Ω → R taking
only finitely many values. But for any bounded,Ao-measurable function Zo : Ω→ R, there exists
a sequence (Zn)n≥1 of Ao-measurable functions taking only finitely many values such that

δn := sup
ω∈Ω

∣∣Zn(ω)− Zo(ω)
∣∣ → 0 as n→∞.

Now (3.2) follows from the fact that for arbitrary n ≥ 1,∣∣∣∫ XZo dP −
∫

IE(X | Ao)Zo dP
∣∣∣ =

∣∣∣∫ (X − IE(X | Ao)
)
(Zo − Zn) dP

∣∣∣
≤ δn

∫ ∣∣X − IE(X | Ao)
∣∣ dP.

Exercise 3.5. Let P be the exponential distribution on Ω = [0,∞) with rate parameter λ > 0,
and letAo be the smallest σ-field containing all intervals [k, k+1), k ∈ N0. Determine IE(X | Ao)
in case of X(ω) := ω.

Exercise 3.6 (“Tower property” of conditional expectations). Let (Ω,A, P ) be a probability space
and X ∈ L1(P ). Let A1 and A2 be σ-fields over Ω such that A1 ⊂ A2 ⊂ A.

(a) Show that IE
(
IE(X | A1) | A2

)
= IE(X | A1) almost surely.

(b) Show the so-called tower property: IE
(
IE(X | A2) | A1

)
= IE(X | A1) almost surely.

We end this section with an extension of Jensen’s inequality for expectations to conditional expec-
tations.

Lemma 3.7 (Jensen’s inequality). Let X ∈ L1(P ), and let ψ : R → R be convex such that∫
ψ(X) dP <∞. Then

ψ
(
IE(X | Ao)

)
≤ IE(ψ(X) | Ao) almost surely,

and ∫
ψ(IE(X | Ao)) dP ≤

∫
ψ(X) dP.

Proof of Lemma 3.7. By the definition of conditional expectations and Lemma 2.20, it suffices
to show that for any fixed Ao ∈ Ao,∫

Ao

ψ
(
IE(X | Ao)

)
dP ≤

∫
Ao

ψ(X) dP.
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Note that by convexity of ψ, for any fixed xo ∈ R there exists a slope b(xo) ∈ R such that
ψ(x) ≥ ψ(xo) + b(xo)(x − xo) for all x ∈ R; see, for instance, Chapter 3 of Dümbgen (2021).
Moreover, for arbitrary x ∈ R,

ψ(x) = sup
xo∈Q

(
ψ(xo) + b(xo)(x− xo)

)
.

Consequently,∫
Ao

ψ
(
IE(X | Ao)

)
dP =

∫
Ao

sup
xo∈Q

(
ψ(xo) + b(xo)(IE(X | Ao)− x)

)
dP

=

∫
Ao

sup
xo∈Q

IE
(
ψ(xo) + b(xo)(X − xo)

∣∣Ao) dP
≤
∫
Ao

ψ(X) dP,

where the second last step follows from Remark 3.4 (a) and countability of Q, while the last step
follows from Remark 3.4 (b) and countability of Q.

3.2 Conditional expectations as orthogonal projections

In this section we restrict our attention to the space L2(P ) ⊂ L1(P ) of square-integrable random
variables. If we identify random variables which are equal almost surely, we obtain the Hilbert
space L2(P ) with inner product

〈X,Y 〉 :=

∫
XY dP

and norm
‖X‖ := 〈X,X〉1/2 =

(∫
X2 dP

)1/2
.

One may view IE(· | Ao) as a continuous linear mapping from L2(P ) to its closed linear subspace
L2(P |Ao). Indeed, applying Lemma 3.7 with ψ(x) := x2 leads to the inequality∫

IE(X | Ao)2 dP ≤
∫
X2 dP.

Theorem 3.8. The mapping X 7→ IE(X | Ao) is the orthogonal linear projection of L2(P ) onto
L2(P |Ao). In particular, for arbitrary random variables X ∈ L2(P ) and Yo ∈ L2(P |Ao),

‖X − Yo‖2 =
∥∥X − IE(X | Ao)

∥∥2
+
∥∥ IE(X | Ao)− Yo

∥∥2 ≥
∥∥X − IE(X | Ao)

∥∥2

with equality if and only if Yo = IE(X | Ao). Moreover,

‖X‖2 =
∥∥X − IE(X | Ao)

∥∥2
+
∥∥ IE(X | Ao)

∥∥2 ≥
∥∥IE(X | Ao)

∥∥2

with equality if and only if X = IE(X | Ao).

Proof of Theorem 3.8. It is well-known from general results about Hilbert spaces that Xo :=

IE(X | Ao) is the orthogonal projection of X onto L2(P |Ao) if and only if

X −Xo ⊥ L2(P |Ao);
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see, for instance, Chapter 2 of Dümbgen (2021). That means,

(3.3) 〈X −Xo, Zo〉 = 0 for all Zo ∈ L2(P |Ao).

Note first, that the left hand side of (3.3) equals∫
XZo dP −

∫
IE(X | Ao)Zo dP.

This is equal to 0 whenever Zo is bounded, see Remark 3.4 (e). But for arbitrary Zo ∈ L2(P |Ao),

Zn := sign(Zo) min(|Zo|, n)

defines a sequence (Zn)n≥1 of bounded random variables Zn ∈ L2(P |Ao) such that

‖Zo − Zn‖ → 0 as n→∞,

which may be verified by dominated convergence. Now (3.3) follows from the fact that for arbi-
trary n ≥ 1, ∣∣〈X −Xo, Zo〉

∣∣ =
∣∣〈X −Xo, Zo − Zn〉

∣∣ ≤ ‖X −Xo‖‖Zo − Zn‖

by the Cauchy–Schwarz inequality.

Orthogonality of X −Xo onto L2(P |Ao) implies that for any Yo ∈ L2(P |Ao),

‖X − Yo‖2 = ‖X −Xo +Xo − Yo‖2

= ‖X −Xo‖2 + ‖Xo − Yo‖2 + 2〈X −Xo, Xo − Yo〉

= ‖X −Xo‖2 + ‖Xo − Yo‖2,

and in the special case Yo = 0 we obtain

‖X‖2 = ‖X −Xo‖2 + ‖Xo‖2.

Exercise 3.9. As in Exercise 3.5 let P be the exponential distribution on Ω = [0,∞) with rate
parameter λ > 0, let Ao be the smallest σ-field containing all intervals [k, k + 1), k ∈ N0, and let
X(ω) := ω. Determine the value of

‖X − IE(X | Ao)‖.

Hint for checking your solution: ‖X − IE(X | Ao)‖2 equals λ−2 − eλ(eλ − 1)−2.

3.3 Conditional expectations given another random variable

Previously we referred to Ao as describing partial aspects of the random experiment (Ω,A, P ).
Specifically, suppose that instead of the random outcome ω ∈ Ω we only know T (ω) for some
given measurable function T : (Ω,A)→ (T ,B). This corresponds to the sub-σ-field

σ(T ) :=
{
T−1(B) : B ∈ B

}
ofA. It is the smallest σ-fieldAo over Ω such that T isAo-B-measurable. There is a simple result
about σ(T )-measurable functions X : Ω→ R.
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Lemma 3.10 (Lifting). A mapping X : Ω→ R is σ(T )-measurable if and only if

X = V ◦ T

for some B-measurable function V : T → R.

Here V ◦ T stands for the mapping Ω 3 ω 7→ V (T (ω)) ∈ R. In connection with integrals we
often write V (T ) instead of V ◦ T .

Proof of Lemma 3.10. On the one hand, ifX = V ◦T with a B-measurable function V : T → R,
then V −1(C) ∈ B and X−1(C) = T−1(V −1(C)) ∈ σ(T ) for any Borel set C ⊂ R.

On the other hand, let X be σ(T )-measurable. For n ∈ N let Xn := 2−nb2nXc. That means, for
z ∈ Z,

An,z := {Xn = 2−nz} = {2−nz ≤ X < 2−n(z + 1)}.

By assumption on X , the latter event may be written as {T ∈ Bn,z} for some set Bn,z ∈ B. Since
the sets An,z , z ∈ Z, are pairwise disjoint, we may assume without loss of generality that the sets
Bn,z , z ∈ Z, are pairwise disjoint too. Just use some enumeration z(1), z(2), z(3), . . . of Z, and
then replace Bn,z(k) with its subset Bn,z(k) \

⋃
`<k Bn,z(`). Then,

Xn = Vn ◦ T

with the B-measurable function Vn : T → R,

Vn(t) :=

{
2−nz if t ∈ Bn,z, z ∈ Z,
0 if t 6∈

⋃
z∈ZBn,z.

Since Xn ≤ X < Xn + 2−n,

X = lim
n→∞

Vn ◦ T = V̄ ◦ T

with the B-measurable function V̄ : T → R̄,

V̄ (t) := lim sup
n→∞

Vn(t).

But X = V̄ ◦ T being real-valued implies that T−1
(
V̄ −1({−∞,∞})

)
= ∅. Hence, X = V ◦ T

with the B-measurable function V : T → R given by, say,

V (t) :=

{
V̄ (t) if V̄ (t) ∈ R,
0 else.

In addition to Lemma 3.10 we need an elementary result about the distribution P T of T , i.e. the
probability measure

B 3 B 7→ P T (B) := P (T ∈ B).
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Exercise 3.11 (Change of variables). Show that for any real-valued random variable V on the
probability space (T ,B, P T ) and any set B ∈ B,∫

T−1(B)
V (T ) dP =

∫
B
V dP T ,

provided that one of these two integrals is well-defined in R̄. Hint: Use approximations of V as
in Lemma 2.16.

Now we can prove a generalization of Theorem 3.1:

Theorem 3.12. For any random variableX ∈ L1(P ) there exists a random variable V ∈ L1(P T )

such that

(3.4)
∫
T−1(B)

X dP =

∫
B
V dP T for arbitrary B ∈ B.

This random variable V is almost everywhere unique in the following sense: If Ṽ is another
random variable satisfying (3.4), then P T (Ṽ 6= V ) = 0.

Definition 3.13 (Conditional expectation, II). A random variable V as in Theorem 3.12 is called
(a version of the) conditional expectation ofX , given the random variable T . For any such random
variable V we write IE(X |T ) instead of V and IE(X |T = t) instead of IE(V |T )(t) or V (t).

Note that IE(X |T ) is a function on T . But sometimes we and other people abuse notation slightly
to write IE(X |T ) instead of IE(X |σ(T )), which is a function on Ω.

Example 3.14. Let Ω = [0,∞), and let P be the exponential distribution with rate parameter
λ > 0, i.e. with density fλ(ω) := λe−λω with respect to Lebesgue measure on Ω. LetX(ω) := ω,
and let Ao be the smallest σ-field over Ω containing all intervals [k, k + 1), k ∈ N0. One can
easily verify that Ao = σ(T ) with

T : [0,∞)→ N0, T (ω) := bωc.

And the result of Exercise 3.5 may be reformulated as

IE(X | Ao) = bXc+ a(λ),

IE(X |T = t) = t+ a(λ) for t ∈ N0,

with a(λ) = λ−1(eλ − 1− λ)/(eλ − 1).

Remark 3.15. Theorem 3.1 may be viewed as a special case of Theorem 3.12 if we define
(T ,B) := (Ω,Ao) and T (ω) := ω.

Proof of Theorem 3.12. We may apply Theorem 3.1 to the sub-σ-field Ao = σ(T ). This yields
a random variable Xo ∈ L1(P |σ(T )) such that∫

T−1(B)
X dP =

∫
T−1(B)

Xo dP for all B ∈ B.
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Lemma 3.10 implies that Xo = V ◦ T for some B-measurable function V : T → R. Now it
follows from Exercise 3.11 that∫

T−1(B)
V (T ) dP =

∫
B
V dP T for all B ∈ B.

This proves existence of a random variable V with the desired property (3.4). Essential uniqueness
of V is a consequence of Lemma 2.20.

Remark 3.16 (Properties of conditional expectations). The properties listed in Remark 3.4 carry
over to the present setting with only few modifications. In what follows, let X,Y ∈ L1(P ).

(a) For real numbers a, b,

IE(aX + bY |T ) = a IE(X |T ) + b IE(Y |T ) P T -almost surely.

(b) If X ≤ Y almost surely, then

IE(X |T ) ≤ IE(Y |T ) P T -almost surely.

(c) The mapping X 7→ IE(X |T ) is a weak contraction in the sense that∣∣IE(X |T )
∣∣ ≤ IE(|X| |T ) P T -almost surely.

(d) It follows from properties (a) and (c) that∫ ∣∣IE(X |T )− IE(Y |T )
∣∣ dP T ≤ ∫

|X − Y | dP.

(e) For any bounded, B-measurable function h : T → R,

(3.5)
∫
Xh(T ) dP =

∫
IE(X |T )h dP T .

This follows again from an approximation argument. The definition of IE(X |T ) implies that
equation (3.5) is true for indicator functions h = 1B , B ∈ B, because 1T−1(B) = 1B(T ). The
remaining arguments are analogous to the arguments for Remark 3.4 (e).

An extension of the lifting lemma. Although it is not needed in this lecture, it is worthwhile to
mention that Lemma 3.10 can be generalised as follows:

Lemma 3.17 (Lifting). Let (X , d) be a complete, separable metric space, equipped with its Borel-
σ-field. A mapping X : Ω→ X is σ(T )-measurable if and only if

X = V ◦ T

for some B-measurable function V : T → X .

The proof is split into the following two exercises.



45

Exercise 3.18. Let (Ω,A) be a measurable and (X , d) a metric space. Further let (Vn)n≥1 be a
sequence of measurable functions Vn : Ω → X , where X is equipped with its Borel-σ-field with
respect to d.

(a) Suppose that (Vn)n≥1 converges pointwise to a function V : Ω → X . Show that V is
measurable.

(b) Suppose that (X , d) is separable and complete. Without any further assumptions on (Vn)n≥1,
show that the set C of all ω ∈ Ω such that (Vn(ω))n≥1 converges is a measurable subset of Ω.

Exercise 3.19. Imitate the proof of Lemma 3.10 to construct a sequence (Vn)n≥1 of measurable
functions Vn : T → X converging pointwise to a function V such that X = V ◦ T . Conclude
from Exercise 3.18 that V is measurable.



46



Chapter 4

Stochastic Kernels

In this section we collect some useful results about finite measures on product spaces. Throughout
let (X ,A) and (Y,B) be measurable spaces, and we consider the Cartesian product Ω := X × Y
equipped with the product σ-field

C := A⊗ B,

i.e. the smallest σ-field containing all sets A×B with A ∈ A and B ∈ B. An important property
of C is that for any C ∈ C,

{x ∈ X : (x, yo) ∈ C} ∈ A for all yo ∈ Y,(4.1)

{y ∈ Y : (xo, y) ∈ C} ∈ B for all xo ∈ X .(4.2)

The reason is that the family of all sets C ⊂ Ω satisfying (4.1) and (4.2) is easily verified to be a
σ-field over Ω containing the generator

A� B := {A×B : A ∈ A, B ∈ B}

of C.

4.1 Stochastic Kernels and Fubini’s Theorem

Definition 4.1 (Stochastic kernel). A stochastic kernel from (X ,A) to (Y,B) is a mapping

K : X × B → [0, 1]

such that

• for any fixed x ∈ X , the mapping K(x, ·) defines a probability measure on (Y,B),
• for any fixed B ∈ B, the mapping K(·, B) is A-measurable on X .

Remark 4.2 (Randomized mappings). One may interpret a stochastic kernel K from (X ,A) to
(Y,B) as a “randomized measurable mapping” from X to Y . Instead of mapping a point x ∈ X
to a unique point k(x) ∈ Y , we choose a random point in Y with distribution K(x, ·). Indeed, any
A-B-measurable mapping k : X → Y corresponds to the (degenerate) stochastic kernel K given
by

K(x, ·) := δk(x), K(x,B) = 1k−1(B)(x).

47
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Theorem 4.3 (Product of a finite measure and a stochastic kernel). Let P be a finite measure on
(X ,A), and let K be a stochastic kernel from (X ,A) to (Y,B). Then for arbitrary C ∈ C, the
number

P ⊗K(C) :=

∫
X
K(x,Cx)P (dx) with Cx := {y ∈ Y : (x, y) ∈ C}

is well-defined, and P ⊗K is a finite measure on (Ω, C) with P ⊗K(Ω) = P (X ).

Remark 4.4 (Product measures). LetQ be a probability measure on (Y,B). If we setK(x,B) :=

Q(B) for arbitrary x ∈ X and B ∈ B, then P ⊗K is the usual product measure P ⊗Q.

In the subsequent proofs, we use repeatedly the notion of a Dynkin system, see Section A.1 for
the basic concepts.

Proof of Theorem 4.3. One can easily verify that the family D of sets C ∈ C such that x 7→
K(x,Cx) is A-measurable is a Dynkin system containing the generator A�B of C. Since A�B
is closed under intersections, the smallest Dynkin system containing A � B coincides with the
product σ-field A⊗ B = C. Hence P ⊗K(C) is well-defined for any C ∈ C.

It follows from the properties of K that P ⊗K defines a content, i.e. a finitely additive function
on A⊗B with P ⊗K(∅) = 0 and P ⊗K(Ω) = P (X ). It is a measure, because for arbitrary sets
C(1) ⊂ C(2) ⊂ C(3) ⊂ · · · in C and C :=

⋃
n≥1C

(n),

lim
n→∞

P ⊗K(C(n)) = lim
n→∞

∫
K(x,C(n)

x )P (dx)

=

∫
lim
n→∞

K(x,C(n)
x )P (dx)

=

∫
K(x,Cx)P (dx) = P ⊗K(C)

by monotone convergence.

If a distribution on a product space is a product of a marginal distribution and a stochastic kernel,
there is a generalization of Fubini’s theorem for integrals with respect to product measures.

Theorem 4.5 (Fubini’s theorem). Let IP = P ⊗ K with a finite measure P on (X ,A) and a
stochastic kernel K from (X ,A) to (Y,B).

(i) For any C-measurable function f : Ω→ [0,∞],

h(x) :=

∫
Y
f(x, y)K(x, dy)

defines an A-measurable mapping h : X → [0,∞], and∫
Ω
f d IP =

∫
X
h dP.

(ii) If f ∈ L1(IP), then there exists a set A(f) ∈ A with P (A(f)) = 0 such that for all x ∈
X \A(f),

h(x) :=

∫
f(x, y)K(x, dy)



49

is well-defined in R, and ∫
Ω
f d IP =

∫
X
h dP.

Proof of Theorem 4.5. Part (ii) is an immediate consequence of part (i). Hence we prove only
part (i). For a measurable function f : Ω→ [0,∞] and n ∈ N let

fn := 2−n
n2n∑
k=1

1[f≥k2−n].

This defines a sequence of measurable functions fn ≥ 0 such that fn ↑ f as n → ∞ pointwise.
Indeed, for any integer ` ≥ 0,

fn = min(`, n2n)2−n on {`2−n ≤ f < (`+ 1)2−n}.

For any fixed n, ∫
Ω
fn d IP = 2−n

n2n∑
k=1

IP(f ≥ k2−n)

= 2−n
n2n∑
k=1

∫
X
K(x, {f ≥ k2−n}x)P (dx)

=

∫
X
hn dP

with

hn(x) := 2−n
n2n∑
k=1

K(x, {f ≥ k2−n}x) =

∫
Y
fn(x, y)K(x, dy).

This is obviously a measurable function on (X ,A). By monotone convergence, for any x ∈ X ,

hn(x) ↑ h(x) =

∫
Y
f(x, y)K(x, dy) as n→∞,

whence h is measurable as well. Another application of monotone convergence yields that∫
X
hn dP ↑

∫
X
h dP as n→∞.

On the other hand, by monotone convergence,∫
Ω
fn d IP ↑

∫
Ω
f d IP as n→∞,

so the asserted equation is true.

Remark 4.6 (Fubini’s theorem for products of σ-finite measures). The present results also imply
a more traditional version of Fubini’s theorem. Let P and Q be σ-finite measures on (X ,A) and
on (Y,B), respectively. For C ∈ C, the number

(4.3) IP(C) :=

∫
X
Q(Cx)P (dx) with Cx := {y ∈ Y : (x, y) ∈ C}
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is well-defined in [0,∞] and defines a σ-finite measure on (Ω, C). Moreover, for arbitrary C-
measurable functions f : Ω→ [0,∞],

h(x) :=

∫
Y
f(x, y)Q(dy)

defines a A-measurable function h : X → [0,∞], and∫
Ω
f d IP =

∫
X
h dP.

To verify this, we apply Lemma 2.26 to find probability measures Po on (X ,A) and Qo on (Y,B)

such that densities p = dP/dPo and q = dQ/dQo exist. Then the product measure IPo := Po⊗Qo
is well-defined, and

IP(C) :=

∫
C
p(x)q(y) IPo(d(x, y))

defines a σ-finite measure on (Ω, C). This definition coincides with (4.3), because Theorem 4.5
implies that

IP(C) =

∫
X

∫
Y

1C(x, y)p(x)q(y)Qo(dy)Po(dx)

=

∫
X

∫
Cx

q(y)Qo(dy) p(x)Po(dx)

=

∫
X
Q(Cx) p(x)Po(dx)

=

∫
X
Q(Cx)P (dx).

More generally, for C-measurable functions f : Ω→ [0,∞],∫
f d IP =

∫
Ω
f(x, y)p(x)q(y) IPo(d(x, y))

=

∫
X

∫
Y
f(x, y)p(x)q(y)Qo(dy)Po(dx)

=

∫
X

∫
Y
f(x, y)Q(dy) p(x)Po(dx)

=

∫
X
h(x)P (dx)

with h(x) :=
∫
Y f(x, y)Q(dy).

The next result concerns uniqueness of stochastic kernels.

Lemma 4.7 (Uniqueness in product measures). Let P, P̃ be finite measures on (X ,A), and let
K, K̃ be stochastic kernels from (X ,A) to (Y,B) such that

P ⊗K = P̃ ⊗ K̃.

Then P ≡ P̃ , and for any B ∈ B, K(·, B) = K̃(·, B) P -almost everywhere. If B has a countable
generating family E , then even

K(x, ·) ≡ K̃(x, ·) for P -almost all x ∈ X .



51

Proof of Lemma 4.7. The construction of the product measures implies that for any A ∈ A,

P (A) = P ⊗K(A× Y) = P̃ ⊗ K̃(A× Y) = P̃ (A),

i.e. P ≡ P̃ . For any fixed B ∈ B, the functions K(·, B), K̃(·, B) ∈ L1(P ) satisfy∫
A
K(x,B)P (dx) = P ⊗K(A×B) = P ⊗ K̃(A×B) =

∫
A
K̃(x,B)P (dx)

for arbitrary A ∈ A. Hence K(·, B) = K̃(·, B) P -almost everywhere by Lemma 2.20.

Finally, suppose that E is a countable family of subsets of Y generating B. The family E ′ of
intersections of finitely many sets in E is countable as well, see Exercise 4.8. Then the set

A∗ :=
{
x ∈ X : K(x,B) 6= K̃(x,B) for some B ∈ E ′

}
satisfies P (A∗) = 0. But for any fixed x ∈ X \A∗,

D(x) :=
{
B ∈ B : K(x,B) = K̃(x,B)

}
defines a Dynkin system with E ′ ⊂ D(x) ⊂ B. Since E ′ is closed under (finite) intersections, the
smallest Dynkin system containing E ′ is a σ-field, so D(x) = B and K(x, ·) ≡ K̃(x, ·).

Exercise 4.8 (Countable set families). Let E be a countable family of subsets of Y .

(a) Show that the family E ′ of all intersections of finitely many sets in E is countable as well, and
that E ′ is closed under (finite) intersections.

(b) Let Bo be the family of all sets of the form

m⋃
i=1

n⋂
j=1

Eij

with m,n ∈ N and Eij ∈ E ∪ {Y \ E : E ∈ E} ∪ {∅,Y}. Show that Bo is countable, and that it
is the smallest field over Y containing E .

4.2 Decomposing Measures on Product Spaces

An interesting question is whether any finite measure IP on (Ω, C) may be decomposed into the
product P ⊗K of a finite measure and a stochastic kernel. Let us start with two examples for such
a decomposition.

Example 4.9. Suppose that X is a countable set and A = P(X ). Then any finite measure IP on
Ω may be represented as P ⊗K, where

P ({x}) := IP({x} × Y)

and

K(x,B) :=

{
P ({x})−1 IP({x} ×B) if P ({x}) > 0,

IP(X )−1 IP(X ×B) if P ({x}) = 0.
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Example 4.10. Let L and M be σ-finite measures on (X ,A) and (Y,B), respectively. Suppose
that IP is a finite measure on (X × Y,A ⊗ B) with density f : X × Y → [0,∞) with respect to
the product measure L⊗M . By Fubini’s theorem (Remark 4.6),

IP(C) =

∫
X

∫
Y

1C(x, y)f(x, y)M(dy)L(dx) =

∫
X

∫
Cx

f(x, y)M(dy)L(dx)

for arbitrary C ∈ C = A⊗ B. If we define

P (A) := IP(A× Y)

for A ∈ A, then P is a finite measure on (X ,A) with P (X ) = IP(Ω) and

P (A) =

∫
A
f1(x)P (dx) with f1(x) :=

∫
Y
f(x, y)M(dy).

Thus f1 = dP/dL. Note also that P ({f1 = 0}) = 0 = P ({f1 =∞}).

Analogously, Q(B) := IP(Ω)−1 IP(X ×B) defines a probability measure on (Y,B) with density
f2 = dQ/dM given by

f2(y) := IP(Ω)−1

∫
X
f(x, y)L(dx).

For C ∈ C, we may rewrite IP(C) as

IP(C) =

∫
X
f1(x)K(x,Cx)L(dx) =

∫
X
K(x,Cx)P (dx)

with
K(x,B) :=

∫
B
f2|1(y |x)M(dy)

and

f2|1(y |x) :=

{
f1(x)−1f(x, y) if 0 < f1(x) <∞,
f2(y) else.

This defines a stochastic kernel K from (X ,A) to (Y,B) such that IP = P ⊗K.

Exercise 4.11 (Decomposition of a probability distribution). Let IP be the uniform distribution
on the unit sphere in R × R. That is, it describes the distribution of

(
cos(U), sin(U)

)
, where

U ∼ Unif[0, 2π]. Determine a decomposition IP = P ⊗ K with a probability measure P on R
given by some density, and a stochastic kernel K from R to R.

Our final result in this section will show that for “nice” measurable spaces (Y,B), any finite
measure on C may be decomposed into the product of a finite measure on (X ,A) and a stochastic
kernel from (X ,A) to (Y,B).

Theorem 4.12 (Existence of stochastic kernels). Let (Y, d) be a separable and complete metric
space1, and let B = Borel(Y, d). Then for any finite measure IP on (Ω, C) there exists a finite
measure P on (X ,A) and a stochastic kernel K from (X ,A) to (Y,B) such that

IP = P ⊗K.
1The corresponding topological space is called a Polish space.
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For the proof of this theorem, we need some basic facts about finite measures on metric spaces.

Lemma 4.13. Let (Y, d) be a metric space, and let Q be a finite measure on B = Borel(Y, d).

(i) Any set B ∈ B may be approximated in the following sense: For each ε > 0 there exist a
closed set A ⊂ Y and an open set U ⊂ Y such that A ⊂ B ⊂ U and Q(U \A) ≤ ε.

(ii) If (Y, d) is separable and complete, the closed sets A in part (i) may even be chosen to be
compact.

Proof of Lemma 4.13. The proof of part (i) is left to the reader as an exercise. One can proceed
as follows: Let B′ be the set of all B ∈ B which may by approximated by closed and open sets
as stated. One can show that B′ is a field over Y . Then one can show that it is even a σ-field over
Y by showing that

⋃
n≥1Bn ∈ B′ for arbitrary sets B1 ⊂ B2 ⊂ B3 ⊂ · · · in B′. Any closed set

A ⊂ Y belongs to B. To this end consider the neighborhoods Uε(A) := {y ∈ Y : d(y,A) < ε}
with d(y,A) := inf{d(y, z) : z ∈ A}. Consequently, B′ is a σ-field containing all closed sets and
contained in B. But this implies that B′ = B.

As to part (ii), let {y1, y2, y3, . . .} be a dense subset of Y . For any fixed ε > 0 and arbitrary k ∈ N
let N(ε, k) ∈ N such that

Q
(
Y \

N(ε,k)⋃
n=1

B(yn, 1/k)
)
≤ 2−kε,

where B(y, δ) is the closed ball with center y and radius δ ≥ 0. Then

Kε :=
∞⋂
k=1

N(k,ε)⋃
n=1

B(yn, 1/k)

is a closed subset of Y such thatQ(Y \Kε) ≤ ε. Indeed, the setKε is even compact. To show this,
let (xm)m≥1 be an arbitrary sequence in Kε. Since Kε is closed and (Y, d) is complete, it suffices
to show that (xm)m≥1 has a Cauchy subsequence. There exists an index n(1) ∈ {1, . . . , N(ε, k)}
such that M1 := {m ≥ 1 : xm ∈ B(yn(1), 1)} is infinite. Suppose that for some k ≥ 1 we have
chosen an infinit set Mk ⊂ N and an index n(k) ∈ {1, . . . , N(ε, k) such that xm ∈ B(yn(k), 1/k)

for m ∈Mk. Then for a suitable index n(k + 1) ∈ {1, . . . , N(ε, k + 1)}, the set

Mk+1 :=
{
m ∈Mk : xm ∈ B(yn(k+1), 1/(k + 1))

}
is infinite too. This leads to infinite subsets M1 ⊃M2 ⊃M3 ⊃ · · · of N such that for each k ≥ 1,

xm ∈ B(yn(k), 1/k) for all m ∈Mk.

Now let m(k) be the k-th smallest element of Mk. Then m(1) < m(2) < m(3) < · · · , and for
integers 1 ≤ k ≤ `, m(k),m(`) ∈Mk, whence

d(xk, x`) ≤ d(xk, yn(k)) + d(x`, yn(k)) ≤ 2/k.

This implies that (xm(k))k≥1 is a Cauchy subsequence of (xm)m≥1, whence Kε is compact.

For any setB ∈ B and ε > 0 there exist a closed setA and an open setU such thatA ⊂ B ⊂ U and
Q(U \A) ≤ ε/2. But then, Ã := A∩Kε/2 is a compact subset of B such that Q(U \ Ã) ≤ ε.
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Proof of Theorem 4.12. Without loss of generality let IP be a probability measure on (Ω, C). For
A ∈ A and B ∈ B let P (A) := IP(A × Y) and Q(B) := IP(X × B). This defines probability
measures P and Q on (X ,A) and (Y,B), respectively.

Since (Y, d) is separable, there exists a countable dense subset Yo of Y . Let E be the family of all
open balls with center in Yo and rational radius. This family E is countable, and any open subset
of Y is the union of balls in E . As shown in Exercise 4.8, the smallest field Bo over Y containing
E is countable, too. Hence, B = σ(E) = σ(Bo). Since (Y, d) is complete, for each Bo ∈ Bo there
exist compact sets

D1(Bo) ⊂ D2(Bo) ⊂ D3(Bo) ⊂ · · · ⊂ Bo

such that limk→∞Q(Dk(Bo)) = Q(Bo), see Lemma 4.13. Finally, we consider the smallest field
B̄o over Y containing Bo and

{
Dk(Bo) : Bo ∈ Bo, k ∈ N

}
, which is also countable.

For each B ∈ B̄o let K(·, B) be an explicit version of IE(1B(Y ) |X), where X(x, y) := x and
Y (x, y) := y for (x, y) ∈ Ω. That means, for arbitrary A ∈ A,

IP(A×B) = IE
(
1A(X)1B(Y )

)
= IE

(
1A(X)K(X,B)

)
=

∫
A
K(x,B)P (dx).

The properties of conditional expectations imply that P -almost everywhere,

K(·, ∅) = 0,

K(·,Y) = 1,

K(·, B ∪B′) = K(·, B) +K(·, B′) for disjoint sets B,B′ ∈ B̄o.

The collection of all these equations is countable, so there exists a set A1 ∈ A with P (A1) = 0

such that for all x ∈ X \ A1, the mapping K(x, ·) defines a probability content on B̄o, i.e. 0 ≤
K(x, ·) ≤ 1 with K(x, ∅) = 0, K(x,Y) = 1 and K(x,B ∪ B′) = K(x,B) + K(x,B′) for
disjoint sets B,B′ ∈ B̄o.

For any set Bo in the smaller set algebra Bo, we know that

lim
k→∞

Q(Dk(Bo)) = Q(Bo).

But Q(Dk(Bo)) =
∫
K(x,Dk(Bo))P (dx), Q(Bo) =

∫
K(x,Bo)P (dx), and for any x ∈

X \ A1, the sequence
(
K(x,Dk(Bo))

)
k≥1

is increasing with a limit h(x,Bo) ≤ K(x,Bo). By
monotone convergence,

∫
h(x,Bo)P (dx) = Q(Bo) =

∫
K(x,Bo)P (dx), whence K(·, Bo) =

h(·, Bo) for P -almost all x ∈ X . Since Bo is countable, there exists a set A2 ∈ A with
A2 ⊂ X \A1 and P (A2) = 0 such that for any x ∈ X \ (A1 ∪A2),

lim
k→∞

K(x,Dk(Bo)) = K(x,Bo) for each Bo ∈ Bo.

These properties imply that for each x ∈ X \ (A1 ∪ A2), the mapping K(x, ·) is a probability
measure on the smaller set algebra Bo. To prove this it suffices to show that for any sequence
(Bn)n of sets B1 ⊃ B2 ⊃ B3 ⊃ · · · in Bo with

⋂
n≥1Bn = ∅,

lim
n→∞

K(x,Bn) = 0.
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Indeed, for any fixed ε > 0 there exist indices k(n) ≥ 1 such that

K(x,Bn \Dn) = K(x,Bn)−K(x,Dn) ≤ 2−nε with Dn := Dk(n)(Bn)).

Note that Dn is a subset of Bn, so
⋂
n≥1Dn = ∅. Since all sets Dn are compact, there exists an

integer no ≥ 1 such that
⋂no
m=1Dm = ∅. Consequently, for n ≥ no,

K(x,Bn) ≤ K(x,Bno) = K(x,Bno \
no⋂
m=1

Dm)

= K
(
x,

no⋃
m=1

Bno \Dm

)
≤ K

(
x,

no⋃
m=1

Bm \Dm

)
≤

no∑
m=1

K(x,Bm \Dm) ≤
no∑
m=1

2−mε < ε.

This shows that K(x,Bn)→ 0 as n→∞.

For each x ∈ X \ (A1 ∪ A2), there exists a unique extension of K(x, ·) to a probability measure
K∗(x, ·) on (Y,B). If we set

K∗(x,B) := Q(B) for x ∈ A1 ∪A2 and B ∈ B,

then K∗ : X × B has the following properties:

• For each x ∈ X , K∗(x, ·) is a probability measure on (Y,B);
• for each Bo ∈ Bo, K∗(·, Bo) is A-measurable and a version of IE(1Bo(Y ) |X).

But the set of all B ∈ B such that K∗(·, B) is A-measurable is easily seen to be a Dynkin system.
Since it contains the set algebra Bo, it coincides with B. Hence K∗ is indeed a stochastic kernel,
and the distribution P ⊗K∗ coincides with IP on the family {A × Bo : A ∈ A, Bo ∈ Bo}. The
latter family is closed under intersections and generates C, so P ⊗K∗ ≡ IP.

4.3 Conditional Expectations and Distributions

So far, we know conditional expectations as functions with certain properties. But the term “ex-
pectation” refers to integrals, so an obvious question is whether a conditional expectation may be
viewed as an integral with respect to some “conditional distribution”. As shown below, the answer
is yes.

Let (Ω,F , IP) be a probability space, and consider random variables X : (Ω,F) → (X ,A) and
Y : (Ω,F)→ (Y,B). This gives rise to three different distributions:

A 3 A 7→ IPX(A) := IP(X ∈ A) (distribution of X),

B 3 B 7→ IPY (B) := IP(Y ∈ B) (distribution of Y ),

A⊗ B 3 C 7→ IP(X,Y )(C) := IP((X,Y ) ∈ C) (joint distribution of X and Y ).
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Now suppose that there exists a stochastic kernel K from (X ,A) to (Y,B) such that

IP(X,Y ) = IPX ⊗K.

Then K(x, ·) may be interpreted as the conditional distribution of Y given X = x. Indeed, let
f : X × Y → [0,∞] be A⊗ B-measurable. Then it follows from Theorem 4.5 that

IE f(X,Y ) =

∫
X×Y

f d IP(X,Y ) =

∫
X
h d IPX

with the A-measurable function h : X → [0,∞],

h(x) :=

∫
Y
f(x, y)K(x, dy).

The same conclusion is true if f ∈ L1(IP(X,Y )), the only caveat being that the integral h(x) may
not exist for points x in a set A(f) ∈ A such that IPX(A(f)) = 0.

In particular, for g ∈ L1(IPY ) and arbitrary sets A ∈ A,∫
X−1(A)

g(Y ) d IP =

∫
Ω

1A(X)g(Y ) d IP

=

∫
X×Y

1A(x)g(y) IP(X,Y )(d(x, y))

=

∫
X

∫
Y

1A(x)g(y)K(x, dy) IPX(dx)

=

∫
A

∫
Y
g(y)K(x, dy) IPX(dx),

so
x 7→

∫
Y
g(y)K(x, dy)

is a version of IE(g(Y ) |X). One often writes

IP(Y ∈ B |X = x)

IPY (B |X = x)

}
instead of K(x,B),

IE(g(Y ) |X = x) instead of
∫
Y
g(y)K(x, dy).

Optimal predictions. In the special case that (Y, d) is a separable, complete metric space and
B = Borel(Y, d), it follows from Theorem 4.12 that a kernel K with the stated properties does
exist. In particular, let Y = R. If Y ∈ L1(IP), then a version of IE(Y |X) is given by

IE(Y |X = x) :=

∫
R
y K(x, dy).

Note that
∞ >

∫
|Y | d IP =

∫
X
|y|K(x, dy) IPX(dx),

so we may redefine K(x, ·) := IPY for the exceptional points x ∈ X such that
∫
|y|K(x, dy) =

∞. With the kernel K at hand, we can solve various prediction problems. The goal is to find
a predictor g(X) of Y , determined by a measurable function g : (X ,A) → R, such that the
approximation error Y − g(X) is “small”. The solution of this prediction problem depends on the
way how we measure the approximation error precisely.
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Case 1: Mean squared prediction error. Suppose that Y ∈ L2(IP). If we want to minimize
IE
(
(Y − g(X))2

)
, one can deduce from the considerations in Section 3.2 that IE(Y |X) solves

this problem. But let us follow a more direct route using the kernel K. Recall first that for any
constant q ∈ R, the expectation of (Y − q)2 equals Var(Y ) + (IE(Y ) − q)2, where Var(Y ) =

IE
(
(Y − IE(Y ))2

)
. Note also that

∞ >

∫
Y 2 d IP =

∫
X

∫
R
y2K(x, dy) IPX(dx),

so we may redefine K(x, ·) := IPY whenever
∫
y2K(x, dy) =∞. Now we can write

IE
(
(Y − g(X))2

)
=

∫
X

∫
R

(y − g(x))2K(x, dy) IPX(dx)

=

∫
X

(
Var(Y |X = x) +

(
IE(Y |X = x)− g(x)

)2)
IPX(dx),

where
Var(Y |X = x) :=

∫
R

(y − IE(Y |X = x))2K(x, dy).

Consequently, a predictor g(X) of Y minimizes the mean squared prediction error if and only if
g(X) = IE(Y |X) almost surely.

Case 2: Mean absolute prediction error. Suppose we want to minimize IE |Y − g(X)|. It is
well-known that for a real constant q, the expectation of |Y − q| is minimal if and only if q is a
median of (the distribution of) Y , that means IP(Y < q) ≤ 1/2 ≤ IP(Y ≥ q). This leads to an
optimal predictor g(X):

IE |Y − g(X)| =

∫
X

∫
R
|y − g(x)|K(x, dy) IPX(dx)

is minimal if and only if g(x) is a median for IP(Y ∈ · |X = x), that means,

IP(Y < g(x) |X = x) ≤ 1/2 ≤ IP(Y ≤ g(x) |X = x),

for IPX -almost all x ∈ X .
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Chapter 5

Haar Measure

5.1 Locally Compact Topological Groups

Groups. Recall the definition of a group (X , ·). This is a set X with a binary operation

X × X 3 (x, y) 7→ x · y ∈ X

satisfying the following three conditions:

• (Associativity) For arbitrary x, y, z ∈ X ,

x · (y · z) = (x · y) · z.

• (Identity element) There exists an element e ∈ X such that for arbitrary x ∈ X ,

x · e = e · x = x.

• (Inverse elements) For each x ∈ X there exists an element x−1 ∈ X such that

x · x−1 = x−1 · x = e.

The identity element e is unique, and for each x ∈ X , its inverse element x−1 is unique as well.
Instead of x · y one often writes xy.

Exercise 5.1. Let (X , ·) be a group.

(a) For x, y ∈ X let x ? y := yx. Show that (X , ?) is also a group with the same identity element
and the same inverse elements.

(b) Show that for any fixed xo ∈ X , the mapping x 7→ xox as well as the mapping x 7→ xxo is
bijective from X to X .

Locally compact topological groups. Suppose that there is also a metric d on X such that the
following two conditions are satisfied:1

1For simplicity of exposition, we restrict our attention to metric spaces, although the subsequent definitions and
main results may be extended to non-metric topological spaces.
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• The mapping x 7→ x−1, from X to X is continuous.
• The mapping (x, y) 7→ xy, from X × X to X is continuous.2

Then one calls (X , ·, d) a topological group.

Suppose that in addition,

• for each x ∈ X there exists an ε > 0 such that the closed ball Bε(x) with center x and radius ε
is compact.

Then one calls (X , ·, d) a locally compact topological group. If the group operation and metric are
clear from the context, we just talk about the (locally compact) topological group X .

Now we provide three examples of locally compact topological groups.

Example 5.2 (Euclidean spaces). Let X = Rd. With the usual addition of vectors and the usual
Euclidean distance, Rd becomes a locally compact topological group which is also commutative.

The following two examples involve sets of invertible matrices in Rd×d for some d ∈ N, and
the binary operation is matrix multiplication. To stay coherent with the general theory in this
section, we denote matrices temporarily with lower-case, boldface letters, and the identity matrix
is denoted with e. Note that Rd×d may be identified with Rd2 by identifying a matrix x =

[x1,x2, . . . ,xd] having columns xj = (xij)
d
i=1 ∈ Rd with the vector (x>1 ,x

>
2 , . . . ,x

>
d )>. Thus

the usual Euclidean norm on Rd2 corresponds to Frobenius norm on Rd×d, i.e.

〈x,y〉 :=

d∑
i,j=1

xijyij and ‖x‖ :=
√
〈x,x〉.

Note also that any other norm on Rd×d or Rd2 induces the same topology. Finally, a basic fact is
that matrix multiplication is a continuous mapping from Rd×d × Rd×d to Rd×d.

Example 5.3 (Linear groups). Let X be the set of all invertible matrices x ∈ Rd×d. With the
usual matrix multiplication, X is a non-commutative3 group. Moreover, the set X is an open
subset of Rd×d, and the mapping x 7→ x−1 is continuous from X to X . Indeed, for x ∈ X and
δ ∈ Rd×d, it is well-known that x+ δ is invertible, provided that ‖δ‖ is sufficiently small, and

(x+ δ)−1 = x−1 − x−1δx−1 +O(‖δ‖2) as δ → 0.

This follows from x+ δ = x(e+ x−1δ) and from von Neumann’s series expansion

(e+ a)−1 =

∞∑
k=0

(−1)kak

for a ∈ Rd×d with ‖a‖ sufficiently small. Hence X is a topological group.

Example 5.4 (Orthogonal groups). Let Xorth be the set of orthogonal matrices x ∈ Rd×d, that
means, x>x = e. This is a subgroup of the set X of all invertible matrices and thus a locally com-
pact topological group. Indeed, Xorth is even a compact set and a smooth d(d− 1)/2-dimensional

2Here X × X is equipped with the metric d
(
(x, x′), (y, y′)

)
:= max

{
d(x, y), d(x′, y′)

}
.

3unless d = 1
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manifold. To see this, note first that

Xorth = F−1(e)

with the continuous mapping

F : Rd×d → Rd×d, F (x) := x>x.

Hence, Xorth is a closed subset of Rd×d. Moreover, with the Frobenius norm ‖ · ‖, all matrices
x ∈ Xorth satisfy ‖x‖ =

√
d, so Xorth is a closed and bounded subset of Rd×d. Hence it is

compact.

That Xorth is a smooth d(d− 1)-dimensional manifold can be verified as follows: Note that

Rd×d = Rd×dsym + Rd×dskew,

where Rd×dsym and Rd×dskew are the linear spaces of symmetric and skew-symmetric matrices in Rd×d,
respectively:

Rd×dsym :=
{
a ∈ Rd×d : a> = a

}
with dimension d(d+ 1)/2,

Rd×dskew :=
{
a ∈ Rd×d : a> = −a

}
with dimension d(d− 1)/2.

Moreover, Rd×dsym ⊥ Rd×dskew, and any matrix a may be written as a = asym + askew with

asym := 2−1(a+ a>) ∈ Rd×dsym , askew := 2−1(a− a>) ∈ Rd×dskew.

Note that F (x) = x>x defines a continuously differentiable mapping

F : Rd×d → Rd×dsym .

For any fixed x ∈ Xorth and arbitrary δ ∈ Rd×d,

F (x+ δ) = e+ x>δ + δ>x+ δ>δ

= e+ 2(x>δ)sym +O(‖δ‖2) as δ → 0.

Hence the derivative of F at x ∈ Xorth is given by the linear mapping

DF (x) : Rd×d → Rd×dsym , DF (x)a = 2(x>a)sym,

and the null space of this mapping equals{
a ∈ Rd×d : DF (x)a = 0

}
=
{
xb : b ∈ Rd×d, bsym = 0

}
=
{
xb : b ∈ Rd×dskew

}
whereas

DF (x)xb = 2b for all b ∈ Rd×dsym .

