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Introduction

Statistics is the art of analysing data and dealing with non-avoidable errors and uncertainties in a
concise way. In introductory and many advanced Statistics courses, various procedures such as
point estimators, statistical tests and confidence regions are introduced for different settings, but
often they seem a bit ad hoc. The purpose of Mathematical Statistics is to present these procedures
in a coherent framework and to clarify which procedures are optimal for a given task. This includes

the question of how to quantify the quality of a statistical procedure.

An indispensable tool for mathematical statistics is measure theory, including Radon-Nikodym
derivaties, conditional expectations, conditional distributions and Markov kernels. Hence, the first

part of this course is devoted to these aspects of measure theory.
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Chapter 1

Abstract Integrals

We tacitly assume that the reader is familiar with standard measure and integration theory. Some

basic notions and results are listed in Section A.1.

In standard measure theory, one starts from a measurable space (£2,.4), consisting of a set {2 and a
o-field A over €2. Then one constructs or defines a measure ;. on A, and this leads to the integral
| f dp of measurable functions f :  — [0,00] or f : @ — R. If we restrict our attention to the
set £1(u) of real-valued, measurable functions f on €2 such that [ |f|du < oo, then the integral
| f dp has the following essential properties:

Linearity: The set £!() is a real vector space!, and f — [ f dp is linearin f € L (p).
Positivity: If f € £(p) is nonnegative, then [ f du > 0.

Montone convergence: If (f,), is a sequence of nonnegative functions in £'(p) which is point-

wise increasing with limit f € £1(p), then [ f,, du — [ fdpasn — oo.

In the present section we follow the reverse route. Throughout let F be a real vector space of
real-valued functions on a set €). Suppose that J : F — R is a linear and positive functional
satisfying monotone convergence. Does there exist a o-field 4 over €2 and a measure i on A such
that F C £ (p) and J(f) = [ fduforall f € F?

1.1 Lattices and Stone Lattices

For two functions f,g: @ — [—o00, 0], the inequalities f < g or f > ¢ are always meant
pointwise. Their pointwise maximum and minimum are denoted with fV g and f A g, respectively,
that is,

fVg(w) = max{f(w),gw)} and fAg(w) := min{f(w), g(w)},
Similarly, the pointwise maximum and minimim of f and a real constant c is denoted with f V ¢

and f A ¢, respectively. Specifically, we write
ft = fvo and f~ = (=f)v0O=—(fAN0),
sof=ft—fTand|f]=f"+f".

lwith the pointwise addition of functions and the pointwise multiplication of functions with scalars

13
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Definition 1.1 (Lattice and Stone lattice). The linear function space F is called a lattice if | f| € F
for any f € F.

A lattice F is called a Stone lattice if f A1 € F for arbitrary f € F.

Example 1.2. Let (2, d) be a metric space. Then the following sets of functions f : 2 — R are

Stone lattices:

C(Q) = {f: continuous},
Cp(2) = {f: continuous and bounded},
CLip(©2) = {f: Lipschitz-continuous},
(2)

= {f: Lipschitz-continuous and bounded}.

Exercise 1.3 (Lattices). Show that the following three properties of a linear function space F are
equivalent:

(i) |f| € F for arbitrary f € F.

(i) fT € F for arbitrary f € F.

(i) fV g, fAge Fforarbitrary f,g € F.

From now on, let F be a Stone lattice. The set of nonnegative functions in F is denoted with F +,

that is,
Fr = {feF:f>0) = {f*: feF}.

Exercise 1.4 (Stone lattices). Show that for arbitrary f € F and ¢ > 0,
fre fV(=a, (f=oF (f+o)” € F.
Find an example of a Stone lattice F such that f V 1 ¢ F forany f € F.

The following families of functions and sets play an important role in connection with integrals.

Definition 1.5 (Extension of 7, F-open sets). The extension of F* is the family F* of all
functions g : 2 — [0, oo} such that

g = sup fn
n>1
for some sequence (f,)n>1 in F.
Aset U C Q is called F-open if
U = {g>0}

for some g € F*. The family of all F-open sets is denoted with U/ (F).
These families 7* and U/ (F) have some important properties summarized in the next three lem-
mas.

Lemma 1.6 (Extension of ). Fora function g : Q2 — [0, oo, the following three properties are

equivalent:

(i) g = sup,>; fn for some sequence (fy)n>1 in Ft.
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(ii) g = limy,>1 f,, for some sequence (f,)n>1 in F * which is pointwise increasing.
(iii) g =Y, >, fn for some sequence (fy)n>1 in F.

Lemma 1.7 (Properties of F*). For arbitrary scalars ¢ > 0 and functions g, h, g1, g2, g3, - - . In
F*, the following functions belong to F* too:

cg, gAh, gAC, SUD Gu, Y Gn-
n>1 n>1

Lemma 1.8 (F-open sets). Foraset U C (2, the following three properties are equivalent:
(i) U = {g > 0} for some function g € F*.
(ii)) U = {g > c} for some function g € F* and ¢ > 0.
(iii) 1y € F*.
Remark 1.9. Lemmas 1.7 and 1.8 imply that the family ¢/(F) is closed under intersections and
countable unions. Moreover, the o-fields o(F) and o (U (F)) coincide, where o (F) is the smallest

o-field over €2 such that all functions in F are measurable, and o (U/(F)) is the smallest o-field

over {2 containing all sets in U/ (F).

To see the latter claim, note that any function in F* is a pointwise limit of a sequence in 7 C F,
whence U(F) C o(F), and this implies that o(U(F)) C o(F). On the other hand, the o-field
o(F) is generated by all sets { f > c} and {f < —c}, f € Fandc > 0. But {f > ¢} = {g > 0}
withg:=f— fAce Ftso{f >c} €eU(F),and {f < —c} = {—f > c} belongs to U(F)
too. This shows that o(F) € o(U(F)).

The proofs of Lemmas 1.6 and 1.7 are left to the reader as an exercise.

Proof of Lemma 1.8. It is clear that property (i) of U implies property (ii). Suppose that U has
property (ii), that is, U = {g > ¢} for some function g € F* and some scalar ¢ > 0. Let (f)n>1

be a pointwise increasing sequence in F+ with limit g. Then

Jn = (n(fn_c)+)/\1

defines a pointswise increasing sequence ( fn)nZl with limit 1y = 1y45.). Thus U has prop-

erty (iii). Finally, if U has property (iii), then it has property (i) with g := 1y € F*. O

1.2 Abstract and Usual Integrals

As before, let F be a Stone lattice of functions f : 8 — R with its subcone F T of nonnegative
functions f € F.