Consequently, the linear mapping DF (x) has full rank d(d + 1)/2, and the implicit function
theorem shows that Xorth is a differentiable manifold of dimension d(d− 1)/2. Its tangent space
at any point x ∈ Xorth is the null space of DF (x). That means, for small ε > 0,{

y ∈ Xorth : ‖y − x‖ < ε
}
≈
{
x+ xb : b ∈ Rd×dskew, ‖b‖ < ε

}
.
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Exercise 5.5 (An embedding for Xorth). Consider the mapping Ψ : X → Rd×d,

Ψ(x) := x
(
x>x

)−1/2
.

Show that Ψ has the following five properties:

(a) Ψ(x) ∈ Xorth for all x ∈ X ;

(b) Ψ(x) = x if and only if x ∈ Xorth;

(c) Ψ(xy) = xΨ(y) for all x ∈ Xorth and y ∈ X ;

(d) Ψ(e+ δ) = e for all δ ∈ Rd×dsym such that λmin(δ) > −1;

(e) for δ ∈ Rd×d such that e+ δ ∈ X ,

Ψ(e+ δ) = e+ δskew +O(‖δ‖2) as δ → 0.

In part (e) one should use (and possibly verify) the fact that for a ∈ Rd×dsym with minimal eigenvalue
λmin(a) > −1 and any fixed b ∈ R,

(e+ a)b = e+ ba+O(‖a‖2) as a→ 0.

5.2 Left- and Right-Invariant Measures

Throughout this section let X be a locally compact topological group. In what follows, forA,B ⊂
X we write

AB := {ab : a ∈ A, b ∈ B} and B−1 := {b−1 : b ∈ B}.

Moreover, for x ∈ X we set xB := {xb : b ∈ B} and Ax := {ax : a ∈ A}. We also write

C := {compact subsets of X},

U := {open subsets of X},

B := {Borel subsets of X}.

Our first main result is about the existence and (essential) uniqueness of a left-invariant measure
on (the Borel subsets of) X .

Theorem 5.6 (Haar–Weil). There exists a measure µ on (X ,B) with the following five properties:

µ(xB) = µ(B) for all x ∈ X , B ∈ B,(5.1)

µ(B) = inf
U∈U :U⊃B

µ(U) for all B ∈ B,(5.2)

µ(U) = sup
C∈C:C⊂U

µ(C) for all U ∈ U ,(5.3)

µ(C) < ∞ for all C ∈ C,(5.4)

µ(U) > 0 for all U ∈ U \ {∅}.(5.5)

If µ̃ is another measure with these properties, then there exists a constant γ > 0 such that µ̃ = γµ.
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Definition 5.7 (Left Haar measure). A measure µ with the properties listed in Theorem 5.6 is
called a left Haar measure on X .

The proof presented here is essentially the one of Haar (1933). Since it uses Tikhonov’s theo-
rem and thus the axiom of choice, some mathematicians came up with constructive proofs, see
Alfsen (1963) and the references therein.

Proof of Theorem 5.6. In this proof, some facts are stated without proof, and the reader should
fill in these details. For arbitrary sets A,B ⊂ X with B 6= ∅ we define a “covering number”

N(A |B) := min
{

#Xo : Xo ⊂ X , A ⊂ XoB
}
∈ N0 ∪ {∞}.

These covering numbers have the following properties:

N(B |B) = 1.

N(yA | zB) = N(A |B) for arbitrary y, z ∈ X .

N(A |B) > 0 if and only if A 6= ∅.

N(A |B) <∞ if A ∈ C and B has non-empty interior.

Furthermore, for A1, A2 ⊂ X ,

N(A1 |B) ≤ N(A2 |B) if A1 ⊂ A2,

N(A1 ∪A2 |B)

{
≤ N(A1 |B) +N(A2 |B),

= N(A1 |B) +N(A2 |B) if A1B
−1 ∩A2B

−1 = ∅.

Finally, if B′ is another non-empty subset of X , then

(5.6) N(A |B′) ≤ N(A |B)N(B |B′).

The rough idea behind Haar’s and Weil’s construction is that N(· |B) behaves almost like a left-
invariant measure if B is a “small” neighborhood of the identity element e. To make this precise,
let Bε be the closed ball around e with radius ε > 0,

Bε := {x ∈ X : d(x, e) ≤ ε}.

Without loss of generality let B1 be compact4. For 0 < ε ≤ 1 we define λε : C → [0,∞) via

λε(C) :=
N(C |Bε)
N(B1 |Bε)

.

It follows from the properties of N(· | ·) that λε(C) is well-defined in [0,∞) for any C ∈ C, and

λε(xC) = λε(C) for arbitrary x ∈ X , C ∈ C.

Moreover, (5.6) implies that

λε(C)


≤ N(C |B1)N(B1 |Bε)

N(B1 |Bε)
= N(C |B1)

≥ N(C |Bε)
N(B1 |A)N(C |Bε)

= N(B1 |A)−1

4Otherwise, replace d(·, ·) with ε−1
o d(·, ·) for sufficiently small εo > 0.
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with the conventions N(B1 | ∅) := ∞ and 1/∞ := 0. In particular, λε(B1) = 1. Finally, for
C1, C2 ∈ C,

λε(C1) ≤ λε(C2) if C1 ⊂ C2,

λε(C1 ∪ C2)

{
≤ λε(C1) + λε(C2),

= λε(C1) + λε(C2) if C1B
−1
ε ∩ C2B

−1
ε = ∅,

(5.7)

Note that each λε, viewed as a tuple (λε(C))C∈C , is a point in the infinite Cartesian product∏
C∈X

KC

with the compact intervals KC :=
[
N(B1 |C)−1, N(C |B1)

]
. It follows from Tikhonov’s theo-

rem that this product, equipped with the corresponding product topology, is a compact topological
space. Hence, the functions λε, ε ∈ (0, 1], have a cluster point λ ∈

∏
C∈CKC as ε ↓ 0. Inter-

preting λ as a function λ : C → [0,∞), this cluster point property means that for any finite set
Co ⊂ C,

lim inf
ε↓0

max
C∈Co

∣∣λε(C)− λ(C)
∣∣ = 0.

In particular, λ inherits various nice properties of the functions λε:

λ(C) ∈ KC for any C ∈ C,

λ(B1) = 1,

λ(xC) = λ(C) for arbitrary x ∈ X , C ∈ C,

and for C1, C2 ∈ C,

λ(C1) ≤ λ(C2) if C1 ⊂ C2,

λ(C1 ∪ C2)

{
≤ λ(C1) + λ(C2),

= λ(C1) + λ(C2) if C1 ∩ C2 = ∅.
.

The latter equality follows from (5.7) and the fact that for disjoint compact sets C1 and C2, the
neighborhoods C1B

−1
ε and C2B

−1
ε are disjoint for sufficiently small ε > 0.

Now we are ready to define the measure µ. At first we set

µ(U) := sup
C∈C:C⊂U

λ(C) for U ∈ U .

This definition implies that

µ(∅) = 0 and µ(U) ≤ µ(U ′) for open sets U ⊂ U ′ ⊂ X .

This allows us to extend µ to a function on P(X ) via

µ(M) := inf
U∈U :U⊃M

µ(U) for M ⊂ X .

Note that
µ(M) ≤ µ(M ′) for M ⊂M ′ ⊂ X .
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Since λ(·) is left-invariant, the same is true for µ, that means,

µ(xM) = µ(M) for all x ∈ X and M ⊂ X .

Note also that
λ(C) ≤ inf

U∈U :C⊂U
µ(U) = µ(C) for all C ∈ C.

The first step follows from the definition of µ(U) for open sets U , the second step is just the
definition of µ(C). Together with the monotonicity of µ(·) this implies that

µ(U) = sup
C∈C:C⊂U

µ(C) for all U ∈ U .

To show that µ > 0 on U \ {∅} and µ <∞ on C, consider arbitrary sets C ∈ C \ {∅} and U ∈ U
such that C ⊂ U . For each x ∈ C there exist Ux ∈ U and Bx ∈ C such that x ∈ Ux ⊂ Bx ⊂ U .
Then (Ux)x∈C defines a covering of C with open sets, so by compactness of C, there exists a finite
set Co ⊂ C such that

C ⊂ Ũ :=
⋃
x∈Co

Ux ⊂ C̃ :=
⋃
x∈Co

Bx ⊂ U.

Note that Ũ ∈ U and C̃ ∈ C. Hence,

µ(C) ≤ µ(Ũ) ≤ λ(C̃) < ∞

and
µ(U) ≥ λ(C̃) ≥ N(B1 | C̃)−1 > 0,

because C̃ has non-empty interior.

It remains to show that µ defines a measure on B. To this end, we apply Carathéodory’s theory
of outer measures. It suffices to show that µ defines an outer measure on X and that any open set
U ∈ U is µ-measurable in the sense that

(5.8) µ(M) ≥ µ(M ∩ U) + µ(M \ U) for any M ⊂ X .

Proof that µ is an outer measure: Let (Mn)n≥1 be an arbitrary sequence of sets Mn ⊂ X , and let
M ⊂

⋃
n≥1Mn. We have to show that µ(M) ≤

∑
n≥1 µ(Mn). We may assume that the right

hand side is finite, because otherwise the claim is trivial. For arbitrary fixed ε > 0 let Un ∈ U
with Mn ⊂ Un and µ(Un) ≤ µ(Mn) + 2−nε. Then U :=

⋃
n≥1 Un is an open set containung M ,

whence
µ(M) ≤ µ(U) while

∑
n≥1

µ(Un) ≤
∑
n≥1

µ(Mn) + ε.

Consequently, it suffices to show that µ(U) ≤
∑

n≥1 µ(Un). For any compact set C ⊂ U and
x ∈ C there exist n(x) ∈ N and a compact neighborhood Bx of x such that Bx ⊂ Un(x). But
compactness of C implies that for some finite set Co ⊂ C,

C ⊂
⋃
x∈Co

Bx =
m⋃
n=1

⋃
x∈Co:n(x)=n

Bx =
m⋃
n=1

Cn
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with m := max{n(x) : x ∈ Co} and the compact sets

Cn :=
⋃

x∈Co:n(x)=n

Bx ⊂ Un.

Consequently, the properties of λ imply that

λ(C) ≤ λ
( m⋃
n=1

Cn

)
≤

m∑
n=1

λ(Cn) ≤
m∑
n=1

µ(Un),

and for λ(C) ↑ µ(U) the asserted inequality follows.

Proof of (5.8): It suffices to consider the case µ(M) < ∞. For any fixed ε > 0, there exists an
open set V ⊃M such that µ(V ) ≤ µ(M) + ε. On the other hand,

µ(M ∩ U) ≤ µ(V ∩ U) ≤ λ(C) + ε

for some compact set C ⊂ V ∩ U . But then

µ(M \ U) ≤ µ(V \ U) = µ(V \ (V ∩ U)) ≤ µ(V \ C) ≤ λ(C̃) + ε

for some compact set C̃ ⊂ V \ C. Hence,

µ(M) + ε ≥ µ(V ) ≥ λ(C ∪ C̃) = λ(C) + λ(C̃) ≥ µ(M ∩ U) + µ(M \ U)− 2ε.

As ε ↓ 0, this yields (5.8).

It remains to prove uniqueness of µ up to positive multiples. To this end, let µ̃ be a second measure
on B with the stated properties. It suffices to show that µ̃ = γµ on C∗ for some constant γ > 0,
where C∗ is the set of compact subsets ofX with non-empty interior. To this end, consider arbitrary
compact sets A,B ⊂ X . Then

µ(A)µ̃(B) =

∫
µ(A)1B(y) µ̃(dy)

=

∫
µ(yA)1B(y) µ̃(dy) (left-invariance of µ)

=

∫ ∫
1yA(x)1B(y)µ(dx) µ̃(dy)

=

∫ ∫
1yA(x)1B(y) µ̃(dy) µ(dx) (Fubini’s theorem)

=

∫ ∫
1xA−1(y)1B(y) µ̃(dy) µ(dx) (x ∈ yA iff y ∈ xA−1)

=

∫
µ̃
(
(xA−1) ∩B

)
µ(dx)

=

∫
µ̃
(
A−1 ∩ (x−1B)

)
µ(dx) (left-invariance of µ̃)

≤
∫

1BA(x)µ̃(A−1)µ(dx) (A−1 ∩ (x−1B) = ∅ if x 6∈ BA)

= µ(BA)µ̃(A−1).
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Note that the application of Fubini’s theorem was justified because the integrand, 1yA(x)1B(y),
equals zero if x 6∈ BA or y 6∈ B, so µ and µ̃ may be viewed temporarily as finite measures on the
compact sets BA and B, respectively. Interchanging the roles of µ and µ̃ yields the inequalities

µ(A)µ̃(B) ≤ µ(BA)µ̃(A−1) and µ̃(A)µ(C) ≤ µ̃(CA)µ(A−1)

for A,B,C ∈ C. Specifically let B,C be arbitrary fixed sets in C∗, and let A := Bε ∩ B−1
ε for

some ε ∈ (0, 1], so A−1 = A. Then

µ̃(B)

µ(BA)
≤ µ̃(A)

µ(A)
≤ µ̃(CA)

µ(C)
.

If we let ε ↓ 0, then the left-hand and right-hand side converge to µ̃(B)/µ(B) and µ̃(C)/µ(C),
respectively, because for arbitrary U, V ∈ U with B ⊂ U and C ⊂ V , BA ⊂ U and CA ⊂ V for
sufficiently small ε > 0. This shows that µ̃/µ is constant on C∗.

By means of Exercise 5.1 (a), one can easily deduce from Theorem 5.6 that there exists a right
Haar measure µ on X , that means, Condition 5.1 in Theorem 5.6 can be replaced with

(5.9) µ(Bx) = µ(B) for all x ∈ X and B ∈ B.

Note that in case of a commutative group, there is no difference between left and right Haar
measures, so we talk about Haar measures.

An obvious question is how left and right Haar measures are related. The next result is a first step
to clarify this.

Theorem 5.8. There exists a unique function J : X → (0,∞) such that for any left Haar measure
µ on X ,

µ(Bx) = J(x)µ(B) for all x ∈ X and B ∈ B.

Moreover, J is continuous, and

J(xy) = J(x)J(y) for arbitrary x, y ∈ X .

Here is an immediate consequence of this result:

Corollary 5.9. Suppose that X is a compact topological group. Then any left Haar measure on
X is also a right Haar measure.

The reason is that J(xz) = J(x)z for arbitrary x ∈ X and integers z. Consequently, if J(x) 6= 1

for some x ∈ X , then J is unbounded on X . But a continuous function on a compact set is
bounded, whence J ≡ 1 in case of a compact topological group X .

Proof of Theorem 5.8. If µ is a left Haar measure on X , then for fixed x ∈ X ,

B 7→ µ(Bx)
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is easily seen to define a left Haar measure on X , too. But this means that there exists a unique
constant J(x) > 0 such that

µ(Bx) = J(x)µ(B) for all B ∈ B.

For x, y ∈ X and B ∈ B,

J(xy)µ(B) = µ(Bxy) = J(y)µ(Bx) = J(y)J(x)µ(B).

Since 0 < µ(B) < ∞ in case of B being compact with non-empty interior, this proves the
equation J(xy) = J(x)J(y) for x, y ∈ X .

To show continuity of J , let Aε := Bε ∩ B−1
ε with Bε = {x ∈ X : d(x, e) ≤ ε}. Further, let

C ∈ C with non-empty interior. Then for any κ > 1 there exists an ε > 0 such that µ(CAε) ≤
µ(C)(1 + κ). Thus for x ∈ Aε,

J(x) =
µ(Cx)

µ(C)
≤ µ(CAε)

µ(C)
≤ 1 + κ

and

J(x) =
1

J(x−1)
=

µ(C)

µ(Cx−1)
≥ µ(C)

µ(CAε)
≥ 1

1 + κ
.

This proves continuity of J at e, and continuity at arbitrary points in X is easily deduced from the
equation J(xy) = J(x)J(y) for arbitrary x, y ∈ X .

The function J in Theorem 5.8 is called the modular function of the locally compact topological
group X . It yields a Radon–Nikodym derivative of a right-invariant with respect to a left-invariant
measure.

Theorem 5.10. Let µ be a left Haar measure on X . Then

µ̃(B) :=

∫
B
J(x)−1 µ(dx)

defines a right-invariant measure on X . That means, µ̃ satisifies the same properties as µ, except
that (5.1) is replaced with (5.9).

As a preparation for the proof of Theorem 5.10 the reader should verify the following two facts
about integrals with respect to left-invariant measures.

Exercise 5.11. Let µ be a left Haar measure on X . Show that for arbitrary y ∈ X and measurable
functions h : X → R̄,∫

h(yx)µ(dx) =

∫
h dµ and

∫
h(xy)µ(dx) = J(y)−1

∫
h dµ,

provided that
∫
h dµ is well-defined in R̄.

Proof of Theorem 5.10. We start with an arbitrary measure µ satisfying the regularity conditions
(5.2) and (5.3) and consider any measure µ̃ with a continuous density f = dµ̃/dµ > 0.
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Since f > 0, µ̃(B) > 0 whenever µ(B) > 0. Hence, µ̃ satisfies property (5.5) whenever µ does.
Note also that for C ∈ C,

µ̃(C) ≤ max
x∈C

f(x)µ(C),

so µ̃ satisfies property (5.4) whenever µ does.

To show that µ̃ satisfies (5.3), note first that for any U ∈ U ,

µ̃(U) = lim
R→∞

µ̃(U ∩ {R−1 < f < R}).

Since each set {R−1 < f < R} is open itself, it suffices to consider open sets U such that
a ≤ f ≤ b on U with 0 < a < b. In particular, aµ(B) ≤ µ̃(B) ≤ bµ(B) for all measurable
sets B ⊂ U . By assumption, there exist compact subsets C1 ⊂ C2 ⊂ C3 ⊂ · · · of U such
that µ(Cn) → µ(U) as n → ∞. Now one can easily show that µ̃(Cn) → µ̃(U) as n → ∞,
distinguishing the cases µ(U) =∞ and µ(U) <∞. Hence µ̃ satisfies (5.3), too.

To show that µ̃ satisfies (5.2), we fix an arbitrary constant γ > 1. Then any set B ∈ B may be
decomposed as

B =
⋃
z∈Z

Bz with Bz := B ∩ {γz ≤ f < γz+1
}
.

By assumption, for any integer z there exists an open set Uz such that Bz ⊂ Uz ⊂ {f < γz+1}
and µ(Uz) ≤ γµ(Bz). Consequently, U :=

⋃
z∈Z Uz is an open set containing B such that

µ̃(U) ≤
∑
z∈Z

µ̃(Uz) ≤
∑
z∈Z

γz+1µ(Uz) ≤
∑
z∈Z

γz+2µ(Bz) ≤
∑
z∈Z

γ2µ̃(Bz) = γ2µ̃(B).

Hence, µ̃ satisfies (5.2), too.

It remains to verify (5.9) for µ̃ in case of f(x) = J(x)−1 and µ being a left Haar measure on X .
Indeed, for measurable functions h : X → [0,∞) and y ∈ X ,∫

h(xy) µ̃(dx) =

∫
h(xy)J(x)−1 µ(dx)

= J(y)

∫
h(xy)J(xy)−1 µ(dx)

=

∫
h(x)J(x)−1 µ(dx)

=

∫
h(x) µ̃(dx),

where the second last step follows from Exercise 5.11.

5.3 Some Explicit Constructions

In this section we present a few examples of Haar measure.
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Discrete groups. Let (X , ·) be an arbitrary group. With the metric d(x, y) := 1[x 6=y], the topol-
ogy U and the Borel σ-field B coincide with P(X ), and C is the family of finite subsets of X .
Thus (X , ·, d) is a locally compact topological group. Here, the counting measure µ,

µ(B) := #B,

is a left and right Haar measure on X . This follows essentially from the fact that for any fixed
xo ∈ X , the mappings x 7→ xox and x 7→ xxo are bijective from X to X , see Exercise5.1 (b).

Lebesgue measure on Rd. Lebesgue measure Leb on (the Borel subsets of) Rd satisfies

Leb(x+B) = Leb(B)

for arbitrary x ∈ Rd and B ∈ Borel(Rd). Consequently, it is the unique Haar measure µ on the
additive group Rd such that µ([0, 1]d) = 1.

Haar measure on linear groups. Let (X , ·) be the set of nonsingular matrices x ∈ Rd×d with
matrix multiplication. As mentioned before, X is an open subset of Rd×d. For any fixed xo ∈ X ,

Lxo(x) := xox and Rxo(x) := xxo

define bijective mappings from X to X . They may also be viewed as bijective linear mappings
from Rd×d to Rd×d. If we identify Rd×d with Rd2 in the usual fashion, then the determinant of
these linear mappings equals

det(Lxo) = det(Rxo) = det(xo)
d,

see Exercise 5.12. With Lebesgue measure Leb on Rd×d, this means that for any measurable
function h : X → [0,∞),∫

X
h(xox) dx =

∫
X
h(xxo) dx = |det(xo)|−d

∫
X
h(x) dx,

where dx stands for Leb(dx). This implies that

µ(B) :=

∫
B
| det(x)|−d dx

defines a left and right Haar measure on X . For if xo ∈ X , then

µ(x−1
o B) =

∫
X

1B(xox)| det(x)|−d dx

= |det(xo)|d
∫
X

1B(xox)|det(xox)|−d dx

=

∫
X

1B(x)| det(x)|−d dx

= µ(B),

and analogously one can show that µ(Bx−1
o ) = µ(B).
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Exercise 5.12. Let vec : Rd×d → Rd2 be given by

vec(x) := (x>1 ,x
>
2 , . . . ,x

>
d )>

for x = [x1,x2, . . . ,xd] with columns xj ∈ Rd. Show that for any fixed xo ∈ X and arbitrary
x ∈ Rd×d,

vec(xox) = Lxovec(x) and vec(xxo) = Rxovec(x)

with matrices Lxo ,Rxo ∈ Rd2×d2 such that

det(Lxo) = det(xo)
d = det(Rxo).

A general consideration about compact topological groups. Suppose that X is a compact
topological group, and suppose that P is a left-invariant probability measure on X , that means,

P (xB) = P (B) for all x ∈ X and B ∈ B.

Then P is also right-invariant and inversion-invariant, that means,

P (xB) = P (Bx) = P (B−1) = P (B) for all x ∈ X and B ∈ B.

If P̃ is another left-invariant probability measure on X , then P̃ ≡ P .

Proof. Let X and Y be stochastically independent random variables on some probability space
(Ω,A, IP) with values in (X ,B), where IPX = P while IPY is an arbitrary distribution Q. Then
Y −1X has distribution P , too, because for any B ∈ B,

IP(Y −1X ∈ B) = IP(X ∈ Y B) = IE IP(X ∈ Y B |σ(Y ))︸ ︷︷ ︸
=P (Y B)=P (B) a.s.

= P (B).

In particular, if Q = P , then for any B ∈ B,

P (B) = IP(Y −1X ∈ B) = IP(X−1Y ∈ B−1) = IP(Y ∈ XB−1) = P (B−1).

But this implies right-invariance of P , because for all x ∈ X and B ∈ B,

P (Bx) = P ((Bx)−1) = P (x−1B−1) = P (B−1) = P (B).

Finally, if Q is left-invariant itself, then for all B ∈ B,

Q(B) = IP(X−1Y ∈ B) = IP(Y −1X ∈ B−1) = P (B−1) = P (B).
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Haar measure on orthogonal groups. Let X and Xorth be the groups of invertible and orthog-
onal matrices in Rd×d, respectively, the binary operation being matrix multiplication. In view of
the previous consideration, it suffices to construct a random variable X with values in Xorth such
that

IP(X ∈ xB) = IP(X ∈ B) for all x ∈ Xorth and B ∈ B.

Then the distribution P := IPX is the unique left Haar probability measure on Xorth, and it
happens to be left-, right- and inversion-invariant.

A particular construction starts with a random matrix Z = (Zij)
d
i,j=1 with d2 stochastically inde-

pendent random variables Zij ∼ N (0, 1). Writing Z = [Z1,Z2, . . . ,Zd], the columns Zj are
stochastically independent with standard Gaussian distribution Nd(0, e). For 2 ≤ k ≤ d,

IP
(
Zk ∈ span(Z1, . . . ,Zk−1)

)
= IE IP

(
Zk ∈ span(Z1, . . . ,Zk−1)

∣∣Z1, . . . ,Zk−1

)
= 0,

because IP(Zk ∈ V) = 0 for any fixed linear space V ⊂ Rd with dim(V) < d. Consequently,
the matrix Z is invertible almost surely. This allows us to apply the mapping Ψ : X → Xorth,
Ψ(z) := z(z>z)−1/2. Defining Ψ(z) := e for singular matrices z ∈ Rd×d, the distribution P of
the random matrix

X := Ψ(Z)

is left-invariant. Indeed, it is well-known from probability theory that the distribution of Z does
not change if we multiply it from the left with an arbitrary matrix u ∈ Xorth. Hence, P is also the
distribution of

Ψ(uZ) = uZ(Z>u>uZ)−1/2 = uZ(Z>Z)−1/2 = uX.

Another explicit construction would be to apply the Gram–Schmidt orthogonalization procedure
to the columns of Z. That means, we defineX = [X1, . . . ,Xd] via

X1 := ‖Z1‖−1Z1

and inductively

Xk :=
∥∥∥Zk −

k−1∑
i=1

XiX
>
i Zk

∥∥∥−1(
Zk −

k−1∑
i=1

XiX
>
i Zk

)
for k = 2, . . . , d. Again, one can show that replacing Z with uZ for some u ∈ Xorth results in
replacingX with uX .

Note that the construction via Gram–Schmidt implies that for a random matrix X ∈ Xorth with
left-invariant distribution, any column is uniformly distributed on the unit sphere of Rd (with
respect to the standard Euclidean norm).



Part II

Mathematical Statistics

73





Chapter 6

Measurement Series and Estimators of
Location

6.1 Statistical Experiments and Point Estimators

Before we discuss estimation of a location parameter, let us intruduce some general terminology.

Definition 6.1 (Statistical experiment). A statistical experiment is a triplet E =
(
Ω,A, (IPθ)θ∈Θ

)
consisting of a measurable space (Ω,A), the sample space, and a family of probability distribu-
tions IPθ on (Ω,A), depending on a parameter θ in a parameter space Θ.

The sample space (Ω,A) represents all possible data sets one could observe. The elements of
the parameter space Θ represent potential values of an unknown true parameter θ ∈ Θ. We
assume that the observed data are a (realization of a) random variable with distribution IPθ. In
what follows, the symbol θ may denote this particular true parameter or a potential parameter. It
should become clear from the context in which sense θ is meant. The dependency of probabilities,
expectations, variances etc. on θ will be denoted by a corresponding subscript, leading to IPθ, IEθ,
Varθ etc.

Of course there is some redundancy in the definition of a statistical experiment E , because specify-
ing the family (IPθ)θ∈Θ implies the specification of the measurable space (Ω,A). But sometimes
we shall replace A with certain sub-σ-fields, so the current definition is useful.

Sometimes one is interested in a function g(θ) of the true parameter θ with values in some metric
space (G, d), where g : Θ → G is given. In the simplest case, one would like to deduce from
observed data ω ∈ Ω a simple guess ĝ(ω) ∈ G of g(θ).

Definition 6.2 (Point estimator). A point estimator of g(θ) (short: an estimator) is a measurable1

function

ĝ : Ω→ G.

To compare differnt estimators ĝ, one can quantify their inaccuracy for instance by their mean

1A-Borel(Rq)-measurable

75
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squared error,
IEθ
(
d(ĝ, g(θ))2

)
.

Note that this quantity depends on the parameter θ. In general, it may happen that one estimator ĝ1

is strictly better than another estimators ĝ2 in a certain region of the parameter space Θ but strictly
worse in another region.

6.2 Estimators of Location

Simple location families. Let θ ∈ R be an unknown parameter which has to be estimated in an
experiment which yields n single measurements X1, . . . , Xn. Suppose that

Xi = θ + εi, 1 ≤ i ≤ n,

with independent random measurement errors ε1, . . . , εn with a known distribution P0. This leads
to the statistical experiment

E =
(
Rn,Borel(Rn), (IPθ)θ∈R

)
with

IPθ := P⊗nθ and Pθ = P0 ? δθ.

Here ‘?’ denotes convolution2, and δθ is the Dirac measure at the point θ. In other words, IPθ

describes the distribution of a random vector with independent components having distribution
function Fθ, where

Fθ(x) := F0(x− θ),

and F0 is the distribution function of the error distribution P0. Such a statistical experiment is
called a simple location family.

In what follows, we write x instead of ω for a sample in Rn. The random variables Xi are just the
coordinate functions x = (xi)

n
i=1 7→ Xi(x) := xi, andX := (Xi)

n
i=1 is the identity function.

Equivariant estimators. For a vector x = (xi)
n
i=1 ∈ Rn and any number a ∈ R let

a+ x := x+ a := (xi + a)ni=1

The simple location family E has the property that for arbitrary θ, a ∈ R,

X ∼ IPθ if and only if X + a ∼ IPθ+a .

This motivates the following property of an estimator θ̂ of θ:

Definition 6.3 (Equivariance). An estimator θ̂ : Rn → R is called equivariant, if

θ̂(x+ a) = θ̂(x) + a for all x ∈ Rn and a ∈ R.
2For distributions P and Q on the real line, P ? Q denotes the distribution of X + Y with independent random

variables X ∼ P and Y ∼ Q. In particular, for θ ∈ R, P ? δθ is the distribution of X + θ with X ∼ P .
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Note that the sample mean,

X̄ :=
1

n

n∑
i=1

Xi,

as well as the sample median are equivariant estimators. Concerning the sample mean, it follows
from the weak law of large numbers that for a fixed distribution P0 with mean

∫
xP0(dx) = 0,

lim
n→∞

IEθ |X̄ − θ| = 0.

If in addition, P0 has finite variance σ2, then even

IEθ
(
(X̄ − θ)2

)
=

σ2

n
.

Risk functions. For an arbitrary estimator θ̂ : Rn → R, we consider its risk function R(θ̂, ·) :

R→ [0,∞] with

R(θ̂, θ) := IEθ
(
(θ̂ − θ)2

)
=

∫
Rn

(θ̂ − θ)2 d IPθ,

the mean squared error of θ̂ in case of the true parameter being θ.

In case of an equivariant estimator θ̂, its risk function is constant: For arbitrary θ ∈ R,

R(θ̂, θ) = R(θ̂) := R(θ̂, 0) = IE0(θ̂2).

More generally, if θ̂ is equivariant, then for any measurable function h : R → R and arbitrary
θ ∈ R,

IEθ h(θ̂ − θ) = IE0 h(θ̂),

provided that IE0 h(θ̂) is well-defined.

6.3 Constructing an Optimal Equivariant Estimator

An equivariant estimator θ̂∗ is called optimal (among all equivariant estimators) if

R(θ̂∗) ≤ R(θ̂) for any equivariant estimator θ̂.

IfX ∼ IPθ, thenX = θ + ε with ε ∼ IP0, and for any equivariant estimator θ̂,

θ̂(X) = θ + θ̂(ε).

Of course, we don’t know ε, but at least we know T (ε) for the particular function T : Rn → Rn

given by

T (x) := x− x1 = (0, x2 − x1, . . . , xn − x1)>.

Indeed, this function T is invariant in the sense that

T (x+ a) = T (x) for all x ∈ Rn and a ∈ R.
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Hence, if we observeX = θ + ε, then

T (X) = T (ε).

That means, we know at least T (ε). So we could try to improve the estimator θ̂(X) = θ + θ̂(ε)

by subtracting the conditional expectation of θ̂(ε), given that T (ε) is equal to the observed T (X).
That means, we subtract a reasonable guess of θ̂(ε) from θ̂(X). This idea leads to an optimal
equivariant estimator indeed.

Theorem 6.4 (Pitman’s improvement). Let θ̂ be an equivariant estimator with finite risk R(θ̂).
Then

θ̂∗ := θ̂ − IE0(θ̂ |σ(T ))

defines an optimal equivariant estimator. It is unique in the sense that for any equivariant estimator
θ̃ and arbitrary θ ∈ R,

R(θ̃) = R(θ̂∗) implies that θ̃ = θ̂∗ IPθ-almost surely.

Remark 6.5 (Invariance and the choice of T (·)). Our particular choice of T (·) is somewhat
arbitrary. In principle one could take any equivariant estimator θ̃ : Rn → R and define T (x) :=

x − θ̃(x). Inspecting the proof of Theorem 6.4 carefully reveals that Theorem 6.4 remains valid
with this definition T . Our particular version corresponds to θ̃ = X1 and is convenient for explicit
calculations.

Exercise 6.6. Consider an estimator θ̃ : Rn → R. Show that θ̃ is equivariant if and only if
T (x) := x− θ̃(x) is invariant, i.e. T (x+ a) = T (x) for arbitrary x ∈ Rn and a ∈ R.

Remark 6.7 (Characterization of optimality). The particular construction in Theorem 6.4 implies
that an equivariant estimator θ̂ with finite risk R(θ̂) is optimal if and only if

IE0(θ̂ |σ(T )) = 0 IP0-almost surely.

Exercise 6.8. Let θ̂∗ : Rn → R be an optimal equivariant estimator for θ. Show that θ̂∗ is
unbiased, that means,

IEθ(θ̂∗) = θ for all θ ∈ R.

Exercise 6.9. Suppose that P0 is the Laplace distribution on {0, 1}.

(a) Before starting to apply the general theory, how would you estimate θ?

(b) Determine the conditional distribution of X , given that T = y, in case of θ = 0. (Which
vectors y ∈ Rn are relevant?)

(c) Determine the optimal (in terms of mean squared error) equivariant estimator of θ.

Proof of Theorem 6.4. The general theory in Sections 3.2 and 3.3 shows that IE0(θ̂ |σ(T )) =

g∗(T ) with a measurable function g∗ : Rn → R such that

IE0

(
(θ̂ − g(T ))2

)
= IE0

(
(θ̂ − g∗(T ))2

)
+ IE0

(
(g(T )− g∗(T ))2

)
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for any measurable function g : Rn → R. In particular, for g ≡ 0 we obtain the formula

(6.1) IE0(θ̂2) = IE0

(
(θ̂ − g∗(T ))2

)
+ IE0(g∗(T )2).

Since θ̂ is equivariant and T is invariant, θ̂∗ = θ̂ − g∗(T ) is an equivariant estimator, too: For
arbitrary x ∈ Rn and a ∈ R,

θ̂∗(x+ a) = θ̂(x+ a)︸ ︷︷ ︸
=θ̂(x)+a

− g∗(T (x+ a))︸ ︷︷ ︸
=g∗(T (x))

= θ̂(x) + a− g∗(T (x)) = θ̂∗(x) + a.

Hence, we may rewrite (6.1) as

R(θ̂) = R(θ̂∗) + IE0(g∗(T )2).

Consequently, R(θ̂) ≥ R(θ̂∗) with equality if and only if IE0(g∗(T )2) = 0, and this is equivalent
to

IE0(θ̂ |σ(T )) = 0 IP0-almost surely.

Finally, let θ̃ : Rn → R be another equivariant estimator with finite risk R(θ̃). Then h := θ̃ − θ̂
is invariant in the sense that h(x) = h(T (x)) for arbitrary x ∈ Rn. Consequently, if we apply
Pitman’s recipe to θ̃ instead of θ̂, we obtain the estimator

θ̃∗ := θ̃ − IE0(θ̃ |σ(T ))

= θ̂ + h(T )− IE0

(
θ̂ + h(T )

∣∣σ(T )
)

= θ̂ + h(T )− IE0(θ̂ |σ(T ))− IE0(h(T ) |σ(T ))︸ ︷︷ ︸
=h(T ) a.s.

= θ̂ − IE0(θ̂ |σ(T )) = θ̂∗ IP0-almost surely.

Moreover, since θ̃∗ − θ̂∗ is invariant, IPθ(θ̃∗ 6= θ̂∗) = IP0(θ̃∗ 6= θ̂∗) = 0 for arbitrary θ ∈ R.

In case of P0 having a density with respect to Lebesgue measure, there is an explicit formula for
the optimal equivariant estimator θ̂∗:

Corollary 6.10. Suppose that P0 has a density f0 with respect to Lebesgue measure on R, and
suppose that there exists an equivariant estimator with finite risk. Then there exists a Borel set
B∗ ⊂ Rn such that IP0(T−1(B∗)) = 1,3 and for each x ∈ T−1(B∗), the optimal equivariant
estimator θ̂∗ is given by

θ̂∗(x) =

∫
R
θfθ(x) dθ

/∫
R
fθ(x) dθ,

where fθ(x) :=
∏n
i=1 fθ(xi) and fθ(x) := f0(x − θ) for real numbers x. In other words, θ̂∗(x)

is the mean of the probability distribution Qx on R with density

θ 7→ fθ(x)
/∫

R
fη(x) dη.

3IPθ(T
−1(B∗)) = 1 for all θ ∈ R by invariance of T .
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Example 6.11 (Gaussian distributions). Suppose that P0 = N (0, σ2) for some σ > 0. Then

θ̂∗ = X̄.

This follows from Corollary 6.10 and the following calculations: f0(x) = C exp
(
−x2/(2σ2)

)
with C = (2πσ2)−1/2, whence

fθ(x) = Cn exp
(
− ‖x− θ‖

2

2σ2

)
.

But
‖x− θ‖2 = ‖x− x̄‖2 + n(θ − x̄)2

with x̄ := n−1
∑n

i=1 xi, so

fθ(x) = fx̄(x) exp
(
− (θ − x̄)2

2σ2/n

)
,

and this implies that the distribution Qx in Corollary 6.10 is equal to N (x̄, σ2/n). Hence

θ̂∗(x) = mean
(
N (x̄, σ2/n)

)
= x̄.

Example 6.12 (Uniform distributions). Suppose that P0 = Unif([−σ, σ]) for some σ > 0. Then

θ̂∗(x) =
(
min(x) + max(x)

)
/2

with min(x) and max(x) denoting the minimum and maximum of {x1, . . . , xn}, respectively.
This follows from the following considerations: Since f0(x) = (2σ)−11[−σ≤x≤σ],

fθ(x) = (2σ)−n
n∏
i=1

1[−σ≤xi−θ≤σ]

= (2σ)−n
n∏
i=1

1[xi−σ≤θ≤xi+σ]

= (2σ)−n1[max(x)−σ≤θ≤min(x)+σ].

Hence the distribution Qx in Corollary 6.10 is the uniform distribution on the interval with end-
points max(x) − σ and min(x) + σ, unless max(x) − min(x) > 2σ. (Note that max(X) −
min(X) < 2σ almost surely.) Consequently,

θ̂∗(x) = midpoint of [max(x)− σ,min(x) + σ] =
(
min(x) + max(x)

)
/2.

(This definition makes sense no matter how large the difference max(x)−min(x) is.)

Exercise 6.13. Suppose that P0 = Unif[−σ, σ]. As shown before, the optimal equivariant esti-
mator of θ is given by θ̂∗(x) =

(
min(x) + max(x)

)
/2.

(a) Determine the risk of X̄ .

(b) Show that the risk of θ̂∗ is of order O(n−2).

Bonus question: Show that

R(θ̂∗) =
2σ2

(n+ 1)(n+ 2)
.
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Remark 6.14 (Maximum-likelihood estimation). In case of P0 having density f0, the function

θ 7→ fθ(X) =

n∏
i=1

fθ(Xi)

is the so-called likelihood function. For any number θ one may interpret fθ(X) as a measure
of plausibility of θ being equal to the true parameter. Indeed a standard estimator of the true
parameter θ would be the maximum-likelihood estimator

θ̂ML := arg max
θ∈R

fθ(X),

provided the latter is uniquely defined. Our previous calculations show that θ̂∗ = θ̂ML = X̄ in
case of P0 being a centered Gaussian distribution.

The higher popularity of θ̂ML in comparison with θ̂∗ is due to the fact that the latter estimator is
rather difficult to compute explicitly in non-Gaussian models. Moreover, in many settings one can
show that

fθ(X) ≈ f
θ̂ML

(X) exp
(
− (θ − θ̂ML)2

2γ̂2

)
for some random variable γ̂ > 0 such that γ̂ →p 0 as n → ∞. Hence QX ≈ N (θ̂ML, γ̂

2) for
large sample sizes n, and θ̂ML seems to be a good surrogate for θ̂∗.

Exercise 6.15. Suppose that the error distribution P0 is the standard exponential distribution.
That means, its density is given by

f0(x) =

{
0 if x < 0,

exp(−x) if x ≥ 0.

(a) Determine fθ(x) for θ ∈ R and x ∈ Rn in terms of min(x) and x+ :=
∑n

i=1 xi.

(b) Determine the maximum likelihood estimator θ̂ML.

(c) Determine the optimal equivariant estimator θ̂∗.

Proof of Corollary 6.10. Consider the linear transformation given by

x 7→ (x1, x2 − x1, . . . , xn − x1)> = Ax

with the lower triangular matrix

A =


1 0 0 . . . 0
−1 1 0 . . . 0

−1 0 1
. . .

...
...

...
. . . . . . 0

−1 0 . . . 0 1

 .

Its inverse is given by

y 7→ (y1, y2 + y1, . . . , yn + y1)> = A−1y,
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and det(A) = 1 = det(A−1). Hence, by the transformation formula for Lebesgue integrals,

IP0(AX ∈ B) =

∫
Rn

1[Ax∈B]f0(x) dx

=

∫
Rn

1[y∈B]f0(A−1y) dy

=

∫
B
f0(A−1y) dy

for any Borel set B ⊂ Rn. This shows that the distribution ofAX under IP0 has density4

y 7→ f0(A−1y) = f0(y1, y2 + y1, . . . , yn + y1).

Note that AX = (X1, T2, . . . , Tn)> while T1 ≡ 0. Thus the considerations in Example 4.10
imply the following: The distribution of (T2, . . . , Tn) is given by the density

(t2, . . . , tn) 7→ g(t2, . . . , tn) :=

∫
R
f0(u, t2 + u, . . . , tn + u) du.

In particular, there exists a Borel set Bo ⊂ Rn with IP0(T ∈ Bo) = 1 such that for any t ∈ Bo,

0 < g(t2, . . . , tn) :=

∫
R
f0(u, t2 + u, . . . , tn + u) du < ∞,

and the conditional distribution of X1, given that T = t, has density

u 7→ g(t2, . . . , tn)−1f0(u, t2 + u, . . . , tn + u).

Coming back to our estimator θ̂ with finite risk IE0(θ̂2), note that θ̂(x) = x1 + h(T (x)) for some
measurable function h on Rn, and

∞ > IE0 |θ̂| =

∫
Rn−1

∫
R
|u+ h(0, t2, . . . , tn)|f0(u, t2 + u, . . . , tn + u) du d(t2, . . . , tn).

Hence for a Borel set B∗ ⊂ Bo with IP0(T ∈ B∗) = 1 and arbitrary t ∈ B∗,∫
R
|u|f0(u, t2 + u, . . . , tn + u) du < ∞.

In particular, if we plug in t = T (x) for some x ∈ T−1(B∗), then

f0(u, t2 + u, . . . , tn + u) = f0(x1 − x1 + u, x2 − x1 + u, . . . , xn − x1 + u) = fx1−u(x),

so
g(t2, . . . , tn) =

∫
R
fx1−u(x) du =

∫
R
fθ(x) dθ,

and

IE0

(
θ̂
∣∣T = T (x)

)
=

∫
R

(u+ h(T (x)))fx1−u(x) du
/∫

R
fθ(x) dθ

= x1 + h(T (x))−
∫
R

(x1 − u)fx1−u(x) du
/∫

R
fθ(x) dθ

= θ̂(x)−
∫
R
θfθ(x) dθ

/∫
R
fθ(x) dθ.

4In this proof, densities are with respect to the corresponding Lebesgue measure.
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Consequently,

θ̂∗(x) = θ̂(x)− IE0

(
θ̂
∣∣T = T (x)

)
=

∫
R
θfθ(x) dθ

/∫
R
fθ(x) dθ

for all x ∈ T−1(B∗), as claimed.

We end this section with the interesting result that in case of an error distribution P0 with finite
second moment and Lebesgue density f0, the optimal equivariant estimator is the sample mean if
and only if P0 is a centered Gaussian distribution.

Theorem 6.16 (Kagan–Linnik–Rao). Let n ≥ 3, and let P0 have finite second moment. Then
θ̂∗ = X̄ almost surely if and only if P0 = N (0, σ2) for some σ ≥ 0.

Proof of Theorem 6.16. We have verified already that θ̂∗ = X̄ in case of P0 being a centered
Gaussian distribution. Hence it suffices to prove the reverse statement.

In what follows all probabilities and expectations refer to the distribution IP = IP0. The proof of
Theorem 6.4 shows that optimality of X̄ is equivalent to

IE(X̄ |σ(T )) = 0

almost surely, where T = X −X1 = (0, X2 −X1, . . . , Xn −X1)>. In other words,

(6.2) IE
( n∑
i=1

Xig(T )
)

= 0 whenever g(T ) ∈ L2(IP).

With g ≡ 1 this implies that X := X1 has mean

IE(X) =

∫
xf0(x) dx = 0.

If n > 3, we may take g(T ) = h(T2, T3) = h(X2−X1, X3−X1) and deduce from independence
of X1, X2, . . . , Xn and IE(Xi) = 0 that

(6.3) IE
(
(X1 +X2 +X3)h(T2, T3)

)
= 0 whenever h(T2, T3) ∈ L2(IP).

Now let φ be the characteristic function of P0, i.e.

φ(t) = IE(eitX) =

∫
eitx P0(dx)

with the imaginary unit i ∈ C. We know that φ : R → C is bounded and continuous with
φ(0) = 1. Moreover, since P0 has finite second moment, φ is twice continuously differentiable
with derivative φ(k)(t) = ik IE(XkeitX) for k = 1, 2, so

φ′(0) = i IE(X) = 0 and φ′′(0) = − IE(X2).
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We may apply (6.3) to the (real and imaginary part of the) complex-valued and bounded function
h(z1, z2) = eisz1+itz2 with arbitrary real numbers s, t. This leads to

0 = IE
(
(X1 +X2 +X3)eis(X2−X1)+it(X3−X1)

)
= IE

(
X1e

−i(s+t)X1eisX2eitX3
)

+ IE
(
e−i(s+t)X1X2e

isX2eitX3
)

+ IE
(
e−i(s+t)X1eisX2X3e

itX3
)

= IE(X1e
−i(s+t)X1) IE(eisX2) IE(eitX3)

+ IE(e−i(s+t)X1) IE(X2e
isX2) IE(eitX3) + IE(e−i(s+t)X1) IE(eisX2) IE(X3e

itX3)

= φ′(−(s+ t))φ(s)φ(t) + φ(−(s+ t))φ′(s)φ(t) + φ(−(s+ t))φ(s)φ′(t),

where the latter two equalities follow from X1, X2, X3 being independent and identically dis-
tributed. Consequently,

φ′(−(s+ t))φ(s)φ(t) + φ(−(s+ t))
(
φ′(s)φ(t) + φ(s)φ′(t)

)
= 0 for arbitrary s, t ∈ R.

Now let
c := max

{
t ∈ (0,∞] : φ 6= 0 on (−t, t)

}
.

Then
ψ(t) :=

φ′(t)

φ(t)

defines a continuous function ψ : (−c, c)→ C with ψ(0) = 0 and

ψ(−(s+ t)) + ψ(s) + ψ(t) = 0 whenever |s|, |t|, |s+ t| < c.

But this implies that for some α ∈ C,

ψ(t) = αt for all t ∈ (−c, c),

see Exercise 6.17. In other words,

φ′(t) = αtφ(t) for t ∈ (−c, c).

Together with φ(0) = 1, standard results for differential equations imply that

φ(t) = eαt
2/2 for t ∈ (−c, c).

But continuity of φ and the definition of c imply that c = ∞. For otherwise, continuity of φ and
the definition of c would imply that 0 = φ(±c) = eαc

2/2. Consequently,

φ(t) = eαt
2/2 for all t ∈ R.

Since φ′′(t) = (α + α2t2)φ(t), we may conclude from φ′′(0) = α = − IE(X2) that α is a
negative real number. It is well-known from probability theory that for any σ ≥ 0, the char-
acteristic function of N (µ, σ2) is given by t 7→ exp(itµ − σ2t2/2). Hence the characteristic
function of P0 coincides with the characteristic function of N (0, σ2), where σ :=

√
−α. Since

any probability distribution is uniquely determined by its characteristic distribution, this shows
that P0 = N (0, σ2).
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Exercise 6.17. For some c ∈ (0,∞], let ψ : (−c, c)→ C be a continuous function such that

ψ(−(s+ t)) + ψ(s) + ψ(t) = 0 whenever |s|, |t|, |s+ t| < c.

Show that there exists a constant α ∈ C such that

ψ(t) = αt for all t ∈ (−c, c).

Exercise 6.18 (Distribution of order statistics). The contents of this exercise are probably known
from other courses in Statistics. Let X(1) ≤ X(2) ≤ · · · ≤ X(n) be the order statistics of indepen-
dent random variables X1, . . . , Xn with distribution function F on R.

(a) Show that for k ∈ {1, 2, . . . , n},

IP(X(k) ≤ x) = 1−Bn,F (x)(k − 1),

where Bn,p(·) denotes the distribution function of the binomial distribution Bin(n, p).

(b) Show that for c ∈ {0, 1, . . . , n− 1}, Bn,0(c) = 1, Bn,1(c) = 0 and

Bn,p(c) = n

(
n− 1

c

)∫ 1

p
uc(1− u)n−1−c du for p ∈ [0, 1].

(c) Deduce from parts (a-b) that

IP(X(k) ≤ x) = n

(
n− 1

k − 1

)∫ F (x)

0
uk−1(1− u)n−k du.

Exercise 6.19 (Distribution of the sample median). LetX1, . . . , Xn be independent random vari-
ables with density f and differentiable distribution function F on R. Suppose that n = 2m + 1

for some integer m ≥ 1.

(a) Show that the sample median Mn := median(X1, . . . , Xn) has density

fn(x) = n

(
2m

m

)
F (x)m(1− F (x))mf(x).

(b) Suppose that f is the standard Cauchy density, f(x) = π−1(1 + x2)−1. For which values of
m is IE(M2

n) <∞?

Remark 1: One can answer (b) without computing IE(M2
n) explicitly, utilizing rough bounds for

F (x).

Remark 2: One can show here that n IE(M2
n)→ π2/4.

6.4 Beyond Equivariance: Admissibility

Although equivariance is a rather natural requirement, it is not obvious that it isn’t too restrictive.
Let us first consider a different estimation paradigm.
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Bayesian estimation of θ. Suppose that P0 is given by a density f0 on R, so the distribution
of X is given by the density fθ(x) =

∏n
i=1 f0(xi − θ), x ∈ Rn. Now imagine that θ itself is

a random variable which is chosen by “mother nature” according to a so-called prior distribution
with probability density π on R. That means, for arbitrary Borel sets C ⊂ R and D ⊂ Rn,

IPB(θ ∈ C,X ∈ D) =

∫
C

IPθ(D)π(θ)dθ =

∫
C

∫
D
fθ(x) dx π(θ)dθ.

Here and thoughout the sequel, the superscript ‘B’ stands for ‘Bayesian’ and means that θ is
considered as a random variable. (We do not distinguish notationally between the random variable
θ and an explicit value θ.)

The latter display and Fubini’s theorem show that the joint distribution of (θ,X) is given by the
density (θ,x) 7→ g(θ,x) := fθ(x)π(θ). That means, for any Borel set B ⊂ R× Rn,

IPB((θ,X) ∈ B) =

∫
B
g(θ,x) d(θ,x).

Moreover, by Fubini’s theorem,

IPB(X ∈ D) =

∫
D
fB(x) dx

with
fB(x) :=

∫
R
fθ(x)π(θ)dθ.

Hence fB describes the marginal distribution ofX in the Bayesian framework.

More generally, for any measurable function h : R× Rn → R,

IEB h(θ,X) =

∫
R×Rn

h(θ,x)g(θ,x) d(θ,x),

provided that the latter integral is well-defined. By Fubini’s theorem this may be rewritten in two
ways:

IEB h(θ,X) =

∫
R

∫
Rn
h(θ,x)fθ(x) dx π(θ)dθ =

∫
R

IEθ h(θ,X)π(θ)dθ,

and
IEB h(θ,X) =

∫
Rn

∫
R
h(θ,x)QB

x(dθ) fB(x) dx,

where QB
x is conditional distribution of θ, givenX = x, with density

θ 7→ π(θ |x) :=

{
fθ(x)π(θ)/fB(x) if 0 < fB(x) <∞,
π(θ) else.

Within the Bayesian framework, QB
x and π(· |x) are called the posterior distribution and posterior

density, respectively, of θ, givenX = x.

The Bayes risk of any estimator θ̂ : Rn → R in this framework is defined as

RB(θ̂) := IEB
(
(θ̂(X)− θ)2

)
=

∫
R

∫
Rn

(θ̂(x)− θ)2fθ(x) dx π(θ)dθ

=

∫
R
R(θ̂, θ)π(θ)dθ.
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The general theory of conditional expectations implies that the (essentially) unique minimizer of
the Bayes risk is given by

θ̂B(x) = IEB(θ |X = x) =

∫
R
θπ(θ |x) dθ = mean(QB

x).

Furthermore,

RB(θ̂B) =

∫
R×Rn

(θ − θ̂B(x))2fθ(x)π(θ) d(θ,x)

=

∫
Rn

∫
R

(θ − θ̂B(x))2QB
x(dθ) fB(x) dx

=

∫
Var(QB

x) fB(x) dx.

Note the similiarity between the Bayes-optimal estimator θ̂B and the optimal equivariant estimator
θ̂∗:

θ̂B(x) =

∫
R
θfθ(x)π(θ)dθ

/∫
R
fθ(x)π(θ)dθ,

θ̂∗(x) =

∫
R
θfθ(x) dθ

/∫
R
fθ(x) dθ.

Hence θ̂∗ may be interpreted as a Bayesian estimator with prior distribution Lebesgue measure,
corresponding to π ≡ 1. Moreover, suppose that π is the density of N (ν, τ2) for some ν ∈ R and
τ > 0. Then π(θ) is proportional to e−(θ−ν)2/(2τ2), whence

θ̂B(x) =

∫
R
θfθ(x)e−(θ−ν)2/(2τ2) dθ

/∫
R
fθ(x)e−(θ−ν)2/(2τ2) dθ.

Since (0, 1] 3 e−(θ−ν)2/(2τ2) → 1 as τ →∞, it follows from dominated convergence that

θ̂B(x) → θ̂∗(x) as τ →∞,

provided that the integrals in the enumerator and denominator of θ̂∗(x) are well-defined.

Example 6.20 (Gaussian model and prior). Suppose that π is the density of N (0, τ2) for some
τ > 0, and let P0 = N (0, σ2) for given σ > 0. Then

θ̂B(x) =
n

n+ σ2/τ2
x̄ and RB(θ̂B) =

σ2

n+ σ2/τ2
.

To verify this, recall that

fθ(x) = fx̄(x) exp
(
− n(θ − x̄)2

2σ2

)
.

Since π(θ) is proportional to exp(−θ2/(2τ2)),

fθ(x)π(θ) = C1(x) exp
(
− θ2

2τ2
− n(θ − x̄)2

2σ2

)
= C2(x) exp

(
− θ

2

2

σ2 + nτ2

σ2τ2
+
nx̄

σ2
θ
)

= C3(x) exp
(
− (θ − βx̄)2

2γ2

)
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with certain terms C1(x), C2(x), C3(x) > 0 and

γ2 :=
σ2τ2

σ2 + nτ2
=

σ2

n+ σ2/τ2
,

β :=
nγ2

σ2
=

n

n+ σ2/τ2
.

In particular, QB
x = N (βx̄, γ2), so

θ̂B(x) = βx̄ and Var(QB
x) = γ2 = RB(θ̂B).

Admissibility. The use of any estimator θ̂ is justified if it is admissible in the following sense:

Definition 6.21 (Admissibility). An estimator θ̂ of θ is called admissible if there exists no other
estimator θ̃ such that

R(θ̃, θ) ≤ R(θ̂, θ) for all θ ∈ R,

R(θ̃, θo) < R(θ̂, θo) for some θo ∈ R.

Example 6.22. A rather trivial example of an admissible, but non-equivariant estimator is given
by θ̂ ≡ θo with some fixed value θo ∈ R, provided that f0 > 0. Here, R(θ̂, θ) = (θo − θ)2. If
θ̃ would be another estimator with R(θ̃, ·) ≤ R(θ̂, ·), then R(θ̃, θo) = 0 is equivalent to IPθo(θ̃ 6=
θo) = 0. But for each θ ∈ R, the distribution IPθ is absolutely continuous with respect to IPθo , so
IPθ(θ̃ 6= θo) = 0, whence R(θ̃, θ) = (θo − θ)2.

Exercise 6.23. Suppose that P0([−1, 1]) = 1. Show that the trivial estimator θ̂ ≡ 0 is not
admissible.
Proposal: Show that if X ∼ IPθ, then max(X) − 1 ≤ θ ≤ min(X) + 1 almost surely. Now
deduce that θ̃(X) := (max(X)− 1)+ − (min(X) + 1)− outperforms θ̂(X) = 0.

The following theorem shows that in case of a centered Gaussian error distribution P0, the estima-
tor X̄ is indeed admissible.

Theorem 6.24. If P0 = N (0, σ2) for some σ > 0, then X̄ is an admissible estimator of θ.

Proof of Theorem 6.24. The risk function of X̄ is constant σ2/n. Suppose that θ̂ is an arbitrary
estimator such that R(θ̂, ·) ≤ σ2/n on the whole real line. As shown in Exercises 6.25 and
6.26, it follows from R(θ̂, ·) < ∞ on R that the risk function R(θ̂, ·) is continuous. Hence
if R(θ̂, θo) < σ2/n for some θo ∈ R, then there exist real numbers δ > 0 and a < b such that
R(θ̂, θ) ≤ σ2/n−δ for θ ∈ [a, b]. Now we evaluate the performance of θ̂ in a Bayesian framework
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with θ ∼ N (0, τ2) for some τ > 0. Here

RB(θ̂) = IEBR(θ̂, θ)

≤ IPB(θ 6∈ [a, b])
σ2

n
+ IPB(θ ∈ [a, b])

(σ2

n
− δ
)

=
σ2

n
− IPB(θ ∈ [a, b])δ

=
σ2

n
−
(

Φ
( b
τ

)
− Φ

(a
τ

))
δ

=
σ2

n
− Φ′(ξ(τ))(b− a)δ

τ

for some number ξ(τ) ∈ [a/τ, b/τ ]. On the other hand,

RB(θ̂) ≥ RB(θ̂B) =
σ2

n+ σ2/τ2
≥ σ2

n
− σ4

n2τ2

by the elementary inequality 1/(1 + y) ≥ 1− y for y > −1. These inequalities for RB(θ̂) imply
that

Φ′(ξ(τ))(b− a)δ ≤ σ4

n2τ

for arbitrary τ > 0. But as τ → ∞, the left hand side converges to Φ′(0)(b − a)δ > 0, whereas
the right hand side converges to 0. This contradiction shows that R(θ̂, ·) ≤ σ2/n implies that
R(θ̂, ·) ≡ σ2/n.

Exercise 6.25 (Some basic considerations). Let M be a measure on a measurable space (Ω,A),
and let g, h : Ω→ R be A-measurable functions such that for real numbers a < b,∫

(eag + ebg)|h| dM < ∞.

(a) Show that

L(t) :=

∫
etgh dM

defines a continuous function L : [a, b]→ R.

(b) Show that L is continuously differentiable on (a, b) with derivative

L′(t) =

∫
getgh dM.

(c) Show that L is infinitely often differentiable on (a, b) with k-th derivative

L(k)(t) =

∫
gketgh dM.

Exercise 6.26 (Continuity of risk functions in simple Gaussian location families). Consider the
simple location family with P0 = N (0, σ2) for some σ > 0. Let θ̂ : Rn → R be an estimator of θ
such that the risk

R(S, θ) = IEθ
(
(θ̂ − θ)2

)
is finite for any θ ∈ R. Show that R(θ̂, ·) is continuous on R.
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Exercise 6.27. Let Z ∼ N (0, 1) and a ∈ R. Show that IE(1[Z>a]Z) = φ(a) and IE(1[Z>a]Z
2) =

Φ(−a) + aφ(a), where φ and Φ arethe density and distribution function of Z, respectively.

Exercise 6.28. Suppose that the error distribution equals P0 = N (0, σ2) for some σ > 0. If one
assumes that θ ≥ 0, a possible estimator would be

X̄+.

(a) Determine R(X̄+, θ) for arbitrary θ ∈ R. (Hint: Exercise 6.27.)

(b) Compare R(X̂+, ·) with R(X̄).

Remark: This exercise shows that the estimator X̄ of θ is inadmissible in the statistical experiment(
Rn,Borel(Rn),

(
N (θ, σ2)⊗n

)
θ≥0

)
, because X̄+ has strictly smaller risk than X̄ . Whether or

not X̄+ is admissible itself is a different question.

6.5 Location Functionals and Gross Error Models

Estimators as functionals of (empirical) distributions. Consider a random vector X ∈ Rn

with independent components Xi having distribution P . Most estimators θ̂(X) may be viewed as
a functional S(P̂ ) of the empirical distribution

P̂ :=
1

n

n∑
i=1

δXi ,

i.e.

P̂ (B) =
#{i ≤ n : Xi ∈ B}

n
and

∫
h dP̂ =

1

n

n∑
i=1

h(Xi)

for B ⊂ R and h : R→ R. For instance

X̄ = mean(P̂ ),

median(X1, . . . , Xn) = median(P̂ ),

where for arbitrary distributions Q on R,

mean(Q) :=

∫
xQ(dx) provided that

∫
|x|Q(dx) <∞,

median(Q) :=
min{x : Q((−∞, x]) ≥ 0.5}+ max{x : Q([x,∞)) ≥ 0.5}

2
.

It is well-known that the empirical distribution P̂ is a consistent estimator for the underlying
distribution P . Precisely,

IE
(

sup
intervals B⊂R

∣∣P̂ (B)− P (B)
∣∣) = O(n−1/2)

uniformly in P , and for arbitrary measurable functions h : R→ R with
∫
|h| dP <∞,

IE
∣∣∣∫ h dP̂ −

∫
h dP

∣∣∣ → 0 as n→∞.



91

Hence ‘reasonable’ functionals S(·) should satisfy S(P̂ )→p S(P ) as n→∞, at least if P itself
is ‘reasonable’.

In what follows we consider the families

P :=
{

probability distributions on R
}
,

Pr :=
{
P ∈ P :

∫
|x|r P (dx) <∞

}
, r ≥ 0,

i.e. P0 = P .

Definition 6.29 (Equivariant location functional). An equivariant location functional on Pr is a
function S : Pr → R such that

S(P ? δa) = S(P ) + a

for arbitrary P ∈ Pr and a ∈ R.

Indeed, mean(·) is an equivariant location functional on P1, and median(·) is an equivariant
location functional on P0 = P .

Gross error models. For a given exponent r ≥ 0 we consider a simple location family(
Rn,Borel(Rn), (P⊗nθ )θ∈R

)
with Pθ = P0 ? δθ,

generated by a given distribution P0 ∈ Pr. Now suppose that X1, X2, . . . , Xn are independent
random variables with distribution P in a “contamination neighborhood” of some distribution
in {Pθ : θ ∈ R}. Precisely, we assume that for some unknown parameter θ ∈ R and some
ε ∈ (0, 0.5),

P ∈ Urε (θ) :=
{

(1− ε)Pθ + εQ : Q ∈ Pr
}

=
{
Q ∈ Pr : Q(B) ≥ (1− ε)Pθ(B) for any B ∈ Borel(R)

}
.

The idea behind this “gross error model” is that each observation Xi stems from Pθ with proba-
bility 1− ε, but with a (small) probability ε it could follow any other distribution Q ∈ Pr.

For instance, a well-known problem in sociology is that a certain percentage of people give non-
sensical answers on questionnaires. In the natural sciences, it may happen that a measurement
device fails completely with small probability or that the measured value is recorded with a wrong
or missing decimal point which may result in extreme outliers.

If such a model is realistic, for large sample sizes n we should not worry too much about the
sampling error S(P̂ )− S(P ) but rather about the systematic error S(P )− θ. Note that in case of
an equivariant location functional S : Pr → R,

sup
P∈Urε (θ)

∣∣S(P )− θ
∣∣ = sup

P∈Urε (0)

∣∣S(P )
∣∣

for any θ ∈ R. For instance, for any r ≥ 1 and any ‘generator’ P0 ∈ Pr with mean(P0) = 0,

sup
P∈Uε(0)

∣∣mean(P )
∣∣ ≥ sup

a∈R

∣∣mean((1− ε)P0 + εδa)︸ ︷︷ ︸
=εa

∣∣ = ∞.
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Hence the mean is a problematic functional in the presence of gross errors.

The following theorem of Peter J. Huber, a Swiss mathematician and co-founder of the field of
“robust statistics”, shows that the median is an optimal equivariant location functional for a broad
class of generators P0.

Theorem 6.30 (Huber). For any fixed r ≥ 0 let P0 ∈ Pr with density f0 such that f0 is even on
R and non-increasing on [0,∞). Then for any equivariant location functional S : Pr → R and
arbitrary ε ∈ (0, 0.5),

sup
P∈Urε (0)

∣∣S(P )
∣∣ ≥ sup

P∈Urε (0)

∣∣median(P )
∣∣ = F−1

0

( 0.5

1− ε

)
,

where F0 and F−1
0 are the distribution and quantile function, respectively, of P0.

Proof of Theorem 6.30. We first show that indeed

sup
P∈Uε(0)r

∣∣median(P )
∣∣ = xε := F−1

0

( 0.5

1− ε

)
.

The assumptions on f0 imply that with x∗ := sup{x > 0 : f0(x) > 0} ∈ (0,∞], the interval
(−x∗, x∗) coincides with {x ∈ R : 0 < F0(x) < 1}, and F0 is continuous and strictly increasing
on (−x∗, x∗). Moreover, F0(−x) = 1 − F0(x) for all x ∈ R. Since 0 < ε < 0.5, the number xε
lies in (0, x∗). The distribution function F of P = (1− ε)P0 + εQ ∈ Urε (P0) is strictly increasing
on (−x∗, x∗) as well and satisfies

F (−xε) ≤ (1− ε)F0(−xε) + ε = (1− ε)
(

1− 0.5

1− ε

)
+ ε = 0.5

with equality if, and only if, Q((−∞,−xε]) = 1. On the other hand,

F (xε) ≥ (1− ε)F0(xε) = (1− ε)0.5/(1− ε) = 0.5

with equality if, and only if, Q((−∞, xε]) = 0. These considerations show that the maximum of∣∣median(P )
∣∣ over all P ∈ Urε (0) equals xε.

Now we construct two particular distributions P (1), P (2) ∈ Urε (0) such that

P (2) = P (1) ? δ2xε .

If this is possible, then for any equivariant location functional S : Rr → R,

S(P (2))− S(P (1)) = 2xε.

This implies that S(P (1)) ≤ −xε or S(P (2)) ≥ xε, whence

sup
P∈Urε (0)

∣∣S(P )
∣∣ ≥ xε.

The construction starts from the function (1− ε)f0 and noting that∫ xε

−∞
(1− ε)f0(x) dx = (1− ε)F0(xε) = 0.5.
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Figure 6.1: Construction of two particular distributions P (1), P (2) ∈ U0.3(0) with densities
f (1), f (2) in case of P0 = N (0, 1).

Shifting this function to the right by 2xε yields the function (1−ε)f0(x−2xε), and the assumptions
about f0 imply that

(1− ε)f0(x)

{
≥
≤

}
(1− ε)f0(x− 2xε) if x

{
≤
≥

}
xε,

and ∫ ∞
xε

(1− ε)f0(x− 2xε) dx =

∫ ∞
−xε

(1− ε)f0(x) dx = 1− F0(−xε) = 0.5.

This shows that

f (2) := (1− ε) max
{
f0(x), f0(x− 2xε)

}
defines a probability density such that the corresponding distribution P (2) belongs to Urε (0). In-
stead of shifting (1 − ε)f0 to the right, we could shift it by 2xε to the left and would obtain the
density

f (1) := (1− ε) max
{
f0(x), f0(x+ 2xε)

}
of a distribution P (1) ∈ Urε (0). But f (2) = f (1)(· − 2xε), so P (2) = P (1) ? δ2xε , as desired.
Figure 6.1 illustrates the construction of f (1), f (2).

Remark. There seems to be no simple location family such that Median(x) is the correspond-
ing Pitman estimator. On the other hand, if P0 is the centered Laplace distribution with density
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f0(x) = (2σ)−1 exp(−|x|/σ), then Median(x) = θ̂ML(x), and one can show that this estimator
is approximately optimal as n→∞.



Chapter 7

Statistical Tests

In this chapter we consider a general statistical experiment (also called statistical model)(
Ω,A, (IPθ)θ∈Θ

)
consisting of a sample space (Ω,A), a parameter space Θ and given probability distributions IPθ

on (Ω,A) for arbitrary parameters θ ∈ Θ.

Recall that (IPθ)θ∈Θ describes potential distributions of the observed data ω ∈ Ω. Suppose for the
moment that the observed data are indeed a realization of a random variable with distribution IPθ

for an unknown true parameter θ. Sometimes we conjecture that θ does not belong to a given set
Θo ⊂ Θ. That means, our working hypothesis is that θ ∈ Θ \Θo, and we would like to falsify the
null hypothesis that θ ∈ Θo based on the observed data. This can be formalized by a measurable
function

ϕ : Ω→ {0, 1}.

If ϕ(ω) = 1, then we claim that θ 6∈ Θo. In other words we reject the null hypothesis. In case of
ϕ(ω) = 0 we make no assertion about θ.

For theoretical and other reasons it is useful to consider so-called randomized tests ϕ, i.e. measur-
able mappings

ϕ : Ω→ [0, 1].

The idea is that after observing the data ω ∈ Ω, we reject the null hypothesis with (conditional)
probability ϕ(ω). For instance, we could generate an additional random variable U ∼ Unif[0, 1],
independently from ω, and reject the null hypothesis if U ≤ ϕ(ω). All in all, by Fubini’s theorem,
the probability of rejecting the null hypothesis equals

IEθ(ϕ) =

∫
ϕd IPθ .

This is equal to IPθ(ϕ = 1) in case of a {0, 1}-valued mapping ϕ.

Definition 7.1 (Statistical test, power function). A (statistical) test is a measurable mapping ϕ :

Ω → [0, 1]. If ϕ takes only values in {0, 1}, this can be indicated by saying that ϕ is a non-
randomized test. The power function of a test ϕ is the function

Θ 3 θ 7→ IEθ(ϕ) =

∫
ϕd IPθ,

95
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and IEθ(ϕ) is the power of ϕ for parameter θ.

Note that this definition does not involve any null or working hypothesis. Let us come back to
observed data ω coming from IPθ for an unknown true parameter θ ∈ Θ. If we use a test ϕ to
check the null hypothesis that θ ∈ Θo, there are two possible types of error:

Error of the first kind: The true parameter θ belongs to Θo, but we reject the null hypothesis.
Error of the second kind: The true parameter θ does not belong to Θo, but we do not reject the null
hypothesis.

An error of the first kind happens with probability{
IEθ(ϕ) if θ ∈ Θo,

0 if θ 6∈ Θo,

whereas an error of the second kind occurs with probability{
0 if θ ∈ Θo,

1− IEθ(ϕ) if θ 6∈ Θo.

Traditionally one tries to control the probability of an error of the 1st kind.

Definition 7.2 (Test level). Let ∅ ( Θo ( Θ, and let α ∈ (0, 1). Suppose that ϕ is a test such
that

IEθ(ϕ) ≤ α for all θ ∈ Θo.

Then ϕ is called a test of the null hypothesis Θo at (test) level α. A shorter formulation: ϕ is a
level-α test of Θo.

Example 7.3 (Quality control). The producer of a certain gadget wants to learn something about
the unknown probability p that such a device fails in a standardized test of endurance. To this end,
he runs an experiment in which n such gadgets are exposed to that endurance test. The outcome of
this experiment could be described by a tuple ω = (ωi)

n
i=1 in {0, 1}n, where ωi specifies whether

the i-th gadget fails (ωi = 1) or not (ωi = 0). Assuming that the n gadgets perform independently,
this leads to the statistical model(

{0, 1}n,P({0, 1}n), (IPp)p∈[0,1]

)
with IPp given by

IPp({ω}) =
n∏
i=1

pωi(1− p)1−ωi = pT (ω)(1− p)n−T (ω).

Here T (ω) :=
∑n

i=1 ωi is the total number of failures in the experiment.

Alternatively, the producer could focus immediately on the total number of failures in his experi-
ment. Indeed, in a later chapter it will be shown that this reduction is well justified. This leads to
the statistical model (

{0, 1, . . . , n},P({0, 1, . . . , n}), (Bin(n, p))p∈[0,1]

)
.
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Suppose the producer wants to verify that the unknown probability p is smaller than a given (small)
number po. Then he should test the null hypothesis Θo = [po, 1]. If he performs a statistical test
of Θo at level α, and if that test rejects the null hypothesis, he may claim with confidence 1 − α
that the unknown parameter p is smaller than po.

General goal. Typically we specify a nonempty subset ΘA of Θ \ Θo and focus on testing the
null hypothesis Θo versus the alternative hypothesis ΘA. The goal is to construct a level-α test ϕ
of Θo with maximal power IEθ(ϕ) for θ ∈ ΘA.

Exercise 7.4 (De-randomisation). Let φ : Ω→ [0, 1] be a statistical test. Show that for any fixed
β ∈ (0, 1),

φ̃ := 1[φ≥β]

is a non-randomized test satisfying

IEθ(φ)

β
≥ IEθ(φ̃) ≥ IEθ(φ)− β

1− β
for all θ ∈ Θ.

7.1 The Neyman–Pearson Lemma

We start with the very simple setting of Θ = {0, 1} and Θo = {0}.

Theorem 7.5 (Neyman–Pearson). Suppose that IP0 and IP1 have densities f0 and f1, respectively,
with respect to some measure M on (Ω,A). For any α ∈ (0, 1) there exist constants kα ≥ 0 and
γα ∈ [0, 1] such that

ϕ∗ :=


1 if f1 > kαf0

γα if f1 = kαf0

0 if f1 < kαf0

defines a test ϕ∗ of {0} with the following properties:

(i) The test ϕ∗ has exact level α in the sense that

IE0(ϕ∗) = α.

(ii) For any level-α test ϕ of {0},

IE1(ϕ) ≤ IE1(ϕ∗).

(iii) If ϕ is a level-α test of {0} with IE1(ϕ) = IE1(ϕ∗), then

M(f1 > kαf0 and ϕ < 1) = 0 = M(f1 < kαf0 and ϕ > 0).

If in addition kα > 0, then IE0(ϕ) = α.

(iv) If IP0 6= IP1, then

IE1(ϕ∗) > α.
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Note that the optimal level-α test ϕ∗ could also be defined in terms of the likelihood ratio f1/f0

with the conventions that a/0 :=∞ for a > 0 and 0/0 := 0:

ϕ∗ :=


1 if f1/f0 > kα,

γα if f1/f0 = kα,

0 if f1/f0 < kα.

Remark 7.6 (Existence and choice of M ). The assumption that IP0 and IP1 have densities with
respect to some measure M on (Ω,A) is not a real restriction. If we take Mo := IP0 + IP1, then
it follows from the theorem of Radon–Nikodym that there exist densities foθ = d IPθ /dM

o for
θ = 0, 1. If M is an arbitrary measure such that a density fθ = d IPθ /dM exists for θ = 0, 1, then
one can easily verify that foθ = fθ/(f1 + f2) on the set {f1 + f2 > 0}, and Mo(f1 + f2 = 0) = 0.
Hence, the resulting optimal test ϕ∗ would be essentially the same, no matter which measure M
we start from.

Proof of Theorem 7.5. For the construction of our special test ϕ∗ we consider the auxiliary func-
tion H : [0,∞)→ [0, 1] given by

H(r) = IP0(f1 ≤ rf0).

One can easily verify that H(r) = IP0(f1/f0 ≤ r), where a/0 := ∞ for a > 0 and 0/0 := 0.
Since IP0(f1/f0 = ∞) ≤ IP0(f0 = 0) = 0, H is a distribution function on [0,∞). That means,
H is nonnegative, nondecreasing and right-continuous with limit H(+∞) = 1. Consequently, the
number

kα := min
{
r ≥ 0 : H(r) ≥ 1− α

}
is well-defined. It has the property that

IP0(f1 > kαf0) = 1−H(kα) ≤ α ≤ 1−H(kα−) = IP0(f1 ≥ kαf0).

If IP0(f1 = kαf0) = 0, we set γα := 1. Otherwise we define

γα :=
α− IP0(f1 > kαf0)

IP0(f1 ≥ kαf0)− IP0(f1 > kαf0)
=

α− IP0(f1 > kαf0)

IP0(f1 = kαf0)
∈ [0, 1].

In both cases the test ϕ∗ := 1[f1=kαf0]γα + 1[f1>kαf0] satisfies

IE0(ϕ∗) = IP0(f1 = kαf0)γα + IP0(f1 > kαf0) = α.

This proves property (i).

As to properties (ii-iv), note that for any test ϕ,

(ϕ− ϕ∗) (f1 − kαf0) ≤ 0,

because

ϕ− ϕ∗ =

{
ϕ− 1 ≤ 0 on {f1 − kαf0 > 0},
ϕ ≥ 0 on {f1 − kαf0 < 0}.
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Consequently,

0 ≥
∫

(ϕ− ϕ∗)(f1 − kαf0) dM

= IE1(ϕ)− IE1(ϕ∗)− kα
(
IE0(ϕ)− IE0(ϕ∗)

)
= IE1(ϕ)− IE1(ϕ∗)− kα

(
IE0(ϕ)− α

)
.

In other words, for any test ϕ,

(7.1) IE1(ϕ)− IE1(ϕ∗) ≤ kα
(
IE0(ϕ)− α

)
with equality if and only if

(7.2) M(f1 > kαf0 and ϕ < 1) = 0 = M(f1 < kαf0 and ϕ > 0).

If ϕ is a level-α test of {0}, then the right hand side of (7.1) is non-positive, so IE1(ϕ) ≤ IE1(ϕ∗).
This proves property (ii).

If ϕ is a level-α test of {0} with IE1(ϕ) = IE1(ϕ∗), then the right hand side of (7.1) has to be zero,
and the first half of property (iii) is just (7.2). Moreover, if kα > 0, then the right hand side of
(7.1) being zero means that IE0(ϕ) = α, which proves the second half of property (iii).

Finally, we may compare ϕ∗ with the trivial test ϕ ≡ α, so IE0(ϕ) = IE1(ϕ) = α. Then (7.1) and
(7.2) show that IE1(ϕ∗) ≥ α with equality if and only if

M(f1 6= kαf0) = 0.

That means, IP1 has density kαf0 with respect to M . But then 1 = IP1(Ω) = kα IP0(Ω) = kα, so
IP1 = IP0. This proves property (iv).

Example 7.7. Let Ω = (0,∞) and IPθ := Gamma(aθ, b) with shape parameters a1 > a0 > 0

and a common scale parameter b > 0. Then the density fθ of IPθ with respect to Lebesgue measure
on Ω equals fθ(x) = Γ(aθ)

−1b−aθxaθ−1e−x/b, so

f1

f0
(x) =

Γ(a0)ba0−a1

Γ(a1)
xa1−a0

is strictly increasing in x > 0. Hence the optimal level-α test of {0} versus {1} – in other words:
of Gamma(a0, b) versus Gamma(a1, b) – is given by

ϕ∗(x) = 1[x≥kα],

where kα is the (1− α)-quantile of Gamma(a0, b).

Exercise 7.8. Let IP0 = N (0, σ2) with σ ≤
√

2. The corresponding distribution function is
F0(x) = Φ(x/σ). Further let IP1 be the standard logistic distribution with distribution function

F1(x) =
ex

1 + ex
.
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Show that the Neyman–Pearson test of IP0 versus IP1 (i.e. of {0} versus {1}) at level α ∈ (0, 1)

is given by
ϕ∗(x) = 1[

|x|≥σΦ−1(1−α/2)
].

Hint: Show first that
log

f1(x)

f0(x)

is strictly convex and even, where f0 and f1 are the density functions of IP0 and IP1, respectively.

Exercise 7.9. Let be IP0 = N (0, 1) and IP1 = N (µ, σ2) with σ > 1.

(a) Show that the Neyman–Pearson test of IP0 versus IP1 at level α has the form

ϕ∗(x) = 1[
x/∈(µ/(1−σ2)±δ∗)

]
for some δ∗ = δ∗(µ, σ, α) > 0.

(b) Determine ϕ∗ in the special case of µ = 0.

(c) Show that the special test ϕ∗ in part (b) has the following property:∫
ϕ∗ dN (µ, σ2) ≥

∫
ϕ∗ dN (0, σ2) for arbitrary µ ∈ R.

Determine the latter power.

7.2 Monotone Density Ratios

In this section we consider a parameter space Θ ⊂ R, and we assume that each distribution IPθ

has a density fθ > 0 with respect to a measure M on (Ω,A). Moreover, we assume that there
exists a measurable function

T : Ω→ R

with the following property: For arbitrary θ1, θ2 ∈ Θ with θ1 < θ2, there exists a non-decreasing
function gθ1,θ2 : R→ (0,∞) such that

fθ2
fθ1

= gθ1,θ2(T ).

Example 7.10 (Bernoulli experiments). Motivated by Example 7.3, let Ω = {0, 1}n and Θ =

(0, 1), and let IPθ describe the joint distribution of n independent random variables with values in
{0, 1} and expectation θ. That means, with M denoting counting measure on Ω, IPθ has density

fθ(ω) =
n∏
i=1

θωi(1− θ)1−ωi = θT (ω)(1− θ)n−T (ω)

with T (ω) :=
∑n

i=1 ωi. Then for 0 < θ1 < θ2 < 1 and ω ∈ Ω,

fθ2
fθ1

(ω) =
θ
T (ω)
2 (1− θ2)n−T (ω)

θ
T (ω)
1 (1− θ1)n−T (ω)

=
(1− θ2)n

(1− θ1)n

(θ2(1− θ1)

(1− θ2)θ1

)T (ω)

= gθ1,θ2(T (ω))
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with and
gθ1,θ2(t) :=

(1− θ2)n

(1− θ1)n

(θ2(1− θ1)

(1− θ2)θ1

)t
.

Note that gθ1,θ2(t) is strictly increasing in t ∈ R, because

θ2(1− θ1)

(1− θ2)θ1
=

θ2

1− θ2

/ θ1

1− θ1
> 1.

Example 7.11 (Gaussian location family). Let Ω = Rn, Θ = R and IPθ = N (θ, σ2)⊗n for a
fixed standard deviation σ > 0. Recall that the density fθ of IPθ with respect to Lebesgue measure
on Rn is given by

fθ(x) = (2πσ2)−n/2 exp
(
− ‖x− θ‖

2

2σ2

)
= (2πσ2)−n/2 exp

(
− ‖x− x̄‖

2 + n(x̄− θ)2

2σ2

)
.

Thus for θ1 < θ2,

fθ2
fθ1

(x) = exp
(n(x̄− θ1)2 − n(x̄− θ2)2

2σ2

)
= exp

(n(θ2 − θ1)

σ2
x̄+

n(θ2
1 − θ2

2)

2σ2

)
= gθ1,θ2(T (x)),

where T (x) := x̄, and

gθ1,θ2(t) := exp
(n(θ2 − θ1)

σ2
t+

n(θ2
1 − θ2

2)

2σ2

)
is strictly increasing in t ∈ R.

Example 7.12 (Gamma families). As in Example 7.7, let Ω = (0,∞), and let Gamma(a, b) be
the gamma distribution with shape parameter a > 0 and scale parameter b > 0. Its density with
respect to Lebesgue measure on Ω equals fa,b(ω) := fa(ω/b)/b with fa(y) := Γ(a)−1ωa−1e−ω.
Hence, for parameters (a1, b1), (a2, b2) ∈ (0,∞)× (0,∞),

fa2,b2
fa1,b1

(ω) =
Γ(a1)ba11

Γ(a2)ba22

ωa2−a1 exp((1/b1 − 1/b2)ω),

which is strictly increasing in T (ω) := ω whenever a1 ≤ a2, b1 ≤ b2 and (a1, b1) 6= (a2, b2).
Consequently, our assumption is satisfied if, for instance, Θ = (0,∞) and IPθ = Gamma(θ, b)

for a given b > 0 or IPθ = Gamma(a, θ) for a given a > 0.

In statistical models with monotone density ratios as above, there exist optimal tests of null hy-
potheses of the form

Θo = Θ ∩ (−∞, θo] or Θo = Θ ∩ [θo,∞)

with arbitrary θo ∈ Θ.

Theorem 7.13 (Uniformly most powerful (UMP) right-sided tests). Let θo ∈ Θ.

(i) For any fixed α ∈ (0, 1) there exist constants kα ∈ R and γα ∈ [0, 1] such that the test

ϕ∗ := 1[T=kα]γα + 1[T>kα]
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satisfies
IEθo(ϕ∗) = α.

(ii) A test ϕ∗ as in part (i) has the following properties:

(ii.1) The power function θ 7→ IEθ(ϕ∗) is non-decreasing on Θ with values in (0, 1). In particular,

IEθ(ϕ∗) ≤ α for all θ ∈ Θ ∩ (−∞, θo].

(ii.2) For any test ϕ with IEθo(ϕ) ≤ α,

IEθ(ϕ) ≤ IEθ(ϕ∗) for all θ ∈ Θ ∩ (θo,∞).

(ii.3) For arbitrary parameters θ1 < θ2 with IPθ1 6= IPθ2 ,

IEθ1(ϕ∗) < IEθ2(ϕ∗).

Remark 7.14 (UMP left-sided tests). The previous theorem carries over with obvious modifica-
tions to null hypotheses Θo = Θ ∩ [θo,∞) for some θo ∈ Θ. Here the optimal level-α test of Θo

has the form
ϕ∗ = 1[T=kα]γα + 1[T<kα]

with suitable constants kα ∈ R and γα ∈ [0, 1].

Proof of Theorem 7.13. The existence of γα ∈ [0, 1] and kα ∈ R such that ϕ∗ := 1[T=kα]γα +

1[T>kα] satisfies IEθo(ϕ∗) = α can be verified with the same arguments as in the proof of the
Neyman–Pearson lemma: We consider the distribution function H : R→ [0, 1] with

H(r) := IPθo(T ≤ r).

Then we define
kα := min

{
r ∈ R : H(r) ≥ 1− α

}
,

so
IPθo(T > kα) ≤ α ≤ IPθo(T ≥ kα).

In case of IPθo(T = kα) = 0 we set γα = 1, otherwise

γα :=
α− IPθo(T > kα)

IPθo(T = kα)
∈ (0, 1].

Then one can easily verify that the resulting test ϕ∗ has power α at θo. This proves part (i).

As to part (ii), we start with a rather general consideration. Let h : R → R be a non-decreasing
and bounded function. Then ∫

h(T ) d IPθ

is a non-decreasing function of θ ∈ Θ. For if θ1, θ2 ∈ Θ with θ1 < θ2, then with g := gθ1,θ2 ,∫
h(T ) d IPθ2 −

∫
h(T ) d IPθ1 =

∫
h(T )g(T ) d IPθ1 −

∫
h(T ) d IPθ1

=

∫
h(T )(g(T )− 1) d IPθ1 .
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For h ≡ 1 we obtain ∫
(g(T )− 1) d IPθ1 = 0.

Since g is non-decreasing, the latter equation implies that for some to ∈ R,

g(t)

{
≤ 1 for all t < to,

≥ 1 for all t > to.

But then we may conclude that∫
h(T )(g(T )− 1) d IPθ1 =

∫
(h(T )− h(to))(g(T )− 1) d IPθ1 ≥ 0,

because the latter integrand is everywhere non-negative.

Note that ϕ∗ = h(T ) with the nondecreasing function h : R→ [0, 1], h(t) := 1[t=kα]γα+1[t>kα].
Consequently, the power function of ϕ∗ is non-decreasing on Θ. Moreover, for arbitrary θ ∈ Θ it
follows from gθo,θ > 0 that

∫
ϕ∗ d IPθ =


∫
ϕ∗ gθo,θ d IPθo > 0,

1−
∫

(1− ϕ∗) gθo,θ d IPθo < 1,

because otherwise IPθo(ϕ∗ > 0) = 0 or IPθo(ϕ∗ < 1) = 0, a contradiction to IEθo(ϕ∗) = α ∈
(0, 1). These considerations prove property (ii.1).

For arbitrary θ1, θ2 ∈ Θ with θ1 < θ2, the function g := gθ1,θ2 is non-decreasing. Hence any test
ϕ satisfies the inequality

(ϕ− ϕ∗)
(
fθ2 − g(kα)fθ1

)
= (ϕ− ϕ∗)

(
g(T )− g(kα)

)
fθ1 ≤ 0.

Consequently

0 ≥
∫

(ϕ− ϕ∗)
(
fθ2 − g(kα)fθ1

)
dM

= IEθ2(ϕ)− IEθ2(ϕ∗)− gθ1,θ2(kα)
(
IEθ1(ϕ)− IEθ1(ϕ∗)

)
,

so

(7.3) IEθ2(ϕ)− IEθ2(ϕ∗) ≤ gθ1,θ2(kα)
(
IEθ1(ϕ)− IEθ1(ϕ∗)

)
with gθ1,θ2(kα) > 0 by assumption.

In the special case of θ1 = θo, it follows from (7.3) that IEθ2(ϕ) ≤ IEθ2(ϕ∗) for arbitrary θ2 > θo

and any test ϕ satisfying IEθo(ϕ) ≤ α = IEθo(ϕ∗). This proves property (ii.2).

As to property (ii.3), (7.3) shows that for arbitrary parameters θ1 < θ2, the test ϕ∗ is an opti-
mal test of the simple null hypothesis {θ1} versus the simple alternative hypothesis {θ2} at level
IEθ1(ϕ∗) ∈ (0, 1). Thus it follows from the Neyman–Pearson lemma that IEθ2(ϕ∗) > IEθ1(ϕ∗)

unless IPθ1 = IPθ2 .
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Example 7.10 (Bernoulli experiments, cont.) Note that the distribution IPTθ of T equals the
binomial distribution Bin(n, θ). Let bn,θ and Bn,θ denote the weight and distribution function of
Bin(n, θ), respectively, i.e.

bn,θ(k) :=

(
n

k

)
θk(1− θ)n−k,

Bn,θ(x) :=
∑
k≤x

bn,θ(k)

for k, x ∈ {0, 1, . . . , n}. With the corresponding quantiles

B−1
n,p(u) := min{x : Bn,p(x) ≥ u}, u ∈ (0, 1],

for fixed θo ∈ (0, 1) and α ∈ (0, 1), the optimal level-α test of (0, θo] versus (θo, 1) is given by

ϕ∗ = 1[T=kα]γα + 1[T>kα],

where

kα = B−1
n,θo

(1− α) and γα =
Bn,θo(kα)− 1 + α

bn,θo(kα)
.

The power of this test at θ ∈ (0, 1) equals

IEθ(ϕ∗) = 1−Bn,θ(kα) + bn,θ(kα)γα.

Example 7.11 (Gaussian location family, cont.) Note that in case of X ∼ N (θ, σ2)⊗n, the
sample mean X̄ = T (X) has distribution N (θ, τ2) with τ := σ/

√
n. Hence,

IPθo(T ≥ r) = 1− Φ
(r − θo

τ

)
= Φ

(θo − r
τ

)
equals α if and only if r = θo − Φ−1(α)τ . Consequently an optimal level-α test of (−∞, θo]
versus (θo,∞) is given by

ϕ∗(x) = 1[x̄≥kα] with kα = θo − Φ−1(α)τ.

The power of this test ϕ∗ at an arbitrary parameter θ equals

IPθ(T ≥ kα) = Φ
(θ − kα

τ

)
= Φ

(
Φ−1(α) + (θ − θo)/τ

)
.