Definition 1.10 (Abstract integral). A functional J : F — R is called an abstact integral (on the
Stone lattice F) if it has the following properties:

Linearity: For f,g € F and A € R,

JAf) = AJ(f) and J(f+9g) = J(f)+J(9).
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Positivity: J(f) > 0forall f € FT.

Monotone convergence: Let (f,,), be a pointwise increasing sequence of functions f,, € F* with
limit f € F. Then,

lim J(fn) = J(f).

n—oo

Linearity and positivity of an abstract integral J on F imply that
J(f) < J(g) whenever f,g € F with f <g.

This follows from g = f + hwithh =g — f € Ft,s0 J(g) = J(f) + J(h) > J(f).

Exercise 1.11. Let F be the set of all functions (sequences) f : N — R such that lim,,_,~ f(w)
exists in R. Verify that F is a Stone lattice. Does J(f) := lim,_,~ f(w) define an abstract
integral on F?

From now on, let J: 7 — R be an abstract integral. In view of our goal to achieve, we extend J

to a functional on the extension F* of F'. For g € F*, let

J(g) == sup J(f).
feFrt: f<g

Note that if g € F, then J(f) < J(g) for all f € F* such that f < g, so the new definition of
J(g) yields the former value of J(g). It is also obvious that for g, h € F*,

J(g) < J(h) ifg <h,

because g < himplies that {f € F*: f < g} C {f € F: f < h}. The next lemma provides
an alternative representation of .J(g) which is often convenient.

Lemma 1.12. Ifg = lim,,_,~ f, with a pointwise increasing sequence (fy,), in F ', then J(g) =

Proof of Lemma 1.12. Since (f,,) is pointwise increasing, the sequence (J( f,,))y is increasing,
and f,, < g for each n, whence J(g) > limy, 00 J(fp)-

On the other hand, if f is any fixed function in F* such that f < g, then (f, A f), is pointwise

increasing with limit f. Consequently,
lim J(fn) > lim J(fn/\f) = J(f),
n—oo n—oo
and this shows that J(¢) < lim,— 00 J(fn)- d

The next lemma shows that J, as a functional on F*, has various desirable properties, where we

use the convention that 0 - oo := 0.

Lemma 1.13. For arbitrary ¢ > 0 and functions g, g1, 92, 93, . . - € F*,

J(cg) = cJ(g) and J(Zgn) = > Jlgn)-

If (gn)n>1 is pointwise increasing with limit g, then

J(g) = lim J(gn).

n—oo
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Proof of Lemma 1.13. Let (f,,),>1 be a pointwise increasing sequence in F+ with limit g. Then,
cfn € FTand cf, 1 cg as n — oo, whence

J(cg) = 7}1_{20 J(cfn) = Cnh_g.lo J(fn) = cJ(g).

For each n > 1, let (f,, x)k>1 be a pointwise increasing sequence in 1 with limit g,,. Then

N
fN = Z fn,N
n=1

defines a pointwise increasing sequence (fn)n>1 in F1 with limit ) -, gn. because for any
fixed integer N, > 1 and N > N,,

N, No
Zgn > fN > an,N — Zgn asN—>oo,
n=1 n=1

n>1

and EnNil gn T2 p>19n as Np, — co. Consequently, for any fixed N, > 1,

< Y J(gn),

N n>1
J(Z;lgn) = Jm T = Jim 3 () -
n= n= = 9n),
n=1

and letting N, — oo reveals that J (3,5 gn) = .51 J(gn)-

Suppose that (gn)n>1 is pointwise increasing with limit g. It is tempting to write ¢ = >, <, In
with g, := gn — gn—1, g0 := 0, and refer to the previous result about countable sums. But note

that in general, g, ¢ F*. However,

— Imax
N max fa,N

defines a pointwise increasing sequence (fx)ny>1 in F 1 with limit g, because for any fixed integer
N, >1and N > N,,

g > gy > [y > max fun T gn,
n<N,

as N — oo, and gn, T g as N, — oo. Consequently, for any fixed N, > 1,

< Jlim J(gn),
J(g) = lim J(fw) o
> J(gn,),

and letting N, — oo reveals that J(g) = limy_,o0 J(gN)- O

Now we have some essential ingredients for the proof of the following theorem.

Theorem 1.14 (Daniell-Port—Stone). There exists a unique measure . on the o-field o (F) with
the following properties: F C L' (1),

J(f) = /fd,u forall f € F,
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and for any set B € o(F),
w(B) = inf{u(U): U e U(F),U D> B}

with inf () := oo.

Proof of Theorem 1.14. The proof is divided into six steps.
Step 1. For S C Q) let

u(S) == inf{J(g): g € 7,9 > 15}.
This defines an outer measure on ).

Proof: Since 1y = 0 € F* and J(0) = 0, we see that u()) = 0. To verify that 4 is an outer
measure, it remains to verify that for arbitrary sets .S, S1,.52,.53,... C Qwith § C Un21 Sh»

p(S) <D p(Sn).

n>1

This is obvious if 1(S,) = oo for some n > 1. Otherwise, for an arbitrary fixed (small) number
e > 0 and any index n > 1, there exists a function g,, € F* such that g,, > 1g, and J(g,) <
w(Sy) + 27 "e. But then the definition of 1 and Lemma 1.13 imply that

u(s) < J(supgn) < I(X 9a) = Do Jlow) < D u(Sa) +e
n>1

nz1 n>1 n>1

As € | 0, we obtain the desired inequality.
Step 2. u(U) = J(1y) forany U € U(F).
Proof: By Lemma 1.8, 17 € F*, and J(g) > J(1y7) for any g € F* such that g > 1.

Step 3. Every set U € U(F) is p-measurable, that is,
u(S) = uw(SNU)+pu(S\U).
In particular, by Carathéodory’s theory of outer measures, the restriction of x to o(F) defines a

measure on that o-field.

Proof: Since p is an outer measure, it suffices to show that x(S) > u(SNU) + (S \ U) in
case of 1(S) < oo. Let g € F* with g > 1g. Let (g, )n>1 and (f)n>1 be pointwise increasing
sequences in F 1 with limits g and g A 1y, respectively. Without loss of generality let g, > f,, for
all n > 1. On the one hand,

W(SNU) < JgAly) = lim J(fa).

n—oo

On the other hand, for any fixed n, > 1,

low = 1s(1-1y) < g(1-1y) < g—gAly < g— fa,.
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But g — fy, is the limit of the pointwise increasing sequence (¢, — fn,)n>n, in F T, whence
g— fn, € F*and

pSA\U) < J(g = fa,) = lim J(gn = fu,)
= nhanolo J(gn) - J(fno)
= J(g) - J(fno)

Consequently, u(SNU) + u(S\U) < J(g) + limy—00 J(fn) — J(fn,), and as n, — oo, we
obtain the inequality
p(SNU)+pu(S\U) < J(g)

forany g € F* such that g > 1g. This implies the desired inequality u(SNU)+pu(S\U) < u(S).
Step4. F C L'(u)and J(f) = [ fdpforall f € F.
Proof: It suffices to show that J(f) = [ fdu forany f € FT. Forn > 1 let

fro = 27" Lgpao-ngy.

E>1

For any w € {f > 0}, fn(w) is the largest point on the grid {27 "z: z € Ny} which is strictly
smaller than f(w). Since {27"z: z € Ng} € {2=*Vz: 2 € Ny} and f, = O on {f = 0}, the
function sequence (f,),>1 is pointwise increasing with limit f. For any constant ¢ > 0, the set
{f > ¢} is F-open, and

Higg) = 0l > ) = [ Liggydu

Consequently, f,, € F*, so by Lemma 1.13 and monotone convergence for usual integrals,

n—oo

ﬂﬂzhmﬂﬁ)mi/ﬂng&/nw

But for any fixed n, Lemma 1.13 and standard properties of usual integrals reveal that

J(fn) = Q_HZJ(l{fxfnk}) = 2_n2/1{f>2"k} dp = /fndﬂ-

k>1 k>1
This shows that J(f) = [ f dp.
Step 5. For any set .S C €2,

w(S) = a(S) :=inf{u(U): U e U(F),U > S}.
Proof: Since U D S is equivalent to 1;7 > 1g, and since 1y € F* for any U € U(F), we obtain
the inequality p(S) < i(S).
On the other hand, for any fixed number ¢ € (0, 1) and arbitrary functions g € F* with g > S,

C_lg > 1{g>c} > 1g.

Since {g > c} € U(F), this implies that

J(g) = ep{g > cp) = cp(9).
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Letting ¢ 1 1 reveals that J(g) > (S), whence u(S) > i(S).
Step 6. A measure p on o(F) with the stated properties is unique.

Proof: The measure y is uniquely determined by its values u(U), U € U(F). But for each

U € U(F) there exists a pointwise increasing sequence ( fy,)n>1 in F1 with limit 177, so

) = /1U dp = nlggo/fndu = lim J(fn).

Thus, the measure w is uniquely determined by the given functional J : F — R. O

1.3 Representations of Dual Spaces

Suppose for the moment that F is an arbitrary real vector space, equipped with a seminorm || - ||.
The dual space of (F, || - ||) is the space of linear functionals L : 7 — R which are continuous

with respect to the seminorm || - ||. Continuity of L is equivalent to

sup |L(f)| < oc.
feF:|IflIL1

In Functional Analysis, an important question is how the dual space can be represented explicitly.
Many of the known results are called a Riesz representation, honoring the hungarian mathemati-

cian Frigyes Riesz (1880-1956) who (co-)derived many of these results.
Specifically, let F be a Stone lattice of functions on a set {2. Suppose in addition that there is a
seminorm || - || on F satisfying the following two properties:

Il < llgll whenever f,g € F* with f < g.

For any pointwise decreasing sequence ( fy,),>1 in 1 with limit 0,
lim = 0.
Tim I
The next theorem shows that any continuous linear functional on (F, || - ||) can be represented with
certain integrals.

Theorem 1.15. For any functional L in the dual space of (F, || - ||) there exist measures pu*, ™~
on o(F) such that F C L' (u* + p~) and

L(f) = /fd,tﬁ—/fd,u‘ forall f € F.

Here is a first special case of this theorem:

Theorem 1.16 (Riesz—Markov—Kakutani). Let (2, d) be a compact metric space, and let C(£)
be the family of continuous functions f : ) — R with respect to d, equipped with the supremum
norm || - ||oo, that is, || f||cc = maxeeq |f(w)|. Let L : C(2) — R be a linear functional which is

continuous with respect to || - ||o. Then there exist finite measures p*, = on Borel(2) such that

L(f) = /fd/ﬁ—/fd,u forall f € C(Q).
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Once we have learned more about signed measures, the conclusion of Theorem 1.16 can be refor-
mulated as follows: There exists a probability measure P on Borel(2) and a bounded, measurable
function h: 2 — R such that

L(f) = /fth forall f € C(Q2).

The proof of Theorem 1.15 uses the following two auxiliary results.

Lemma 1.17 (From additive, nonnegative to linear functionals). Suppose that J : F* — [0, 00)
is a functional which is additive in the sense that J(f + g) = J(f) + J(g) forall f,g € F*.
Then,

L(f) = J(fT) = J()
defines a linear functional L: F — R such that L = J on FT.

Lemma 1.18 (From linear to additive, nonnegative functionals). Suppose that L. : F — R is a
linear functional. For f € F+ let

J(f) = sup{L(h): he F' h < f},
K(f) := sup{—L(h): he F* ,h < f}.

These two functionals J, K : F™ — [0, oo] are additive in the sense that J(f +g) = J(f)+ J(g)
and K(f +g) = K(f) + K(g) forall f,g € FT.

They satisty the equations J = K 4+ L and K = J — L. In particular, J is real-valued if and only

if K is real-valued.

If J and K are real-valued, then for arbitrary f € F,
L(f) = Ls(f) — Lr(f),
where Ly (f) = J(f*) = J(f) and Lic(f) = K(f*) = K(f°).

The proof of Lemma 1.17 is left to the reader as an exercise.

Proof of Lemma 1.18. Since J(f) > L(0) = 0, the functional J is nonnegative. Let fi, fo €
FT. For arbitrary hq, hy € F+ with hy < f1 and hy < fo,

J(fi+ f2) = L(h1+ h2) = L(h1) + L(h2),
and letting L(h;) 1 J(f;) for j = 1, 2 reveals that
J(fi+ f2) = J(f1) + I(fa).
On the other hand, if h € F* with h < fi + fo, then h = hy + ho with the functions
hi == hAfi < fi and hy = (h—f1)" < fo

in FT. Hence,
L(h) = L(h1) + L(h2) < J(f1) + J(f2),
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and letting L(h) 1 J(f1 + f2) reveals that

J(fi+ f2) < J(f1)+J(f2).

Replacing L with — L reveals that K is also a nonnegative, additive functional on F .