Exercise 7.15. Motivated by the Hardy–Weinberg law in genetics, consider the statistical model
(IPθ)θ∈(0,1) with

IPθ := Mult
(
n,p(θ)

)
and p(θ) :=

(
(1− θ)2, 2θ(1− θ), θ2

)
.

(a) Show that this model has monotone density ratios for a suitable test statistic T : N3
0 → N0.

(b) Determine the distribution IPTθ of this test statistic T .
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7.3 Stochastic Order, P-Values, Confidence Bounds

In practice, only non-randomized tests, i.e. tests with values in {0, 1}, are used. Nevertheless the
results in Section 7.2 show that certain non-randomized tests based on so-called p-values are essen-
tially optimal. In the present section we describe non-randomized tests, p-values and confidence
regions which are valid under a weaker condition on our statistical model (Ω,A, (IPθ)θ∈Θ).

Stochastically ordered distributions. We still assume that Θ is a subset of R. Further we
assume that there exists a measurable function T : Ω→ R such that the corresponding distribution
functions Fθ : R→ [0, 1] with

Fθ(t) := IPθ(T ≤ t)

satisfy the following conditions, which are equivalent:

(SO.1) For any fixed t ∈ R, Fθ(t) is non-increasing in θ ∈ Θ.

(SO.2) For any fixed t ∈ R, Fθ(t−) = IPθ(T < t) is non-increasing in θ ∈ R.

(SO.3) For any fixed u ∈ (0, 1), F−1
θ (u) = min{t ∈ R : Fθ(t) ≥ u} is non-decreasing in θ ∈ R.

(SO.4) For any non-decreasing function h : R→ [0,∞),
∫
h(T ) d IPθ is non-decreasing in θ ∈ R.

If (SO.1-4) are satisfied, we say that the distribution functions Fθ are stochastically ordered in the
sense that Fθ1 ≤st. Fθ2 whenever θ1 < θ2.

Exercise 7.16. Show that Conditions (SO.1-4) are equivalent.

The proof of Theorem 7.13 (ii) shows that any statistical model with monotone density ratios
satisfies condition (SO.4) and hence (SO.1-4). Note also that in Example 7.10 one may extend the
parameter space to Θ = [0, 1], and the stochastic order constraint remains valid.

Tests in terms of p-values. To test whether a hypothetical parameter θo is plausible for a partic-
ular data set ω ∈ Ω, we could compute

• the left-sided p-value

Fθo(T (ω)) = IPθo(T ≤ T (ω)),

• the right-sided p-value

1− Fθo(T (ω)−) = IPθo(T ≥ T (ω)).

The left-sided p-value is non-decreasing in T (ω), and small values indicate that T (ω) is “suspi-
ciously small” for the parameter θo. The right-sided p-value is non-increasing in T (ω) with small
values indicating that T (ω) is “suspiciously large” for θo.

These p-values lead to tests which are similar to the UMP tests in Section 7.2: Let us fix a test
level α ∈ (0, 1). On the one hand, with the right-sided critical value

k
(r)
α,θo

:= min
{
t ∈ R : Fθo(t) ≥ 1− α

}
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we can conclude that

1− Fθo(T −) ≤ α if and only if T

> k
(r)
α,θo

if Fθo(k
(r)
α,θo
−) < 1− α,

≥ k
(r)
α,θo

if Fθo(k
(r)
α,θo
−) = 1− α.

Thus by stochastic ordering,

IPθ(1− Fθo(T −) ≤ α) ≤ IPθo(1− Fθo(T −) ≤ α) ≤ α for arbitrary θ ≤ θo.

Consequently,
ϕ

(r)
α,θo

:= 1[1−Fθo (T −)≤α] = 1[Fθo (T −)≥1−α]

defines a level-α test of Θ ∩ (−∞, θo].

Similarly, with the left-sided critical value

k
(`)
α,θo

:= max
{
t ∈ R : Fθo(t−) ≤ α

}
we can conclude that

Fθo(T ) ≤ α if and only if T

< k
(`)
α,θo

if Fθo(k
(`)
α,θo

) > α,

≤ k
(`)
α,θo

if Fθo(k
(`)
α,θo

) = α,

whence by stochastic ordering,

IPθ(Fθo(T ) ≤ α) ≤ IPθo(Fθo(T ) ≤ α) ≤ α for arbitrary θ ≥ θo.

Consequently,
ϕ

(`)
α,θo

:= 1[Fθo (T )≤α]

defines a level-α test of Θ ∩ [θo,∞).

Confidence bounds. By means of the p-values just constructed, one can also construct confi-
dence regions for the parameter θ ∈ Θ:

For given test level α ∈ (0, 1) and data set ω ∈ Ω let

C(`)
α (ω) :=

{
θ ∈ Θ : Fθ(T (ω)) > α

}
.

That means, C(`)
α (ω) is the set of all parameters such that the corresponding left-sided p-value

Fθ(T (ω)) is larger than α. Since Fθ(T ) is non-increasing in θ ∈ Θ, the set C(`)
α (ω) is always an

interval Θ ∩ (−∞, bα(ω)) or Θ ∩ (−∞, bα(ω)] for some bα(ω) ∈ [−∞,∞].

Consequently, C(`)
α and bα comprise a (1−α)-confidence interval and an upper (1−α)-confidence

bound in the folling sense: For arbitrary θ ∈ Θ,

IPθ(bα ≥ θ) ≥ IPθ(C(`)
α 3 θ) ≥ 1− α.

In other words, assuming that an observed data set ω is a realization of a random variable with
distribution IPθ for some unknown true parameter θ ∈ Θ, we may claim with confidence 1 − α
that θ ∈ C(`)

α (ω) and θ ≤ bα(ω).



107

Similarly let
C(r)
α (ω) :=

{
θ ∈ Θ : Fθ(T (ω)−) < 1− α

}
,

the set of all parameters such that the corresponding right-sided p-value is larger than α. Since
Fθ(T (ω)−) is non-increasing in θ ∈ Θ, the set C(r)

α (ω) is always an interval Θ ∩ (aα(ω),∞) or
Θ ∩ [aα(ω),∞) for some aα(ω) ∈ [−∞,∞].

Consequently, C(r)
α and aα comprise a (1−α)-confidence interval and a lower (1−α)-confidence

bound in the folling sense: For arbitrary θ ∈ Θ,

IPθ(aα ≤ θ) ≥ IPθ(Cα,r 3 θ) ≥ 1− α.

That means, assuming that an observed data set ω is a realization of a random variable with dis-
tribution IPθ for some unknown true parameter θ ∈ Θ, we may claim with confidence 1 − α that
θ ∈ C(r)

α (ω) and θ ≥ aα(ω).

Example 7.10 (Bernoulli sequences, cont.) For any θo ∈ [0, 1] the left- and right-sided p-values
are given by

Bn,θo(T (ω)) and 1−Bn,θo(T (ω)− 1),

respectively. The resultung confidence intervals are

C(`)
α (ω) =

{
[0, bα(ω)) if T (ω) < n,

[0, 1] if T (ω) = n,

C(r)
α (ω) =

{
[0, 1] if T (ω) = 0,

(aα(ω), 1] if T (ω) > 0,

where bα(ω) is the unique p ∈ (0, 1) such that Bn,p(T (ω)) = α (if T (ω) < n) while aα(ω) is
the unique p ∈ (0, 1) such that Bn,p(T (ω) − 1) = 1 − α (if T (ω) > 0). Here we utilize the fact
that for any integer x ∈ {0, 1, . . . , n − 1}, the function p 7→ Bn,p(x) is continuous and strictly
decreasing with boundary values Bn,0(x) = 1 and Bn,1(x) = 0.

Example 7.17 (Gaussian location family, cont.). Since

Fθ(t) = Φ
(
(t− θ)/τ

)
,

the left- and right-sided p-values for any given parameter θo are given by

Φ
(
(x̄− θo)/τ

)
and Φ

(
(θo − x̄)/τ

)
,

respectively. The resulting confidence intervals are

C(`)
α (x) = (−∞, bα(x)) with bα(x) := x̄+ Φ−1(1− α)τ,

C(r)
α (x) = (aα(x),∞) with aα(x) := x̄− Φ−1(1− α)τ.

Exercise 7.18. Find probability distributions P0 and P1 with finite support X ⊂ R and distri-
bution functions F0 and F1, respectively, such that F0 ≤st. F1 (i.e. F0 ≥ F1) but g(x) :=

P1({x})/P0({x}) is not monotone in x ∈ X .
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Example 7.19 (Capture-recapture). The unknown sizeN of a population of animals is sometimes
estimated with a capture-recapture experiment: At first, a random sample of size n1 is drawn from
the population without replacement, and all animals in this catch are marked and then released.
After some time a second sample of size n2 is drawn without replacement, and one determines the
numberX of marked animals in this second catch. That means, X is the number of animals which
were catched twice. Ideally, X is a random variable with distribution Hyp(N,n1, n2). This leads
to the statistical experiment(

X ,P(X ),
(
Hyp(N,n1, n2)

)
N≥max(n1,n2)

)
,

where X := {0, 1, . . . ,min(n1, n2)} and

Hyp(N,n1, n2)({x}) =

(
n1

x

)(
N − n1

n2 − x

)/(N
n2

)
=

(
n2

x

)(
N − n2

n1 − x

)/(N
n1

)
for x ∈ X with the convention that

(
k
`

)
:= 0 if ` > k. Possible point estimators for N are given

by

N̂(x) :=
n1n2

x
or N̂(x) :=

(n1 + 1)(n2 + 1)

x+ 1
.

It follows from Exercise 7.20 below that the distributions Hyp(N,n1, n2) are stochastically de-
creasing in N . That means, if FN denotes the distribution function of Hyp(N,n1, n2), then

FN (x) is non-decreasing in N ≥ max(n1, n2)

for any x ∈ X , and
lim
N→∞

FN (0) = 1.

Consequently, a lower (1− α)-confidence bound for N is given by

aα(x) := min
{
N ≥ max(n1, n2) : FN (x) > α

}
while an upper bound is given by

bα(x) =

{
∞ if x = 0,

max
{
N ≥ max(n1, n2) : FN (x− 1) < 1− α

}
if x > 0.

Exercise 7.20. For integers n1, n2 ≥ 1 andN ≥ max(n1, n2), let FN be the distribution function
of the hypergeometric distribution Hyp(N,n1, n2).

(a) Show that FN (x) ≤ FN+1(x) for arbitrary x ∈ {0, 1, . . . ,min(n1, n2)}. Proposal: Think of
an urn with n1 black, N − n1 white and one red ball from which you draw n2 + 1 balls one by
one without replacement.

(b) Show that
lim
N→∞

FN (0) = 1.

Exercise 7.21. Let X be a random variable with distribution Hyp(N,n1, n2) with given param-
eters n1, n2 ∈ N and an unknown parameter N ≥ max(n1, n2). Determine IEN (N̂) for the point
estimator N̂ := (n1 + 1)(n2 + 1)/(X + 1).
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7.4 The Generalized Neyman–Pearson Lemma

Our goal is to construct optimal tests of null hypotheses Θo such that #Θo > 1. In the setting of
monotone density ratios, we solved this problem for Θo = Θ∩(−∞, θo] or Θo = Θ∩[θo,∞) with
a “least favourable parameter” θo ∈ Θ. But what about null hypotheses without such a unique least
favourable parameter? To deal with such settings, we start with a rather general consideration.

Theorem 7.22 (Generalized Neyman–Pearson lemma). Let T be the set of all statistical tests
ϕ : Ω → [0, 1]. Let M be a σ-finite measure on (Ω,A), and let f1, . . . , fm, fm+1 ∈ L1(M) for
some integer m ≥ 1. Further let α ∈ Rm and define

T (α) :=
{
ϕ ∈ T :

∫
ϕf dM = α

}
with f = (fj)

m
j=1 : Ω→ Rm.

(i) If T (α) 6= ∅, then there exists a test ϕ∗ ∈ T (α) such that∫
ϕ∗fm+1 dM ≥

∫
ϕfm+1 dM for all ϕ ∈ T (α).

(ii) Suppose that ϕ∗ is a test in T (α) such that

ϕ∗(ω) =

{
1 if fm+1(ω) > k>αf(ω)

0 if fm+1(ω) < k>αf(ω)

for a certain kα = (kα,j)
m
j=1 ∈ Rm. Then ϕ∗ has the optimality property in part (i). More

generally, ∫
ϕ∗fm+1 dM ≥

∫
ϕfm+1 dM

for arbitrary tests ϕ ∈ T such that for 1 ≤ j ≤ m,∫
ϕfj dM

{
≥ αj if kα,j < 0,

≤ αj if kα,j > 0.

(iii) Suppose that α is an interior point of the set{∫
ϕf dM : ϕ ∈ T

}
⊂ Rm.

Then there exists a test ϕ∗ as described in part (ii).

Proof of Theorem 7.22. In what follows let

Km :=
{∫

ϕf dM : ϕ ∈ T
}
⊂ Rm,

Km+1 :=
{(∫

ϕf dM,

∫
ϕfm+1 dM

)
: ϕ ∈ T

}
⊂ Rm × R.

The set Km+1 is a compact and convex subset of Rm × R. This can be verified in two different
ways:
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With F := L1(M), the set

K :=
{(∫

ϕf dM
)
f∈F

: ϕ ∈ T
}

is a compact and convex subset of RF , equipped with the product topology, see Theorem A.12 in
Appendix A. But Km+1 is the image of K under the linear and continuous mapping

RF 3 (xf )f∈F 7→
(
(xfj )

m
j=1, xfm+1

)
∈ Rm × R,

whence it is a compact and convex subset of Rm × R.

Alternatively, one can verify directly that Km+1 is a convex and bounded subset of Rm × R. But
Theorem A.14 implies that it is closed, whence it is compact.

Proof of part (i): Since Km+1 is compact and convex, its intersection with the set

{α} × R

is empty or of the form
{α} × [a, b]

with real numbers a ≤ b. In the latter case there exists a test ϕ∗ ∈ T (α) such that∫
ϕ∗fm+1 dM = b = max

ϕ∈T (α)

∫
ϕfm+1 dM.

Proof of part (ii): Let ϕ∗ ∈ T (α) have the specified special form. Then for any other test ϕ,

(ϕ∗ − ϕ)(fm+1 − k>αf) ≥ 0,

whence ∫
ϕ∗fm+1 dM −

∫
ϕfm+1 dM =

∫
(ϕ∗ − ϕ)(fm+1 − k>αf) dM

+

m∑
j=1

kα,j

(
αj −

∫
ϕfj dM

)
≥

m∑
j=1

kα,j

(
αj −

∫
ϕfj dM

)
.

The right hand side equals 0, if ϕ ∈ T (α), so ϕ∗ maximizes
∫
ϕfm+1 dM over all tests ϕ ∈

T (α). More generally, the right hand side is non-negative for all tests ϕ such that for 1 ≤ j ≤ m,∫
ϕfj dM

{
≤ αj if kα,j > 0,

≥ αj if kα,j < 0.

Proof of part (iii): Let
C := {α} × (b,∞)

with
b := max

ϕ∈T (α)

∫
ϕfm+1 dM.



111

Then Km+1 and C are disjoint convex subsets of Rm × R. Consequently they may be separated
weakly by a hyperplane. That means, there exists a nonzero vector (k, u) ∈ Rm × R such that〈

(x, y), (k, u)
〉
≤
〈
(α, z), (k, u)

〉
for arbitrary (x, y) ∈ Km+1 and z > b

with 〈·, ·〉 denoting the standard inner product on Rm × R. Thus

k>x+ uy ≤ k>α+ uz for arbitrary (x, y) ∈ Km+1 and z > b.

Fixing one point (x, y) ∈ Km+1 and letting z → ∞ shows that u ≥ 0. In case of u = 0, we
would have k 6= 0 and

k>x ≤ k>α for arbitrary x ∈ Km.

But then α would be a boundary point of Km, rather than an interior point. Consequently, u > 0,
and we may assume without loss of generality that u = 1. Consequently, for arbitrary tests ϕ ∈ T ,

k>
∫
ϕf dM +

∫
ϕfm+1 dM ≤ k>α+ b.

If ϕ∗ ∈ T (α) with
∫
ϕ∗fm+1 dM = b, then with kα := −k, we may rewrite the previous

inequality as ∫
(ϕ∗ − ϕ)(fm+1 − k>αf) dM ≥ 0

for arbitrary tests ϕ. Applying this inequality to the special test

ϕ∗∗ :=


1 if fm+1 > k

>
αf

0 if fm+1 < k
>
αf

ϕ∗ else

shows that
M(ϕ∗ 6= ϕ∗∗) = 0.

Hence we may replace ϕ∗ with ϕ∗∗.

7.5 Tests of Two-Sided Hypotheses

7.5.1 One-parameter exponential families (with natural parametrization)

In what follows we apply the generalized Neyman–Pearson lemma to a particular type of statistical
model

(
Ω,A, (IPθ)θ∈Θ

)
: Let Θ be a real interval, and suppose that for some σ-finite measure M

on (Ω,A),

fθ(ω) =
d IPθ
dM

(ω) = C(θ)h(ω) exp(θT (ω))

for given measurable functions h : Ω→ [0,∞), T : Ω→ R and the normalisation constant

C(θ) =
(∫

heθT dM
)−1

.

We also assume thatM(h > 0 and T 6= c) > 0 for any real constant c, so IPθ1 6= IPθ2 for arbitrary
different θ1, θ2 ∈ Θ.
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Example 7.10 (Bernoulli sequences, cont.) This statistical model is an exponential family with
Ω = {0, 1}n, M = counting measure on Ω, and

Θ := R,

θ(p) := log(p/(1− p)),

h(ω) := 1,

T (ω) :=

n∑
i=1

ωi,

C(θ) := (1 + eθ)−n, i.e. C(θ(p)) = (1− p)n.

Example 7.23 (Poisson distributions). The family of Poisson distributions Poiss(λ), λ > 0, is a
exponential family with Ω = N0, M = counting measure on Ω, and

Θ := R,

θ(λ) := log(λ),

h(ω) := (ω!)−1,

T (ω) := ω,

C(θ) := exp(−eθ), i.e. C(θ(λ)) = e−λ.

Example 7.11 (Gaussian location family, cont.) The family of distributions N (µ, σ2)⊗n, µ ∈
R, is an exponential family with Ω = Rn, M = Lebesgue measure on Rn, and

Θ := R,

θ(µ) := nµ/σ2,

h(x) := (2πσ2)−1/2 exp
(
−‖x‖2/(2σ2)

)
,

T (x) := x̄,

C(θ) := exp
(
−σ2θ2/(2n)

)
.

Alternatively, one could choose, for instance,

θ(µ) := µ,

T (x) := nx̄/σ2,

C(θ) := exp
(
−nθ2/(2σ2)

)
,

or

θ(µ) :=
√
nµ/σ,

T (x) :=
√
nx̄/σ,

C(θ) := exp(−θ2/2).

An advantage of the latter parametrization is that IPTθ = N (θ, 1).
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7.5.2 Two-sided hypotheses, version 1

Now we consider the problem of testing

Θo :=
{
θ ∈ Θ : θ ≤ θ1 or θ ≥ θ2

}
versus ΘA := (θ1, θ2)

with given parameters θ1, θ2 ∈ Θ such that θ1 < θ2.

Theorem 7.24. (i) For any fixed α ∈ (0, 1) there exist real constants c1 ≤ c2 and γ1, γ2 ∈ [0, 1]

(with γ2 = 0 in case of c1 = c2) such that

ϕ∗ := 1[T=c1]γ1 + 1[T=c2]γ2 + 1[c1<T<c2]

is a test satisfying
IEθ1(ϕ∗) = IEθ2(ϕ∗) = α.

(ii) A test ϕ∗ as in part (i) has the following properties:

(ii.1) For any level-α test ϕ of {θ1, θ2},

IEθ(ϕ∗) ≥ IEθ(ϕ) for all θ ∈ (θ1, θ2).

(ii.2) For arbitrary tests ϕ such that IEθ1(ϕ) = IEθ2(ϕ) = α,

IEθ(ϕ∗) ≤ IEθ(ϕ) for all θ ∈ Θo.

In particular, ϕ∗ is a level-α test of Θo, i.e.

IEθ(ϕ∗) ≤ α for all θ ∈ Θo.

For the proof of this and later theorems, we need an elementary result about weighted sums of two
exponential functions.

Lemma 7.25. For real numbers c1 ≤ c2 and d1 < d2 there exists a unique vector b ∈ R2 such
that the function A : R→ R,

A(t) :=

2∑
j=1

bje
djt

satisfies {
A(c1) = A(c2) = 1,

A′(c1) = 0 if c1 = c2.

If d1 < 0 < d2, then b1, b2 > 0 and

A

{
< 1 on (c1, c2),

> 1 on R \ [c1, c2].

If 0 < d1 < d2, then b1 > 0 > b2, whereas d1 < d2 < 0 implies that b1 < 0 < b2. In both cases,

A

{
> 1 on (c1, c2),

< 1 on R \ [c1, c2].
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Proof of Lemma 7.25. Suppose first that c1 < c2. The condition A(c1) = A(c2) = 1 is equiva-
lent to

Ab = (1, 1)>

with the matrix

A :=

[
ed1c1 ed2c1

ed1c2 ed2c2

]
.

Note that

det(A) = ed1c1+d2c2 − ed2c1+d1c2 = ed2c1+d1c2
(
e(d2−d1)(c2−c1) − 1

)
> 0.

Hence the equationAb = (1, 1)> has the unique solution

b = det(A)−1

[
ed2c2 −ed2c1
−ed1c2 ed1c1

] [
1
1

]
= det(A)−1

[
ed2c1

(
ed2(c2−c1) − 1

)
ed1c2

(
e−d1(c2−c1) − 1

)] ,
and the stated inequalities for b1, b2 are clearly satisfied.

In case of c1 = c2 = c, the equations A(c) = 1 and A′(c) = 0 are equivalent to

Ab = (1, 0)>

with the matrix

A :=

[
ed1c ed2c

d1e
d1c d2e

d2c

]
.

Again, det(A) = (d2 − d1)e(d1+d2)c > 0, so the equationAb = (1, 0)> has the unique solution

b = det(A)−1

[
d2e

d2cc −ed2c
−d1e

d1c ed1c

] [
1
0

]
= det(A)−1

[
ed2cd2

−ed1cd1

]
,

and the stated inequalities for b1, b2 are clearly satisfied.

In case of b1, b2 > 0 the function A is strictly convex, whence A < 1 on (c1, c2) and A > 1 on
R \ [c1, c2].

In case of 0 < d1 < d2 and b1 > 0 > b2,

A′(t) = b1d1e
d1t + b2d2e

d2t = |b2|d2e
d1t
( b1d1

|b2|d2
− e(d2−d1)t

) {> 0 if t < to

< 0 if t > to

for some to ∈ R. If c1 < c2, it follows from A(c1) = A(c2) = 1 that to ∈ (c1, c2), whence
{A > 1} = (c1, c2) and {A < 1} = R \ [c1, c2]. If c1 = c2, it follows from A′(c1) = 0 that
to = c1, whence {A > 1} = ∅ and {A < 1} = R \ {c1}.

Analogous considerations apply in case of d1 < d2 < 0 and b1 < 0 < b2.

Proof of Theorem 7.24. Since IPθ(h = 0) = 0 for all θ ∈ Θ, we may replace Ω with {h > 0}
and M(dω) with h(ω)M(dω), so h ≡ 1.
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Proof of part (i). We fix an arbitrary parameter θ3 ∈ (θ1, θ2) and construct an optimal level-α
test ϕ∗ of {θ1, θ2} versus {θ3} by means of the generalized Neyman–Pearson lemma. To this end
we consider the point α := (α, α)> and the set

K2 =
{∫

ϕf dM : ϕ ∈ T
}

with f := (fθ1 , fθ2)> : Ω → R2. Let ϕ0 ≡ 0, let ϕ1 be an optimal level-α test of {θ1} versus
{θ2}, and let ϕ2 be an optimal level-α test of {θ2} versus {θ1}. Then∫

ϕ0f dM = (0, 0)>,∫
ϕ1f dM = (α, α1)> for some α1 > α,∫
ϕ2f dM = (α2, α)> for some α2 > α.

This implies that α is an interior point of the set K2, see also Exercise 7.26 below. Consequently,
there exists a test ϕ∗ such that IEθ1(ϕ∗) = IEθ2(ϕ∗) = α with

ϕ∗ =

{
1 if fθ3 > k1fθ1 + k2fθ2
0 if fθ3 < k1fθ1 + k2fθ2

for certain constants k1, k2 ∈ R. With bj := kjC(θj)/C(θ3) we may also write

ϕ∗ =

{
1 if A(T ) < 1

0 if A(T ) > 1

with
A(t) := b1e

(θ1−θ3)t + b2e
(θ2−θ3)t.

Since IEθ1(ϕ∗), IEθ2(ϕ∗) < 1, we may conclude that max(b1, b2) > 0. But then the function A
is strictly monotone or strictly convex. Hence the set {A = 1} has at most two elements, and we
may replace ϕ∗ with

ϕ̄∗ :=


1 if A(T ) < 1∫
{T=c}

ϕ∗h dM
/∫
{T=c}

h dM if T = c ∈ {A = 1}

0 else

with the convention that 0/0 := 0. This does not change the power function of ϕ∗, because∫
{T=c}

ϕ∗ d IPθ = C(θ)eθc
∫
{T=c}

ϕ∗h dM = C(θ)eθc
∫
{T=c}

ϕ̄∗ dM =

∫
{T=c}

ϕ̄∗ d IPθ

for any θ ∈ Θ and c ∈ {A = 1}. Consequently, we may assume that the test ϕ∗ has the form

ϕ∗ =


1 if A(T ) < 1

0 if A(T ) > 1

γ(c) if T = c ∈ {A = 1}

with numbers γc ∈ [0, 1], c ∈ {A = 1}.
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Suppose that b1 ≤ 0 < b2 or b1 > 0 ≥ b2. In this case A(·) would be strictly monotone, so
IEθ(ϕ∗) would be strictly increasing or strictly decreasing in θ ∈ Θ, see Theorem 7.13 (ii). But
this would contradict the equation IEθ1(ϕ∗) = IEθ2(ϕ∗). Hence b1, b2 > 0, and A(·) is strictly
convex with A(t)→∞ as |t| → ∞. Consequently, our test ϕ∗ has the asserted form

ϕ∗ = 1[T=c1]γ1 + 1[T=c2]γ2 + 1[c1<T<c2]

with real numbers c1 ≤ c2 and γ1, γ2 ∈ [0, 1], where γ2 = 0 if c1 = c2.

Proof of part (ii). Let ϕ∗ be a test as in part (i). For arbitrary fixed θ ∈ Θ \ {θ1, θ2} let dθ1 :=

θ1 − θ < dθ2 := θ2 − θ. Then Lemma 7.25 shows that there exist constants bθ1, bθ2 > 0 such that

Aθ(t) := bθ1e
(θ1−θ)t + bθ2e

d(θ2−θ)t

satisfies {
Aθ(c1) = Aθ(c2) = 1,

A′θ(c1) = 0 if c1 = c2.

With kθj := bθjC(θ)/C(θj), we may write

Aθ(T ) = kθ1
fθ1
fθ

+ kθ2
fθ2
fθ

{
> 1 if fθ < kθ1fθ1 + kθ2fθ2 ,

< 1 if fθ > kθ1fθ1 + kθ2fθ2 .

Suppose first that θ1 < θ < θ2. Lemma 7.25 shows that both components bθj are strictly positive,
and

Aθ

{
> 1 on R \ [c1, c2],

< 1 on (c1, c2).

Hence

ϕ∗ =

{
1 if fθ > kθ1fθ1 + kθ2fθ2 ,

0 if fθ < kθ1fθ1 + kθ2fθ2 .

Consequently, property (ii.1) follows from part (ii) of the generalized Neyman–Pearson lemma.

In case of θ < θ1 or θ > θ2, Lemma 7.25 yields the inequalities

Aθ

{
< 1 on R \ [c1, c2],

> 1 on (c1, c2).

Hence

1− ϕ∗ =

{
1 if fθ > kθ1fθ1 + kθ2fθ2 ,

0 if fθ < kθ1fθ1 + kθ2fθ2 .

Consequently we may deduce from part (ii) of the generalized Neyman–Pearson lemma that
IEθ(ϕ) ≤ IEθ(1 − ϕ∗) for any test ϕ such that IEθ1(ϕ) = IEθ2(ϕ) = 1 − α. In other words,
IEθ(ϕ) ≥ IEθ(ϕ∗) for any test ϕ such that IEθ1(ϕ) = IEθ2(ϕ) = α. This is property (ii.2).
Considering the special test ϕ ≡ α shows that ϕ∗ is a level-α test of Θo.

Exercise 7.26. Let K ⊂ R2 be a convex set containing the three points (0, 0)>, (α, α1)> and
(α2, α)> with real numbers α > 0 and α1, α2 > α. Show that (α, α)> is an interior point of K.
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7.5.3 Two-sided hypotheses, version 2

Version 2a. At first we consider tests of

Θo := [θ1, θ2] versus ΘA := Θ \Θo

with given interior points θ1 < θ2 of Θ. This testing problem is essentially the reverse of the
testing problem in Theorem 7.24.

Theorem 7.27. (i) For any fixed α ∈ (0, 1) there exist real constants γ1, γ2 ∈ [0, 1] and c1 ≤ c2

(with γ2 = 0 in case of c1 = c2) such that

ϕ∗ := 1[T=c1]γ1 + 1[T=c2]γ2 + 1[T<c1 or T>c2]

is a test satisfying
IEθ1(ϕ∗) = IEθ2(ϕ∗) = α.

(ii) A test ϕ∗ as in part (i) has the following properties:

(ii.1)
IEθ(ϕ∗) ≤ α for all θ ∈ Θo.

(ii.2) For any test ϕ satisfying IEθ1(ϕ) = IEθ2(ϕ) = α,

IEθ(ϕ∗) ≥ IEθ(ϕ) for all θ ∈ ΘA.

Proof of Theorem 7.27. We may apply Theorem 7.24 with 1−α in place ofα to obtain an optimal
level-(1− α) test ϕ∗∗ of Θ \ (θ1, θ2) versus (θ1, θ2). Then the precise properties of ϕ∗∗ provided
by Theorem 7.24 imply that ϕ∗ := 1− ϕ∗∗ has the properties stated in Theorem 7.27.

Version 2b. Now we consider tests of

Θo := {θo} versus ΘA := Θ \Θo

for a given interior point θo of Θ. Without further constraints on the tests, there exists no globally
optimal level-α test of {θo}. For let

ϕα,l = 1[T<kα,l] + 1[T=kα,l]γα,l,

ϕα,r = 1[T>kα,r] + 1[T=kα,r]γα,r

with real constants kα,l, kα,r and γα,l, γα,r ∈ [0, 1] such that IEθo(ϕα,l) = IEθo(ϕα,r) = α. Then
by Theorem 7.13 (ii), the power functions of ϕα,l and ϕα,r are strictly decreasing and strictly
increasing, respectively, and any test ϕ with IEθo(ϕ) ≤ α satisfies

IEθ(ϕ) ≤

{
IEθ(ϕα,l) if θ ≤ θo
IEθ(ϕα,r) if θ ≥ θo

To obtain a unique optimal test we shall restrict our attention to tests ϕ such that

IEθ(ϕ) ≥ α = IEθo(ϕ),
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i.e. the power of ϕ is nowhere lower than the power of the trivial level-α test ϕ ≡ α.

Before going into further detail, let us mention an important property of power functions in the
present setting of a one-parameter exponential family: It follows from Exercise 6.25 that for any
test ϕ, the power function

Θ 3 θ 7→ IEθ(ϕ)

is continuous on Θ and continuously differentiable on the interior of Θ with derivative

d

dθ
IEθ(ϕ) =

d

dθ

∫
ϕeθTh dM∫
eθTh dM

=

∫
ϕTeθTh dM∫
eθTh dM

−
∫
ϕeθT dM

∫
TeθT dM(∫

eθT dM
)2

=

∫
ϕT d IPθ −

∫
ϕd IPθ

∫
T d IPθ

= Covθ(ϕ, T ).

Hence, if ϕ is a test such that

(7.4) IEθ(ϕ) ≥ α ≥ IEθo(ϕ) for all θ ∈ Θ \ {θo},

then

IEθo(ϕ) = α and Covθo(ϕ, T ) = 0.

Theorem 7.28. (i) For any fixed α ∈ (0, 1), there exist real constants γ1, γ2 ∈ [0, 1] and c1 ≤ c2

(with γ2 = 0 in case of c1 = c2) such that

ϕ∗ := 1[T=c1]γ1 + 1[T=c2]γ2 + 1[T<c1 or T>c2]

is a test satisfying

IEθo(ϕ∗) = α and Covθo(ϕ∗, T ) = 0.

(ii) A test ϕ∗ as in part (i) has the following property: For any test ϕ such that IEθo(ϕ) = α and
Covθo(ϕ, T ) = 0,

IEθ(ϕ∗) ≥ IEθ(ϕ) for all θ ∈ Θ.

In particular, ϕ∗ has property (7.4), and its power function is pointwise maximal among all tests
with that property.

Proof of Theorem 7.28. Without loss of generality we may assume that θo = 0 and M = IP0,
h ≡ 1, because

fθ
fθo

=
C(θ)

C(θo)
exp((θ − θo)T ) on {h > 0},

that means, C(θ)C(θo)
−1 exp((θ− θo)T ) is a density of IPθ with respect to IPθo . We may further

assume without loss of generality that IE0(T ) = 0, because

C(θ) · exp(θT ) = C(θ) exp(θ IE0(T )) · exp
(
θ(T − IE0(T ))

)
.
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Now we construct for a fixed θ1 ∈ Θ \ {0} a test ϕ∗ maximizing IEθ1(ϕ∗) under the constraints
that

IE0(ϕ∗) =

∫
ϕ∗ d IP0 = α and IE0(ϕ∗T ) =

∫
ϕ∗T d IP0 = 0.

This may be achieved with the generalized Neyman–Pearson lemma applied to f1 := 1, f2 := T ,
f3 := fθ1 and M := IP0. With the four tests ϕ := 0, ϕ := 1, ϕ := 1[T>0] and ϕ := 1[T≤0] it
follows that

K2 :=
{∫

ϕf d IP0 : ϕ ∈ T
}

with f := (f1, f2)> contains the points (0, 0)>, (1, 0)>, (β, γ)> and (1 − β,−γ)> with β =

IP0(T > 0) ∈ (0, 1) and γ =
∫
T+ d IP0 =

∫
T− d IP0 > 0. Hence (α, 0)> is an interior point of

K2. Consequently there exist a test ϕ∗ and real constants k1, k2 such that∫
ϕ∗ d IP0 = α,

∫
ϕ∗T d IP0 = 0

and

ϕ∗ =

{
1 if fθ1 > k1 + k2T,

0 if fθ1 < k1 + k2T.

Note that f1 = C(θ1)eθ1T . Since t 7→ C(θ1)eθ1t is strictly convex, and since ϕ∗ 6≡ 1, there have
to exist points c1 ≤ c2 such that C(θ1)eθ1cj = k1 + k2cj for j = 1, 2, and

ϕ∗ =

{
1 if T ∈ R \ [c1, c2],

0 if T ∈ (c1, c2).

Finally, we may replace ϕ∗ with

ϕ̄∗ :=


1 if T ∈ R \ [c1, c2]∫
{T=c}

ϕ∗ d IP0

/
IP0(T = c) if T = c ∈ {c1, c2}

0 else

with the convention that 0/0 := 0. This does not change the power function of ϕ∗, and then ϕ∗
has the properties mentioned in part (i).

As to part (ii), consider an arbitrary fixed parameter θ 6= 0. One can easily verify that there exist
real constants kθ1, kθ2 such that Aθ(t) := C(θ)eθt − kθ1 − kθ2t satisfies{

Aθ(c1) = Aθ(c2) = 0,

A′θ(c1) = 0 if c1 = c2.

By strict convexity of Aθ,

Aθ(t)

{
> 0 if t ∈ R \ [c1, c2],

< 0 if t ∈ (c1, c2),

whence

ϕ∗ =

{
1 if fθ > kθ1 + kθ2T,

0 if fθ < kθ1 + kθ2T.

Consequently, it follows from part (ii) of the generalized Neyman–Pearson lemma that IEθ(ϕ∗) ≥
IEθ(ϕ) for any test ϕ such that

∫
ϕd IP0 = α and

∫
ϕT d IP0 = 0. Taking ϕ ≡ α reveals that ϕ∗

has property (7.4) and is optimal among all tests with that property.
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Exercise 7.29. This exercise provides further details about the power function of statistical tests
in a one-parameter exponential family with natural parametrization and test statistic T : Ω→ R.

(a) Suppose that f : Ω→ R is such that

hf (θ) := IEθ(f)

is well-defined in R for all θ ∈ Θ. Show that hf is continuous on Θ and differentiable on the
interior of Θ with

h′f (θ) = IEθ(fT )− IEθ(f) IEθ(T ) = Covθ(f, T ).

Hint: Consider Exercise 6.25.

(b) Show that for interior points θ of Θ,

h′′f (θ) = Covθ(f, T
2)− 2h′f (θ) IEθ(T ).

(c) Let θ be an interior point of Θ such that h′f (θ) = 0. Show that

h′′f (θ) = IEθ
(
(T − c1)(T − c2)(f − IEθ(f))

)
for arbitrary c1, c2 ∈ R.

(d) Now consider optimal tests of two-sided hypotheses, that is

ϕ∗ := 1[T=c1]γ1 + 1[T=c2]γ2 +

{
1[c1<T<c2] (Type 1)
1[T<c1 or T>c2] (Type 2)

with c1 ≤ c2 and γ1, γ2 ∈ [0, 1]. Show that

(ϕ∗ − IEθ(ϕ∗))(T − c1)(T − c2)

{
≤ 0 (Type 1)
≥ 0 (Type 2)

with strict inequality in case of T 6∈ {c1, c2}. Deduce from this and part (c), that in case of
h′ϕ∗(θ) = 0,

h′′ϕ∗(θ)

{
< 0 (type 1)
> 0 (type 2)

unless IPTθ is concentrated on {c1, c2}.

7.5.4 Summary and some first applications

For notational convenience, we formulated and derived the previous results for one-parameter ex-
ponential fanilies with “natural parametrization”. That means, the exponential term of the density
fθ contains the product of the test statistic T with the parameter θ. In the examples we looked at in
Section 7.5.1, this necessitated a transformation of the original parameters. To get a more complete
picture, let us summarize the main results of this section in terms of the original parametrization.
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Definition 7.30 (One-parameter exponential family). A one-parameter exponential family is a
statistical experiment (

Ω,A, (IPλ)λ∈Λ

)
of the following form: The parameter space Λ is a real interval. For a σ-finite measure M on
(Ω,A) and measurable functions h : Ω → [0,∞), T : Ω → R, each distribution IPλ has density
fλ = d IPλ /dM given by

fλ(ω) = C(λ)h(ω) exp
(
θ(λ)T (ω)

)
,

where θ : Λ → R is a differentiable mapping with θ′ > 0 on Λ or θ′ < 0 on Λ. Moreover,
M(h > 0 and T 6= c) > 0 for any real constant, so IPλ1 6= IPλ2 whenever λ1 6= λ2.

The parameter θ(λ) in the previous definition is called “natural parameter”. The set Θ = θ(Λ) is
a subset of the “natural parameter space”

Θnat :=
{
θ ∈ R :

∫
heθT dM <∞

}
.

Now we consider tests ϕ∗ of one of the following types:

ϕ∗ = 1[T=c1]γ1 + 1[c1<T<c2] + 1[T=c2]γ2,(7.5)

ϕ∗ = 1[T=c1]γ1 + 1[T=c2]γ2 + 1[T<c1 or T>c2],(7.6)

where c1 ≤ c2 and γ1, γ2 ∈ [0, 1] (with γ2 = 0 if c1 = c2).

If MT is continuous in the sense that M(T = c) = 0 for any c ∈ R, it suffices to consider tests
ϕ∗ of the following type:

ϕ∗ = 1[c1≤T≤c2],(7.7)

ϕ∗ = 1[T≤c1 or T≥c2],(7.8)

where c1 < c2.

Two-sided test, version 1. For given points λ1 < λ2 in Λ, an optimal level-α test of

Λ \ (λ1, λ2) versus (λ1, λ2)

is given by (7.5) or (7.7), provided that

IEλ1(ϕ∗) = α = IEλ2(ϕ∗).

Two-sided test, version 2a. For given interior points λ1 < λ2 of Λ, an optimal level-α test of

[λ1, λ2] versus Λ \ [λ1, λ2]

with exact power α at λ1 and λ2 is given by (7.6) or (7.8), provided that

IEλ1(ϕ∗) = α = IEλ2(ϕ∗).
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Two-sided test, version 2b. For a given interior point λo of Λ, an optimal level-α test of

{λo} versus Λ \ {λo}

with power function bounded from below by α is given by (7.6) or (7.8), provided that

IEλo(ϕ∗) = α and
d

dλ

∣∣∣
λ=λo

IEλ(ϕ∗) = 0.

Example 7.11 (Gaussian location family, cont.) Suppose we observe a random vector X ∈
Rn with distribution IPµ := N (µ, σ2)⊗n for a given σ > 0 and some unknown µ ∈ R. As
shown before, the model

(
N (µ, σ2)⊗n

)
µ∈R is a one-parameter exponential familiy with natural

parameter θ(µ) = nµ/σ2 and test statistic T (X) := X̄ . For any fixed µo, an optimal level-α test
of

{µo} versus R \ {µo}

is given by

ϕ∗(X) :=

{
1 if |X̄ − µo| ≥ Φ−1(1− α/2)τ,

0 else,

where τ := σ/
√
n is the standard deviation of X̄ . This follows from the fact that ϕ∗ is of type

(7.8), and with Z := (X̄ − µ)/τ ∼ N (0, 1), the power function of ϕ∗ is given by

IEµ(ϕ∗) = IP
(
Z ≥ µo − µ

τ
+ Φ−1(1− α/2)

)
+ IP

(
Z ≤ µo − µ

τ
− Φ−1(1− α/2)

)
= 1− Φ

(µo − µ
τ

+ Φ−1(1− α/2)
)

+ Φ
(µo − µ
σ/
√
n
− Φ−1(1− α/2)

)
= Φ

(
Φ−1(α/2) +

µ− µo
τ

)
+ Φ

(
Φ−1(α/2)− µ− µo

τ

)
.

This equals α for µ = µo, and it is an even function of µ − µo, so the derivative of the power
function at µo equals 0.

Suppose we want to verify the working hypothesis that

|µ− µo| < δ

for given numbers µo ∈ R and δ > 0. This corresponds to Version 1 of a two-sided test with
boundary parameters λ1 = µo − δ and λ2 = µo + δ. By symmetry reasons, a possible ansatz for
ϕ∗ would be

ϕ∗(X) :=

{
1 if |X̄ − µo| ≤ cατ
0 else

for a suitable constant cα > 0. Indeed, this defines a test of type (7.7), and with Z as above we
may write

IEµo±δ(ϕ∗) = IP±δ
(
|X̄| ≤ cατ

)
= IP

(
| ± δ/τ + Z| ≤ cα

)
= Φ(cα ∓ δ/τ)− Φ(−cα ∓ δ/τ)

= Φ(cα + δ/τ) + Φ(cα − δ/τ)− 1.
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This is obviously a continuous and strictly increasing function of cα with value 0 for cα = 0 and
limit 1 as cα →∞. Hence there exists a unique cα(δ/τ) > 0 such that

IEµo±δ(ϕ∗) = α.

The precise value of cα(δ/τ) has to be computed numerically.

If we let δ ↓ 0, we obtain cα(0) = Φ−1((1 + α)/2). Indeed, an optimal level-α test of

R \ {µo} versus {µo}

rejects the null hypothesis if ∣∣X̄ − µo∣∣ ≤ τΦ−1((1 + α)/2).

In this case, we may claim with confidence 1−α that µ = µo. This sounds almost miraculous, but
note that the inequality |X̄ − µo| ≤ τΦ−1((1 + α)/2) occurs with probability at most α. Instead
of trying to prove that µ = µo, one should rather compute an upper (1− α)-confidence bound for
|µ− µo|, see later.

Exercise 7.31. Let X ∼ Gamma(a, b) with shape parameter a > 0 and scale parameter b > 0,
i.e. X has density fa,b with respect to Lebesgue measure on (0,∞), where

fa,b(x) = Γ(a)−1b−1(x/b)a−1e−x/b.

(a) Suppose that a > 0 is given but b > 0 is unknown. Verify that
(
Gamma(a, b)

)
b>0

corresponds
to a one-parameter exponential family with test statistic T (X) = X .

(b) Suppose that b > 0 is given but a > 0 is unknown. Verify that
(
Gamma(a, b)

)
a>0

corre-
sponds to a one-parameter exponential family with test statistic T (X) = log(X).

(c) Assuming that a > 0 is given but b > 0 is an unknown parameter in (0,∞), determine an
optimal level-α test of

{1} versus (0,∞) \ {1}.

(d) Modify your test in part (b) to become an optimal test of

{bo} versus (0,∞) \ {bo}.

for arbitrary fixed bo > 0.

Exercise 7.32. Let X ∼ Bin(n, p) with given n ∈ N and unknown p ∈ [0, 1].

(a) Fix small numbers α ∈ (0, 1) and δ ∈ (0, 0.5). Construct a statistical procedure to verify with
given confidence 1− α that |p− 0.5| < δ.

(b) How large should n be such that for a given small α′ ∈ (0, 1), this conclusion is drawn with
probability at least 1− α′ in case of p = 0.5? Give a numerical answer to this question in case of
α = 0.05, α′ = 0.3 and δ = 0.1.
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7.6 Tests and Confidence regions

For any statistical model (Ω,A, (IPθ)θ∈Θ) there is a close relationship between tests and confi-
dence regions. Let uns first clarify what we mean by confidence regions.

Definition 7.33 (Randomized confidence region). A (randomized) confidence region is a map-
ping C : Ω×Θ→ [0, 1] such that for any fixed θ ∈ Θ, the mapping C(·, θ) is A-measurable.

Suppose that for a given test level α ∈ (0, 1),∫
C(ω, θ) IPθ(dω) ≥ 1− α for arbitrary θ ∈ Θ.