For f € FT,

J(f) = sup{L(h): he F",h < f}
= sup{L(f) = L(f—h): he F* h < f}
= L(f) +sup{—L(f —h): he F*,h < f}
= L(f) +sup{—L(h): he FI,h < f}
= L(f) + K(f),
where the second to last step uses the fact that the sets {f — h: h € FT h < f} and {h €
FT:h < f}coincide. Thus, J = K + L on F*, and this is equivalent to K = J — L.

Now suppose that J and K are real-valued on F+. Then we know from Lemma 1.17 that
Ly(f) := J(f*) — J(f) and Lg(f) :== K(f*) — K(f~) define linear functionals on F.
Since L = J — K on F1,

L(f) = L(f) = L(f7) = JUf") = K(f") = J(f) + K(f7) = Lys(f) = Lr(f)
for any function f € F. O

Proof of Theorem 1.15. Continuity of L means that |L(f)| < C||f|| for all f € F and some real
constant C' = C'(L) > 0. The additional properties of the seminorm || - || imply that for f € FT,

> max{0, L(f)},
< ClAls

maX{O, —L(f)},
Clrl.

J(f) = sup{L(h): h€f+,h§f} {

K(f) = sup{—L(h): he F",h < f} {i

Consequently, J and K are additive functionals 7 with values in [0, 00), and L, L are well-
defined linear functionals on F with L = Lj — L, see Lemmas 1.18 and 1.17. The sequential
continuity property of || - || implies that L s, L are abstract integrals on F. Indeed, if (f;,)n>1 is
a pointwise increasing sequence in F with limit f € F 7, then for M = J, K,

= Ly(f) = ClIf = fall,

Lat(fn) = Lna(f) = Laa(f = fa) = Laa(f) = M(f = fn) {< Lar(f)-

Asn — oo, f— fn 1 0, whence || f — f|| — 0 and, consequently, Lys(fn) = Las(f). According
to Theorem 1.14, there exist measures ut, 1~ on U(F) such that for arbitrary f € F, L;(f) =
J fdpand L (f) = [ fdp~, which implies the asserted representation of L. O

The proof of Theorem 1.16 uses a well-known result from analysis about pointwise and uniform

convergence.
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Lemma 1.19 (Dini). Let (£2,d) be a compact metric space, and let (fy)n>1 be a pointwise de-

creasing sequence of continuous functions with limit 0. Then || f,, — f|lcc — 0 asn — oo.

Proof of Lemma 1.19. For any € > 0, the sets { f,, < €} are open subsets of 2 with {f; < ¢} C
{fao<e} C{fs <e} C--,and Q = |J,~{fn < €}. But compactness of {2 implies that
Q=U,<polfn <€t ={fue <e}for some_integer n(e) > 1, and this implies that || f,,||cc < €
for all n > n(e). O

Proof of Theorem 1.16. In view of Theorem 1.15, note first that the supremum norm || - || has
the additional required properties. It is obvious that || f||oc < ||g]/co for functions 0 < f < g, and
the second property about sequences follows from Lemma 1.19. Thus we can apply Theorem 1.15
and conclude that there exist measures u* and p~ on o(C(Q)) such that F € £'(u* + p~) and
L(f) = [ fdu* — [ fdu~. Since 1 € F, these measures ™ are finite. Moreover, o(C(f2))
coincides with Borel(£2). On the one hand, {f > r} is an open subset of 2 for all f € C(Q2) and
r € R, whence o(C(€2)) C Borel(€2). On the other hand, if U is a nonvoid proper subset of €2,
then f(z) := inf{d(z,y): y € 2\ A} defines a continuous function such that U = {f > 0}.
Hence, Borel(2) C o(C(2)). O
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Chapter 2

Signed Measures

2.1 The Hahn-Jordan Decomposition

For simplicity we restrict our attention to finite signed measures. Throughout this section let
(€2, A) be a measurable space. That means, (2 is a nonvoid set equipped with a o-field A over €2,

the family of measurable subsets of 2.

Definition 2.1 (Finite signed measure). A function v : A — R is called a finite signed measure
on (2, A), if

(SM.1) v(#) =0 and

(SM.2) v is o-additive, that is, for arbitrary disjoint sets A1, Ao, As,...in A,

y([j An> = iu(An).

n=1

Note that the only difference to a finite measure is that v( A) may be negative for some sets A € A.

Example 2.2. A standard example of a finite signed measure is v := () — P with finite measures

P,Q on (£2,.A). Properties (SM.1-2) follow immediately from analogous properties of measures.

Example 2.3. Another example is given by

o) = [ fau = [1ara

with a measure 4 on (€2,.4) and a function f € £'(u). That means, f : 2 — R is .A-measurable
with [ |f|dp < co. Here one can verify properties (SM.1-2) by means of linearity of integrals

and dominated convergence.

Later on it will be shown that any finite signed measure may be represented as in Examples 2.2
and 2.3.

Remark 2.4 (Additivity). A finite signed measure v is additive in the sense that

I/(ij An) = il/(An)

n=1

25
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for arbitrary N € N and disjoint sets Ay,..., Ay € A. This follows from (SM.1-2) by setting
A, =0 forn > N.

Exercise 2.5 (Continuity properties of signed measures). Let v be a finite signed measure on
(€2, A). Show that for arbitrary sets By C By C B C -+ in A,

A(UB) = Jim )

n=1

Show that for arbitrary sets C7 D Cy D C3 D -+ in A,
o0
Af) ) - i
n=1

The next definition introduces two important concepts for the subsequent results.

Definition 2.6 (Positive and negative sets). Let v be a finite signed measure on (£, 4). A set
A, C Qis called v-positive if A, € A and

v(A) > 0 forall A€ Awith A C A,.
A set A, C Qis called v-negative, if A, € A and

v(A) < 0 forall Ae Awith A C A,.

Since —v is a finite signed measure too, a set A, C () is v-positive or v-negative if and only if it

is (—v)-negative or (—v)-positive, respectively.
Here is a key result for the main theorems in this and the next section.

Proposition 2.7 (Existence of nontrivial positive sets). Let v be a finite signed measure on (£, A),
and let Ay € A withv(Ap) > 0. Then there exists a v-positive set A, C Ay withv(A,) > v(Ay).

Proof of Proposition 2.7. We define
o = sup{—v(B): B€ A, BC Ay} > 0.
Then we write Ag = A; U By with disjoint measurable sets A; and B such that
—v(B;1) > min{dy/2,1}.

This procedure can be iterated. After k steps we have measurable sets Ag D A1 D -+ D Ay, and

we consider the number
6 = sup{—v(B): B€ A,BC A} > 0.
Then we write Ay = Ag+1 U By1 with disjoint measurable sets A1 and By 1 such that

—v(Bgy1) > min{dg/2,1}.
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This construction yields a non-increasing sequence (A )x>0 and the disjoint sets By, = Ag_1\ Ay,
k > 1. We may write
Ay = A, UB,

with the disjoint sets

A* = ﬂAk and B* = UBk
k>0 k>1

Since v(By) = Y _r; v(By) with nonpositive summands v(By,), we obtain the inequality
v(Ay) = v(Aog) —v(By) > v(Ap).

Moreover, the sequence (v(By))r>1 converges to 0, so the inequalities 0 < min{d/2,1} <
—v(Bg41) imply that limy,_, », ;. = 0. Consequently, for any measurable set A C A,,

- < i — ! N ! ! = 1 _=
v(A) Ig% sup{—v(A"): A" € A, A" C Ay} lirzlf(; 0 = 0,

whence v(A) > 0. This shows that A, is a v-positive set. O

Exercise 2.8 (Unions of positive sets). Let v be a finite signed measure on (€2, A). Let (A;,)n>1
be a sequence of v-positive sets. Show that A, :=J,,~, Ay is also v-positive and satisfies
V(AL) > sup v(Ay).
n>1
With Proposition 2.7 and Exercise 2.8 one can prove the following representation of signed mea-

sures:

Theorem 2.9 (Hahn—Jordan decomposition). Let v be a finite signed measure on (£2, A). Then
Q = Q4 UQ_ with disjoint sets 2, Q_ such that ) is v-positive and §)_ is v-negative. In other
words,

vT(A) = v(ANQy) and v (A) == —v(ANQ)
defines two finite measures v, v~ on (2, A) such that v = vt — v~, and these two measures
have disjoint support in the sense that v (Q_) = v~ (Q4) = 0.

Example 2.10. Before proving Theorem 2.9, we revisit Example 2.3, i.e. v(A) = fA f du for
some measure 4 on (€2,A) and a function f € £!(u). Here a Hahn-Jordan decomposition is
given by

Qp = {f>0} and Q_:={f <0}

+

The corresponding measures v are given by

JEA) — +
(A) /A £ du

with f*(w) = max{4f(w),0}.

Remark 2.11. Theorem 2.9 implies that any finite signed measure v may be represented as in
Example 2.3. Indeed, let v, 2., Q_, v and v~ be as in Theorem 2.9. Then

v(A) = /fdu forall A € A,
A

with the finite measure . := v+ + v~ and the measurable function f := 1¢ L —1la_.
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Proof of Theorem 2.9. Let (A, ),>1 be a sequence of measurable sets such that

lim v(A,) = C4 :=sup{v(A4): Aec A}.

n—oo

According to Proposition 2.7, we may assume without loss of generality that all sets A,, are v-

Q= An

n>1

positive. But then,

is a v-positive set such that v(2;.) = C., see Exercise 2.8. In particular, C < co. Moreover,
Q_ = Q\ Q4 is a v-negative set. Indeed, if v(Ag) > 0 for some measurable set Ay C €2_, then
v(Qp U Ay) =v(Q4) +v(Ap) > C, acontradition to the definition of C.y. O

Exercise 2.12. Let (2 = (24 U )_ as in Theorem 2.9. Show that this partition of {2 is essentially
unique in the following sense: If 2 = B, U B_ with a v-positive set B, and a v-negative set B_,
then

v(A) = 0 forany measurable A C (Q4ABy)U (Q_AB_).

Remark 2.13. Theorem 2.9 implies, that any finite signed measure v may be represented as the

+

difference of two finite measures. The next exercise shows that the particular measures v~ are

minimal in a certain sense.

Exercise 2.14. Let v be a finite signed measure on (£2,.4) with Hahn-Jordan decomposition

v=vt—v".
(a) Show that —v~(A) < v(A) < vT(A) for arbitrary A € A.

(b) Let v = p™ — pu~ with finite measures u*, = on (£2,.4). Show that there exists a finite
measure /i, on (€2, A) such that u* = v + p, and u= = v~ + p,. Deduce from the latter fact

that v and v~ are “minimal” in the sense that
ptpT > vt

with equality if and only if u* = v and = = v~

Exercise 2.15. Let P and @ be finite measures on R with densities f and g, respectively, with
respect to Lebesgue measure. Determine a Hahn—Jordan decomposition of v := ) — P in terms
of f and g.

Ilustrate your solution graphically in case of P = N(0,1) and Q = N(0, 22).

2.2 Radon-Nikodym Derivatives

In this section we consider measures P and @) on (£2,.4) and investigate under which conditions
@ has a density f with respect to P. That means, f : Q@ — [0, 00) is an .A-measurable function
such that

(2.1 QA) = /fdP forall A € A.
A
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Such a function f is also called a Radon—Nikodym derivative of () with respect to P, and (2.1) is

sometimes abbreviated as
dQ

=

If a density of @@ with respect to P exists, arbitrary integrals with respect to () may be rewritten as
integrals with respect to P.

Lemma 2.16. Suppose that () has a density f with respect to P in the sense of (2.1). Then for
arbitrary A-measurable functions h : Q — R,

2.2) /th = /hfdP

whenever one of the two integrals is well-defined in R.

Proof of Lemma 2.16. We follow a standard route in measure theory, also known as “measure-
theoretic induction”. Assumption (2.1) is equivalent to (2.2) for arbitrary indicator functions h =
14, A € A. By linearity of integrals, (2.2) holds true for “simple functions” h, that means,
functions h = Z;nzl Al A; with m € N, constants A; > 0 and sets A; € A. For an arbitrary
measurable function h :  — [0, o], there exists a sequence (hy, ), of simple functions such that
(hpn)n T h pointwise. A standard construction is given by

n2m

hn((JJ) = 2771‘ Z 1[h(w)22*”j]'
j=1
But then (hy, f), T hf, so by monotone convergence,

/th = lim /hndQ = lim /hnfdP = /hfdP.
n—oo n—oo

Finally, any measurable function  : {2 — R may be written as h = h* —h™ with h* = (£h) V0.
Then (hf)* = h* f, because f > 0, and [ h* dQ = [(hf)* dP. Hence

/th = /hﬂi@—/hd@ = /(fh)*dp—/(hf)dp = /hfdP,

whenever these differences are well-defined in R. O

Corollary 2.17. Let P, QQ and R be measures on (2, A) such that densities f = d@Q/dP and
g = dR/dQ exist. Then fg = dR/dP. Furthermore, if f > 0, then f~ = dP/dQ.