Then C is called a (randomized) confidence region with confidence level 1 − α, or shortly: a
(1− α)-confidence region.

Interpretation, and the meaning of confidence. Suppose that we observe a random data set
X ∈ Ω with distribution IPθ, where θ ∈ Θ is unknown. Let U be a random variable with uniform
distribution on [0, 1] and independent from X . Then we claim that θ is contained in the set

C(X,U) :=
{
θ ∈ Θ : C(X, θ) ≥ U

}
⊂ Θ.

In case of C being non-randomized, i.e. C taking only values in {0, 1}, we don’t need the extra
random variable U , because the set C(X,U) equals

C(X) :=
{
θ ∈ Θ : C(X, θ) = 1

}
⊂ Θ

almost surely.

If C is a (1− α)-confidence region, then

IPθ
(
θ ∈ C(X)

)
IPθ
(
θ ∈ C(X,U)

)} ≥ 1− α for all θ ∈ Θ.

That means, the confidence region covers the unknown true parameter with probability at least
1 − α. This statement involves the random variable X (and U , if needed) and is true prior to
observing X (and generating U ).

Once we have observed X (and generated U , if needed), the claim that C(X) or C(X,U) contains
the unknown true parameter is simply true or false. Hence it would be ridiculous to say that “with
probability 1 − α, the confidence region C(X) or C(X,U) contains θ”. Instead, one may claim
with confidence 1 − α that θ ∈ C(X) or θ ∈ C(X,U). This formulation indicates that for a
specific observed data set, the claim is simply true or false, but we use a procedure which leads to
a correct statement in at least (1− α) · 100 percent of applications in the long run.

Duality between confidence regions and tests of one-point hypotheses. If C : Ω×Θ→ [0, 1]

is a (randomized) confidence region, then for any θo ∈ Θ, a test of {θo} is given by ϕ(·, θo) :=

1 − C(·, θo). On the other hand, if for any θo ∈ Θ we have defined a test ϕ(·, θo) of {θo}, then
C(ω, θ) := 1 − ϕ(ω, θ) defines a confidence region C. The confidence region C has confidence
level 1− α if and only if each test ϕ(·, θo) is a level-α test of {θo}.
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Example 7.34 (Simple Gaussian shift model). Suppose we observe X ∼ IPµ = N (µ, 1) for
some unknown parameter µ ∈ R. One can easily verify that for any hypothetical parameter
µo ∈ R, an optimal level-α test of {µo} with power function at least α everywhere is given by

ϕ(X,µo) := 1[
|X−µo|>Φ−1(1−α/2)

].
This leads to the (1− α)-confidence region C given by

C(X,µ) = 1[
|X−µ|≤Φ−1(1−α/2)

] = 1[
µ∈[X±Φ−1(1−α/2)]

],
i.e. C(X) = [X ± Φ−1(1− α/2)].

Exercise 7.35. As in Exercise 7.31, suppose we observe X ∼ Gamma(a, b) with given shape
parameter a > 0 and unknown scale parameter b > 0. An ansatz for a confidence interval for b is

C(X) := [X/κ2, X/κ1]

with constants 0 < κ1 < κ2.

(a) Show that for any choice of (κ1, κ2), the coverage probability IPp(p ∈ C(X)) is constant in
b > 0. Then characterize the set of all pairs (κ1, κ2) such that the confidence level is exactly equal
to 1− α.

(b) A potential measure for the size of C(X) is the ratio of its upper and lower boundary,

X/κ1

X/κ2
=

κ2

κ1
,

or the logarithm thereof. Determine the unique pair (κ1, κ2) minimizing this size. (The solution
is characterized by some equation which could be solved numerically for specific α.) Show also
that this pair satisfies κ1 < a < κ2.

(c) What is the relation of the solution in part (b) to the optimal test in Exercise 7.31 (b)?

Duality between confidence regions and tests of composite hypotheses. Sometimes we are
not interested in a confidence region for the unknown true parameter θ but only in an upper bound
for g(θ) with a given function

g : Θ→ R.

For instance, if (Θ, d) is a metric space, we are sometimes interested in the distance between the
unknown true parameter and some given point θo ∈ Θ, so g(θ) := d(θ, θo).

An upper confidence bound bα(X) for g(θ) corresponds to a measurable function bα : Ω → R
such that

IPθ(bα ≥ g(θ)) ≥ 1− α for all θ ∈ Θ.

Such a confidence bound gives rise to the level-α test

ϕα(X, δ) := 1[bα(X)<δ]
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of the null hypothesis
Θ(δ) :=

{
θ ∈ Θ : g(θ) ≥ δ

}
for arbitrary numbers δ ≥ 0. Indeed, if g(θ) ≥ δ, then

IPθ(ϕα(·, δ) = 1) = IPθ(bα < δ) ≤ IPθ(bα < g(θ)) ≤ α.

On the other hand, suppose that for any number δ ≥ 0, we have constructed a level-α test ϕα(·, δ) :

Ω→ {0, 1} of the null hypothesis Θ(δ). Then

bα(X) := sup
(
{0} ∪ {δ ≥ 0 : ϕα(X, δ) = 0}

)
defines an upper (1− α)-confidence bound for g(θ), because for any θ ∈ Θ and δ := g(θ),

IPθ(g(θ) ≤ bα) ≥ IPθ(ϕα(·, δ) = 0) = 1− IPθ(ϕα(·, δ) = 1) ≥ 1− α.

Finding an “optimal” upper confidence bound bα may be interpreted as finding optimal level-α
tests ϕα(·, δ), δ ≥ 0, of the null hypotheses Θ(δ). Ideally, the function ϕα(·, ·) is even non-
decreasing in its second argument.

Example 7.34 (Simple Gaussian shift model, cont.). As shown in the next exercise, for any
given µo ∈ R, a simple upper (1 − α)-confidence bound for |µ − µo| is given by |X − µo| +
Φ−1(1 − α). But if we think about the duality of tests and confidence regions, a good upper
(1 − α)-confidence bound bα(X) for |µ − µo| should satisfy the following condition: For any
δ ≥ 0,

ϕα(X, δ) := 1[bα(X)<δ]

defines an optimal level-α test of

R \ [µo ± δ] versus [µo ± δ].

This is essentially Version 1 of our two-sided testing problem, except that the alternative hypoth-
esis is chosen to be a closed rather than an open interval. We know already a solution for this
testing problem: An optimal level-α test is given by

ϕα(X, δ) := 1[
|X−µo|<cα(δ)

]
where cα(δ) > 0 is the unique number such that

Φ(cα(δ) + δ) + Φ(cα(δ)− δ) = 1 + α.

Recall that cα(0) = Φ−1((1 + α)/2), but for δ > 0, there is no simple formula for c(δ). An
optimal upper confidence bound for |µ− µo| is given by

bα(X) := max
(
{0} ∪

{
δ ≥ 0 : ϕα(X, δ) = 0

})
= max

(
{0} ∪

{
δ ≥ 0 : c(δ) ≤ |X − µo|

})
= max

(
{0} ∪

{
δ ≥ 0 : Φ(|X − µo|+ δ) + Φ(|X − µo| − δ) ≥ 1 + α

})
.
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Figure 7.1: Optimal (black) and ad hoc (blue) upper 95%-confidence bound for |µ| in the simple
Gaussian shift model.

If |X − µo| ≤ Φ−1((1 + α)/2), then bα(X) = 0. Otherwise, bα(X) is the unique solution δ > 0

of the equation

Φ(|X − µo|+ δ) + Φ(|X − µo| − δ) = 1 + α,

which can be computed numerically.

Figure 7.1 depicts the optimal upper 95%-confidence bound (black curve) for |µ − µo| and the
simple upper bound |X − µo|+ Φ−1(1− α) (blue broken line).

Exercise 7.36 (Simple Gaussian shift model). Let X ∼ IPµ := N (µ, 1) for some unknown
parameter µ ∈ R. A standard (1− α)-confidence interval for µ is given by [X ± Φ−1(1− α/2)].

(a) Show that for any given µo ∈ R,

Cα(X) :=
[
min(X − Φ−1(1− α), µo),max(X + Φ−1(1− α), µo)

]
is also a (1− α)-confidence interval for µ, i.e.

IPµ(µ ∈ Cα) ≥ 1− α for all µ ∈ R.

(b) Show that

bα(X) := |X − µo|+ Φ−1(1− α)

is an upper (1− α)-confidence bound for |µ− µo|, i.e.

IPµ(|µ− µo| ≤ bα) ≥ 1− α for all µ ∈ R.
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Exercise 7.37. Suppose we observe X ∼ Bin(n, p) with given n ∈ N and unknown p ∈ [0, 1].

(a) Show that for arbitrary integers 0 ≤ c1 ≤ c2 ≤ n with c2 − c1 < n,

[0, 1] 3 p 7→ log IPp(c1 ≤ X ≤ c2) ∈ [−∞, 0]

is strictly concave.

(b) Describe an optimal upper (1− α)-confidence bound bα(X) for |p− 0.5|.
Hint: Consider IPp(k ≤ X ≤ n− k) for k = 0, 1, . . . , bn/2c.

(c) Write a computer program to compute the confidence bound bα(X) in part (b).



Chapter 8

Decision Problems and Procedures,
Sufficiency and Completeness

In the present chapter we introduce some fundamental concepts and results from statistical deci-
sion theory. Estimation and testing problems may be viewed as special cases of decision problems,
while point estimators and statistical tests are corresponding decision procedures.

8.1 Decision Problems and Procedures

As in the previous chapters, we consider a statistical experiment

E =
(
Ω,A, (IPθ)θ∈Θ

)
.

If there is no doubt about the sample space (Ω,A), we just write E = (IPθ)θ∈Θ.

Decision spaces. A decision space is a measurable space (V,B) representing the possible con-
clusions we could draw about the unknown true parameter θ.

Loss functions. A loss function is a mapping

L : V×Θ→ (−∞,∞]

such that L(·, θ) is B-measurable for any fixed θ ∈ Θ. Here L(v, θ) quantifies the loss (e.g. the
costs) when drawing the conclusion v ∈ V while the true parameter equals θ ∈ Θ.

Example 8.1 (Point estimation). Consider a given mapping g : Θ → Rq. For instance, for the
statistical experiment E =

(
N (µ, σ2)⊗n

)
(µ,σ)∈R×(0,∞)

, one could think about g(µ, σ) := µ or
g(µ, σ) := σ. Our decision could be a guess v ∈ Rq for the unknown true value g(θ). A potential
loss function would be given by

L(v, θ) := ‖v − g(θ)‖r

129
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for some norm ‖ · ‖ on Rq and some exponent r > 0. In case of r ≥ 1, this loss function is a
special case of the more general loss function L given by

L(v, θ) := ψ(v − g(θ))

for some convex function ψ : Rq → [0,∞) such that ψ(v)→∞ as ‖v‖ → ∞.

Example 8.2 (Statistical tests). Suppose we have split Θ into two disjoint sets Θ0 and Θ1. The
question is whether the unknown true parameter θ belongs to Θ0 or to Θ1. Hence the two potential
decisions would be 0 and 1, respresenting the claims that θ ∈ Θ0 or θ ∈ Θ1, respectively. A
potential loss function would be the indicator of a wrong conclusion, i.e.

L(v, θ) := 1[v=1,θ∈Θ0] + 1[v=0,θ∈Θ1].

More generally, one could specify costs λj > 0 for an error of the j-th kind and set

(8.1) L(v, θ) := 1[v=1,θ∈Θ0]λ1 + 1[v=0,θ∈Θ1]λ2.

Decision problems. A triplet (E , (V,B), L), consisting of a statistical experiment, a decision
space and a loss function is called a decision problem. If there is a standard σ-field B on V, we
just write (E ,V, L).

Decision procedures. A non-randomized decision procedure is a measurable mapping ρ : Ω→
V. That means, if we observe X ∼ IPθ with unknown θ ∈ Θ, then we draw the conclusion
ρ(X) ∈ V about θ.

More generally, a decision procedure is a stochastic kernel ρ from (Ω,A) to (V,B). That means,

ρ : Ω× B → [0, 1]

is a mapping such that

for any ω ∈ Ω, ρ(ω, ·) is a probability measure on (V,B),

for any B ∈ B, ρ(·, B) is A-measurable on Ω.

Now the interpretation is that having observed X ∼ IPθ, we draw a random conclusion about θ
from the probability measure ρ(X, ·).

With slightly ambiguous notation, a non-randomized decision procedure ρ : Ω → V corresponds
to the stochastic kernel ρ(·, ·) with

ρ(ω, ·) := δρ(ω).

Risk functions. The performance of a decision procedure ρ is quantified by its risk function
R(ρ, ·) : Θ→ [−∞,∞],

R(ρ, θ) :=

∫
Ω

∫
V
L(v, θ) ρ(ω, dv) IPθ(dω).

In our explicit examples, the loss functionsL are non-negative, soR(ρ, θ) is well-defined in [0,∞].
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Example 8.1 (Point estimation, continued). A point estimator for g(θ) is a measurable mapping
ĝ : Ω→ Rq. This corresponds to the (non-randomized) decision procedure

ρ(ω, ·) := δĝ(ω).

Its risk function is given by

R(ĝ, θ) =

∫
Ω
‖ĝ − g(θ)‖r d IPθ = IEθ

(
‖ĝ − g(θ)‖r

)
or

R(ĝ, θ) =

∫
Ω
ψ(ĝ − g(θ)) d IPθ = IEθ ψ(‖ĝ − g(θ)).

Exercise 8.3 (De-randomisation for point estimation). This exercise shows that in the context of
point estimation, it is often sufficient to consider non-randomized decision procedures, i.e. simple
point estimators. Let L(v, θ) = ψ(v − g(θ)) with a convex function ψ : Rq → R such that
ψ(v) → ∞ as ‖v‖ → ∞. Show that for any decision procedure ρ, i.e. a stochastic kernel from
(Ω,A) to (Rd,Borel(Rd)), there exists a point estimator ĝ : Ω→ Rd such that

R(ĝ, θ) =

∫
Ω
L(ĝ(ω), θ) IPθ(dω)

is no larger than

R(ρ, θ) =

∫
Ω

∫
Rd
L(v, θ) ρ(ω, dv) IPθ(dω).

Example 8.2 (Statistical tests, continued). With the decision space V = {0, 1}, any decision
procedure ρ may be written as

ρ(ω, ·) = (1− ϕ(ω))δ0 + ϕ(ω)δ1

for some measurable function ϕ : Ω→ [0, 1], i.e. a test on Ω. With the power function θ 7→ IEθ(ϕ)

of ϕ and the loss function L in (8.1),

R(ϕ, θ) = 1[θ∈Θ0]λ1 IEθ(ϕ) + 1[θ∈Θ1]λ2(1− IEθ(ϕ)).

Bayes risks. Suppose that Θ itself is equipped with a σ-field C, and suppose that the loss function
L : Θ× V→ (−∞,∞] is C ⊗ B-measurable. Further suppose that θ 7→ IPθ(A) is C-measurable
for any fixed A ∈ A. Then we may view (IPθ)θ∈Θ as a stochastic kernel, too, and consider the
following Bayesian model: Let Π be a probability distribution on (Θ, C), a so-called prior (distri-
bution). One could imagine “mother nature” choosing a parameter θ ∈ Θ from that distribution Π,
and then, conditional on θ, we observe a random variable X ∼ IPθ. The Bayes risk of a decision
procedure ρ for the prior Π is defined as

R(ρ,Π) :=

∫
Θ
R(ρ, θ) Π(dθ) =

∫
Θ

∫
Ω

∫
V
L(θ, v) ρ(ω, dv) IPθ(dω) Π(dθ).
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8.2 Some Optimality Concepts and Results

Let (E , (V,B), L) be a given decision problem. Our goal is to devise decision procedures ρ with
low risks R(ρ, θ). Typically there is no “free lunch”: If ρ has very small risk R(ρ, θ1) for some
parameter θ1 ∈ Θ, it will often have rather large risk R(ρ, θ2) for some other parameter θ2 ∈ Θ.

Minimax-optimality. A decision procedure ρ∗ is called minimax-optimal, if

sup
θ∈Θ

R(ρ∗, θ) = min
ρ

sup
θ∈Θ

R(ρ, θ).

Throughout this chapter, “minρ” and “infρ” stand for the minimum and infimum, respectively,
over all decision procedures ρ.

Admissibility. A decision procedure ρ∗ is called admissible, if there exists no decision procedure
ρ satisfying

R(ρ, θ) ≤ R(ρ∗, θ) for all θ ∈ Θ

and
R(ρ, θo) < R(ρ∗, θo) for at least one θo ∈ Θ.

Bayes-optimality. For a given prior Π on Θ, a decision procedure ρ∗ is called Bayes-optimal
for this prior Π, if

R(ρ∗,Π) = min
ρ

R(ρ,Π).

Least favourable priors. A prior Π∗ is called least favourable, if

inf
ρ
R(ρ,Π∗) = max

Π
inf
ρ
R(ρ,Π),

where “maxΠ” stands for the maximum over all priors Π on Θ.

Here are three simple results establishing minimaxity, Bayes-optimality and admissibility of deci-
sion procedures.

Lemma 8.4. Let Π∗ be a prior on Θ, and let ρ∗ be a Bayes-optimal decision procedure for Π∗.
Suppose further that

R(ρ∗,Π∗) = sup
θ∈Θ

R(ρ∗, θ).

Then ρ∗ is minimax-optimal, and Π∗ is a least favourable prior.

Proof of Lemma 8.4. For any decision procedure ρ,

sup
θ∈Θ

R(ρ, θ) ≥ R(ρ,Π∗),

and by our assumptions on ρ∗,

R(ρ,Π∗) ≥ R(ρ∗,Π∗) = sup
θ∈Θ

R(ρ∗, θ).
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Hence ρ∗ is minimax-optimal.

For any prior Π on Θ,

inf
ρ
R(ρ,Π) ≤ R(ρ∗,Π) ≤ sup

θ∈Θ
R(ρ∗, θ) = R(ρ∗,Π∗) = inf

ρ
R(ρ,Π∗)

by assumption. Hence Π∗ is least favourable.

Lemma 8.5. Let ρ∗ be a decision procedure such that for a sequence (Πk)k≥1 of priors,

sup
θ∈Θ

R(ρ∗, θ) = lim
k→∞

inf
ρ
R(ρ,Πk).

Then ρ∗ is minimax-optimal.

Proof of Lemma 8.5. For any decision procedure ρo,

sup
θ∈Θ

R(ρo, θ) ≥ lim sup
k→∞

R(ρo,Πk) ≥ lim
k→∞

inf
ρ
R(ρ,Πk) = sup

θ∈Θ
R(ρ∗, θ).

Lemma 8.6. Let Θ be a topological space equipped with its Borel-σ-field. Suppose that any
decision procedure ρ has continuous, real-valued risk function. If Πo is a prior on Θ such that
Πo(U) > 0 for any non-void open set U ⊂ Θ, and if ρo is a Bayes-optimal decision procedure for
Πo with R(ρo,Πo) <∞, then ρo is admissible.

Exercise 8.7. Suppose that each distribution IPθ has a density fθ with respect to some σ-finite
measure M on (Ω,A) such that for every ω ∈ Ω, θ → fθ(ω) is continuous on Θ. Further,
suppose that the loss function L is bounded, and for any v ∈ V, let θ 7→ L(v, θ) be continuous
on Θ. Show that each decision procedure has bounded and continuous risk function. (Hint: Use
Scheffé’s theorem and dominated convergence.)

Proof of Lemma 8.6. Suppose that ρo is not admissible. That means, there exists a decision
procedure ρ such that R(ρ, ·) ≤ R(ρo, ·) and R(ρ, θo) < R(ρo, θo) for some θo ∈ Θ. Since both
risk functions R(ρ, ·) and R(ρo, ·) are continuous, there exist an open set U ⊂ Θ and an ε > 0

such that R(ρ, ·) ≤ R(ρo, ·)− ε on U . But then

R(ρ,Πo) =

∫
Θ\U

R(ρ, θ) Π(dθ) +

∫
U
R(ρ, θ) Π(dθ)

≤
∫

Θ\U
R(ρo, θ) Π(dθ) +

∫
U

(R(ρo, θ)− ε) Π(dθ)

= R(ρo,Πo)− εΠo(U)

< R(ρo,Πo),

a contradiction to Bayes-optimality of ρo.

Example 8.8 (Gaussian location model). For a given sample size n ∈ N and a given standard
deviation σ > 0, let E =

(
N (µ, σ2)⊗n

)
µ∈R. The sample mean µ̂∗(x) := x̄ is a minimax-optimal

point estimator of g(µ) = µ, if
L(v, µ) := (v − µ)2.
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To see this, note first that R(µ̂∗, ·) ≡ σ2/n. By Exercise 8.3, it suffices to consider non-rand-
omized point estimators. Moreover, if Πk = N (0, k), we know from Example 6.20 that the
Bayes-optimal estimator is given by µ̂k(x) = nx̄/(n + σ2/k) with Bayes-risk R(µ̂k,Πk) =

σ2/(n + σ2/k). Since this converges to σ2/n as k → ∞, Lemma 8.5 shows that µ̂∗ is minimax-
optimal.

Exercise 8.9 (Point estimation of a binomial parameter). For p ∈ [0, 1] let IPp := Bin(n, p). We
consider point estimators of p with loss function L : [0, 1]× [0, 1]→ [0,∞) given by

L(v, p) := (v − p)2.

(a) Consider the Bayesian model with a random parameter p ∼ Beta(a, b) with given “hyper-
parameters” a, b > 0, and a random observation X with L(X | p) = IPp. Here Beta(a, b) is the
distribution on (0, 1) with Lebesgue density

βa,b(p) =
pa−1(1− p)b−1

B(a, b)
, B(a, b) :=

∫ 1

0
ua−1(1− u)b−1 du =

Γ(a)Γ(b)

Γ(a+ b)
.

Show that

L(p |X) = Beta(a+X, b+ n−X) and IE(p |X) =
a+X

a+ b+ n
.

(b) Adapt arguments from previous chapters to show that the estimator

p̂a,b(x) :=
a+ x

a+ b+ n

minimizes the Bayes risk

R(p̂,Beta(a, b)) :=

∫ 1

0
R(p̂, p) Beta(a, b)(dp).

(c) Determine the risk function R(p̂a,b, ·) of the estimator p̂a,b in part (b) explicitly.

(d) Now find parameters a, b such that the risk function in part (c) is constant. What are the
consequences for the corresponding prior Beta(a, b) and the corresponding estimator p̂a,b?

Unbiasedness. Sometimes it is difficult to find decision procedures satisfying some optimal-
ity criterion. But often the problem gets easier if we impose some additional constraints which
are quite natural by themselves. Here is one such constraint: A decision procedure ρ is called
unbiased, if for arbitrary θ, η ∈ Θ,

(8.2) R(ρ, θ) =

∫
Ω

∫
V
L(v, θ) ρ(ω, dv) IPθ(dω) ≤

∫
Ω

∫
V
L(v, η) ρ(ω, dv) IPθ(dω).

Example 8.1 (Point estimation, continued). Let L(v, θ) := ‖v − g(θ)‖2 with some Euclidean
norm ‖ · ‖ on Rq, that is, ‖x‖ =

√
x>Ax for some symmetric, positive definite matrix A ∈ Rq×q.
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For any estimator ĝ : Ω → Rq, the risk R(ĝ, θ) = IEθ
(
‖ĝ − g(θ)‖2

)
is finite if, and only if,

IEθ
(
‖ĝ‖2

)
<∞. In the latter case,

IEθ
(
‖ĝ − g(η)‖2

)
= IEθ

(
‖ĝ − IEθ(ĝ)‖2

)
+
∥∥IEθ(ĝ)− g(η)

∥∥2
,

IEθ
(
‖ĝ − g(θ)‖2

)
= IEθ

(
‖ĝ − IEθ(ĝ)‖2

)
+
∥∥IEθ(ĝ)− g(θ)

∥∥2
,

so ĝ is unbiased if an only if for all θ ∈ Θ,∥∥IEθ(ĝ)− g(θ)
∥∥ = min

η∈Θ

∥∥IEθ(ĝ)− g(η)
∥∥.

Consequently, if ĝ is an estimator such that

IEθ
(
‖ĝ‖2

)
< ∞ and IEθ(ĝ) ∈ closure{g(η) : η ∈ Θ}

for all θ ∈ Θ, then ĝ is unbiased if, and only if,

IEθ(ĝ) = g(θ) for all θ ∈ Θ.

Example 8.2 (Statistical tests, continued). We consider the general loss function L(v, θ) =

1[v=1,θ∈Θ0]λ1 + 1[v=0,θ∈Θ1]λ2 with λ1, λ2 > 0. Then∫
Ω

∫
V
L(v, η) ρ(ω, dv) IPθ(dω) ≥ R(ϕ, θ) for arbitrary θ, η ∈ Θ

is easily shown to be equivalent to{
λ2(1− IEθ0(ϕ)) ≥ λ1 IEθ0(ϕ) for any θ0 ∈ Θ0,

λ1 IEθ1(ϕ) ≥ λ2(1− IEθ1(ϕ)) for any θ1 ∈ Θ1.

In other words,

IEθ(ϕ)

{
≤ α for θ ∈ Θ0

≥ α for θ ∈ Θ1

with
α :=

λ2

λ1 + λ2
∈ (0, 1).

Coming from the other end, for a given test level α ∈ (0, 1), a level-α test of Θo with power at
least α for each θ ∈ ΘA is unbiased in the sense of (8.2) if, say, λ1 = 1− α and λ2 = α.

Exercise 8.10 (Estimating functions of a binomial parameter). Unbiasedness of point estimators
seems often a natural constraint. But it is potentially too restrictive. Consider the statistical exper-
iment

(
Bin(n, p)

)
p∈[0,1]

and an arbitrary function g : [0, 1]→ R.

(a) Suppose that ĝ : {0, 1, . . . , n} → R is an unbiased estimator of g(p), i.e. IEp(ĝ) = g(p) for
all p ∈ [0, 1]. Show that g(p) is a polynomial in p of order at most n.

(b) Show that an unbiased estimator ĝ as in part (a) is unique.

(c) Determine the estimator ĝ explicitly in case of g(p) = pk for some k ∈ {1, . . . , n}. Hint:
Consider factorials [x]k :=

∏
0≤i<k(x− i).
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8.3 Informativity and Sufficiency

This section is about the comparison of two statistical experiments with one and the same param-
eter space Θ.

8.3.1 Informativity

Let E = (Ω,A, (IPθ)θ∈Θ) and Ẽ = (Ω̃, Ã, (ĨPθ)θ∈Θ) be statistical experiments. Experiment Ẽ is
called at least as informative as experiment E , if the following condition is satisfied: Let (V,B)

be an arbitrary decision space and L : V × Θ → (−∞,∞] be any loss function. Then for any
decision procedure ρ : Ω× B → [0, 1], there exists a decision procedure ρ̃ : Ω̃× B → [0, 1] such
that

R(ρ̃, ·) ≤ R(ρ, ·) on Θ.

This looks like a very strong condition, because it involves arbitrary decision spaces and loss
functions. Nevertheless there is an elegant criterion due to David Blackwell:

Lemma 8.11 (Blackwell’s criterion). Let E = (Ω,A, (IPθ)θ∈Θ) and Ẽ = (Ω̃, Ã, (ĨPθ)θ∈Θ) be
statistical experiments. Suppose there exists a stochastic kernel K from (Ω̃, Ã) to (Ω,A) such
that for any θ ∈ Θ and A ∈ A,

IPθ(A) = ĨPθ ⊗K(Ω̃×A) =

∫
Ω̃
K(ω̃, A) ĨPθ(dω̃).

Then Ẽ is at least as informative as E .

The intuition behind Blackwell’s criterion is as follows: Suppose that Bob and Alice are planning
statistical experiments E and Ẽ , respectively, to do inference about an unknown parameter in Θ.
Alice: “My experiment is at least as good as yours!” Bob: “How do you know?”
Alice: “Well, tell me any decision space and loss function.” Bob: “(V,B) and L.”
Alice: “Okay, and what is vour favourite decision procedure for that?” Bob: “ρ”
Alice: “All right, this is what I will do: If my experiments yields data X̃ ∼ ĨPθ, where θ ∈ Θ is
unknown, I will use Mr. Blackwell’s kernel K to generate new data X ∼ K(X̃, ·). And then, I’ll
use your ρ to draw a decision V ∼ ρ(X, ·)!” Bob: “That’s cheap!”

Proof of Lemma 8.11. The assumption implies that for any measurable function h : (Ω,A) →
[0,∞], ∫

Ω
h d IPθ =

∫
Ω̃

∫
Ω
h(ω)K(ω̃, dω) ĨPθ(dω̃).

By assumption, this is true for indicator functions h = 1A withA ∈ A. By linearity of integration,
this is true for measurable functions taking only finitely many different values in [0,∞). By mono-
tone convergence, the asserted equation is true for arbitrary measurable functions h : (Ω,A) →
[0,∞].
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For a given decision space (V,B) and decision procedure ρ : Ω×B → [0, 1] we define a decision
procedure ρ̃ : Ω̃× B → [0, 1] as follows: For B ∈ B we set

ρ̃(ω̃, B) :=

∫
Ω
ρ(ω,B)K(ω̃, dω).

This construction of ρ̃ implies that for any measurable function h : (V,B)→ [0,∞] and ω̃ ∈ Ω̃,∫
V
h(v) ρ̃(ω̃, dv) =

∫
Ω

∫
V
h(v) ρ(ω, dv)K(ω̃, dω).

Hence for loss functions L : V×Θ→ [0,∞] and any θ ∈ Θ,

R(ρ̃, θ) =

∫
Ω̃

∫
V
L(v, θ) ρ̃(ω̃, dv) ĨPθ(dω̃)

=

∫
Ω̃

∫
Ω

∫
V
L(v, θ) ρ(ω, dv)K(ω̃, dω) ĨPθ(dω̃)

=

∫
Ω

∫
V
L(v, θ) ρ(ω, dv) IPθ(dω)

= R(ρ, θ).

The same equation is true for loss functions L with values in (−∞,∞], provided that R(ρ′, θ) or
R(ρ, θ) is well-defined in (−∞,∞]. Just write L = L+ − L− with L± := max(±L, 0).

Example 8.12 (Sampling with and without replacement). LetM be a population of known size
N = #M, but with unknown characteristics θ ∈ Θ, the latter describing certain properties of
the individuals inM. Suppose we draw a random sample of size n ≥ 2 fromM with replace-
ment. That means, we obtain a sample ω = (ω1, . . . , ωn) in the set Ω := Mn with Nn different
elements. Here the corresponding distributions IPθ, θ ∈ Θ, are all identical: the uniform distribu-
tion on Ω. The subscript θ just indicates that the potential samples may differ in terms of certain
characteristics of the individuals.

In case of N ≥ n, sampling without replacement would be an alternative strategy, leading to the
experiment Ẽ = (Ω̃,P(Ω̃), (ĨPθ)θ∈Θ) with ĨPθ denoting the uniform distribution on

Ω̃ :=
{
ω̃ ∈ Ω : ω̃i 6= ω̃j for 1 ≤ i < j ≤ n

}
,

a set of [N ]n = N(N − 1) · · · (N − n+ 1) different samples. Indeed the experiment Ẽ is at least
as informative as E = (Ω,P(Ω), (IPθ)θ∈Θ). For if we draw a sample ω̃ ∈ Ω̃ from the uniform
distribution on Ω̃, we may generate a new sample ω ∈ Ω as follows: We choose ω1 := ω̃1 and
independent random points ω2, . . . , ωn with distribution

ωj ∼
j−1∑
i=1

1

N
δω̃i +

N − j + 1

N
δω̃j .

In other words, we go through the “list” ω̃, and each component ω̃j is kept with probability 1 −
(j − 1)/N or replaced with a randomly chosen predecessor ω̃i, i < j. This defines a probability
distribution K(ω̃, ·) on Ω such that the resulting ω is uniformly distributed on Ω.
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Exercise 8.13 (From sampling without to sampling with replacement). Show that the construction
of ω from ω̃ in Example 8.12 corresponds to a stochastic kernel K from Ω̃ to Ω such that

K
(
ω̃, {ω̃1, . . . , ω̃n}n

)
= 1

and for any y ∈Mn,
1

[N ]n

∑
ω̃∈Ω̃

K(ω̃, {y}) =
1

Nn
.

Exercise 8.14 (Estimating the reciprocal of a population size). At first glance one could think that
sampling from a population M without replacement is always more informative than sampling
with replacement. But this is not true in general. For instance, suppose that the size N of the
populationM is unknown. Then drawing a random sample of size n ≤ N without replacement
from that population reveals nothing about the population size N , but sampling with replacement
yields some information:

For a given integer n ≥ 2, let IPM be the uniform distribution on Mn. We are interested in
constructing an unbiased estimator of g(M) := 1/N .

(a) Determine the expectation of Xi where

Xi(ω) :=
1[ωi∈{ωj :j 6=i}]

#{ω1, ω2, . . . , ωn}
, for ω ∈Mn.

for all ω ∈Mn and i ∈ {1, 2, . . . , n}.

(b) Propose an unbiased estimator of g(M).

(c) For 1 ≤ i < j ≤ n, let Xij(ω) := 1[ωi=ωj ]. Determine the expectation of Xij and propose an
unbiased estimator of g(M).

(d) Determine the standard deviation of your estimator in part (c).

8.3.2 Sufficiency

The concept of sufficiency is a special instance of Blackwell’s criterion. We consider a statistical
experiment E = (Ω,A, (IPθ)θ∈Θ). Now we want to know whether it is sufficient to restrict one’s
attention to partial information about the experiment’s outcome. Partial information could mean
that we want to replace an observationX ∼ IPθ with a given function T (X), or we want to restrict
our attention to events Ao in a sub-σ-field Ao of A.

Definition 8.15 (Sufficient statistic). A measurable mapping T : (Ω,A) → (Ω̃, Ã) is called a
sufficient statistic for E , if there exists a stochastic kernel K from (Ω̃, Ã) to (Ω,A) describing the
conditional distribution of X ∼ IPθ, given T (X), for any θ ∈ Θ. In other words, for arbitrary
θ ∈ Θ, A ∈ A and Ã ∈ Ã,

IPθ({T ∈ Ã} ∩A) =

∫
Ã
K(t, A) IPTθ (dt).

Sufficiency of T implies that the experiment ET := (Ω̃, Ã, (IPTθ )θ∈Θ) is at least as informative as
E . In other words, one may reduce raw data X ∼ IPθ to T (X) without any loss of information.
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Indeed, having reducedX to T (X), one could generate an artificial observation X̃ ∼ K(T (X), ·),
and X̃ ∼ IPθ, too, no matter what value the unknown parameter θ ∈ Θ has. Sufficiency can often
be verified with the following criterion:

Theorem 8.16 (Neyman’s factorization criterion). Suppose that (Ω, d) is a separable and com-
plete metric space, and let A = Borel(Ω, d). Further let M be a σ-finite measure on (Ω,A)

such that each distribution IPθ has a density fθ with respect to M . Suppose that there exists a
measurable function h : (Ω,A)→ [0,∞) such that for any θ ∈ Θ and ω ∈ Ω,

fθ(ω) = gθ(T (ω))h(ω)

with gθ : (Ω̃, Ã)→ [0,∞) measurable. Then T is a sufficient statistic for E .

Corollary 8.17. Let Ω and Ω̃ be countable sets equipped with A = P(Ω) and Ã = P(Ω̃).
Suppose that there exists a function h : Ω→ [0,∞) such that for any θ ∈ Θ and ω ∈ Ω,

IPθ({ω}) = gθ(T (ω))h(ω)

with gθ : Ω̃→ [0,∞). Then T is a sufficient statistic for E .

For readers feeling uneasy about measure theory it may be instructive to prove the latter corollary
directly. It is a consequence of Theorem 8.16 if we use the metric d(ω̃, ω̃′) := 1[ω̃ 6=ω̃′] on Ω and
the counting measure M on Ω, that is, M({ω}) = 1 for all ω ∈ Ω.

Proof of Theorem 8.16. A measure M on (Ω,A) is σ-finite if, and only if, there exists a measur-
able function J : (Ω,A)→ (0,∞) such that

∫
J dM = 1. But then we could replace M with the

measure J ·M , i.e.A 7→
∫
A J dM , and h with h/J . Hence we may and do assume without loss of

generality that M is a probability measure. By our assumption on (Ω,A) there exists a stochastic
kernel Ko from (Ω̃, Ã) to (Ω,A) such that for arbitrary Ã ∈ Ã and A ∈ A,

M({T ∈ Ã} ∩A) =

∫
Ã
Ko(t, A)MT (dt),

see Chapter 4. More generally, for arbitrary measurable and non-negative functions f on (Ω̃ ×
Ω, Ã ⊗ A), ∫

Ω
f(T (ω), ω)M(dω) =

∫
Ω̃

∫
Ω
f(t, ω)Ko(t, dω)MT (dt).

This implies that for arbitrary θ ∈ Θ, Ã ∈ Ã and A ∈ A,

IPθ({T ∈ Ã} ∩A) =

∫
Ω

1Ã(T (ω))1A(ω)gθ(T (ω))h(ω)M(dω)

=

∫
Ω̃

∫
Ω

1Ã(t)gθ(t)1A(ω)h(ω)Ko(t, dω)MT (dt)

=

∫
Ã
gθ(t)

∫
A
h(ω)Ko(t, dω)MT (dt).

Taking A = Ω shows that the density of IPTθ with respect to MT is given by

fTθ (t) := gθ(t)H(t) with H(t) :=

∫
Ω
h(ω)Ko(t, dω).
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In particular, the set N := {t ∈ Ω̃ : H(t) = 0 or H(t) =∞} satisfies IPTθ (N) = 0 for any θ ∈ Θ,
because {H = 0} ⊂ {fTθ = 0} and {H =∞} ⊂ {fTθ = 0}∪{fTθ =∞}, and both IPTθ (fTθ = 0)

and IPTθ (fTθ =∞) are equal to zero. Hence

K(t, A) :=

H(t)−1

∫
A
h(ω)Ko(t, dω) if 0 < H(t) <∞

M(A) else

defines a stochastic kernel K from (Ω̃, Ã) to (Ω,A) such that

IPθ({T ∈ Ã} ∩A) =

∫
Ã
fTθ (t)K(t, A)MT (dt) =

∫
Ã
K(t, A) IPTθ (dt)

for arbitrary θ ∈ Θ, Ã ∈ Ã and A ∈ A.

Example 8.18 (Bernoulli sequences). LetX1, X2, . . . , Xn be independent, identically distributed
random variables with values in {0, 1} and unknown parameter p = IP(Xi = 1) = IE(Xi) ∈
[0, 1]. This leads to the statistical experiment E =

(
{0, 1}n,P({0, 1}n), (IPp)p∈[0,1]

)
with IPp :=

((1− p)δ0 + pδ1)⊗n. The density fp of IPp with respect to counting measure on {0, 1}n is given
by

fp(ω) =
n∏
i=1

pωi(1− p)1−ωi = pT (ω)(1− p)n−T (ω),

i.e. a function of T (ω) :=
∑

i=1 ωi only. Hence T is a sufficient statistic for E . Indeed, T has
distribution Bin(n, p), and for any t ∈ {0, 1, . . . , n}, the conditional distribution IPp(· |T = t) is
the uniform distribution on the set of all ω ∈ {0, 1}n with T (ω) = t.

Example 8.19 (Gaussian samples). Let X1, X2, . . . , Xn be independent, identically distributed
random variables with distribution N (µ, σ2), the mean µ ∈ R and the standard deviation σ > 0

being unknown. This leads to the statistical experiment E =
(
Rn,Borel(Rn), (IPθ)θ∈Θ) with

Θ = R × (0,∞) and IPµ,σ := N (µ, σ2)⊗n. Setting Xi(ω) := ωi, the density fµ,σ of IPµ,σ with
repect to Lebesgue measure on Rn times (2π)−n/2 is given by

fµ,σ(x) = exp
(
−

n∑
i=1

(xi − µ)2

2σ2
− n log σ

)
= exp

(
−

n∑
i=1

(xi − x̄)2

2σ2
− n(x̄− µ)2

2σ2
− n log σ

)
= gµ,σ(T (x)),

where T (x) = (T1(x), T2(x)) and

T1(x) := x̄ = n−1
n∑
i=1

xi,

T2(x) :=

n∑
i=1

(xi − x̄)2,

gµ,σ(t1, t2) := exp
(
−n(t1 − µ)2

2σ2
− t2

2σ2
− n log σ

)
.
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Hence the statistic T = (T1, T2) : Rn → R× [0,∞) is sufficient for the experiment E .

It is worthwhile here to verify sufficiency directly, based on standard arguments in connection with
student’s t distribution: Let b1, b2, . . . , bn be an orthonormal basis of Rn, where b1 = n−1/21n.
Then the distribution IPµ,σ coincides with the distribution of

X̃ := µ1n + σ
n∑
i=1

Zibi

with stochastically independent random variables Z1, . . . , Zn ∼ N (0, 1). The statistic T (X̃) is
equal to (

µ+ n−1/2σZ1, σ
2

n∑
i=2

Z2
i

)
,

and we may write

X̃ = T1(X̃)1n +

√
T2(X̃)

n∑
i=2

Wibi

with

Wi :=
( n∑
j=2

Z2
j

)−1/2
Zi.

The random vector W := (Wi)
n
i=2 is uniformly distributed on the unit sphere in Rn−1 and

stochastically independent from
∑n

i=2 Z
2
i . Hence the conditional distribution of X̃ , given T̃ ,

does not depend on the parameter (µ, σ).

Exercise 8.20 (Gamma distributions). Let X = (Xi)
n
i=1 have n ≥ 2 independent components

with

Xi ∼ Gamma(a, b)

and unknown parameters a, b > 0.

(a) Determine an R2-valued sufficient statistic T (X) for the corresponding statistical experiment(
Gamma(a, b)

)
a,b>0

.

(b) Determine the conditional distribution ofX given T (X) in case of n = 2.

Exercise 8.21 (Markov chains with finite state space). LetX = (Xt)
n
t=0 be a Markov chain with

values in a finite set X and fixed starting point X0 = x0 ∈ X . That means, for 1 ≤ k < n and
y0, . . . , yn, z ∈ X

IPθ
(
Xk+1 = z

∣∣(Xt)
k
t=0 = (yt)

k
t=0

)
= θyk,z

with an unknown “matrix” θ ∈ [0, 1]X×X such that∑
z∈X

θy,z = 1 for all y ∈ X .

Let Θ be the set of all such “matrices” θ. Determine a sufficient statistic for the statistical experi-
ment

(
Ω,P(Ω), (IPθ)θ∈Θ

)
, where Ω = {y ∈ X {0,1,...,n} : y0 = x0}.



142

Exercise 8.22. LetM be a population of individuals with identification numbers in Z. We assume
that the set of all identification numbers equals {a, . . . , b} with unknown integers a ≤ b. We only
know that b− a > n for some given integer n ≥ 2.

Now we draw a random sample of size n without replacement fromM and note the tuple ω =

(ω1, ω2, . . . , ωn) of identification numbers.

Show that T (ω) =
(
min(ω),max(ω)

)
is a sufficient statistic for this experiment. Describe the

conditional distribution of ω given T (ω) = (s1, s2).

Hint: The formal definition of the experiment is

Ω = {ω ∈ Zn : ωi 6= ωj whenever i 6= j},

IPa,b = Unif
(
Ω ∩ {a, . . . , b}n

)
,

Θ =
{

(a, b) ∈ Zn : b− a > n
}
.

Definition 8.23 (Sufficient sub-σ-fields). Let Ao be a σ-field over Ω such that Ao ⊂ A. It is
called a sufficient sub-σ-field for E , if there exists a stochastic kernel K from (Ω,Ao) to (Ω,A)

describing the conditional distribution of X ∼ IPθ, given Ao, for any θ ∈ Θ. In other words, for
arbitrary θ ∈ Θ, A ∈ A and Ao ∈ Ao,

IPθ(Ao ∩A) =

∫
Ao

K(ω,A) IPθ(dω).

Note that sufficiency of Ao is equivalent to sufficiency of the statistic

T : (Ω,A) → (Ω,Ao), T (ω) := ω.

Sufficiency of Ao implies that the experiment Eo := (Ω,Ao, (IPθ)θ∈Θ) is at least as informative
as E . In other words, when analyzing raw data X ∼ IPθ, we may restrict our attention to decision
procedures which are Ao-measureable rather than A-measurable.

Example 8.24 (Invariant distributions). Let G be a finite group of measurable bijective mappings
g : (Ω,A) → (Ω,A). That means, for arbitrary g, h ∈ G, both h ◦ g and g−1 belong to G, too.
Now let AG be the set of G-invariant sets A ∈ A, i.e.

g(A) = {g(ω) : ω ∈ A} = A for all g ∈ G.

This is obviously a sub-σ-field of A.

Now suppose that all distributions IPθ, θ ∈ Θ, are G-invariant in the sense that

IPgθ = IPθ for all g ∈ G,

where IPgθ is the image measure IPθ ◦g−1. Then AG is sufficient for E , and the conditional distri-
bution IPθ(· | Ao) is given by the stochastic kernel

K(ω,A) :=
1

#G
∑
g∈G

1A(g(ω))
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i.e.
K(ω, ·) =

1

#G
∑
g∈G

δg(ω).

Hence the experiment EG :=
(
Ω,AG , (IPθ)θ∈Θ

)
is at least as informative as E .

Proof: Obviously, K(ω, ·) is a probability measure on (Ω,A) for any ω ∈ Ω. For fixed A ∈ A,
the function ω → K(ω,A) is certainly A-measurable. To verify AG-measurability it suffices to
show that K(h(ω), A) = K(ω,A) for arbitrary ω ∈ Ω and h ∈ G, see Exercise 8.25 below. But

K(h(ω), A) =
1

#G
∑
g∈G

1A(g ◦ h(ω)) =
1

#G
∑
g̃∈G

1A(g̃(ω)),

because for any fixed h ∈ G, the mapping G 37→ g ◦ h ∈ G is bijective, see Exercise 5.1. It
remains to be shown that for arbitrary θ ∈ Θ, Ao ∈ AG and A ∈ A,

IPθ(Ao ∩A) =

∫
Ao

K(ω,A) IPθ(dω).