Proof of Corollary 2.17. For any set A € A,

/AfgdP ~ [1gsap = [1agdq — /Ang — R(4),

where the second step follows from Lemma 2.16 applied to h = 1 49.

In case of f > 0, forany A € A,
P = [1aap = [1agigar = [1ar7taQ = [ £tag
A

by Lemma 2.16 applied to h = 14 f 1. O
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Exercise 2.18. Let P be a measure on (€2, .A), and for a fixed 2, € Alet P,(A) := P(ANQ,).
Show that P, defines a measure on (2, A) with P,(Q2) = P(£2,) and P,(Q2 \ €,) = 0. Determine
a version of dP,/dP. Then deduce that for arbitrary measurable functions h : 2 — R,

/tho :/ hdP

whenever one (and thus both) of these integrals is well-defined in R.

Exercise 2.19 (Transformations). Let (€2,.4) and (, A) be measurable spaces, and let 7 : Q —

Q) be a bijective mapping such that 7 and 7~ are measurable.

(a) Let M be a measure on (2, A), and let M := M o 7', a measure on (2, A). Show that

/ hdM = / hordM
for arbitrary measurable functions & :  — R such that one of these integrals is well-defined in

R.

(b) Let P and @ be measures on (£2,.4) such that a density f = d@Q/dP exists. Show that
Q := @ o 7~ ! has density f := f o 77! with respect to P:=Por L

2.2.1 Finite measures

Now we consider the case of finite measures P and () in more detail. The next lemma implies that
a density of () with respect to P, if it exists, is P-almost everywhere unique.

Lemma 2.20 (Uniqueness of densities). Let P be a finite measure on (€2, A), and for j = 1,2 let
Q; : A — R be given by Q;(A) := [, fj dP with a function f; € L*(P). If Q1 < Q2 on A,
then

P({f1> fo}) = 0.

Exercise 2.21. Prove Lemma 2.20.
In what follows, we shall construct a density of () with respect to P. The main idea for the
construction results from an elementary consideration in the next exercise.

Exercise 2.22 (Superlevel sets). Let P and ) be finite measures on (£2,.4) such that ) has a
density f € L£1(P) with respect to P. Show that for any A > 0, aset A € A with {f > \} C
A C {f > A} maximizes

A3 A — Q(A) — \P(A).

More generally, show that a set A € A maximizes () — AP if and only if
PAN{f <A}) = 0 = P({f > \}\ 4).
Now we state and prove the first main result of this section.

Theorem 2.23. Let P and Q) be finite measures on (2, A). There exist a set B, € A with
P(B.) = 0 and a nonnegative function f € £'(P) such that

Q(A) = Q(ANB,) + / fdP forarbitrary A € A.
A
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Proof of Theorem 2.23. Motivated by Exercise 2.22, we consider for any A > 0 the finite signed
measure () — AP. According to Theorem 2.9, there exists a set Ay € A such that A) is (Q — AP)-
positive and Q \ A is (Q — AP)-negative. Now we could try to combine all these sets and define
a function f via {f > A} = A,. But this is easier said than done. The problem is that we are

dealing with uncountably many sets A.

The precise construction starts from a countable dense subset A of (0, c0), for instance, A =
QN (0,00). Forany A € A let Ay € A be chosen as above. Now we “clean up” these sets as
follows: For ¢ > 0 let

B; = U Ay.

AEAIA>T
Note that { Ay : A € A, A\ > t} is a countable family of (Q — ¢ P)-positive sets, because Q — AP <
Q—tP for A > t. Hence, B, is measurable and (Q) —t P)-positive, too, see Exercise 2.8. Moreover,
for any measurable subset A of @\ B = (ycpse 2\ Ax,

(Q—tP)(A) = sup (Q—AP)(4) <0,
AEA:IA>T

because 2\ A) is (Q — A\P)-negative. Hence 2 \ B, is a () — ¢ P)-negative set. In particular,
Q(Q2\ By) = 0.
Note also that by construction,

By O B for0<s<t

and
B, = | JB: fors>0,

t>s

because
B.= |J A= U 4=Us5
AEA:A>S t>s NeA:>t t>s

The intersection

B. = (B

t>0
satisfies P(B,) = 0, because

0 < P(B.) < inf P(B) < inf Q(B)/t < inf Q@)/t = 0.

Next we define a function f : Q — [0, co] via

. 0 ifwe 0\ B,
flw) = .
sup{t > 0:w € B;} ifw € By.

Note that { f = oo} = B,. Note also that

{f>t} = |JBs = B, forallt>0,

s>t
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so f is measurable. Our goal is to show that Q(A) = Q(AN B,) + [, f dP for arbitrary A € A.

For any fixed parameter vy > 1, the set {2 may be partitioned into the disjoint sets 2 \ By, B, and

Bo\B. = [ JC. with C. := By:\ By s1.
2€EZ

Note that f = 0on Q\ By and v* < f < v**lon C., z € Z. Moreover, C. is (Q —~* P)-positive
and (Q — v**1 P)-negative. Hence, for any set A € A,

QUA\ By) = 0 = / Far,

A\By
and
< y*HpPANnC,) < 7/ fap,
QANC,) ANC,
> PANC) =97 [ fap
ANC,
Consequently,

mum—gpmmwéngm
2€Z 2’7_12/ fdPZIY_I/A\B*fdPa

s JAnc.

Fdp = ~ / Fap,
A\B,

and for v — 1 we obtain the desired equation(s)

Q) = QunB)+ [

A\B,

fdpP = Q(AmB*)Jr/ fdP.
A

The latter equation follows from the fact that P(B,) = 0. Indeed, this representation of () remains
valid if we replace f with the real-valued function f := Lo\, f. Setting A = Q yields the
equation | fdP = Q() — Q(B;) < oo, whence f € L}(P). O

Theorem 2.23 shows that () is the sum of two measures, a “singular part with respect to P”,
A — Q(ANB,),

and an “absolutely continuous part with respect to P,

A»—>/AfdP.

The singular part is nontrivial if and only if Q(B,) > 0. Otherwise () is “absolutely continuous

with respect to P’ as defined in the next paragraph.