But the right hand side equals

1

#G
∑
g∈G

∫
Ao

1A(g(ω)) IPθ(dω),

and each summand equals∫
Ao

1A(g(ω)) IPθ(dω) = IPθ(Ao ∩ g−1(A))

= IPθ(g
−1(g(Ao) ∩A))

= IPθ(g
−1(Ao ∩A)) (by G-invariance of Ao)

= IPgθ(Ao ∩A)

= IPθ(Ao ∩A) (by G-invariance of IPθ).

Exercise 8.25. In the setting of Example 8.24, let (V,B) be another measurable space, and let
ρ : (Ω,A)→ (V,B) be a measurable mapping.

(a) Suppose that ρ is G-invariant in the sense that ρ ◦ g ≡ ρ for arbitrary g ∈ G. Show that ρ is
AG-B-measurable.

(a) Suppose that ρ isAG measurable, and suppose that B “seqarates points in V”. That means, for
arbitrary different points v1, v2 ∈ V there exists a set B ∈ B such that v1 ∈ B but v2 6∈ B. Show
that ρ is G-invariant.

Example 8.26 (Permutation-invariance). For some integer n ≥ 2 let (Ω,A) = (X n,B⊗n).
Further let Sn be the group of all permutations of {1, . . . , n}, that means, bijective mappings
π : {1, . . . , n} → {1, . . . , n}. Any π ∈ Sn induces a measurable bijection gπ : Ω→ Ω,

ω = (ωi)
n
i=1 7→ gπ(ω) := (ωπ(i))

n
i=1.

Indeed one can easily show that for permutations π, σ ∈ Sn,

gπ ◦ gσ = gσ◦π.
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(Note also that π ∈ Sn is uniquely determined by the mapping gπ, unless #X = 1.) Thus
G := {gπ : π ∈ Sn} is a group of measurable bijections of (Ω,A).

A distribution IP on (Ω,A) is called permutation-invariant or exchangeable if it is G-invariant. In
other words, ifX = (Xi)

n
i=1 has distribution IP, then for any π ∈ Sn, the random tuple (Xπ(i))

n
i=1

has distribution IP, too.

If E =
(
Ω,A, (IPθ)θ∈Θ

)
consists of permutation-invariant distributions, then the sub-σ-field AG

of all permutation-invariant sets is sufficient for E . The corresponding stochastic kernel K from
(Ω,AG) to (Ω,A) is given by

K(ω, ·) =
1

n!

∑
π∈Sn

δgπ(ω).

Example 8.27 (Sign invariance). For some integer n ≥ 1 let Ω = Rn. Any sign vector ξ ∈
{−1, 1}n induces a measurable bijection gξ : Rn → Rn,

ω = (ωi)
n
i=1 7→ gξ(ω) := (ξiωi)

n
i=1.

Note that {−1, 1}n with component-wise multiplication is an Abelian group. The corresponding
family G :=

{
gξ, ξ ∈ {−1, 1}

}
is an Abelian group, too. Indeed, for arbitrary ξ, ζ ∈ {−1, 1}n,

gξ ◦ gζ = gγ with γ = (ξiζi)
n
i=1.

A distribution IP on Rn is called sign-invariant, if it is G-invariant. In other words, ifX = (Xi)
n
i=1

has distribution IP, then for any sign vector ξ ∈ {−1, 1}n, the random vector (ξiXi)
n
i=1 has

distribution IP, too.

If E =
(
Rn,Borel(Rn), (IPθ)θ∈Θ

)
consists of sign-invariant distributions, then the sub-σ-fieldAG

of all sign-invariant sets is sufficient for E . The corresponding stochastic kernel K from (Ω,AG)

to (Ω,A) is given by

K(ω, ·) =
1

2n

∑
ξ∈{−1,1}n

δgξ(ω).

8.4 Complete Statistical Experiments

Definition 8.28 (Complete statistical experiment). A statistical experiment E = (Ω,A, (IPθ)θ∈Θ)

is called boundedly complete, if for any bounded and measurable function f : (Ω,A)→ R,∫
f d IPθ = 0 for all θ ∈ Θ

implies that
IPθ(f 6= 0) = 0 for all θ ∈ Θ.

The experiment E is called complete if for any function f ∈
⋂
θ∈Θ L1(IPθ),∫

f d IPθ = 0 for all θ ∈ Θ

implies that
IPθ(f 6= 0) = 0 for all θ ∈ Θ.
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Obviously, completeness of E implies bounded completeness.

Example 8.29 (Simple d-parameter exponential families). Let M be a σ-finite measure on Rd

and h : Rd → [0,∞) a measurable function such that for all parameters θ in a set Θ ⊂ Rd,

0 <

∫
exp(θ>x)h(x)M(dx) < ∞.

Then we consider the statistical experiment E =
(
Rd,Borel(Rd), (IPθ)θ∈Rd

)
where

d IPθ
dM

(x) = C(θ) exp(θ>x)h(x)

with C(θ) :=
(∫

exp(θ>x)h(x)M(dx)
)−1. If Θ has nonempty interior, then E is complete.

This follows immediately from Theorem A.15 in Appendix A.3.

Example 8.30 (Product measures). Let (X ,B,M) be a σ-finite measure space, and let Θ be
a family of probability densities with respect to M . For some integer n ≥ 2 consider E =

(X n,B⊗n, (Q⊗nθ )θ∈Θ) with Qθ given by dQθ/dM = θ. This experiment is not boundedly com-
plete. To see this, consider some bounded measurable function h : X → R with Varθo(h) > 0

for at least one θo ∈ Θ. Then f(ω) := h(ω1) − h(ω2) defines a bounded and measurable func-
tion f : X n → R such that

∫
f dQ⊗nθ = 0 for any θ ∈ Θ, but Q⊗nθo (f 6= 0) > 0, because∫

f2 dQ⊗nθo = 2 Varθo(h) > 0.

However, if we replaceA = B⊗n with the sub-σ-fieldAo of all permutation invariant sets A ∈ A,
then the experiment Eo = (X n,Ao, (Q⊗nθ )θ∈Θ) is often boundedly complete or even complete:

Special case 1. Suppose that Θ contains the convex hull of all probability densities M(B)−11B

with B ∈ B satisfying 0 < M(B) <∞. Then Eo is boundedly complete.

Proof: For arbitrary fixed sets B1, . . . , Bn ∈ B with 0 < M(Bi) < ∞ and arbitrary tupels
γ ∈ (0,∞)n, consider the probability density

θγ := C−1
γ

n∑
i=1

γi1Bi

with Cγ :=
∑n

i=1 γiM(Bi). Then by assumption, θγ ∈ Θ. If f : (Ω,A) → R is bounded and
measurable, it follows from ∫

f dQ⊗nθ = 0 for all θ ∈ Θ

that

(8.3)
∫
f(x)

n∏
i=1

( n∑
j=1

γj1Bj (xi)
)
M⊗n(dx) = 0 for all γ ∈ (0,∞)n.

The integral on the left hand side equals

n∑
j(1),...,j(n)=1

n∏
i=1

γj(i)

∫
Bj(1)×···×Bj(n)

f dM⊗n,
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and this is an n-variate polynomial in γ of degree n. Since

∂n

∂γ1∂γ2 · · · ∂γn

n∏
i=1

γj(i) =

{
1 if {j(1), . . . , j(n)} = {1, . . . , n}
0 else,

it follows from (8.3) that ∑
π∈Sn

∫
Bπ(1)×···×Bπ(n)

f dM⊗n = 0.

If f is permutation-invariant, that means, Ao-measurable rather than just A-measurable, then the
latter sum equals

n!

∫
B1×···×Bn

f dM⊗n.

All in all, we know that ∫
B1×···×Bn

f dM⊗n = 0

for arbitrary sets B1, . . . , Bn ∈ B with finite measure M(Bi). As shown in Exercise 8.31, this
implies that M⊗n(f 6= 0) = 0. 2

Exercise 8.31. Let M be a σ-finite measure on (X ,B), and let f : X n → R be bounded and
measurable such that ∫

B1×···×Bn
f dM⊗n = 0

for arbitrary sets B1, . . . , Bn ∈ B with finite measure M(Bi). Show that

M⊗n(f 6= 0) = 0.

Hint: Consider first the case of M(X ) < ∞ and the two finite measures Q± given by Q±(A) :=∫
A f
± dM⊗n.

Special case 2. Let M be Lebesgue measure on X = R. Suppose that for an arbitrary fixed
σ > 0, the set Θ contains all finite convex combinations of Gaussian densities φµ,σ, µ ∈ R, where

φµ,σ(x) =
1√
2π σ

exp
(
− (x− µ)2

2σ2

)
.

Then Eo is complete.

Proof: With the same arguments as in the previous special case, one can show that for any Ao-
measurable function f : Rn → R, it follows from∫

f dQ⊗nθ = 0 for arbitrary θ ∈ Θ

that ∫
f(x)

n∏
i=1

φµi,σ(xi) dx = 0 for arbitrary µ ∈ Rn,

and this is equivalent to∫
f(x) exp

(
−‖x‖2/(2σ2)

)
exp(µ>x) dx = 0 for arbitrary µ ∈ Rn.

But then it follows from Theorem A.15 in the Appendix that the two finite measures A 7→∫
A f
± dM⊗n are identical, whence M⊗n(f 6= 0) = 0. 2
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Unbiased estimation. With the concepts of sufficiency and completeness one can say something
about unbiased point estimators. This was first noted by P.R. Halmos [7].

Theorem 8.32 (Halmos). Let E = (Ω,A, (IPθ)θ∈Θ) be a statistical experiment with a sufficient
statistic T : (Ω,A) → (Ω̃, Ã). Consider some function g : Θ → Rq and a loss function L :

Rq ×Θ→ [0,∞) such that L(·, θ) is convex for any fixed θ ∈ Θ.

(a) Suppose ĝ : (Ω,A)→ Rq is an unbiased estimator of g(θ). That means,

IEθ(ĝ) = g(θ) for any θ ∈ Θ.

Then
ǧ(ω) := IE(ĝ |T = T (ω))

defines another unbiased estimator with

IEθ L(ǧ, θ) ≤ IEθ L(ĝ, θ) for any θ ∈ Θ.

If L(·, θ) is strictly convex, then the latter inequality is strict unless IPθ(ĝ 6= ǧ) = 0.

(b) If ET = (Ω̃, Ã, (IPTθ )θ∈Θ) is complete, then the unbiased estimator ǧ in part (a) is essentially
unique. That means, if g̃ = h̃(T ) is another unbiased estimator of g(θ), then IPθ(g̃ 6= ǧ) = 0 for
arbitrary θ ∈ Θ.

Proof of Theorem 8.32. By sufficiency of T , there exists a stochastic kernel K from (Ω̃, Ã) to
(Ω,A) describing the conditional distribution of X ∼ IPθ, given T (X), for any parameter θ ∈
Θ. This gives rise to conditional expectations IE(h |T = t) :=

∫
h(ω)K(t, dω). Note that by

assumption, for any θ ∈ Θ,

∞ > IEθ ‖ĝ‖ =

∫
Ω̃

IE
(
‖ĝ‖

∣∣T = t
)

IPTθ (dt),

so the set Ñ :=
{
t ∈ Ω̃ : IE

(
‖ĝ‖

∣∣T = t
)

=∞
}

satisfies IPTθ (Ñ) = 0. In particular,

ȟ(t) := IE(ĝ |T = t)

is well-defined in Rd for any t ∈ Ω̃ \ Ñ .

As to part (a), ǧ = ȟ(T ) with ȟ(t) defined before. Since ĝ is unbiased,

g(θ) = IEθ(ĝ) =

∫
Ω̃

IE(ĝ |T = t) IPTθ (dt) =

∫
Ω̃
ȟ(t) IPTθ (dt) = IEθ(ȟ(T )) = IEθ(ǧ).

Hence, ǧ is unbiased, too. Moreover, applying Jensen’s inequality to the conditional expectations
IE(· |T = t) leads to

IEθ L(ĝ, θ) =

∫
Ω̃

IE
(
L(ĝ, θ)

∣∣T = t
)

IPTθ (dt)

≥
∫

Ω̃
L
(
IE(ĝ |T = t), θ

)
IPTθ (dt)

=

∫
Ω̃
L(ȟ(t), θ

)
IPTθ (dt)

= IEθ L(ǧ, θ).
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If L(·, θ) is strictly convex, the inequality

IE
(
L(ĝ, θ)

∣∣T = t
)
≥ L

(
IE(ĝ |T = t), θ

)
is strict, unless P (ĝ 6= ǧ |T = t) = 0. Hence IEθ L(ĝ, θ) > IEθ L(ǧ, θ), unless IPθ(ĝ 6= ǧ) = 0.

As to part (b), suppose that g̃ = h̃(T ) is another unbiased estimator of g(θ). That means, the
difference ∆ := h̃− ȟ satisfies ∫

Ω̃
∆ d IPTθ = 0 for all θ ∈ Θ.

But then completeness of ET implies that 0 = IPTθ (∆ 6= 0) = IPθ(g̃ 6= ǧ) for arbitrary θ ∈ Θ.

8.5 U -Statistics

The material in this section is based on the famous paper [8] by W. Hoeffding. LetX1, X2, . . . , Xn

be independent random variables with unknown distribution P on a measurable space (X ,B). To
establish a link to the previous sections, let P be a given family of probability distributions on
(X ,B). Assuming that the unknown distribution P belongs to P , the corresponding statistical
experiment is (

X n,B⊗n, (P⊗n)P∈P
)
.

Note that all distributions P⊗n, P ∈ P , are exchangeable (permutation-invariant). Hence for any
given function g : P → Rq, an unbiased point estimator ĝ of g(P ) can be improved by replacing
ĝ(X1, X2, . . . , Xn) with

1

n!

∑
π∈Sn

ĝ(Xπ(1), Xπ(2), . . . , Xπ(n)).

And if P is sufficiently rich, the latter estimator is essentially unique, see Example 8.30 and
Theorem 8.32.

U -Statistics. Now we consider a particular type of parameter g(P ). Let h : (Xm,B⊗m) → R
be a given measurable function such that

g(P ) :=

∫
h dP⊗m ∈ R.

In case of m ≥ 2, we assume without loss of generality that h is permutation-invariant, i.e.
symmetric in its m arguments. Otherwise we could replace h(x1, . . . , xm) with

h̃(x1, . . . , xm) :=
1

m!

∑
π∈Sm

h(xπ(1), . . . , xπ(m))

which defines a permutation-invariant function h̃ satisfying
∫
h̃ dP⊗m =

∫
h dP⊗m.

Obviously, for n ≥ m, a naive unbiased estimator for g(P ) is given by ĝ := h(X1, . . . , Xm). Av-
eraging this naive estimator over all permutations ofXn = (Xi)

n
i=1 yields the following unbiased

estimator of g(P ):

ǧn :=

(
n

m

)−1 ∑
1≤i1<i2<···<im≤n

h(Xi1 , Xi2 , . . . , Xim).
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Such an estimator is called a U -statistic with kernel h or a U -statistic of order m.

Example 8.33 (Mean and variance of a distribution and sample). Let X = R, and suppose that∫
|x|P (dx) < ∞. Then the mean µ(P ) :=

∫
xP (dx) equals g(P ) with h : R → R, h(x) = x,

and the sample mean is a U -statistic of order 1:

X̄n :=
1

n

n∑
i=1

Xi =

(
n

1

)−1 ∑
1≤i≤n

h(Xi).

In case of
∫
x2 P (dx) <∞ one may write

σ2(P ) :=

∫
(x− µ(P ))2 P (dx) =

∫
R2

h dP⊗2 with h(x1, x2) := (x1 − x2)2/2.

The corresponding U -statistic is just the usual sample variance:(
n

2

)−1 ∑
1≤i1<i2≤n

(Xi1 −Xi2)2/2 =
1

n(n− 1)

n∑
i,j=1

(Xi −Xj)
2/2

=
1

n(n− 1)

(
n

n∑
i=1

X2
i −

( n∑
i=1

Xi

)2)
=

1

n− 1

( n∑
i=1

X2
i − nX̄2

n

)
=

1

n− 1

n∑
i=1

(Xi − X̄n)2.

Example 8.34. Let X = [0,∞), and suppose that we want to quantify whether P has strong right
tails. On possibility to quantify this property would be consider

g(P ) := IP
(
X3 >

√
X2

1 +X2
2

)
.

(Maybe this is not such a brilliant proposal; the main point is to illustrate the construction of
U -statistics.) This corresponds to IEh(X1, X2, X3) with h(x1, x2, x3) := 1[

x3>
√
x21+x22

]. Sym-

metrizing this kernel leads to

h(x1, x2, x3) =
1

3

3∑
i=1

1[
xi>
√
‖x‖2−x2i

],
where ‖x‖2 = x2

1 +x2
2 +x2

3, and the resulting unbiased estimator for g(P ) would be the U -statistic
with this symmetric kernel h.

Here is a first result about the variance of a U -statistic which will suffice for our purposes:

Lemma 8.35 (Hoeffding). Suppose that
∫
h2 dP⊗m <∞. Let

hm(x1, . . . , xm) := h(x1, . . . , xm)− g(P ),

hk(x1, . . . , xk) := IEhm(x1, . . . , xk, Xk+1, . . . , Xm) for 1 ≤ k < m,

σ2
k := IE

(
hk(X1, . . . , Xk)

2
)

for 1 ≤ k ≤ m.
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Then σ2
1 ≤ · · · ≤ σ2

m, and

Var(ǧn) =
m∑
k=1

IP(Y = k)σ2
k

with Y ∼ Hyp(n,m,m), i.e. IP(Y = k) =
(
m
k

)(
n−m
m−k

)/(
n
m

)
.

This lemma is only a simplified version of Hoeffding’s [8] findings. Stronger statements about
the variances σ2

k and the distribution of ǧn will be derived in Exercise 8.43 from the so-called
Hoeffding decomposition, introduced in Section A.4.

Proof of Lemma 8.35. For any index set J ⊂ {1, . . . , n} with 1 ≤ #J ≤ m let XJ := (Xi)i∈J .
Then we may write

ǧn − g(P ) = Un :=

(
n

m

)−1 ∑
J⊂{1,...,n}:#J=m

hm(XJ).

It follows from independence of the Xi, Fubini’s theorem, symmetry of h and the definition of hk,
1 ≤ k ≤ m, that

(8.4) IE
(
hm(XI)hm(XJ)

)
= σ2

#(I∩J) for I, J ⊂ {1, . . . , n},#I = #J = m,

where σ2
0 := 0. Indeed, IEhm(X1, . . . , Xm) = 0 by definition of hm, so in case of I ∩ J = ∅, it

follows from stochastic independence of XI and XJ that

IE
(
hm(XI)hm(XJ)

)
= IE(hm(XI)) IE(hm(XJ)) = 0.

Moreover, by definition of σ2
m,

IE
(
hm(XI)hm(XJ)

)
= σ2

m if I = J.

If 1 ≤ k := #(I ∩J) < m, then stochastic independence of XI∩J , XI\J , XJ\I and the definition
of hk imply that

IE
(
hm(XI)hm(XJ)

)
= IE

(
hm(XI∩J , XI\J)hm(XI∩J , XJ\I)

)
= IE IE

(
hm(XI∩J , XI\J)hm(XI∩J , XJ\I)

∣∣XI∩J
)

= IE
(
hk(XI∩J)2

)
= σ2

k.

Equation (8.4) yields the specific formula for Var(ǧn), because

Var(ǧn) = IE(UnUn) =

(
n

m

)−1 ∑
I⊂{1,...,n}:#I=m

IE
(
hm(XI)Un

)
,
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and for any fixed index set I ⊂ {1, . . . , n} with m elements,

IE
(
hm(XI)Un

)
=

(
n

m

)−1 ∑
J⊂{1,...,n}:#J=m

IE
(
hm(XI)hm(XJ)

)
=

(
n

m

)−1 m∑
k=1

#
{
J ⊂ {1, . . . , n} : #J = m,#(J ∩ I) = k

}
σ2
k

=
m∑
k=1

(
n

m

)−1(m
k

)(
n−m
m− k

)
σ2
k

=
m∑
k=1

IP(Y = k)σ2
k.

Since this value does not depend on the particular choice of I , this proves the asserted equation
for Var(ǧn).

It remains to prove the inequality σ2
k ≤ σ2

k+1 for 1 ≤ k < m. Note first that

hk(x1, . . . , xk) = IEhk+1(x1, . . . , xk, Xk+1).

In case of k = m−1 this is just the definition of hk(x1, . . . , xk), and otherwise it is a consequence
of Fubini’s theorem, because

hk(x1, . . . , xk) = IEhm(x1, . . . , xk, Xk+1, Xk+2, . . . , Xm)

= IE IE
(
hm(x1, . . . , xk, Xk+1, Xk+2, . . . , Xm)

∣∣Xk+1

)
= IEhk+1(x1, . . . , xk, Xk+1).

But then the Cauchy–Schwarz inequality implies that

σ2
k = IE

(
IE
(
hk+1(X1, . . . , Xk, Xk+1)

∣∣X1, . . . , Xk

)2)
≤ IE

(
IE
(
hk+1(X1, . . . , Xk, Xk+1)2

∣∣X1, . . . , Xk

))
= IE

(
hk+1(X1, . . . , Xk, Xk+1)2

)
= σ2

k+1.

Corollary 8.36. In case of
∫
h2 dP⊗m <∞,

Var(ǧn) =
m2σ2

1

n
+O(n−2).

Proof of Corollary 8.36. This expansion follows immediately from Lemma 8.35 and the fact that
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for Y ∼ Hyp(n,m,m),

IP(Y = k) =

(
n

m

)−1(m
k

)(
n−m
m− k

)
=

m![m]k [n−m]m−k
[n]m k!(m− k)!

=
[m]2k n

m−k(1 +O(n−1))

k!nm(1 +O(n−1))

=
[m]2k(1 +O(n−1))

k!nk

=

{
m2/n+O(n−2) if k = 1,

O(n−2) if k ≥ 2.

The following result shows that U -statistics may be approximated by an average of independent,
identically distributed random variables and satisfy a Central Limit Theorem:

Theorem 8.37 (Hoeffding). Under the conditions of Lemma 8.35,

ǧn = g(P ) +
m

n

n∑
i=1

h1(Xi) +Rn

where

IE(R2
n) = O(n−2).

Moreover,
√
n(ǧn − g(P )) →L N (0,m2σ2

1)

as n→∞.

Our proof of Theorem 8.37 utilizes a general approximation result of Jaroslav Hájek:

Lemma 8.38 (Hájek projection). Let X1, X2, . . . , Xn be arbitrary independent random variables
with values in (X1,B1), (X2,B2), . . . , (Xn,Bn), and let T be a random variable of the form T =

f(X1, X2, . . . , Xn) such that IET = 0 and IE(T 2) <∞. Then Ti := IE(T |Xi) satisfies IE(Ti) =

0 for 1 ≤ i ≤ n. Moreover, for arbitrary random variables Y1, Y2, . . . , Yn of type Yi = fi(Xi)

with IE(Yi) = 0 and IE(Y 2
i ) <∞,

IE
((
T −

n∑
i=1

Yi

)2)
= IE(T 2)−

n∑
i=1

IE(T 2
i ) +

n∑
i=1

IE((Yi − Ti)2)

≥ IE(T 2)−
n∑
i=1

IE(T 2
i )

with equality if and only if Yi = Ti almost surely for 1 ≤ i ≤ n.
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Proof of Lemma 8.38. By Fubini’s theorem, 0 = IET = IE IE(T |Xi) = IETi. Moreover,

IE
((
T −

n∑
i=1

Yi

)2)
= IE(T 2)− 2

n∑
i=1

IE(TYi) +

n∑
i,j=1

IE(YiYj)

= IE(T 2)− 2
n∑
i=1

IE IE(TYi |Xi) +
n∑
i=1

IE(Y 2
i )

= IE(T 2)− 2
n∑
i=1

IE
(
IE(T |Xi)Yi

)
+

n∑
i=1

IE(Y 2
i )

= IE(T 2)− 2
n∑
i=1

IE(TiYi) +
n∑
i=1

IE(Y 2
i )

= IE(T 2)−
n∑
i=1

IE(T 2
i ) +

n∑
i=1

IE((Yi − Ti)2),

because IE(YiYj) = IE(Yi) IE(Yj) = 0 in case of i 6= j.

Proof of Theorem 8.37. It follows from Lemma 8.38 that

ǧn − g(P ) = Un =

n∑
i=1

IE(Un |Xi) +Rn

with

IE(R2
n) = IE(U2

n)−
n∑
i=1

IE
(
IE(Un |Xi)

2
)
.

But

IE(Un |Xi) =

(
n

m

)−1 ∑
J⊂{1,...,m}:#J=m

IE
(
hm(XJ) |Xi

)
=

(
n

m

)−1 ∑
J⊂{1,...,m}:#J=m

1[i∈J ]h1(Xi)

=

(
n

m

)−1

#
{
J ⊂ {1, . . . ,m} : #J = m, i ∈ J

}
h1(Xi)

=

(
n

m

)−1(n− 1

m− 1

)
h1(Xi)

=
m

n
h1(Xi).

Hence

Un =
m

n

n∑
i=1

h1(Xi) +Rn

with

IE(R2
n) = IE(U2

n)− m2σ2
1

n
= Var(ǧn)− m2σ2

1

n
= O(n−2)

according to Corollary 8.36. Consequently, Rn = Op(n
−1), whence

√
n(ǧn − g(P )) =

m√
n

n∑
i=1

h1(Xi) +Op(n
−1/2),
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and it follows from the usual Central Limit Theorem that the right hand side converges in distri-
bution to a Gaussian random variable with mean 0 and variance m2 IE(h1(X1)2) = m2σ2

1 .

Remark 8.39 (Hoeffding’s decomposition in case of m = 2). In case of m = 2 one may write

ǧn = g(P ) +
2

n

n∑
i=1

h1(Xi) +

(
n

2

)−1 ∑
1≤i<j≤n

ho2(Xi, Xj)

with

ho2(x1, x2) := h2(x1, x2)− h1(x1)− h1(x2)

= h(x1, x2)− IEh(x1, X2)− IEh(X1, x2) + IEh(X1, X2).

Moreover, the n+
(
n
2

)
random variables h1(Xi) (1 ≤ i ≤ n) and ho2(Xi, Xj) (1 ≤ i < j ≤ n) are

easily shown to be centered and uncorrelated with

IE
(
ho2(Xi, Xj)

2
)

= σ2
2 − 2σ2

1 ≤ σ2
2.

Hence the remainder

Rn =

(
n

2

)−1 ∑
1≤i<j≤n

ho2(Xi, Xj)

satisfies the (in)equalities

IE(R2
n) =

(
n

2

)−1

(σ2
2 − 2σ2

1) =
2σ2

2 − 4σ2
1

n(n− 1)
≤ 2σ2

2

n(n− 1)
.

Example 8.33 (Sample variance, continued). With h(x1, x2) = (x1 − x2)2/2, the auxiliary
function h1 is given by

h1(x) = IEh(x,X1)− σ2(P )

= x2/2− xµ(P ) + IE(X2
1 )/2− σ2(P )

=
[
(x− µ(P ))2 − σ2(P )

]
/2,

and this leads to the representation

S2
X =

(
n

2

) ∑
1≤i<j≤n

h(Xi, Xj)

= σ2(P ) +
2

n

n∑
i=1

h1(Xi) +Rn

=
1

n

n∑
i=1

(Xi − µ(P ))2 +Rn,

where
IE(R2

n) = O(n−2) if
∫
x4 P (dx) <∞.

Moreover, as n→∞,

√
n(S2

X − σ(P )2) →L N
(
0, IE[(X1 − µ(P ))4]− σ(P )4

)
.



155

Example 8.40 (Kendall’s τ ). Let (X1, Y1), (X2, Y2), . . . , (Xn, Yn) be independent random pairs
with distribution P on R×R. A nonparametric measure of correlation of X1 and Y1, proposed by
Maurice Kendall [9], is given by

τ(P ) := IE
(
sign(X2 −X1) sign(Y2 − Y1)

)
.

This is the probability, that the two observation pairs (X1, Y1) and (X2, Y2) are “concordant”, i.e.

sign(X2 −X1) = sign(Y2 − Y1) 6= 0,

minus the probability that they are “discordant”, i.e.

− sign(X2 −X1) = sign(Y2 − Y1) 6= 0.

If X1 and Y1 are stochastically independent, then the four random variables X1X2, Y1, Y2 are
stochastically independent, and

τ(P ) = IE sign(X2 −X1) IE sign(Y2 − Y1) = 0,

because the distributions of X2 −X1 and Y2 − Y1 are symmetric around 0.

Note that τ(P ) = IEh
(
(X1, Y1), (X2, Y2)

)
with the kernel

h
(
(x1, y1), (x2, y2)

)
:= sign(x2 − x1) sign(y2 − y1).

Consequently, an unbiased estimator for τ(P ) is given by Kendall’s τ statistic

τ̌n :=

(
n

2

)−1 ∑
1≤i<j≤n

sign(Xj −Xi) sign(Yj − Yi),

which is a U -statistic of order 2 with kernel h.

Since |h| ≤ 1, we may apply Theorem 8.37 and conclude that

τ̌n = τ(P ) +
2

n

n∑
i=1

h1(Xi, Yi) +Rn

with h1(x, y) := IE
(
sign(x − X1) sign(y − Y1)

)
− τ(P ) and a remainder term Rn such that

IE(R2
n) = O(n−2). Moreover, as n→∞,

√
n(τ̌n − τ(P )) →L N

(
0, 4 IE(h1(X1, Y1)2)

)
.

Let us consider the following special case: Suppose that X1 and Y1 are stochastically independent
with continuous distribution function F and G, respectively. Then one can easily verify that

h1(x, y) = (2F (x)− 1)(2G(y)− 1).

But 2F (X1) − 1 and 2G(Y1) − 1 are stochastically independent and uniformly distributed on
[−1, 1]. From this one can easily deduce that

IE(h1(X1, Y1)2) = 1/9,

so
√
n τ̌n →L N (0, 4/9).
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Exercise 8.41. Let X1, X2, . . . , Xn be independent random variables with unknown distribution
P on R. For m ∈ N let

gm(P ) := IEP Med(X1, . . . , Xm)

with sample median function Med(. . .).

Show that for n ≥ m, the corresponding U-statistic

ǧ =

(
n

m

)−1 ∑
1≤i1<...<im≤n

Med(Xi1 , . . . , Xim)

is a L-statistic, that means,

ǧ =
n∑
i=1

wiX(i)

with suitable weights w1, w2, . . . , wn ≥ 0.

Hint: Distinguish the cases of odd and even m.

Exercise 8.42. Suppose thatX1, X2, X3, . . . are independent and identically distributed with dis-
tribution P on R. Suppose further that IE

(
|X1|3

)
<∞.

(a) Determine an optimal unbiased estimator of the centered third moment,

g(P ) := IE
(
(X1 − IE(X1))3

)
.

Hint: Determine a measurable function h : R3 → R such that g(P ) = IEh(X1, X2, X3), and
construct a corresponding U -statistic ǧ.

(b) A naive estimator for g(P ) is given by

ĝnaive :=
1

n

n∑
i=1

(Xi − X̄)3.

Show that this estimator can be written as a function of the sums S` :=
∑n

i=1X
`
i , 1 ≤ ` ≤ 3, and

that the computation of ĝnaive requires O(n) steps.

(c) Show that the unbiased estimator ǧ is also a simple function of S1, S2, S3 and can be computed
in O(n) steps.

(d) Show that for some constant C(P ),

IE |ǧ − ĝnaive| ≤ C(P )n−1

for all n ≥ 3. Proposal: One can write ǧ − ĝnaive as a linear combination of the three sums
S3, S21 :=

∑n
i,j=1 1[i 6=j]X

2
iXj and S111 :=

∑n
i,j,k=1 1[i,j,k different]XiXjXk with coefficients

depending on n.

Exercise 8.43 (Refinements via Hoeffding’s decomposition). With the notation of Lemma 8.35
and its proof, let

hok(x1, . . . , xk) :=
k∑
`=1

(−1)k−`
∑

I⊂{1,...,k}:#I=`

h`(xI)
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for 1 ≤ k ≤ m. The general Hoeffding decomposition, presented in Section A.4, implies that the
random variables

hok(XJ), k ∈ {1, . . . ,m} and J ⊂ {1, . . . , n},#J = k,

are centered and uncorrelated, where

hk(x1, . . . , xk) =
k∑
`=1

∑
J⊂{1,...,k}:#J=`

ho`(xJ).

Let
τ2
k := IE

(
hok(X1, . . . , Xk)

2
)
.

(a) Show that σ2
k = IE

(
hk(X1, . . . , Xk)

2
)

equals

σ2
k =

k∑
`=1

(
k

`

)
τ2
` .

Deduce from this representation that σ2
k/k is non-decreasing in k ∈ {1, . . . ,m}.

(b) Show that Un := ǧn − g(P ) equals

Un =
m∑
k=1

(
n

k

)−1 ∑
J⊂{1,...,n}:#J=k

(
m

k

)
hok(XJ),

and that

IE(U2
n) =

m∑
k=1

[m]k
[n]k

(
m

k

)
τ2
k .

(c) Deduce from (a) and (b) that

m2σ2
1

n
≤ IE(U2

n) ≤ m2σ2
1

n
+
m2σ2

m

n2
.

Show that n IE(U2
n) is non-increasing in n ≥ m with limit m2σ2

1 as n→∞.
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Chapter 9

Exponential Families

9.1 Definitions and Basic Properties

Definition 9.1 (Exponential families). A statistical experiment E =
(
Ω,A, (IPθ)θ∈Θ

)
is called an

exponential family if there exist a σ-finite measure M on (Ω,A), a measurable mapping h : Ω→
[0,∞), a mapping α : Θ→ Rd and a measurable mapping T : Ω→ Rd such that for any θ ∈ Θ,

d IPθ
dM

(ω) = h(ω) exp
(
α(θ)>T (ω)− κ(θ)

)
with

κ(θ) := log

∫
h exp(α(θ)>T ) dM.

(In particular, we assume that
∫
h exp(α(θ)>T ) dM <∞ for all θ ∈ Θ.)

Definition 9.2 (Natural exponential families). For a given measure space (Ω,A,M) and measur-
able mappings h : Ω → [0,∞), T : Ω → Rd, the corresponding natural exponential family is
given by E =

(
Ω,A, (IPθ)θ∈Θnat

)
with the natural parameter space

Θnat :=
{
θ ∈ Rd :

∫
h exp(θ>T ) dM <∞

}
,

and the probability distributions IPθ are given by

d IPθ
dM

(ω) := h(ω) exp
(
θ>T (ω)− κ(θ)

)
,

κ(θ) := log

∫
h exp(θ>T ) dM.

Example 9.3 (Gaussian samples). Let Ω = Rn, equipped with its Borel σ-field, let Θ = R ×
(0,∞), and for θ = (µ, σ) ∈ Θ, let

IPµ,σ := N (µ, σ2)⊗n.

With M denoting Lebesgue measure on Rn, h(ω) := (2π)−n/2 and Xi(ω) := ωi for ω ∈ Ω, the
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log-density of IPµ,σ with respect to M is given by

d IPµ,σ
dM

= h(ω) exp
(
−

n∑
i=1

(Xi − µ)2

2σ2
− n log σ

)
= h(ω) exp

( µ
σ2

n∑
i=1

Xi +
−1

2σ2

n∑
i=1

X2
i − n log σ

)
= h(ω) exp

(
α(µ, σ)>T − κ(µ, σ)

)
with

α(µ, σ) :=
( µ
σ2
,
−1

2σ2

)>
,

T :=
( n∑
i=1

Xi,

n∑
i=1

X2
i

)>
,

κ(ν, γ) := n log σ.

Here one easily verifies that
Θnat = R× (−∞, 0).

Example 9.4 (Gamma distributions). Let Ω = (0,∞), equipped with its Borel σ-field. For
a, b > 0 let Gamma(a, b) be the gamma distribution on (0,∞) with shape parameter a > 0 and
scale parameter b > 0. That means, Gamma(a, b) has Lebesgue density

fa,b(ω) =
1

Γ(a)b

(ω
b

)a−1
exp
(
−ω
b

)
= exp

(
α(a, b)>T (ω)− κ(a, b)

)
with

α(a, b) := (a− 1,−1/b)>,

T (ω) := (logω, ω)>,

κ(a, b) := a log b+ log Γ(a).

Here one easily verifies that
Θnat = (−1,∞)× (−∞, 0).

Remark 9.5 (Convexity and smoothness). Let E be a natural exponential family as in Defini-
tion 9.2. It follows from convexity of the exponential function that the set Θnat is a convex subset
of Rd. Moreover, if f ∈

⋂
θ∈Θnat

L1(IPθ), then the function h : Θ→ R,

h(θ) :=

∫
f d IPθ,

is twice continuously differentiable on the interior of Θnat with gradient

∇h(θ) = Covθ(f, T ) =

∫
fT d IPθ −h(θ)

∫
T d IPθ .

Remark 9.6 (Sufficiency). Suppose that E is an exponential family as in Definition 9.1, where
(Ω, d) is a separable and complete metric space and A = Borel(Ω, d). Then T is a sufficient
statistic for E . This follows immediately from Neyman’s factorization criterion.
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Theorem 9.7 (Completeness in exponential families). Let E be an exponential family as in Def-
inition 9.1. Suppose that the set {α(θ) : θ ∈ Θ} ⊂ Rd contains an interior point. Then the
statistical model

(
Rd,Borel(Rd), (IPTθ )θ∈Θ

)
is complete.

Proof of Theorem 9.7. We may assume without loss of generality that h ≡ 1. Otherwise we
could replaceM with M̃ , where M̃(B) :=

∫
B h dM . Note that the image measures1 MT and IPTθ

on Rd satisfy
d IPTθ
dMT

(x) = exp
(
α(θ)>x− κ(θ)

)
.

Hence for a measurable function f : Rd → R, the property∫
Rd
f d IPTθ = 0 for all θ ∈ Θ

is equivalent to ∫
Rd
f(x) exp(α(θ)>x)MT (dx) = 0 for all θ ∈ Θ.

Since α(Θ) contains an interior point, it follows from Theorem A.15 in Section A.3 that f(x) = 0

for MT -almost all x ∈ Rd. In particular, IPTθ (f 6= 0) = 0 for all θ ∈ Θ.

9.2 Nuisance Parameters

In this section we consider statistical experiments E =
(
Ω,A, (IPθ)θ∈Θ

)
of the following type: Θ

is a convex open subset of Rd × R with projections

N :=
{
ν ∈ Rd : (ν, γ) ∈ Θ for some γ ∈ R

}
,

Γ :=
{
γ ∈ R : (ν, γ) ∈ Θ for some ν ∈ Rd

}
.

Each parameter θ = (ν, γ) ∈ Θ consists of a “nuisance parameter” ν ∈ N and a parameter γ ∈ Γ

of primary interest. The question is how to deal with the nuisance parameter ν if we are only
interested in γ.

We assume that E is an exponential family with natural parametrization: There exist a σ-finite
measure M on (Ω,A) and measurable functions S : (Ω,A)→ Rd, Y : (Ω,A)→ R such that for
arbitrary (ν, γ) ∈ Θ,

d IPν,γ
dM

= exp
(
ν>S + γY − κ(ν, γ)

)
with

κ(ν, γ) := log

∫
exp
(
ν>S + γY

)
dM < ∞.

Here the pair (S, Y ) is a sufficient statistic, provided that (Ω, d) is a separable and complete
metric space, equipped with its Borel σ-field. Thus we may restrict our attention to decision
procedures depending only on (S, Y ). The following result shows that under the measure IPν,γ ,
the conditional distribution of Y , given that S = s, depends on s and the parameter γ but not on
the nuisance parameter ν. Hence we may get rid of the nuisance parameter by conditioning on S.

1MT (B) :=M(T ∈ B) and IPTθ (B) := IPθ(T ∈ B)
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Proposition 9.8. Let us fix any parameter (νo, γo) ∈ Θ and choose a stochastic kernel K from
Rd to R describing the conditional distribution of Y , given S, under the measure IPνo,γo . That
means,

IPνo,γo(Y ∈ B |S = ·) = K(·, B) for any Borel set B ⊂ R.

Then there exist a measurable weight function w : R → (0,∞) and a Borel set C ⊂ Rd with the
following properties: M(S ∈ C) = 0, and for any γ ∈ Γ,

κ̃(s, γ) := log

∫
R

exp(γy)w(y)K(s, dy) < ∞ for all s ∈ Rd \ C.

Moreover,

Kγ(s,B) :=


∫
B

exp
(
γy − κ̃(s, γ)

)
w(y)K(s, dy) if s ∈ Rd \ C,

1[0∈B] if s ∈ C,

defines a stochastic kernel Kγ from Rd to R describing the conditional distribution of Y , given S,
under any measure IPν,γ , ν ∈ N . That means,

IPν,γ(Y ∈ B |S = ·) = Kγ(·, B) for all ν ∈ N and any Borel set B ⊂ R.

Proof of Proposition 9.8. The assumption on K is equivalent to

IEνo,γo
(
g(S)h(Y )

)
= IEνo,γo

(
g(S)

∫
h(y)K(S, dy)

)
for arbitrary measurable functions g : Rd → [0,∞] and h : R→ [0,∞]. For any other parameter
(ν, γ) ∈ Θ, this implies that

IEν,γ
(
g(S)h(Y )

)
= IEνo,γo

(
g(S)h(Y )

exp(ν>S + γY − κ(ν, γ))

exp(ν>o S + γoY − κ(νo, γo))

)
(9.1)

= IEνo,γo

(
g(S) exp

(
(ν − νo)>S − κ(ν, γ)

) ∫
h(y) exp(γy)w(y)K(S, dy)

)
(9.2)

with

w(y) := exp
(
κ(νo, γo)− γoy

)
.

Taking h ≡ 1 shows that

IEν,γ(g(S)) = IEνo,γo
(
g(S)fν,γ(S)

)
with

fν,γ(s) := exp
(
(ν − νo)>s− κ(ν, γ)

) ∫
exp(γy)w(y)K(s, dy).

Taking g ≡ 1 shows that for any fixed γ ∈ Γ, the set C(γ) of all s ∈ Rd such that the integral∫
exp(γy)w(y)K(s, dy) is infinite satisfies IPν,γ(S ∈ C(γ)) = 0 for all ν ∈ N . Since IPν,γ has

a strictly positive density with respect to M , we may even conclude that

M(S ∈ C(γ)) = 0.
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But then the set C :=
⋃
γ∈Γ∩QC(γ) satisfies

M(S ∈ C) = 0,

and by convexity of the exponential function,∫
exp(γy)w(y)K(s, dy) < ∞ for all s ∈ Rd \ C and γ ∈ Γ.

Hence the stochastic kernel Kγ described in the proposition is well-defined, and it follows from
(9.2) that for arbitrary measurable functions g : Rd → [0,∞] and h : R→ [0,∞],

IEν,γ
(
g(S)h(Y )

)
= IEνo,γo

(
g(S)

∫
h(y)Kγ(S, dy) fν,γ(S)

)
= IEν,γ

(
g(S)

∫
h(y)Kγ(S, dy)

)
.

This shows that the kernel Kγ describes the conditional distribution of Y , given S, under the
measure IPν,γ .

Neyman’s construction of tests. Suppose we want to find a good level-α test of the null hy-
pothesis

Θo =
{

(ν, γ) : γ ≤ γo
}

for a given number γo ∈ Γ such that{
ν ∈ Rd : (ν, γo) ∈ Θ

}
= N.

To this end we fix any nuisance parameter νo and choose for any s ∈ Rd numbers kα(s) ∈ R and
γα(s) ∈ [0, 1] such that the test φα : Rd × R→ [0, 1] with

φα(s, y) :=


0 if y < kα(s)

γα(s) if y = kα(s)

1 if y > kα(s)

satisfies

IEνo,γo
(
φα(S, Y )

∣∣S) = α almost surely.

Then φα is a level-α test of Θo, and has a certain optimality property:

Theorem 9.9 (UMP unbiased tests). For given test level α ∈ (0, 1), let φα be the special test just
described. This test belongs to the class Φα of all tests φ : Rd × R→ [0, 1] such that

IEν,γ φ(S, Y )

{
≤ α if γ ≤ γo,
≥ α if γ > γo.

For arbitrary φ ∈ Φα and (ν, γ) ∈ Θ \Θo,

IEν,γ φα(S, Y ) ≥ IEν,γ φ(S, Y ).
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Proof of Theorem 9.9. With the stochastic kernels Kγ , γ ∈ Γ, and the Borel set C ⊂ Rd as in
Proposition 9.8, we may alter the set C if necessary such that∫

R
φα(s, y)Kγo(s, dy) = α for all s ∈ Rd \ C.

For any test φ : Rd × R→ [0, 1], its power

IEν,γ φ(S, Y ) =

∫
Ω
φ(S, Y ) exp

(
ν>S + γY − κ(ν, γ)

)
dM

is a continuous function of γ ∈ Γ(ν) for any fixed ν ∈ N ; see exercises. Here Γ(ν) denotes the
open interval

Γ(ν) := {γ ∈ R : (ν, γ) ∈ Θ} 3 γo.

If φ ∈ Φα, this implies that

IEν,γo φ(S, Y ) = α for arbitrary ν ∈ N.

We may also write

IEν,γ φ(S, Y ) = IEν,γ

(∫
R
φ(S, y)Kγ(S, dy)

)
.

But the restricted statistical experiment Eo :=
(
Ω,A, (IPν,γo)ν∈N

)
is an exponential family with

natural parametrization, because

d IPν,γo
dM

= exp
(
ν>S − κ(ν, γo)

)
exp(γoY ),

i.e. with the modified measure

Mo(dω) := exp(γoY (ω))M(dω)

we may write
d IPν,γo
dMo

= exp
(
ν>S − κ(ν, γo)

)
.

Since N is open, the corresponding family
(
Rd,Borel(Rd), (IPSν,γo)ν∈N

)
is complete, that means,

it follows from
α = IEν,γo

(∫
R
φ(S, y)Kγo(S, dy)

)
for all ν ∈ N

that ∫
R
φ(S, y)Kγo(S, dy) = α almost surely

under any measure IPν,γo , ν ∈ N . But our special construction of φα and Theorem 7.13 imply
that for γ > γo and s ∈ Rd \ C,∫

R
φ(s, y)Kγ(s, dy) ≤

∫
R
φα(s, y)Kγ(s, dy) whenever

∫
R
φ(s, y)Kγo(s, dy) ≤ α.