2.2.2 Absolute continuity and o-finite measures

Definition 2.24 (Absolute continuity). Let P and ) be measures on (£2,.4). The measure @ is
called absolutely continuous with respect to P if Q(A) = 0 for all sets A € A such that P(A) = 0.
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Definition 2.25 (o-finiteness). A measure P on (€2, A) is called o-finite if there exists a sequence
(An)n>1in A such that @ = {J,,~, An and P(A;) < oo forall n > 1.

A standard example of a o-finite measure is Lebesgue measure on R. Here €2 = R is the union of,
say, all intervals A,, := [-n,n],n € N.

Many results for finite measures may be extended to o-finite measures by means of the following

observation.
Lemma 2.26. For a nonzero measure P on (2, A), the following two statements are equivalent:
(i) P is o-finite.

(ii) There exist a probability measure P, on (2, A) and an A-measurable functionp : 2 — (0, c0)
such that
P(A) = / pdP, forall A e A.
A

Proof of Lemma 2.26. Suppose first that P may represented as in part (ii). Then Q = (J,,~; 4,
with A, := {p < n}, and P(A,,) < nP,(A,)) < n for all n. Thus, P is o-finite. Moreover,
P(Q) > 0 because @ = J,,~,{p > m 1}, so P{p >m™1}) > m™1P,({p > m™1}) > 0 for
sufficiently large m. B

Now suppose that P is nonzero and o-finite. In case of P(£)) < oo, condition (ii) is satisfied with
P, := P(Q)~'P and p = P(Q). In case of P(Q) = oo, let © = |J22; A, with sets 4, € A
such that P(4,,) < oo, we may assume without loss of generality that these sets A,, are pairwise
disjoint with P(A,,) > 0. But then

Py(A) = i 27"P(A,)'P(AN A,)
n=1

defines a probability measure on (€2, A), and for any A € A,

[e.9]

PU) = 32U PANA) = | par,
with p(w) 1= Y271 2" P(A,)1, (w) > 0. O

Theorem 2.23 implies the following result about o-finite measures.

Theorem 2.27 (Radon-Nikodym). Let P and ) be o-finite measures on (£, A). Then the fol-

lowing two conditions are equivalent:
(i) Q is absolutely continuous with respect to P.
(ii) There exists a density f of () with respect to P.

In case of (i—ii), the density f is P-almost everywhere unique. That means, if f is another density
of Q with respect to P, then P({f # f}) = 0.

Proof of Theorem 2.27. If condition (ii) is satisfied, then P(A) = 0 implies that Q(A) equals
f 4 J dP =0, so condition (i) holds true as well.
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Suppose that condition (i) is satisfied. If P and (@ are finite, the existence of a density f = dQ/dP
is a consequence of Theorem 2.23. In the general case, let P, and (), be probability measures
on (€2, A) such that there exist strictly positive densities p = dP/dP, and ¢ = dQ/dQ,. Then
p~t =dP,/dP and ¢~' = dQ,/dQ, see Corollary 2.17. Hence, for arbitrary sets A € A,

P(A) =0 ifand only if P,(A) =0,
Q(A) =0 if and only if Q,(A) = 0.

Thus condition (i) implies that (), is absolutely continuous with respect to P,. Consequently, there
exists a density f, = dQ,/dP,. But then Lemma 2.16 implies that for any .A-measurable function

h:Q —[0,00),
/hd@ - /hquo - /hqfodPo - /hqfopldP,

so f:=qfop ! =dQ/dP.
Suppose that f is another version of d@Q/dP. Then, fo =q ! fp is another version of dQ,/dP,,

and {f, # fo} = {f # f}. According to Exercise 2.20, 0 = P,{f, # f,} = P.{f # [},
whencep{f¢f}:f{f#}pdpozo. O

Exercise 2.28. Let P be a o-finite measure on (£2,.4), and for some measurable function f :
Q—[0,00),let Q(A) := [, fdP for A € A. Show that Q is o-finite too.

2.3 Another Riesz Representation

Combining the Radon—-Nikodym theorem with Theorem 1.15 leads to a well-known representation
theorem for LP-spaces. Let (€2, .A, ) be a o-finite measure space. For p € [1,00) let £P(u) be
the set of measurable functions f : 2 — R such that

= ([ 17 a) ™" < oc.

It is well-known that £P(y1) is a Stone lattice and || - ||,,,,, defines a seminorm on £P(u). The same

is true for the set £°°(u) of measurable functions f : €2 — R such that

1 lloos = inf{r > 0: u({|f| > 7}) = 0} < oc.

Theorem 2.29. For an arbitrary p € [1,00), let L : LP(u) — R be linear and continuous with
respect to || - ||, Then there exists an function h € L£9(p), where ¢ = p/(p — 1) € (1, 00], such
that

L(f) = /fhdu forall f € LP(u),

and

sup LA = [In
feLr(u): | fllp,n<1

QK-

The function h is unique p-almost everywhere.
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In the proof of this theorem, the following result is useful.

Lemma 2.30 (Holder). Letp € [1,00) andq = p/(p—1) € (1, o0]. For any function h € L(u),

sup | [ han] = o

fecr(u): (| fllp,n<t

Proof of Lemma 2.30. If ||2||,,, = 0, the assertion is obvious, because ;({h # 0}) = 0. Thus
let 0 < ||hlq,u < o0.

In case of p = 1, it follows from p({|h| > ||h|/co,.}) = O that

] / fhdu’ < If 1ol o -

On the other hand, p({|h| > C}) > 0 for any fixed 0 < C' < ||h|oo,u, and o-finiteness of
p implies that 0 < A := pu({|h|] > C} N B) < oo for some B € A. If we define f :=
A~ sign(h)1gjp>cyns, then || f[|1,, = 1 and

/fhdu > C.

Hence, the supremum of | [ fh dp| over all f € £ (1) with || f[|1,, < 1 equals ||h|so,-

In case of p > 1, the well-known Hdlder inequality states that

[ thda| < 1l

for arbitrary f € £P(u). Consequently,

[ fhdp] is no larger than ||hl|y,, whenever || f||p,, < 1.
It suffices to show that we have equality for a suitable f. To this end, let f = Asign(h)|h|97! =

Asign(h)|h|"/®=1) for some A > 0. Then ap = ||hllq,u L/ (e=1)
yields a function with || f||,,, = 1, and
[ s = W [t =l
O

Proof of Theorem 2.29. As in the proof of Theorem 1.15 one can show that there exist two mea-
sures M7 and M, on o(LP(u)) such that £P () C LY (My+ M) and L(f) = [ fdMy— [ f dM
for any f € £P(u). Furthermore, for some constant C, [ fdM; < C| f||,,. for all nonnegative
functions f € LP(p) and j = 1,2.