Thus for arbitrary (ν, γ) ∈ Θ with γ > γo,

IEν,γ φ(S, Y ) = IEν,γ

(∫
R
φ(S, y)Kγ(S, dy)

)
≤ IEν,γ

(∫
R
φα(S, y)Kγ(S, dy)

)
= IEν,γ φα(S, Y ).
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Example 9.10 (Fisher’s exact test and odds ratios). Suppose that (X1, Y1), . . . , (Xn, Yn) are in-
dependent, identically distributed random variables with values in {0, 1}×{0, 1} such that all four
probabilities

pxy := IP(X = x, Y = y), x, y ∈ {0, 1},

are strictly positive; here (X,Y ) denotes any of the n pairs (Xi, Yi). With the parameter p :=

(p00, p01, p10, p11), the “correlation” between X and Y may be quantified in terms of the odds
ratio

ρ = ρ(p) :=
p11p00

p01p10
=

odds(X = 1 |Y = 1)

odds(X = 1 |Y = 0)
=

odds(Y = 1 |X = 1)

odds(Y = 1 |X = 0)
.

Suppose we are only interested in ρ. To design good tests or confidence regions for ρ let us rewrite
the model as a suitable natural exponential family:

Viewing the Xi and Yi as random variables on Ω := ({0, 1} × {0, 1})n, equipped with counting
measure M , we obtain a statistical experiment with distributions IPp on Ω such that

log
d IPp
dM

= log
(
pH00

00 pH01
01 pH10

10 pH11
11

)
= H00 log p00 +H01 log p01 +H10 log p10 +H11 log p11

with the absolute frequencies

Hxy := #{i ≤ n : Xi = x, Yi = y}.

With the marginal frequencies

H+1 := H01 +H11 = #{i ≤ n : Yi = 1},

H1+ := H10 +H11 = #{i ≤ n : Xi = 1},

we may write H00 = n −H+1 −H1+ + H11, H01 = H+1 −H11, H10 = H1+ −H11, and this
leads to

log
d IPp
dM

= H+1 log
p01

p00
+H1+ log

p10

p00
+H11 log

p11p00

p01p10
+ n log p00.

With

ν = ν(p) :=
(

log
p01

p00
, log

p10

p00

)>
∈ R2,

γ = γ(p) := log
p11p00

p01p10
= log ρ ∈ R,

we may write [
p00 p01

p10 p11

]
= (1 + eν1 + eν2 + eν1+ν2+γ)−1

[
1 eν1

eν2 eν1+ν2+γ

]
.

In particular, for any choice of ν ∈ R2 and γ ∈ R there exists a probability vector p such that
ν = ν(p) and γ = γ(p). Moreover,

log
d IPp
dM

= ν>S + γY − κ(ν, γ)
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with

S := (H+1, H1+)>,

Y := H11,

κ(ν, γ) := −n log p00 = n log(1 + eν1 + eν2 + eν1+ν2+γ).

Consequently, if we want to construct tests or confidence regions for ρ, we should concentrate on
the conditional distribution of H11, given (H+1, H1+). For arbitrary integers s, z ≥ 0, it follows
from H+1 = s and H1+ = z that H11 has some value in{

max(0, s+ z − n), . . . ,min(s, z)
}
.

For any number k in the latter set,

IPp(H11 = k,H+1 = s,H1+ = z)

= IPp(H11 = k,H01 = s− k,H10 = z − k,H00 = n− s− z + k)

=
n!

k!(s− k)!(z − k)!(n− z − s+ k)!
pk11p

s−k
01 pz−k10 pn−z−s+k00

= n! ps01p
z
10p

n−z−s
00

ρk

k!(s− k)!(z − k)!(n− z − s+ k)!
.

Consequently,

IPp(H11 = k |H+1 = s,H1+ = z) =
IPp(H11 = k,H+1 = s,H1+ = z)∑
` IPp(H11 = `,H+1 = s,H1+ = z)

= C(n, s, z, ρ)−1 ρk

k!(s− k)!(z − k)!(n− z − s+ k)!

with

C(n, s, z, ρ) :=

min(s,z)∑
`=max(0,s+z−n)

ρ`

`!(s− `)!(z − `)!(n− z − s+ `)!
.

Alternatively one may write

IPp(H11 = k |H+1 = s,H1+ = z) = C̃(n, s, z, ρ)−1 Hypn,s,z({k}) ρk

with the hypergeometric distribution Hypn,s,z and

C̃(n, s, z, ρ) :=

min(s,z)∑
`=max(0,s+z−n)

Hypn,s,z({`}) ρ`.

In particular, if ρ = 1, the conditional distribution of H11, given H+1 = s and H1+ = z, equals
Hypn,s,z .

Example 9.11 (McNemar’s test). Traditionally, McNemar’s test is described in the context of
two-by-two tables as in the previous example. But it may be transferred to a more general setting:
Let X1, X2, . . . , Xn be independent and identically distributed random variables with values in
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a finite set X := {x1, x2, . . . , xK} with K ≥ 3 different elements. The parameter vector p =

(pk)
K
k=1 with pk := IP(X = xk) > 0 is unknown. Suppose we are mainly interested in the ratio

ρ = ρ(p) :=
p1

p2
.

To this end we consider the Xi as random variables on the finite set Ω := X n, equipped with
counting measure M . This leads to a statistical experiment with distributions IPp on Ω given by

log
d IPp
dM

= log
K∏
j=1

p
Hj
j =

K∑
j=1

Hj log(pj)

with the absolute frequencies

Hj := #{i ≤ n : Xi = xj}.

Since HK = n−
∑

j<K Hj , we may rewrite this as

log
d IPp
dM

=

K−1∑
j=1

Hj log(pj/pK) + n log(pK)

= H1 log
p1

p2
+ (H1 +H2) log

p2

pK
+

∑
2<j<K

Hj log
pj
pK

+ n log(pK).

With

ν = ν(p) :=
(

log
p`+1

pK

)K−2

`=1
∈ RK−2,

γ = γ(p) := log
p1

p2
= log ρ

we may write

p =
(eγ+ν1 , eν1 , . . . , eνK−2 , 1)>

eγ+ν1 + eν1 + · · ·+ eνK−2 + 1
.

In particular, for any choice of ν ∈ RK−2 and γ ∈ R there exists a probability vector p such that
ν = ν(p) and γ = γ(p). Moreover,

log
d IPp
dM

= ν>S + γY − κ(ν, γ)

with

S1 := H1 +H2,

S` := H`+1 for 2 ≤ ` ≤ K − 2,

Y := H1,

κ(ν, γ) := −n log(pK) = n log(eγ+ν1 + eν1 + · · ·+ eνK−2 + 1).

Consequently, if we want to construct tests or confidence regions for ρ, we should concentrate
on the conditional distribution of H1, given (H1 + H2, H3, . . . ,HK). For arbitrary integers
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m, s3, . . . , sK ≥ 0 with m+
∑K

j=3 sj = n and k ∈ {0, . . . ,m},

IPp(H1 = k,H1 +H2 = m,Hj = sj for j ≥ 3)

= IPp(H1 = k,H2 = m− k,Hj = sj for j ≥ 3)

=
n!

k!(m− k)!
∏
j≥3 sj !

pk1p
m−k
2

∏
j≥3

p
sj
j

=

(
m

k

)
πk(1− π)m−k

n!

m!
∏
j≥3 sj !

(p1 + p2)m
∏
j≥3

p
sj
j

with
π = π(p) :=

p1

p1 + p2
=

ρ

1 + ρ
∈ (0, 1).

Consequently, the conditional distribution of H1, given H1 +H2, H3, . . . ,HK , equals

Bin(H1 +H2, π) = Bin
(
H1 +H2,

ρ

1 + ρ

)
.

Any test or confidence region for π may be translated into a test or a confidence region for ρ via
the inverse transformation

ρ =
π

1− π
.

Example 9.12 (Comparing two Poisson parameters). Suppose we observe independent random
variables X ∼ Poiss(λ) and Y ∼ Poiss(µ) with unknown parameters λ, µ > 0. Suppose further
that we are mainly interested in the ratio ρ := λ/µ. With Ω := N0×N0,X(ω) := ω1, Y (ω) := ω2

and counting measure M on Ω, this situation corresponds to a statistical model with distributions
IPλ,µ given by

d IPλ,µ
dM

= e−λ
λX

X!
e−µ

µY

Y !
=

exp(X log λ+ Y logµ− λ− µ)

X!Y !
.

Replacing M with the measure Mo given by Mo({ω}) := (ω1!ω2!)−1 we may write

log
d IPλ,µ
dMo

= X log λ+ Y logµ− (λ+ µ)

= X log(λ/µ) + (X + Y ) logµ− (λ+ µ)

= ν(X + Y ) + γX − κ(ν, γ)

with

ν := logµ,

γ := log(λ/µ) = log ρ,

κ(ν, γ) := λ+ µ = exp(2ν + γ).

Consequently, for inference about ρ we should analyze the conditional distribution of X , given
X + Y . But for arbitrary integers m ≥ 0 and k ∈ {0, . . . ,m},

IPλ,µ(X = k,X + Y = m) = IPλ,µ(X = k) IPλ,µ(Y = m− k)

= e−(λ+µ) λkµm−k

k!(m− k)!

=

(
m

k

)
πk(1− π)m−k e−(λ+µ) (λ+ µ)m

m!

= Binm,π({k})Poissλ+µ({m})
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with

π :=
λ

λ+ µ
=

ρ

1 + ρ
∈ (0, 1).

This shows that the conditional distribution of X , given X + Y , is equal to

Bin(X + Y, π) = Bin
(
X + Y,

ρ

1 + ρ

)
.

Hence we may construct tests and confidence regions for π, and these translate into tests and
confidence regions for ρ via the inverse transformation ρ = π/(1− π).

Avoiding conditional distributions

In the previous examples we computed the conditional distribution of Y , given S, explicitly. In
various settings this step can be avoided by means of the following result:

Lemma 9.13 (Basú). Let E = (Ω,A, (IPθ)θ∈Θ) be a statistical experiment, and let S : (Ω,A)→
(Ω′,A′) be a sufficient statistic for E such that the experiment ES = (Ω′,A′, (IPSθ )θ∈Θ) is bound-
edly complete. If V : (Ω,A)→ (Ω′′,A′′) is a measurable mapping such that its distributions IPVθ ,
θ ∈ Θ, are identical, then S and V are stochastically independent under each measure IPθ, θ ∈ Θ.

Proof of Lemma 9.13. By sufficency of S there exists a stochastic kernel K from (Ω,A) to
(Ω′,A′) describing the conditional distribution ofX ∼ IPθ, given S, simultaneously for all θ ∈ Θ.
That means, for arbitrary A′ ∈ A′, A′′ ∈ A′′ and θ ∈ Θ,

IPθ(S ∈ A′, V ∈ A′′) = IEθ
(
IEθ(1A′(S)1A′′(V ) |S)

)
= IEθ

(
1A′(S) IPθ(V ∈ A′′ |S)

)
= IEθ

(
1A′(S)K(S, {V ∈ A′′})

)
.

Setting A′ = Ω′, we obtain the equation

IPθ(V ∈ A′′) = IEθK(S, {V ∈ A′′}).

By our assumption on V , the left hand side does not depend on θ ∈ Θ, and we denote this number
with P (V ∈ A′′). Hence f(s) := K(s, {V ∈ A′′})− P (V ∈ A′′) defines a bounded measurable
function on (Ω′,A′′) such that IEθ f(S) = 0 for all θ ∈ Θ. By completeness of ES ,

IPθ(f(S) 6= 0) = IPθ
(
K(S, {V ∈ A′′}) 6= P (V ∈ A′′)

)
= 0 for all θ ∈ Θ.

Hence for arbitrary A′ ∈ A′, A′′ ∈ A′′ and θ ∈ Θ,

IPθ(S ∈ A′, V ∈ A′′) = IEθ
(
1A′(S)K(S, {V ∈ A′′})

)
= IEθ

(
1A′(S)P (V ∈ A′′)

)
= IPθ(S ∈ A′)P (V ∈ A′′),

which proves stochastic independence of S and V under IPθ.
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Application to exponential families. Let E = (Ω,A, (IPθ)θ∈Θ) be a natural exponential family
as described at the beginning of this section with open and convex parameter space Θ = N ×Γ ⊂
Rd × R and sufficient statistic (S, Y ) ∈ Rd × R. Writing θ ∈ Θ as θ = (ν, γ), we know from
Neyman’s theory how to construct optimal unbiased level-α tests of the null hypotheses “γ ≤ γo”
or “γ ≥ γo” or “γ = γo” for any given value γo ∈ Γ.

Note that for the restricted experiment Eo = (Ω,A, (IPν,γo)ν∈N ) the statistic S is sufficient, and
the family ESo = (Rd,Borel(Rd), (IPSν,γo)ν∈N ) is complete. Suppose we can identify a real-valued
statistic

V = f(S, Y )

with the following two properties:

• V = f(S, Y ) is strictly increasing in Y almost surely,

• the distribution of V under IPν,γo does not depend on ν ∈ N .

Then optimal unbiased level-α tests of the null hypotheses above may be constructed in terms of
V and its unconditional distribution under IPν,γo , where ν ∈ N is arbitrary.

For instance if V has continuous distribution function Fγo in case of γ = γo, then the right-sided
p-value

1− Fγo(V )

yields an optimal unbiased level-α test of “γ ≤ γo”, whereas the left-sided p-value

Fγo(V )

is optimal for the null hypothesis “γ ≥ γo”.

Example 9.14 (Student’s t-test for a Gaussian mean). As in Example 9.3 we consider the statisti-
cal experiment E =

(
Rn,Borel(Rn), (N (µ, σ2)⊗n)(µ,σ)∈R×(0,∞)

)
. Suppose we want to construct

optimal unbiased level-α tests of “µ ≤ µo” or “µ ≥ µo” or “µ = µo”, where µo is a given fixed
number. In all three cases we have to deal with the nuisance parameter σ. With M denoting
Lebesgue measure on Rn times (2π)−n/2 and Xi(ω) := ωi, we may write

log
d IPµ,σ
dM

= −
n∑
i=1

(Xi − µ)2

2σ2
− n log σ

= −
n∑
i=1

(Xi − µo)2

2σ2
+
n(µ− µo)(X̄ − µo)

σ2
− n log σ

= νS + γY − κ(ν, γ),
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where

ν :=
−1

2σ2
∈ (−∞, 0),

γ = γ(µo) :=

√
n(µ− µo)
σ2

∈ R,

κ(ν, γ) := n log σ,

S = S(µo) :=
n∑
i=1

(Xi − µo)2,

Y = Y (µo) :=
√
n(X̄ − µo).

Hence an unbiased test of “µ ≤ µo” (or of “µ = µo”) may be identified with an unbiased test of
“γ ≤ 0” (or of “γ = 0”).

Instead of determining the conditional distribution of Y , given S, under IPµo,σ for some σ > 0

directly, we apply Basú’s lemma and recall student’s method from introductory statistics courses:
With the sample standard deviation

SX :=

√√√√ 1

n− 1

n∑
i=1

(Xi − X̄)2

it is well-known that

V = V (µo) :=

√
n(X̄ − µo)
SX

∼ tn−1

whenever µ = µo, irrespective of σ > 0. But

n∑
i=1

(Xi − X̄)2 =

n∑
i=1

(Xi − µo)2 − n(X̄ − µo)2 = S − Y 2,

so

V =

√
n− 1Y√
S − Y 2

,

which is monotone increasing in Y almost surely. (Note that S > 0 and Y 2 < S almost surely.)
Hence with Fn−1 denoting the distribution function of tn−1, the left-sided p-value

Fn−1(V (µo))

yields optimal unbiased tests of “µ ≥ µo”, the right-sided p-value

1− Fn−1(V (µo))

yields optimal unbiased tests of “µ ≤ µo”, and the traditional (1− α)-confidence interval[
X̄ ± SX√

n
tn−1;1−α/2

]
for µ is based on optimal unbiased level-α tests of one-point hypotheses “µ = µo”, µo ∈ R.
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Example 9.15 (Comparing two Gamma scale parameters). Suppose we observe independent ran-
dom variables

Y1 ∼ Gamma(a1, β1) and Y2 ∼ Gamma(a2, β2)

with given shape parameters a1, a2 > 0 and unknown scale parameters β1, β2 > 0. Suppose we
are mainly interested in the ratio

ρ = ρ(β) := β1/β2,

where β = (β1, β2) ∈ (0,∞) × (0,∞). With Ω := (0,∞)2, Lebesgue measure M on Ω and
Yi(ω) := ωi, this corresponds to the statistical model with distributions IPβ given by

d IPβ
dM

=
(Y1/β1)a1−1 exp(−Y1/β1)

Γ(a1)β1

(Y2/β2)a2−1 exp(−Y2/β2)

Γ(a2)β2
.

With the modified measure Mo given by

dMo

dM
:=

Y a1−1
1 Y a2−1

2

Γ(a1)Γ(a2)

we may write

log
d IPβ
dMo

=
−1

β1
Y1 +

−1

β2
Y2 − a1 log β1 − a2 log β2.

For a hypothetical value ρo of ρ we may rewrite the log-likelihood as

log
d IPβ
dMo

=
ρ− ρo
β2ρ

Y1/ρo +
−1

β2
(Y1/ρo + Y2)− a1 log β1 − a2 log β2

= νS + γY − κ(ν, γ)

with

ν = ν(β) :=
−1

β2
∈ (−∞, 0),

γ = γ(β, ρo) :=
ρ− ρo
β2ρ

∈ R,

S = S(ρo) := Y1/ρo + Y2,

Y = Y (ρo) := Y1/ρo

and the normalization constant κ(ν, γ) = a1 log β1 + a2 log β2. Note that (ν, γ) lies in the open
convex set {

(ν, γ) ∈ (−∞, 0)× R : γ < −ν
}
,

which contains (−∞, 0) × {0}. Hence optimal unbiased tests of the null hypothesis “ρ ≤ ρo” or
“ρ ≥ ρo” or “ρ = ρo” may be viewed as optimal unbiased tests of the null hypothesis “γ ≤ 0”
or “γ ≥ 0” or “γ = 0” and could be constructed with the conditional distribution of Y , given S,
under any distribution IPβ2ρo,β2 .

In case of ρ = ρo, the distribution of (Y1/ρo, Y2) coincides with the distribution of β2(Z1, Z2)

with independent random variables

Z1 ∼ Gamma(a1, 1) and Z2 ∼ Gamma(a2, 1).
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Then the test statistic
V (ρo) :=

Y (ρo)

S(ρo)
=

Y1/ρo
Y1/ρo + Y2

has the same distribution as
Z1

Z1 + Z2
∼ Beta(a1, a2),

irrespective of β2 = −1/ν. Thus by Basú’s lemmaor a direct argument, V (ρo) and S(ρo) are
stochastically independent in case of ρ = ρo, and optimal tests are obtained by comparing V (ρo)

with Beta(a1, a2).

Specifically, if we denote the u-quantile of Beta(a1, a2) with Betaa1,a2;u, then an optimal unbi-
ased level-α test of “ρ ≥ ρo” rejects this null hypothesis if

V (ρo) ≤ Betaa1,a2;α.

This leads to the (1− α)-confidence region

Cα(Y1, Y2) :=
{
ρo > 0 : V (ρo) > Betaa1,a2;α

}
=
{
ρo > 0 :

Y1

Y1 + ρoY2
> Betaa1,a2;α

}
=
(

0,
Y1

Y2

(
B−1
a1,a2;α − 1

))
.

for ρ. Analogously, an optimal unbiased level-α test of “ρ ≤ ρo” rejects this null hypothesis if

V (ρo) ≥ Betaa1,a2;1−α,

and this leads to the (1− α)-confidence region

Cα(Y1, Y2) :=
(Y1

Y2

(
B−1
a1,a2;1−α − 1

)
, ∞

)
.

for ρ.
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Chapter 10

Some Asymptotics

10.1 Testing, Total Variation and Hellinger Distances

Let P,Q be two probability distributions on a measurable space (Ω,A). In this section we in-
troduce statistically meaningful measures of distance between P and Q and establish connections
between them.

Testing affinity and distance. LetX be a random variable with unknown distribution in {P,Q}.
Now we consider a statistical test ϕ : Ω→ [0, 1] and interpret ϕ(X) as the probability of claiming
that X ∼ Q, whereas 1−ϕ(X) is the probability of claiming that X ∼ P . The quality of ϕ could
be measured by the risk

IP(error of 1st kind) + IP(error of 2nd kind) =

∫
ϕdP +

∫
(1− ϕ) dQ.

Hence a natural measure of similarity between P and Q is given by the testing affinity

ηT (P,Q) := inf
tests ϕ

(∫
ϕdP +

∫
(1− ϕ) dQ

)
.

As shown in the next lemma, the latter infimum is always a minimum.

Lemma 10.1 (Testing affinity and distance). Suppose that P and Q have densities f and g, re-
spectively, with respect to some measure M on (Ω,A). Then

ηT (P,Q) =

∫
min(f, g) dM.

The minimum is attained by any test ϕ such that ϕ = 0 on {f > g} and ϕ = 1 on {f < g}.

There exists always a measure M dominating both P and Q, and the testing affinity ηT (P,Q)

does not depend on the choice of M . The related quantity

DT (P,Q) := 1−
∫

min(f, g) dM =
1

2

∫
|f − g| dM

is the so-called testing distance between P and Q. It defines a metric on the space of probability
measures on (Ω,M) with values in [0, 1].
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Proof of Lemma 10.1. Note first that for any test ϕ,∫
ϕdP +

∫
(1− ϕ) dQ =

∫ (
ϕ(ω)f(ω) + (1− ϕ(ω))g(ω)

)
M(dω)

≥
∫

min
(
f(ω), g(ω)

)
M(dω)

with equality if

ϕ(ω) =

{
0 if f(ω) > g(ω),

1 if f(ω) < g(ω).

This proves already the first part of the lemma.

As to the second part, consider the particular measure Mo := P + Q. Then Mo(Ω) = 2 and
P (A) = Q(A) = 0 whenever Mo(A) = 0. Hence by the theorem of Radon–Nikodym there exist
densities fo and go of P and Q, respectively, with respect to Mo.

Now let M be an arbitrary measure such that f := dP/dM and g := dQ/dM exist. Then Mo has
density h := f + g with respect to M . Defining fo := f/h and go := g/h with the convention
0/0 := 0, we have∫

min(fo, go) dMo =

∫
min(f/h, g/h)h dM =

∫
min(f, g) dM.

This shows that the infimum in ηT (P,Q) is always a minimum, and its value does not depend on
the choice of M .

Since f, g ≥ min(f, g) ≥ 0, it is clear that 0 ≤
∫

min(f, g) dM ≤ 1. Moreover,

1− ηT (P,Q) =

∫ (f + g

2
−min(f, g

)
dM

=
1

2

∫ (
f + g − 2 min(f, g)

)
dM

=
1

2

∫ (
max(f, g)−min(f, g)

)
dM

=
1

2

∫
|f − g| dM.

Obviously this equals 0 if, and only if, f = g M -almost everywhere, which is equivalent to
P ≡ Q.

Finally, if P,Q,R are probability distributions on (Ω,A), we may assume that there exists a finite
measure M on (Ω,A) such that f = dQ/dM , g = dQ/dM and h = dR/dM exist. For instance,
M := P + Q + R would do the job. But then by the triangle inequality for the norm ‖ · ‖M,1 in
L1(M),

DT (P,R) =
‖f − h‖M,1

2
≤
‖f − g‖M,1 + ‖g − h‖M,1

2
= DT (P,Q) +DT (Q,R).
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Total variation distance. Another measure of distance is given by the total variation distance

DTV (P,Q) := sup
A∈A

∣∣P (A)−Q(A)
∣∣.

One could easily verify directly that this defines a metric on the space of probability measures on
(Ω,A). But the next lemma shows that DTV = DT .

Lemma 10.2. For arbitrary probability distributions P and Q on (Ω,A),

DTV (P,Q) = max
A∈A

(
P (A)−Q(A)

)
= max

B∈A

(
Q(B)− P (B)

)
= DT (P,Q).

If P and Q have densities f and g as in Lemma 10.1, then the latter two maxima are attained for
arbitrary sets A,B such that {f > g} ⊂ A ⊂ {f ≥ g} and {f < g} ⊂ B ⊂ {f ≤ g}.

Proof of Lemma 10.2. Since P (A)−Q(A) = Q(Ω \A)− P (Ω \A),

DTV (P,Q) = sup
A∈A

(
P (A)−Q(A)

)
= sup

B∈A

(
Q(B)− P (B)

)
.

In case of P and Q having densities f and g, respectively, with respect to some measure M on
(Ω,A),

P (A)−Q(A) =

∫
1A(f − g) dM ≤

∫
(f − g)+ dM

with equality if {f > g} ⊂ A ⊂ {f ≥ g}. Analogously,

Q(B)− P (B) ≤
∫

(g − f)+ dM =

∫
(f − g)− dM

with equality if {f < g} ⊂ B ⊂ {f ≤ g}. Consequently,

DTV (P,Q) =
1

2

∫ (
(f − g)+ + (f − g)−

)
dM =

1

2

∫
|f − g| dM = DT (P,Q).

Hellinger affinity and distance. In many situations it turns out that DT (P,Q) is difficult to
compute explicitly. As we shall see later, interesting proxys are given by the

Hellinger affinity ηH(P,Q) :=

∫ √
fg dM,

and

Hellinger distance DH(P,Q) :=

√
1

2

∫ (√
f −√g

)2
dM,

where M is some measure on (Ω,A) such that f := dP/dM and g := dQ/dM exist. As in case
of ηT (P,Q) and DT (P,Q), the choice of M is irrelevant. Note also that

DH(P,Q)2 =
1

2

∫ (
f + g − 2

√
fg
)
dM = 1− ηH(P,Q).

The following lemma shows that testing and Hellinger distance induce the same topology on the
space of probability distributions on (Ω,A).
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Lemma 10.3 (Relationships between testing and Hellinger distance).

1−
√

1− η2
H ≤ ηT ≤ ηH

and
D2
H ≤ DT ≤ DH

√
2−D2

H .

Proof of Lemma 10.3. With explicit densities f := dP/dM and g := dQ/dM it follows from
min(a, b) ≤

√
ab for real numbers a, b ≥ 0 that

ηT (P,Q) =

∫
min(f, g) dM ≤

∫ √
fg dM = ηH(P,Q).

In particular,

DT (P,Q) = 1− ηT (P,Q) ≥ 1− ηH(P,Q) = DH(P,Q)2.

As to the other bounds, it follows from a− b =
(√
a−
√
b
)(√

a+
√
b
)

for real numbers a, b ≥ 0

and the Cauchy–Schwarz inequality that

1− ηT (P,Q) = DT (P,Q) =
1

2

∫ ∣∣√f −√g∣∣∣∣√f +
√
g
∣∣ dM

≤ 1

2

√∫ (
f + g − 2

√
fg
)
dM

∫ (
f + g + 2

√
fg
)
dM

=
√

(1− ηH(P,Q))(1 + ηH(P,Q))

=

{√
1− ηH(P,Q)2,

DH(P,Q)
√

2−DH(P,Q)2.

This proves that

DT ≤ DH

√
2−D2

H and 1− ηT ≤
√

1− η2
H ,

where the latter inequality is equivalent to ηT ≥ 1−
√

1− η2
H .

Remark 10.4. As mentioned already, the formulae for ηT , DT , ηH and DH are independent of
the choice of the dominating measure M . Thus some authors write symbolically

ηT (P,Q) =

∫
min(dP, dQ),

DT (P,Q) =
1

2

∫
|dP − dQ|,

ηH(P,Q) =

∫ √
dP dQ,

DH(P,Q) =

√
1

2

∫ (√
dP −

√
dQ
)2
.

Remark 10.5. Let (Ω′,A′) be a second measurable space, and let τ : Ω→ Ω′ be a bijection such
that both τ and τ−1 are measurable. Then

κ(P,Q) = κ(P τ , Qτ ) for κ = ηT , DT , ηH , DH .

The proof of this claim is left to the reader as an exercise; see also Exercise 2.19.



179

Example 10.6 (Testing and Hellinger distance for univariate Gaussian shift). For real numbers
µ1, µ2 and σ > 0,

ηT
(
N (µ1, σ

2),N (µ2, σ
2)
)

= 2Φ
(
−|µ1 − µ2|

2σ

)
,

ηH
(
N (µ1, σ

2),N (µ2, σ
2)
)

= exp
(
− (µ1 − µ2)2

8σ2

)
,

where Φ is the standard Gaussian distribution function. Hence

DT

(
N (µ1, σ

2),N (µ2, σ
2)
)

= 2Φ
( |µ1 − µ2|

2σ

)
− 1,

DH

(
N (µ1, σ

2),N (µ2, σ
2)
)

=

√
1− exp

(
− (µ1 − µ2)2

8σ2

)
.

To verify these formulae, we first apply Remark 10.5 to the bijection τ : R → R with τ(x) :=

σ−1(x−min(µ1, µ2)). Then it suffices to verify the asserted formulae for the testing and Hellinger
affinity in case of P = N (0, 1) and Q = N (µ, 1), where

µ :=
|µ1 − µ2|

σ
.

But with C = (2π)−1/2 and φ(x) := C exp(−x2/2),

ηT
(
N (0, 1),N (µ, 1)

)
=

∫
min

(
φ(x), φ(x− µ)

)
dx

= C

∫
exp
(
−max(x2, (x− µ)2)

2

)
dx

= 2C

∫ µ/2

−∞
exp
(
− (x− µ)2

2

)
dx

= 2

∫ µ/2

−∞
φ(x− µ) dx

= 2Φ(−µ/2).

Moreover,

ηH
(
N (0, 1),N (µ, 1)

)
=

∫ √
φ(x)φ(x− µ) dx

= C

∫
exp
(
− x

2 + (x− µ)2

4

)
dx

= C

∫
exp
(
− x

2 − xµ+ µ2/2

2

)
dx

= C

∫
exp
(
− (x− µ/2)2 + µ2/4

2

)
dx

= exp(−µ2/8)

∫
φ(x− µ/2) dx

= exp(−µ2/8).

Exercise 10.7 (Hellinger distance for multivariate Gaussian shift). For any dimension d ≥ 1,
consider arbitrary vectors µ1, µ2 ∈ Rd and a symmetric, positive definite matrix Σ ∈ Rd×d. Show
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that

ηT
(
Nd(µ1,Σ),Nd(µ2,Σ)

)
= 2Φ

(
−
√

(µ2 − µ1)>Σ−1(µ2 − µ1)
/

2
)
,

ηH
(
Nd(µ1,Σ),Nd(µ2,Σ)

)
= exp

(
−(µ2 − µ1)>Σ−1(µ2 − µ1)/8

)
.

Hint: Consider the transformation τ(x) := Σ−1/2(x− µ1) of x ∈ Rd.

Exercise 10.8 (More about the relation between testing and Hellinger distance). (a) Show that
the inequalities

D2
H ≤ DT ≤ DH

√
2−D2

H

are equivalent to √
1−

√
1−D2

T ≤ DH ≤
√
DT .

(b) Visualize these two pairs of bounds graphically.

(c) Construct for any γ ∈ [0, 1] two distributions Pγ and Qγ on a suitable sample space (Ω,A)

such that DT (Pγ , Qγ) = D2
H(Pγ , Qγ) = γ.

Remark 10.9 (Product measures). For j = 1, 2, let Pj and Qj be probability measures on a
measurable space (Ωj ,Aj). Then

ηH(P1 ⊗ P2, Q1 ⊗Q2) = ηH(P1, Q1)ηH(P2, Q2).

For if dPj/dMj = fj and dQj/dMj = gj , then by Fubini’s theorem,

ηH(P1 ⊗ P2, Q1 ⊗Q2) =

∫
Ω1×Ω2

√
f1(ω1)f2(ω2)g1(ω1)g2(ω2)M1 ⊗M2(d(ω1, ω2))

=

∫
Ω1

√
f1g1 dM1

∫
Ω2

√
f2g2 dM2

= ηH(P1, Q1)ηH(P2, Q2).

Inductively this implies that

ηH(P⊗n, Q⊗n) = ηH(P,Q)n

for arbitrary integers n ≥ 1.

10.2 Asymptotics for Repeated Binary Experiments

Suppose we observe independent random variables X1, . . . , Xn with unknown distribution R ∈
{P,Q}, where P and Q are two different given probability distributions on (Ω,A). Then

DT (P⊗n, Q⊗n) ≥ DH(P⊗n, Q⊗n)2 = 1− ηH(P,Q)n

converges to 1 exponentially fast. That means, there exists a sequence of tests ϕn : Ωn → {0, 1}
such that

IEP ϕn(Xn) + IEQ(1− ϕn(Xn)) → 0,
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where Xn := (Xi)
n
i=1. Throughout this section, asymptotic statements are meant as n → ∞,

unless stated otherwise.

More interesting is the situation when P and Q depend on the sample size n. That means, for
each sample size n ≥ 1 we observeXn = (Xni)

n
i=1 with independent componentsXn1, . . . , Xnn

having unknown distribution Rn ∈ {Pn, Qn}, where Pn and Qn are different distributions on
(Ω,A). The question is, under which conditions on (Pn)n and (Qn)n the potential distributions
P⊗nn and Q⊗nn ofXn satisfy one of the following three conditions:

• The are (asymptotically) indistinguishable, i.e.

DT (P⊗nn , Q⊗nn ) → 0.

• They are (asymptotically) perfectly distinguishable, i.e.

DT (P⊗nn , Q⊗nn ) → 1.

• They are (asymptotically) “interesting” in the sense that

lim inf
n→∞

DT (P⊗nn , Q⊗nn ) > 0 and lim sup
n→∞

DT (P⊗nn , Q⊗nn ) < 1.

It follows from Lemma 10.3 and Exercise 10.8 (a) that the previous three scenarios are equivalent
to the analogous ones with DH or D2

H in place of DT . But note that

DH(P⊗nn , Q⊗nn )2 = 1− ηH(P⊗nn , Q⊗nn )

= 1− ηH(Pn, Qn)n

= 1−
(
1−DH(Pn, Qn)2

)n
,

and the subsequent Lemma 10.11 shows that

DH(P⊗nn , Q⊗nn )2 = 1− exp
(
−nDH(Pn, Qn)2

)
+O(n−1).

This implies the following results:

Lemma 10.10. (a) For a ∈ {0, 1}, the following two conditions are equivalent:

lim
n→∞

DT (P⊗nn , Q⊗nn ) = a,

lim
n→∞

nDH(Pn, Qn)2 =

{
∞ if a = 1,

0 if a = 0.

(b) As n → ∞, the distance DT (P⊗nn , Q⊗nn ) stays bounded away from 0 and 1 if and only if
nDH(Pn, Qn)2 stays bounded away from 0 and∞.

Lemma 10.11 (Ailam 1968). For arbitrary real numbers x ∈ [0, 1] and n ≥ 1,

0 ≤ e−nx − (1− x)n ≤ e−1n−1.
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Proof of Lemma 10.11. Since ey ≥ 1 + y for arbitrary y ∈ R, we know that

Hn(x) := e−nx − (1− x)n

satisfies the inequality
Hn(x) = (e−x)n − (1− x)n ≥ 0

for arbitrary x ∈ [0, 1]. Note also that Hn(0) = 0 and Hn(1) = e−n > 0. Moreover,

H ′n(x) = n(1− x)n−1 − ne−nx


≥ 0 if n = 1,

= 0 if n > 1 and x = 0,

< 0 if n > 1 and x = 1.

Hence
max
x∈[0,1]

H1(x) = H1(0) ≤ e−1.

For n > 1, any maximizer xn of Hn over [0, 1] has to satisfy 0 < xn < 1 and H ′n(xn) = 0, i.e.

(1− xn)n−1 = e−nxn .

Consequently,

max
x∈[0,1]

Hn(x) = Hn(xn) = e−nxn − (1− xn)e−nxn

= n−1 nxne
−nxn

≤ n−1 max
s≥0

se−s

= n−1e−1,

because elementary calculations show that se−s is maximized for s = 1.

Expansions of root-densities and log-likelihood ratios. Suppose that for some measure M on
(Ω,A) and arbitrary n ≥ 1, the densities

fn :=
dPn
dM

and gn :=
dQn
dM

exist. Suppose that these densities satisfy the following condition:

(C1) For some probability measure P on (Ω,A) with density f = dP/dM ,

fn → f in L1(M).

Furthermore, for some function h ∈ L2(M) with ‖h‖M,2 > 0,

hn :=
√
n
(√
gn −

√
fn
)
→ h in L2(M).

Here and throughout the sequel, Lr(M) is the space of all (equivalence classes of) measurable
functions functions h : Ω→ R such that ‖h‖M,r <∞, where

‖h‖M,r :=
(∫
|h|r dM

)1/r

for r ≥ 1. (Two functions h, h̃ are viewed as equivalent if M(h 6= h̃) = 0.)

Some first consequences of this condition:
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Lemma 10.12. Under Condition (C1),

nDH(Pn, Qn)2 → ‖h‖2M,2/2,

and
DT (P, Pn), DT (P,Qn), DT (Pn, Qn) → 0.

Proof of Lemma 10.12. The convergence of hn to h in L2(M) implies that

h2
n → h2 in L1(M),

because∫
|h2
n − h2| dM =

∫
|hn − h||hn + h| dM

≤ ‖hn − h‖M,2‖hn + h‖M,2 (Cauchy–Schwarz)

≤ ‖hn − h‖M,2

(
2‖h‖M,2 + ‖hn − h‖M,2

)
(triangle inequality)

→ 0.

In particular,
nDH(Pn, Qn)2 = ‖hn‖2M,2/2 → ‖h‖2M,2/2.

Note that fn → f inL1(M) is equivalent toDT (P, Pn)→ 0, and by Lemma 10.3,DT (Pn, Qn) ≤√
2DH(Pn, Qn)→ 0. Hence by the triangle inequality, DT (P,Qn)→ 0 as well.

For the next result we have to augment Condition (C1) by an additional one:

(C2) The functions f and h in (C1) satisfy

M(h 6= 0 = f) = 0.

Lemma 10.13. Suppose that Conditions (C1-2) are satisfied. Let (An)n be an arbitrary sequence
of events An ∈ A such that

min{Pn(An), Qn(An)} = O(n−1).

Then
n
∣∣Qn(An)− Pn(An)

∣∣ → 0.

Proof of Lemma 10.13. In terms of the densities fn and gn we may write

n
(
Qn(An)− Pn(An)

)
= n

∫
An

(gn − fn) dM

= n

∫
An

(√
gn −

√
fn
)(√

gn +
√
fn
)
dM

=


∫
An

hn
(
2
√
nfn + hn

)
dM,∫

An

hn
(
2
√
ngn − hn

)
dM.
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Consequently, by the Cauchy–Schwarz inequality,

n
∣∣Qn(An)− Pn(An)

∣∣ ≤ 2

√
nmin{Pn(An), Qn(An)}

∫
An

h2
n dM +

∫
An

h2
n dM.

Hence it suffices to show that ∫
An

h2
n dM → 0.

Since h2
n → h2 in L1(M), this is equivalent to∫

An

h2 dM → 0.

But it follows from Lemma 10.12 and the assumption that min{Pn(An), Qn(An)} = O(n−1) that
P (An)→ 0. Consequently, for any fixed C > 0,∫

An

h2 dM ≤
∫
{h2>Cf}

h2 dM + CP (An) →
∫
{h2>Cf}

h2 dM,

and
lim
C→∞

∫
{h2>Cf}

h2 dM =

∫
{h2>0=f}

h2 dM = 0

by dominated convergence and our assumption (C2) on f and h.

Implications for log-likelihood ratios. Now we consider again the random observation tuple
Xn = (Xni)

n
i=1 with independent components Xni having distribution Rn ∈ {Pn, Qn}. Optimal

tests of “Rn = Pn” versus “Rn = Qn” are based on the log-likelihood ratio

Λn := log
( dQ⊗nn
dM⊗n

(Xn)
/ dP⊗nn
dM⊗n

(Xn)
)

=
n∑
i=1

log
gn
fn

(Xni) ∈ [−∞,∞]

with the conventions that log(0) := −∞, log(∞) := ∞, a/0 := ∞ for a > 0 and 0/0 := 0.
Indeed, since Pn(fn > 0) = 1 = Qn(gn > 0), the random variable Λn is well-defined almost
surely, and

IPPn(Λn <∞) = 1, IPQn(Λn > −∞) = 1.

It may happen with strictly positive probability that Λn ∈ {−∞,∞}, but this probability con-
verges to 0. Here is a precise statement:

Theorem 10.14. Under condition (C),

Λn →L

N
(
−2‖h‖2M,2, 4‖h‖2M,2

)
if Rn = Pn for all n,

N
(
+2‖h‖2M,2, 4‖h‖2M,2

)
if Rn = Qn for all n.

In this result “→L” stands for convergence in distribution, meaning that for any fixed continuous
function J : [−∞,∞]→ R,

IE J(Λn) →

IE J(2‖h‖M,2Z − 2‖h‖2M,2) if Rn = Pn for all n

IE J(2‖h‖M,2Z + 2‖h‖2M,2) if Rn = Qn for all n
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with a random variable Z ∼ N (0, 1). Since the limiting distributions are continuous, and since

IP
(
2‖h‖M,2Z ∓ 2‖h‖2M,2 ≤ k

)
= Φ

(k ± 2‖h‖2M,2

2‖h‖M,2

)
,

Theorem 10.14 may be rephrased as follows: For arbitrary k ∈ R,

IP(Λn ≤ k) →


Φ
(k + 2‖h‖2M,2

2‖h‖M,2

)
if Rn = Pn for all n,

Φ
(k − 2‖h‖2M,2

2‖h‖M,2

)
if Rn = Qn for all n.

This implies the following result about optimal tests of “Rn = Pn” versus “Rn = Qn”:

Corollary 10.15. Let ϕn,α : Ωn → [0, 1] be an optimal level-α test of “Rn = Pn” versus
“Rn = Qn”. Then

IEQn ϕn,α(Xn) → Φ
(
Φ−1(α) + 2‖h‖M,2

)
.

Remark 10.16. Theorem 10.14 and Corollary 10.15 show that under Conditions (C1-2), testing
P⊗nn versus Q⊗nn is asymptotically as difficult as testing

N (0, 1) versus N (µ, 1),

where
µ := 2‖h‖M,2.

Indeed,
DH(P⊗nn , Q⊗nn )2 = 1− exp

(
−nDH(Pn, Qn)2

)
+O(n−1)

converges to

1− exp(−‖h‖2M,2/2) = 1− exp
(
−µ2/8

)
= DH

(
N (0, 1),N (µ, 1)

)2
.

Proof of Corollary 10.15. According to the Neyman–Pearson lemma, we may assume that for
some constant kn,α ∈ [−∞,∞),

ϕn,α(Xn) =

{
0 if Λn < kn,α,

1 if Λn > kn,α.

But for fixed k ∈ R,

IPPn(Λn > k) → 1− Φ
(k + 2‖h‖2M,2

2‖h‖M,2

)
.

The right hand side is strictly decreasing in k and equals α if, and only if, k is equal to

kα := −2‖h‖2M,2 + 2‖h‖M,2Φ−1(1− α).

Hence kn,α → kα, and IEQn ϕn,α(Xn) converges to

1− Φ
(kα − 2‖h‖2M,2

2‖h‖M,2

)
= 1− Φ

(
−2‖h‖M,2 + Φ−1(1− α)

)
= Φ

(
Φ−1(α) + 2‖h‖M,2

)
.
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Proof of Theorem 10.14. It suffices to consider the case (Rn)n = (Pn)n, because interchanging
the roles of (Pn)n and (Qn)n would result in replacing Λn with −Λn, and Condition (C) would
still be satisfied with −h in place of h.

Since
√
gn =

√
fn + hn/

√
n, we may write

Λn = 2
n∑
i=1

log

√
gn√
fn

(Xni) = 2
n∑
i=1

log
(

1 +
h̃n(Xni)√

n

)
with h̃n := hn/

√
fn ∈

[
−
√
n,∞

]
. It follows from the wellknown Taylor series of log(1 + y) for

y ∈ (−1, 1) that

log(1 + y) = y − y2

2
+ rem(y) with |rem(y)| ≤ |y|3

3(1− |y|)+

for arbitrary y ∈ [−1,∞). Consequently, with

Dn := max
1≤i≤n

|h̃n(Xni)|√
n

we obtain the expansion

(10.1) Λn =
2√
n

n∑
i=1

h̃n(Xni)−
1

n

n∑
i=1

h̃n(Xni)
2 + Remn

with

|Remn| ≤
2Dn

3(1−Dn)+
· 1

n

n∑
i=1

h̃n(Xni)
2.

Now we apply the Central Limit Theorem as formulated in Corollary A.24: Suppose we can show
that

√
n

∫
h̃n dPn → µ,(10.2) ∫
h̃2
n dPn → σ2,(10.3) ∫

h̃2
n1[h̃2n≥nε]

) dPn → 0 for any fixed ε > 0.(10.4)

Then

1√
n

n∑
i=1

h̃n(Xni) →L N (µ, σ2),
1

n

n∑
i=1

h̃n(Xni)
2 →p σ2, Dn →p 0.

These facts and (10.1) imply that

Λn →L N (2µ− σ2, 4σ2).

Consequently, it suffices to verify (10.2) with µ = −‖h‖2M,2/2, (10.3) with σ2 = ‖h‖2M,2 and
(10.4).
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As to (10.2),

√
n

∫
h̃n dPn = n

∫ √
gn −

√
fn√

fn
fn dM

= n

∫ (√
fngn − fn

)
dM

= n(ηH(Pn, Qn)− 1)

= −nDH(Pn, Qn)2

→ −‖h‖2M,2/2,

see Lemma 10.12. Concerning (10.3),∫
h̃2
n dPn =

∫
h2
n

fn
fn dM

=

∫
{fn>0}

h2
n dM

=

∫
{fn>0}

h2 dM + o(1)

=

∫
h2 dM −

∫
{fn=0}

h2 dM + o(1)

→ ‖h‖2M,2,

because An := {fn = 0} satisfies P (An) = Pn(An) + o(1) = o(1), see also the proof of
Lemma 10.13.

It remains to verify (10.4), that means, for any fixed ε > 0,∫
{h2n≥ε2nfn}

h2
n dM → 0.

Again, since h2
n → h2 in L1(M), it suffices to show that∫

{h2n≥ε2nfn}
h2 dM → 0,

and the left hand side is equal to∫ ∞
0

M(h2 > r and h2
n ≥ ε2nfn) dr ≤

∫ ∞
0

M(h2 > r) dr =

∫
h2 dM.

Consequently, by dominated convergence, it suffices to show that for any fixed r > 0,

M(h2 > r and h2
n ≥ ε2nfn) → 0.

Indeed, it follows from Markov’s inequality that for any fixed δ > 0,

M(h2 > r and h2
n ≥ ε2nfn)

≤ M
(
h2 > r and h2 + δ ≥ ε2n(f − δ)

)
+M(|h2

n − h2| ≥ δ) +M(|fn − f | ≥ δ)

≤ M
(
h2 > r and h2 + δ ≥ ε2n(f − δ)

)
+ δ−1‖h2

n − h2‖M,1 + δ−1‖fn − f‖M,1

→ M(h2 > r and f ≤ δ).

Letting δ ↓ 0, the right hand side converges to M(h2 > r and f = 0), and this equals 0 by
assumption (C2).
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10.3 Fisher Information

Consider a statistical experiment E = (Ω,A, (Pθ)θ∈Θ) with Θ being an open subset of Rd. Sup-
pose that each Pθ is given by a density fθ > 0 with respect to some measure M on (Ω,A) such
that for M -almost every ω ∈ Ω,

Θ 3 θ 7→ fθ(ω)

is continuously differentiable with gradient

ḟθ(ω) :=
(∂fθ(ω)

∂θi

)d
i=1
.

Assuming that for any θ ∈ Θ, each component of f−1/2
θ ḟθ belongs to L2(M), the matrix

J(θ) :=

∫
ḟθḟ
>
θ

fθ
dM

is well-defined and called the Fisher information (matrix) of E at θ.

Here is yet another interpretation of this matrix: Let λθ := log fθ. Then for M -almost every
ω ∈ Ω the mapping

Θ 3 θ 7→ λθ(ω)

is continuously differentiable with gradient

λ̇θ(ω) :=
( ḟθ
fθ

(ω)
)d
i=1
,

and
J(θ) =

∫
λ̇θλ̇

>
θ dPθ.

Let (θn)n be a sequence in Θ such that for fixed θ ∈ Θ and δ ∈ Rd,
√
n(θn − θ) → δ.

Then the densities fθn and fθ satisfy

√
n
(√

fθn −
√
fθ
)
→ hθ,δ :=

δ>ḟθ
2
√
fθ

almost everywhere. If in addition

(10.5) n

∫ (√
fθn −

√
fθ
)2
dM →

∫
h2
θ,δ dM,

then by Scheffé’s theorem, Condition (C) in the previous section is satisfied with Pθ in place of
Pn, Pθn in place of Qn and limit function h = hθ,δ. That means, testing P⊗nθ versus P⊗nθn is
asymptotically as difficult as testing N (0, 1) versus N (µ, 1) with

µ = 2‖h‖M,2 =
√
δ>J(θ)δ.

Condition (10.5) is satisfied, if

(10.6) ηH(Pθ, Pθ+δ) = 1− δ>J(θ)δ

8
+ o(‖δ‖2) as δ → 0.
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Definition 10.17 (Regular statistical experiment). A statistical experiment E = (Ω,A, (Pθ)θ∈Θ)

satisfying the conditions above is called regular statistical experiment.

Example 10.18 (Fisher information in natural exponential families). Suppose that

fθ = exp
(
θ>T − κ(θ)

)
for some measurable mapping T : (Ω,A) → Rd. Then the experiment E is regular: Obviously,
fθ > 0. As shown in the exercises, κ is infinitely often differentiable with

κ(θ + δ) = κ(θ) + δ> IEθ(T ) +
1

2
δ>Varθ(T )δ + o(‖δ‖2)

as δ → 0. In particular fθ(ω) is a smooth function of θ with

ḟθ = (T − IEθ(T ))fθ, λ̇θ = T − IEθ(T ),

so
J(θ) = Varθ(T ).

This matrix is positive definite for any θ ∈ Θ, unless MT is concentrated on some hyperplane in
Rd.

Condition (10.6) is satisfied, because

ηH(Pθ, Pθ+δ) = exp
(
κ(θ + δ/2)− κ(θ)/2− κ(θ + δ)/2

)
and

κ(θ + δ/2)− κ(θ)/2− κ(θ + δ)/2 =
δ>J(θ)δ

8
− δ>J(θ)δ

4
+ o(‖δ‖2)

= − δ
>J(θ)δ

8
+ o(‖δ‖2).

Remark 10.19 (Smooth transformations of parameters). Let E = (Ω,A, (Pθ)θ∈θ) be a regular
statistical experiment with Fisher information J(·), and let τ : Ψ→ Ω be a diffeomorphism from
another open set Ψ ⊂ Rd onto Θ. That means, τ is bijective and continuously differentiable with
nonsingular Jacobian matrix

Dτ(ψ) =
(τi(ψ)

∂ψj

)d
i,j=1

for any ψ ∈ Ψ.

Then the experiment Ẽ := (Ω,A, (P̃ψ)ψ∈Ψ) with P̃ψ := Pτ(ψ) is regular, too, and its Fisher
information J̃(·) is given by

J̃(ψ) = Dτ(ψ)>J(τ(ψ))Dτ(ψ).

This follows from the fact that P̃ψ has density fτ(ψ) with respect to M , and with θ = τ(ψ) the
chain rule implies that

∂f̃ψ(ω)

∂ψj
=

d∑
i=1

∂fθ(ω)

∂θi

∂τi(ψ)

∂ψj
=
(
Dτ(ψ)>ḟθ

)
j
.
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Moreover, as δ → 0,

∆ := τ(ψ + δ)− τ(ψ) = Dτ(ψ)δ + o(‖δ‖) = O(‖δ‖),

whence

ηH(P̃ψ+δ, P̃ψ) = ηH(Pθ+∆, Pθ)

= 1− ∆>J(θ)∆

8
+ o(‖∆‖2)

= 1− δ>Dτ(ψ)>J(θ)Dτ(ψ)δ

8
+ o(‖δ‖2).

Example 10.20 (Binomial distributions). We observe X ∼ Bin(n, p) with an unknown pa-
rameter p ∈ (0, 1). The natural parameter for the experiment

(
Bin(n, p)

)
p∈(0,1)

is given by
τ(p) := log(p/(1 − p)) with sufficient statistic T = X , and τ : (0, 1) → R is a diffeomor-
phism with τ ′(p) = (p(1− p))−1. Since Varp(X) = np(1− p), Fisher information at p is given
by J̃(p) = τ ′(p)2 Varp(X), i.e.

J̃(p) =
n

p(1− p)
.

Note that J̃(p) = Varp(p̂)
−1 with p̂ := X̄ , which is not a coincidence as explained later.

Example 10.21 (Poisson distributions). We observe X ∼ Poiss(λ) with an unknown parameter
λ > 0. The natural parameter for the experiment

(
Poiss(λ)

)
λ>0

is given by τ(λ) := log λ with
sufficient statistic T = X , and τ : (0,∞) → R is a diffeomrophism wit τ ′(λ) = λ−1. Since
Varλ(X) = λ, Fisher information at λ is given by J̃(λ) = τ ′(λ)2 Varλ(X), i.e.

J̃(λ) = λ−1.

Again J̃(λ) = Varλ(λ̂)−1 with λ̂ := X .

Implications for point estimation

With our results about testing in Section 10.2 one can prove various precision bounds for point
estimators. We present one particular result:

Theorem 10.22 (Asymptotic version of the Cramér–Rao bound). Let E = (Ω,A, (Pθ)θ∈Θ) be
a regular statistical experiment with Fisher information J(·). For each sample size n ≥ 1 let
θ̂n : Ωn → Rd be an estimator such that for a fixed θ ∈ Θ,

√
n(θ̂n(Xn)− θn) →L Nd(0,Σ(θ))

whenever θn = θ +O(n−1/2) andXn ∼ P⊗nθn . If J(θ) is positive definite, then

Σ(θ) ≥ J(θ)−1

in the sense that η>Σ(θ)η ≥ η>J(θ)−1η for arbitrary η ∈ Rd.
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Proof of Theorem 10.22. For a fixed vector δ ∈ Rd \ {0} define

θn := θ + n−1/2δ.

Then for any vector η ∈ Rd \ {0},

√
n(θ̂n(Xn)− θ)>η →L

N
(
0, η>Σ(θ)η

)
ifXn ∼ P⊗nθ ,

N
(
δ>η, η>Σ(θ)η

)
ifXn ∼ P⊗nθn ,

because
√
n(θ̂n − θ)>η =

√
n(θ̂n − θn)>η + δ>η.

Consequently,

ϕn :=

{
1
0

}
if
√
n(θ̂n − θ)>η√
η>Σ(θ)η

{
>
≤

}
Φ−1(1− α)

defines a test of P⊗nθ versus P⊗nθn such that

IEϕn(Xn) →


α ifXn ∼ P⊗nθ .

Φ
(

Φ−1(α) +
δ>η√
η>Σ(θ)η

)
ifXn ∼ P⊗nθn .

If we would replace ϕn with the optimal level-α test of P⊗nθ versus P⊗nθn , then the asymptotic
power under the alternative hypothesis would be

Φ
(
Φ−1(α) +

√
δJ(θ)δ

)
.

Consequently,
δ>η√
η>Σ(θ)η

≤
√
δ>J(θ)δ.

In other words, for arbitrary δ, η ∈ Rd \ {0},

δ>η ≤
√
η>Σ(θ)η

√
δ>J(θ)δ.

Setting δ = J(θ)−1η yields the inequality

η>J(θ)−1η ≤ η>Σ(θ)η

for arbitrary η ∈ Rd \ {0}.

Example 10.23 (Maximum-likelihood estimation in natural exponential families). Let E be a nat-
ural exponential family with sufficient statistic T : (Ω,A)→ Rd such thatMT is not concentrated
on a hyperplane in Rd. Let (θn)n be a sequence in Θ with limit θ ∈ Θ, and let Xn ∼ P⊗nθn . Then
the log-likelihood function

Ln = Ln(·,Xn) : Θ → R, Ln(θ) :=
n∑
i=1

log fθ(Xni)
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has the following property: With probability tending to 1, there exists a unique maximizer θ̂n =

θ̂n(Xn) of Ln, and

√
n(θ̂n − θn) → Nd(0, J(θ)−1) = Nd(0,Varθ(T )−1).

To verify these claims, note first that

Ln(θ) = n(T̄>n θ − κ(θ)
)

with T̄n := n−1
∑n

i=1 T (Xni), and thus

∇Ln(θ) = n(T̄n − IEθ(T )),

D2Ln(θ) = −nVarθ(T ).

This shows that Ln is strictly concave, whence Ln has a unique maximizer or no maximizer at all.

One can deduce from the multivariate version of Lindeberg’s Central Limit Theorem that

Zn :=
√
n(T̄n − IEθn(T )) →L Nd(0,Varθ(T )).

Now we introduce the localized log-likelihood function Hn : Rd → [−∞,∞) with

Hn(δ) := Ln(θn + n−1/2δ)− Ln(θn),

where Hn(δ) = −∞ if, and only if, κ(θn + n−1/2δ) = ∞. Then elementary calculations reveal
that

Hn(δ) = Z>n δ −
1

2
δ>Varθ(T )δ + Remn(δ)

where

sup
δ:‖δ‖≤C

|Remn(δ)| →p 0

for any fixed C > 0. From this one may deduce that with probability tending to one, Hn has a
unique maximizer given by

Varθ(T )−1Zn + op(1).

But this is equivalent to saying that with asymptotic probability 1, the unique maximizer θ̂n of Ln
exists and satisfies

√
n(θ̂n − θn) = Varθ(T )−1Zn + op(1).

In particular,
√
n(θ̂n − θn) →L Nd

(
0,Varθ(T )−1

)
because Zn →L Nd(0,Varθ(T )).

Example 10.24 (Maximum-likelihood estimation in smoothly parametrized exponential families).
Let Ẽ = (Ω,A, (P̃ψ)ψ∈Ψ) be an exponential family with sufficient statistic T : Ω → Rd, i.e. P̃ψ
has density

f̃ψ = exp
(
τ(ψ)>T − κ(τ(ψ))

)
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for some bijective mapping τ : Ψ→ Θ, where Ψ and Θ are open subsets of Rd, and

κ(θ) := log

∫
exp(θ>T ) dM.

Suppose further that τ is a diffeomorphism.

Now let (ψn)n be a sequence in Ψ with limit ψ ∈ Ψ, and letXn ∼ P̃ ⊗nψn
. Then the log-likelihood

function Ln = Ln(·,Xn) :=
∑n

i=1 log f̃ψ(Xni) has the following property: With asymptotic
probability 1, there exists a unique maximizer ψ̂n = ψ̂n(Xn) of Ln(·), and

√
n(ψ̂n − ψn) →L Nd

(
0, J̃(ψ)−1

)
with the Fisher information J̃(·) of Ẽ , i.e. J̃(ψ) = Dτ(ψ)>Varψ(T )Dτ(ψ).

With θn := τ(ψn) and θ := τ(ψ), it follows from Example 10.23 that with asymptotic probability
1 there exists a unique maximimum likelihood estimator θ̂n = θ̂n(Xn) for the experiment E =

(Ω,A, (Pθ)θ∈Θ) with Pτ(ψ) := P̃ψ such that

√
n(θ̂n − θn) →L Nd(0,Varψ(T )−1).

But then ψ̂n := τ−1(θ̂n) is a maximum likelihood estimator for Ẽ , and elementary calculus reveals
that

√
n(ψ̂n − ψn) = Dτ(ψ)−1√n(θ̂n − θn) + op(1)

→L Nd
(
0, Dτ(ψ)−1 Varψ(T )(Dτ(ψ)−1)>

)
= Nd

(
0, J̃(ψ)−1

)
.
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Appendix A

Auxiliary Results

A.1 Some Basics from Measure Theory

For reference in the main text, we collect some basic notions and results in this section; for a
thorough account of measure theory, we refer to the monograph of Bauer (2001). Throughout this
section let Ω be a nonvoid set, and let P(Ω) be the family of all subsets of Ω.

Fields, σ-fields, contents and measures

Definition A.1 (Field and σ-field). A family A ⊂ P(Ω) is called a field over Ω, if it satisfies the
following three conditions:

(F.1) ∅,Ω ∈ A.
(F.2) If A ∈ A, then Ω \A ∈ A.
(F.3) If A,B ∈ A, then A ∪B,A ∩B ∈ A.

A family A ⊂ P(Ω) is called a σ-field over Ω, if it satisfies (F.1-2) and the following condition:

(F.3)σ If A1, A2, A3, . . . ∈ A, then
⋃
n≥1An,

⋂
n≥1An ∈ A.

Remark A.2. If condition (F.2) is satisfied, then (F.1) is equivalent to Ω ∈ A, and in condi-
tions (F.3) and (F.3)σ it suffices to consider only the unions or only the intersections of sets in
A.

Definition A.3 (Content and measure). Let A be a field over Ω. A mapping M : A → [0,∞] is
called a content, if it satisfies the following two conditions:

(M.1) M(∅) = 0.
(M.2) M(A ∪B) = M(A) +M(B) for disjoint sets A,B ∈ A.

The mapping M is called a measure, if it satisfies (M.1) and the following condition:

(M.2)σ M
(⋃

n≥1An
)

=
∑

n≥1M(An) for pairwise disjoint sets A1, A2, A3, . . . in A such that⋃
n≥1An ∈ A.

A content or measure M is called finite if M(Ω) < ∞. In case of M(Ω) = 1, it is called
probability content or probability measure, respectively.
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Any measure is obviously a content. More interesting is the question under which additional
property a content is a measure.

Lemma A.4. A content M on a field A is a measure if and only if it satisfies the following
continuity property: If B1 ⊂ B2 ⊂ B3 ⊂ · · · are sets in A such that B :=

⋃
n≥1Bn ∈ A, then

M(B) = limn→∞M(Bn).

A finite content M on a field A is a measure if and only if limn→∞M(An) = 0 for arbitrary sets
A1 ⊃ A2 ⊃ A3 ⊃ · · · in A with

⋂
n≥1An = ∅.

Here is an important result about the extension of measures:

Theorem A.5 (Carathéodory). Let M be a finite measure on a field A over Ω, and let A∗ be the
smallest σ-field over Ω containing A. Then there exists a unique measure M∗ on A∗ such that
M∗(A) = M(A) for all A ∈ A.

Measurability and integrals

Measurability. Let (Ω,A) and (X ,B) be measurable spaces, that means, A is a σ-field over Ω,
and B is a σ-field over X . A mapping X : Ω→ X is called A-B-measurable if

X−1(B) := {ω ∈ Ω : X(ω) ∈ B} ∈ A for all B ∈ B.

Sometimes one abuses notation slightly and talks about a measurable function X : (Ω,A) →
(X ,B).

Suppose that B is generated by some family E ⊂ P(X ). That means, B = σ(E) is the smallest
σ-field containing E . Then X is A-B-measurable if and only if

X−1(E) ∈ A for all E ∈ E .

If it is clear from the context which σ-field B the set X is equipped with, one talks about a A-
measurable mapping X : Ω → X or a measurable mapping X : (Ω,A) → X . In particular, if
X is some interval in R̄ = [−∞,∞], then B is tacitly understood to be the Borel-σ-field, i.e. the
smallest σ-field containing all intervals in X .

If (fn)n≥1 is a sequence of A-measurable functions fn : Ω → R̄ which converges pointwise to a
function f : Ω→ R̄, then f is A-measurable as well.

Lebesgue integrals. Let M be a measure on a σ-field A over Ω. For an A-measurable function
f : Ω→ R̄, its integral with respect to M is defined as follows:

Case 1. Let G+ be the set of all functions f of the form f =
∑n

i=1 λi1Ai with n ∈ N, λi ∈ [0,∞)

and Ai ∈ A. For such a function we define∫
f dM :=

n∑
i=1

λiM(Ai).

One can show that this definition does not depend on the particular representation of f .
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Case 2. Let f : Ω→ [0,∞] be A-measurable. Then∫
f dM := sup

{∫
g dM : g ∈ G+, g ≤ f

}
.

Two important properties of this integral are: For A-measurable functions f, g : Ω→ [0,∞],∫
(af + bg) dM = a

∫
f dM + b

∫
g dM for arbitrary constants a, b ∈ [0,∞],

and ∫
f dM ≤

∫
g dM if f ≤ g.

Case 3. Let f : Ω → R̄ be A-measurable. We write f = f+ − f− with f± := max(±f, 0), so
|f | = f+ + f−. Then ∫

f dM :=

∫
f+ dM −

∫
f− dM,

provided that one of the two integrals
∫
f± dM is finite. Otherwise the integral

∫
f dM is not

defined. This definition implies that∣∣∣∫ f dM
∣∣∣ ≤ ∫

|f | dM.

Moreover,
∫
f dM is well-defined in R if and only if

∫
|f | dM is finite.

Sometimes it is useful to indicate arguments of the functions to be integrated, so we also write∫
f dM =

∫
f(ω)M(dω).

In addition, for sets A ∈ A one often writes∫
A
f dM :=

∫
1Af dM,

so
∫
f dM =

∫
Ω f dM .

Monotone convergence. If (fn)n≥1 is a sequence of A-measurable functions fn : Ω→ [0,∞],
and is fn ↑ f pointwise as n→∞, then

lim
n→∞

∫
fn dM =

∫
f dM.

Dominated convergence. Let (fn)n≥1 be a sequence of A-measurable functions fn : Ω → R̄
converging pointwise to a function f . Suppose that |fn| ≤ g for some A-measurable function
g : Ω→ [0,∞] such that

∫
g dM <∞. Then all integrals

∫
fn dM and

∫
f dM are well-defined

in R, and

lim
n→∞

∫
|fn − f | dM = 0, lim

n→∞

∫
fn dM =

∫
f dM.
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Scheffé’s theorem. Let (fn)n≥1 be a sequence of A-measurable functions fn : Ω → R̄ con-
verging pointwise to a function f . Suppose that

lim sup
n→∞

∫
|fn| dM ≤

∫
|f | dM < ∞.

Then the integrals
∫
fn dM and

∫
f dM are well-defined in R for sufficiently large n, and

lim
n→∞

∫
|fn − f | dM = 0, lim

n→∞

∫
fn dM =

∫
f dM.

Dynkin systems

To verify measurability of certain functions or identity of two measures, the following type of set
families is very useful.

Definition A.6 (Dynkin system). A family D of subsets of Ω is called a Dynkin system over Ω if
the following three conditions are satisfied:

(D.1) Ω ∈ D.
(D.2) If A ∈ D, then Ω \A ∈ D.
(D.3) If A1, A2, A3, . . . are pairwise disjoint sets in D, then

⋃
n≥1An ∈ D.

Remark A.7. Conditions (D.1–3) are equivalent to the following three conditions:

(D’.1) Ω ∈ D.
(D’.2) If A,B ∈ D with A ⊂ B, then B \A ∈ D;
(D’.3) If B1 ⊂ B2 ⊂ B3 ⊂ · · · are sets in D, then

⋃
n≥1Bn ∈ D.

Remark A.8. Let D be a Dynkin system over Ω. Then D is a σ-field over Ω if and only if it is
closed under (finite) intersections, that means, A ∩B ∈ D for arbitrary A,B ∈ D.

Recall also the following well-known fact about Dynkin systems.

Theorem A.9 (Dynkin). Let E be an arbitrary family of subsets of Ω. There exists a smallest
Dynkin system D(E) over Ω such that E ⊂ D(E). If E is closed under (finite) intersections, then
the Dynkin system D(E) coincides with the smallest σ-field σ(E) containing E .

A classical application of Dynkin systems is the following result about uniqueness of measures.

Theorem A.10 (Dynkin). Suppose that P and Q are probability measures on (Ω,A), whereA =

σ(E) for some family E ⊂ P(Ω). Suppose further that P ≡ Q on E . If E is closed under (finite)
intersections, then Q ≡ P on A.

Proof of Theorem A.10. One can easily verify that D :=
{
A ∈ A : P (A) = Q(A)} defines

a Dynkin system containing E . Thus D(E) ⊂ D ⊂ A. But ∩-stability of E implies that D(E)

coincides with σ(E) = A, see Theorem A.9. Hence, D = A.

Exercise A.11. Let Ω = {1, 2, 3, 4}, and let E =
{
{1, 2}, {1, 4}

}
.

(a) Show that σ(E) = P(Ω).
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(b) Determine D(E).

(c) Find two different probability measures P,Q on P(Ω) such that P ≡ Q on D(E).

A.2 Two Compactness Properties of Statistical Tests

Let M be a σ-finite measure on a measurable space (Ω,A). Further, let F be the set of all A-
measurable functions f : Ω → R with

∫
|f | dM < ∞, and let T be the set of all A-measurable

functions ϕ : Ω→ [0, 1]. Then the set T satisfies the following compactness condition:

Theorem A.12 (Weak compactness of T ). The set{(∫
ϕf dM

)
f∈F

: ϕ ∈ T
}

is a convex and compact subset of RF , where the latter set is equipped with the usual product
topology.

The set RF is the set of all tuples (xf )f∈F with components xf ∈ R. The product topology on this
set is the smallest topology such that the mapping RF 3 x 7→ xf ∈ R is continuous for arbitrary
f ∈ F .

Exercise A.13. The proof of Theorem A.12 relies on Tikhonov’s theorem, hence on the axiom
of choice. Prove a simpler result without this tool in the special case of a countable set Ω and M
being the counting measure on Ω: For arbitrary m ∈ N and functions f1, . . . , fm ∈ L1(M), the
set {(∫

ϕfj dM
)m
j=1

: ϕ ∈ T
}

is a convex and compact subset of Rm.

Proof of Theorem A.12. Writing f ∈ F as f+ − f− with f± := max(±f, 0), we know that∫
ϕf dM ∈ Kf :=

[
−
∫
f− dM,

∫
f+ dM

]
for any ϕ ∈ T and f ∈ F . Hence,

K∗ :=
{(∫

ϕf dM
)
f∈F

: ϕ ∈ T
}

is a subset of

K :=
{
x ∈ RF : xf ∈ Kf for all f ∈ F

}
.

Since each Kf , f ∈ F , is a compact interval, it follows from Tikhonov’s theorem that K is a
compact subset of RF .

Linearity of integrals implies that K∗ is a subset of

Ko :=
{
x ∈ K : f 7→ xf is linear

}
.
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That means, Ko consists of all tuples x ∈ K such that for arbitrary f, g ∈ F and λ ∈ R,

xλf = λxf ,

xf+g = xf + xg.

Note that each of the previous two constraints defines a closed subset of RF . Hence the set Ko is
a closed subset of K, i.e. it is compact. Moreover, one can easily verify that Ko is convex.

Now the assertion of Theorem A.12 is true if we can show that K∗ = Ko. That means, we
have to show that for any fixed x ∈ Ko there exists a test ϕ ∈ T such that xf =

∫
ϕf dM for

arbitrary f ∈ F . Indeed, it follows from linearity of f 7→ xf and the inclusion xf ∈ Kf for all
f ∈ F that f 7→ xf defines a continuous linear functional on L1(M), equipped with the seminorm
‖f‖ :=

∫
|f | dM . Consequently, by Theorem 2.29, there exists a bounded measurable function

ϕ : Ω → R such that xf =
∫
fϕ dM for all f ∈ F . In particular, since 0 ≤ x1A =

∫
A ϕdM ≤

M(A) for all A ∈ A, the function ϕ satisfies M({ϕ < 0} ∪ {ϕ > 1}) = 0. Hence, we may
assume that ϕ ∈ T .

The next results establishes a sequential compactness property of T . Its proof is constructive in
the sense that it does not use the axiom of choice.

Theorem A.14 (Weak sequential compactness of T ). Let (ϕn)n≥1 be a sequence in T . Then
there exist a subsequence (ϕn(k))k≥1 and a test ϕ ∈ T such that

lim
k→∞

∫
ϕn(k)f dM =

∫
ϕf dM for any f ∈ F .

Proof of Theorem A.14. As in the proof of Theorem A.12, one can reduce the claim to the case
of a probability measure M . Let Ao be the σ-field generated by the tests ϕn, n ≥ 1. This sub-
σ-field of A has a countable generator, for instance, the family of all sets {ϕn ≤ q}, n ∈ N,
q ∈ Q. Consequently, there exists a countable fieldAoo of Ω such thatAo = σ(Aoo). By Cantor’s
diagonalisation trick, there exists a subsequence (ϕn(k))k≥1 such that

L(1Aoo) := lim
k→∞

∫
ϕn(k)1Aoo dM

exists for all Aoo ∈ Aoo.

Let F∗ be the set of all f ∈ F such that the limit

L(f) := lim
k→∞

∫
ϕn(k)f dM

exists. One can easily verify that F∗ is a linear subspace of F , and L is continuous on F∗ with
respect to the seminorm f 7→ ‖f‖ :=

∫
|f | dM . Precisely, for any f ∈ F and n ≥ 1,

−
∫
f− dM ≤

∫
ϕnf dM ≤

∫
f+ dM,

and thus,

(A.1) −
∫
f− dM ≤ L(f) ≤

∫
f+ dM for all f ∈ F∗.
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The space F∗ is also closed with respect to ‖ · ‖. For if (f`)`≥1 is a sequence in F∗ with limit
f ∈ F , then for any fixed ` ≥ 1,

lim sup
k,k′→∞

∣∣∣ ∫ ϕn(k)f dM −
∫
ϕn(k′)f dM

∣∣∣
≤ 2‖f − f`‖+ lim sup

k,k′→∞

∣∣∣ ∫ ϕn(k)f` dM −
∫
ϕn(k′)f` dM

∣∣∣ = 2‖f − f`‖,

and the right hand side tends to 0 as ` → ∞. Consequently,
(∫
ϕn(k)f dM

)
k≥1

is a Cauchy
sequence in R.

The space F∗ contains all indicator functions 1Aoo , Aoo ∈ Aoo, and the linear span of the latter
functions is dense in L1(M |Ao) with respect to ‖·‖. Thus, F∗ contains all functions in L1(M |Ao).
But for an arbitrary function f ∈ F and its conditional expectation fo := IE(f | Ao) with respect
to the probability measure M , ∫

ϕnf dM =

∫
ϕnfo dM

for all n ≥ 1, so F∗ = F .

It follows from (A.1) that L is a continuous linear functional on L1(M), so Theorem 2.29 implies
the existence of a bounded measurable function ϕ : Ω → R such that L(f) =

∫
fϕ dM for all

f ∈ F . In particular, since 0 ≤ L(1A) =
∫
A ϕdM ≤ M(A) for all A ∈ A, the function ϕ

satisfies M({ϕ < 0} ∪ {ϕ > 1}) = 0. Hence, we may assume that ϕ ∈ T .

A.3 Uniqueness of Moment-Generating Functions

In the context of completeness of statistical experiments and exponential families we utilize a
classical result from measure theory.

Theorem A.15. Let M be a measure on Rd, and let f : Rd → R be a measurable function such
that ∫

Rd
exp(u>x)f(x)M(dx) = 0

for all u in a nonempty open set U ⊂ Rd. Then

M(f 6= 0) = 0.

Proof of Theorem A.15. Suppose first that 0 ∈ Rd is an interior point of U . Then for some ε > 0,

L(u) :=

∫
exp(u>x)f(x)M(dx) = 0 for all u ∈ (−ε, ε)d.

One can easily verify that L(u) is well-defined in C for all complex vectors

u ∈ Udo with Uo := {z ∈ C : −ε < Re z < ε}.

Moreover, for any given index j ∈ {1, . . . , d}, L(u) is a holomorphic (i.e. complex differentiable)
function of uj ∈ Uo while (uk)k 6=j is fixed; see Exercise A.16. But it is well-known from complex
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analysis that a holomorphic function H : Uo → C with H ≡ 0 on (−ε, ε) satisfies H ≡ 0 on Uo.
Consequently, we may conclude inductively for j = 1, 2, . . . , d that

L ≡ 0 on (−ε, ε)d whence L ≡ 0 on Uo × (−ε, ε)d−1

whence L ≡ 0 on U2
o × (−ε, ε)d−2

. . .

whence L ≡ 0 on Udo .

Since {iy : y ∈ Rd} ⊂ Udo (with i =
√
−1), the latter equality for L implies that∫

exp(iy>x)f+(x)M(dx) =

∫
exp(iy>x)f−(x)M(dx) for all y ∈ Rd.

That means, the characteristic functions of the finite measures Q+ and Q−, where

Q±(A) :=

∫
A
f± dM,

are identical. But a finite measure is uniquely determined by its characteristic function, so Q+ ≡
Q−. In particular, Q±(Rd) = Q±(f± > 0) = Q∓(f± > 0) = 0, and this implies that M(f 6=
0) = 0.

In case of a general open set U , let uo be an interior point of U . Then V := U − uo is an open
neighborhood of 0, and with g(x) := exp(u>o x)f(x) the assumption reads∫

exp(v>x)g(x)M(dx) = 0 for all v ∈ V.

But then the previous considerations show that M(f 6= 0) = M(g 6= 0) = 0.

Exercise A.16. Let (Ω,A,M) be a measure space, g : (Ω,A) → C and T : (Ω,A) → R be
measurable, and suppose that for real numbers a < b,∫

|g| exp(cT ) dM <∞ for c = a, b.

Show that

f(z) :=

∫
g exp(zT ) dM

defines a holomorphic function on {z ∈ C : a < Re(z) < b}.

A.4 Hoeffding’s Decomposition

Hoeffding’s decomposition is a generalization of Hájek’s projection as described in Lemma 8.38.
The setting is the same, we consider a probability space (Ω,A, IP) with stochastically indepen-
dent random variables X1, . . . , Xn with values in (X1,B1), . . . , (Xn,Bn), respectively. Now we
consider the Hilbert space H of all random variables Y ∈ L2(IP) which are a measurable function
of the random tuple X := (X1, . . . , Xn) with values in X := X1 × · · · × Xn.
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For any nonvoid setK ⊂ {1, . . . , n} let HK be the subspace of all random variables Y ∈ H which
are a measurable function of

XK := (Xi)i∈K ,

and let H∅ be the subspace of all constant random variables. In particular, H = H{1,...,n}. The
orthogonal projection of H onto HK is given by ΠK with

ΠKY :=

{
IE(Y ) if K = ∅
IE(Y |XK) else

for Y ∈ H. Strictly speaking, we should write IE(Y |σ(XK)), but IE(Y |XK) is more convenient
and intuitive. One treats XK temporarily as a fixed tuple, and if Y = f(XK , XL) with L =

{1, . . . , n} \K, then

IE(Y |XK) =

∫
f(XK , z)PL(dz),

where PL denotes the distribution of XL.

A key property of these projections ΠK is that

(A.2) ΠJΠK = ΠJ∩K for arbitrary J,K ⊂ {1, . . . , n}.

This can be easily derived from Fubini’s theorem. In particular, ΠJΠK = ΠKΠJ . Now we define

Πo
K :=

∑
I⊂K

(−1)#(K\I)ΠI .

The next result shows that Πo
K describes an orthogonal projection, too. And the corresponding

subspaces Πo
KH, K ⊂ {1, . . . , n}, comprise a decomposition of H into pairwise orthogonal sub-

spaces.

Theorem A.17. (a) For arbitrary sets K ⊂ {1, . . . , n}.

ΠK =
∑
J⊂K

Πo
J .

In particular, the identity operator I may be written as

I =
∑

K⊂{1,...,n}

Πo
K .

(b) For arbitrary sets J,K ∈ {1, . . . , n},

Πo
JΠK = ΠKΠo

J = 1[J⊂K]Π
o
J ,

and
Πo
JΠo

K = 1[J=K]Π
o
J .

(c) Each operator Πo
K describes the orthogonal projection of H onto the linear space

Ho
K := HK ∩

(∑
J(K

HJ

)⊥
.

These spaces Ho
K , K ⊂ {1, . . . , n}, are pairwise orthogonal.
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Corollary A.18 (Hoeffding’s decomposition). Any random variable Y ∈ H can be written as

Y =
∑

K⊂{1,...,n}

Πo
KY,

and the random variables Πo
KY , K ⊂ {1, . . . , n}, are uncorrelated with Πo

∅Y ≡ IE(Y ) and
IE(Πo

KY ) = 0 if K 6= ∅.

For an additional random variable Z ∈ H,

IE(Y Z) =
∑

K⊂{1,...,n}

IE(Πo
KY Πo

KZ).

This corollary follows essentially from Theorem A.17, except for the statements about Πo
∅Y and

IE(Πo
KY ). But Ho

∅ = H∅ is the space of constants, so Πo
∅Y = Π∅Y ≡ IE(Y ), and for any

nonempty set K ⊂ {1, . . . , n}, it follows from Ho
K ⊥ H∅ that IE(Πo

KY ) = 〈Πo
KY, 1〉 = 0.

Example A.19 (The case n = 2). Suppose that Y = f(X1, X2). Then the Hoeffding decompo-
sition of Y reads

Y − IE(Y ) = fo1 (X1) + fo2 (X2) + fo12(X1, X2).

The three summands on the right hand side are given by

fo1 (x1) := IE f(x1, X2)− IE(Y ), fo2 (x2) := IE f(X1, x2)− IE(Y )

and

fo12(x1, x2) := f(x1, x2)− IE f(x1, X2)− IE f(X1, x2) + IE(Y ).

Moreover, for arbitrary random variables g1(X1) and g2(X2) in L2(IP),

IE
(
fo1 (X1)g2(X2)

)
= 0 = IE

(
fo12(X1, X2)g2(X2)

)
and

IE
(
fo2 (X2)g1(X1)

)
= 0 = IE

(
fo12(X1, X2)g1(X1)

)
.

In particular, the random variables fo1 (X1), fo2 (X2) and fo12(X1, X2) are centered and uncorre-
lated.

Proof of Theorem A.17. We start with a simple combinatorial fact. For any finite set S,

(A.3)
∑
L⊂S

(−1)#L = 1[S=∅].

This follows essentially from the binomial formula, for

∑
L⊂S

(−1)#L =

#S∑
`=0

#{L ⊂ S : #L = `}(−1)`

=

#S∑
`=0

(
#S

`

)
(−1)`(+1)#S−` = (1− 1)#S = 1[S=∅].
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As to part (a), by definition of Πo
K and formula (A.3),∑

J⊂K
Πo
J =

∑
J⊂K

∑
I⊂J

(−1)#(J\I)ΠI

=
∑
I⊂K

( ∑
J⊂K:I⊂J

(−1)#(J\I)
)

ΠI

=
∑
I⊂K

( ∑
L⊂K\I

(−1)#L
)

ΠI =
∑
I⊂K

1[K\I=∅]ΠI = ΠK .

As to part (b), it follows from (A.2) that

Πo
JΠK

ΠKΠo
J

}
=
∑
I⊂J

(−1)#(J\I)ΠI∩K

=
∑

Ĩ⊂J∩K

∑
L⊂J\K

(−1)#(J\(Ĩ∪L))ΠĨ

=
∑

Ĩ⊂J∩K

(−1)#(J\Ĩ)
( ∑
L⊂J\K

(−1)−#L
)

ΠĨ

=
∑

Ĩ⊂J∩K

(−1)#(J\Ĩ)1[J⊂K]ΠĨ = 1[J⊂K]

∑
Ĩ⊂J

(−1)#(J\Ĩ)ΠĨ = 1[J⊂K]Π
o
J ,

where the second to last step follows from (−1)−#L = (−1)#L and formula (A.3). This proves
the first identities of part (b), and the second one follows from

Πo
JΠo

K =
∑
I⊂K

(−1)#(K\I)Πo
JΠI

=
∑
I⊂K

(−1)#(K\I)1[J⊂I]Π
o
J

= 1[J⊂K]

( ∑
I⊂K:J⊂I

(−1)#(K\I)
)

Πo
J

= 1[J⊂K]

( ∑
L⊂K\J

(−1)#L
)

Πo
J = 1[J⊂K]1[K⊂J ]Π

o
J = 1[J=K]Π

o
J .

It remains to prove part (c). As shown in Exercise A.20, a linear operator Π : H→ H describes an
orthogonal projection if and only if it satisfies Π2 = Π and is self-adjoint, that means 〈ΠY, Z〉 =

〈Y,ΠZ〉 for all Y, Z ∈ H. By definition, all operators ΠJ , J ⊂ {1, . . . , n}, have these properties,
so Πo

K , being a linear combination of self-adjoint operators, is self-adjoint, too. Moreover, it
follows from part (b) that Πo

KΠo
K = Πo

K , whence Πo
K describes the orthogonal projection of H

onto some linear subspace Ho
K . The subspaces Ho

K , K ⊂ {1, . . . , n}, are pairwise orthogonal,
because for different index sets J,K and Y ∈ Ho

J , Z ∈ Ho
K ,

〈Y, Z〉 = 〈Πo
JY,Π

o
KZ〉 = 〈Y,Πo

JΠo
KZ〉 = 〈Y, 0〉 = 0.

Finally, by part (a), for any K ⊂ {1, . . . , n},

HK =
∑
J⊂K

Ho
J = Ho

K +
∑
J(K

Ho
J ,
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so Ho
K equals

HK ∩
(∑
J(K

Ho
J

)⊥
.

But HI ⊂ HJ for I ⊂ J , so Ho
J ⊂ HJ , whence∑

J(K
Ho
J ⊂

∑
J(K

HJ .

On the other hand, for any fixed J̃ ( K,∑
J(K

Ho
J ⊃

∑
J⊂J̃

Ho
J = HJ̃ ,

so ∑
J(K

Ho
J ⊃

∑
J(K

HJ .

Consequently, ∑
J(K

Ho
J =

∑
J(K

HJ ,

and this leads to the asserted representation of Ho
K .

Exercise A.20 (Projections and orthogonal projections). Let (H, 〈·, ·〉) be a real Hilbert space,
and let Π : H→ H be a linear mapping which is idempotent, that means, Π2 = Π.

(a) Show that there exist linear subspaces H1,H2 of H such that H1 ∩H2 = {0}, H1 + H2 = H
and

Πx =

{
x if x ∈ H1,

0 if x ∈ H2.

Hint: Write x ∈ H as x = x1 + x2 with x1 = Πx and x2 = x−Πx.

(b) Show that H1 ⊥ H2 if and only if Π is self-adjoint, that means, 〈Πx, y〉 = 〈x,Πy〉 for all
x, y ∈ H. In this case, Π is the orthogonal projection onto H1

Exercise A.21. Let (H, 〈·, ·〉) be a real Hilbert space, and let Π1,Π2 be orthogonal projections
onto subspaces H1 and H2, respectively. Further let Π0 be the orthogonal projection onto H0 :=

H1 ∩H2. Show that the following three statements are equivalent:

(i) H1 ∩H⊥0 ⊥ H2 ∩H⊥0 .

(ii) Π1Π2 = Π0.

(iii) Π1Π2 = Π2Π1.

A.5 Weak Law of Large Numbers and Central Limit Theorem

In connection with asymptotic considerations, the subsequent versions of the Weak Law of Large
Numbers and Lindeberg’s Central Limit Theorem are rather useful. Throughout this section
asymptotic statements refer to n→∞, unless specified differently.
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Theorem A.22 (WLLN). For any integer n ≥ 1 let Yn1, Yn2, . . . , Ynn be independent random
variables such that

n∑
i=1

IE |Yni| = O(1),

n∑
i=1

IE
(
1[|Yni|>ε]|Yni|

)
→ 0 for any fixed ε > 0.

Then with µni := IE(Yni),

IE
∣∣∣ n∑
i=1

(Yni − µni)
∣∣∣ → 0 and IE max

1≤i≤n
|Yni| → 0.

Theorem A.23 (CLT). For any integer n ≥ 1 let Yn1, Yn2, . . . , Ynn be independent random vari-
ables such that for some real numbers µ and σ > 0,

n∑
i=1

IE(Yni) → µ and
n∑
i=1

| IE(Yni)| = O(1),

n∑
i=1

IE(Y 2
ni) → σ2,

n∑
i=1

IE
(
1[Y 2

ni>ε]
Y 2
ni

)
→ 0 for any fixed ε > 0.

Then
n∑
i=1

Yni →L N (µ, σ2)

and

IE
∣∣∣ n∑
i=1

Y 2
ni − σ2

∣∣∣ → 0, IE
(

max
1≤i≤n

Y 2
ni

)
→ 0,

n∑
i=1

IE(Yni)
2 → 0.

Corollary A.24. For any integer n ≥ 1 let Xn1, Xn2, . . . , Xnn be independent and identically
distributed random variables such that for some real numbers µ and σ > 0,

√
n IE(Xn1) → µ,

IE(X2
n1) → σ2,

IE
(
1[X2

n1>εn]X
2
n1

)
→ 0 for any fixed ε > 0.

Then
1√
n

n∑
i=1

Xni →L N (µ, σ2)

and

IE
∣∣∣ 1
n

n∑
i=1

X2
ni − σ2

∣∣∣ → 0, IE
(

max
1≤i≤n

X2
ni

n

)
→ 0.

Proof of Theorem A.22. Let M := lim supn→∞
∑n

i=1 IE |Yni|. For arbitrary fixed ε > 0 set

Yni1 := 1[|Yni|≤ε]Yni, Yni2 := 1[|Yni|>ε]Yni
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and µnik := IE(Ynik). Then

IE
∣∣∣ n∑
i=1

(Yni − µni)
∣∣∣ ≤ IE

∣∣∣ n∑
i=1

(Yni1 − µni1)
∣∣∣+

n∑
i=1

(
IE |Yni2|+ |µni2|

)
≤

√√√√Var
( n∑
i=1

Yni1

)
+ 2

n∑
i=1

IE |Yni2|

≤

√√√√ n∑
i=1

IE(Y 2
ni1) + o(1)

≤

√√√√ε
n∑
i=1

IE |Yni|+ o(1)

≤
√
εM + o(1) + o(1)

→
√
εM.

Furthermore,

IE
(

max
1≤i≤n

|Yni|
)
≤ ε+

n∑
i=1

IE |Yni2| → ε.

Since ε > 0 may be arbitrarily small, these calculations yield the assertions.

Remarks on the proof of Theorem A.23. One can deduce from Theorem A.22, applied to Y 2
ni

in place of Yni, that

IE
∣∣∣ n∑
i=1

Y 2
ni − σ2

∣∣∣ → 0 and IE
(

max
1≤i≤n

Y 2
ni

)
→ 0.

In particular, with µni := IE(Yni),

max
1≤i≤n

µ2
ni ≤ max

1≤i≤n
IE(Y 2

ni) ≤ IE
(

max
1≤i≤n

Y 2
ni

)
→ 0,

whence
n∑
i=1

µ2
ni ≤ max

1≤j≤n
|µnj |

n∑
i=1

|µni| → 0.

But with σ2
ni := Var(Yni) this implies that

n∑
i=1

σ2
ni =

n∑
i=1

IE(Y 2
ni)−

n∑
i=1

µ2
ni → σ2.

Moreover, for any fixed ε > 0, the inequality max1≤i≤n |µni| ≤ ε/2 is satisfied for sufficiently
large n, and in that case, |Yni−µni| > ε implies that |Yni| ≥ ε/2 and |Yni−µni| ≤ 2|Yni|. Hence
for sufficiently large n,

n∑
i=1

IE
(
1[|Yni−µni|>ε](Yni − µni)

2
)
≤ 4

n∑
i=1

IE
(
1[|Yni|>ε/2]Y

2
ni

)
→ 0.
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Consequently, the centered random variables Zni := Yni−µni satisfy the assumptions of the more
traditional CLT:

IE(Zni) = 0 for all n ≥ 1 and 1 ≤ i ≤ n,
n∑
i=1

IE(Z2
ni) → σ2,

n∑
i=1

IE
(
1[|Zni|>ε]Z

2
ni

)
→ 0 for any fixed ε > 0.

These conditions imply that
n∑
i=1

Zni →L N (0, σ2),

and thus
n∑
i=1

Yni = µ+ o(1) +

n∑
i=1

Zni →L N (µ, σ2).