First of all, o (LP(u)) = A. On the one hand, o(£P(1)) C A, because all functions f € LP(u) are
A-measurable. On the other hand, if Q = J,,,~; Bm with sets B,,, € A such that (By,) < oo,
then any set A € A can be written as A = Un:>1 AN By, and 14np,, € LP(p) forall m > 1,
whence A € o(LP(u)), thatis, A C o(LP(u)). B

Thus for j = 1,2, M; is a measure on A such that [ fdM; < C| f||,, for all nonnegative
f € LP(p). In particular, if f = 14 for some A € A with y(A) = 0, then M;(A) = 0.
Consequently, by the Radon—-Nikodym theorem, there exists a density h; of M; with respect
to p, and [ fdM; = [ fhjdp < C| f||p, for all nonnegative f € LP(u). But this implies
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that [|hjllg, < oco. Indeed, let @ = J,,~; B with sets By C By C B3 C --- such that
p1(Bp) < oo. Then hjy, := 1p,,(hj A'm) € L9(u) satisfies hjy, T h; pointwise as m — oo,
whence || |lq,. — ||1]lg,u @s m — oo. For any nonnegative f € L£P(u) with || f]|,,, < 1,

¢z [fhydn = [ fhyman
and for a suitable such function f, the integral on the right hand side equals ||/, ||q,.. see the
proof of Lemma 2.30. This shows that ||h;l[,,, < C.
Allin all, h := hq — hg is a function in £9(u) such that

L(f) = /fhdu forall f € LP(u),

and it follows from Lemma 2.30 that the supremum of |L(f)| over all f € £P(u) with || f||p, <1

is equal to || ||g -

Essential uniqueness of h can be verified as follows: If b, h € £9(u) such that L(f) = [ fhdu =
[ fhdu for all f € LP(p), then [ f(h — h)du = 0 for all f € LP(u). Then it follows from
Lemma 2.30 that ||h — hl|,, = 0, thatis, u({h # h}) = 0. O



Chapter 3

Conditional Expectations

Throughout this chapter let (£2,.4, P) be a probability space, and let X be a random variable in
L1(P). That means, X : Q — R is A-measurable, and [ | X|dP < .

3.1 Conditional expectations with respect to a sub-o-field

Let A, be a sub-o-field of A. One could think about a rather complex random experiment de-

scribed by (£2,.A, P), and the subfield A, represents some partial aspects of it.

Theorem 3.1. There exists a random variable X, € L'(P|4,) such that

(3.1) /XOdP:/ X dP forall A, € A,.
Ao Ao

This random variable X,, is almost everywhere unique: If X, is another random variable satisfying
(3.1), then P(X, # X,) = 0.
Definition 3.2 (Conditional expectation, I). A random variable X, as in Theorem 3.1 is called (a

version of the) conditional expectation of X, given the sub-o-field A,. A function X, satisfying
(3.1) is denoted by IE(X | A,).

Proof of Theorem 3.1. Uniqueness of X, almost everywhere follows from Lemma 2.20 (with A,

in place of \A), so it suffices to prove existence of X,.

Let X = X — X~ with X* = max(4+X,0). Then
QE(A) = / X*adpP
A

defines finite measures on (€2, .A) with density X* with respect to P. This implies that Q| 4, is
absolutely continuous with respect to P| 4,. Hence, by the Radon-Nikodym theorem, there exist
densities X\ € LY(P)4,) of Q| 4, with respect to P|4,. This implies that X, := x5 -x)

has the desired property (3.1). 0

37
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Example 3.3 (Countable partitions). Let = Un21 B, with a sequence (B,,),>1 of disjoint

measurable sets, and let .4, be the smallest o-field containing all these sets B,,, n > 1. Then

E(X|A,) = Z]E(X | By) - 1p, almost surely

n>1

with the numbers
1/ XdP if P(B) >0,
B

E(X) else.

E(X|B) =

(The definition IE(X | B) := IE(X) in case of P(B) = 0 is somewhat arbitrary.) Indeed, the
function X, := >+, IE(X | By) - 1p, is constant on each set By, n > 1, so it is A,-measurable.
Moreover, any set A, € A, may be written as A, = |J,,c; Brn With M C N, so

/XdP > XdP:ZP(B) (X|Bn) = ) XodP:/XOdP.
Ao

neM neM neM

Remark 3.4 (Properties of conditional expectations). In what follows, let X, Y € £L!(P).

(a) For real numbers a, b,
E(aX +bY|A,) = alE(X|A,) +bIE(Y | A,) almost surely.

This is a simple consequence of linearity of integrals.

(b) If X <Y almost surely, then
E(X|A,) < IE(Y|A,) almostsurely.

This is essentially a consequence of Lemma 2.20: It follows from X <Y almost surely that
/ E(X | A) / XdP</ de:/ E(Y | A)dP forall A, € A,.
D AO

Hence, P(IE(X | A,) > E(Y | A,)) =0

(c) The mapping X — IE(X | A,) is a weak contraction in the sense that
IE(X | A,)| < E(|X||A,) almost surely.

This follows from properties (a—b): Writing X = X — X~ with X* = max(4X,0), one may

write | X| = X" + X, and we know that almost everywhere,

IE(Xi |A,) >0 (property (b)),
E(X[A) = E(XT-X"|A4,) = E(XT|A4,)-EX"|4,) (property (a)),
B(X[|A,) = BXT+ X7 [A) = E(XT|A)+E(X[A) (property (a)),

whence

E(X|A)| < E(X]]A).
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(d) It follows from properties (a) and (c) that
/]]E(X|Ao) —E(Y | A,)|dP < /|X—deP.
(e) For any bounded, A,-measurable random variable Z, : 2 — R,
(3.2) /XZO dP = /IE(X]AO)ZO dP.

Indeed, by definition of IE(X | A,), equation (3.2) is true for indicator functions Z, = 14,, 4, €
A,. By linearity of integrals, (3.2) is even true for A,-measurable functions Z, :  — R taking
only finitely many values. But for any bounded, .A,-measurable function Z, : {2 — R, there exists

a sequence (Zp)n>1 of A,-measurable functions taking only finitely many values such that

Sp 1= sup|Zn(w) — Zo(w)| = 0 asn — oo.
we

Now (3.2) follows from the fact that for arbitrary n > 1,

‘/XZOdP—/IE(X|AO)ZOdP) - ‘/(X—IE(X\.AO))(ZO—Zn)dP’
< 5n/yX—IE(XyAO)\dP.

Exercise 3.5. Let P be the exponential distribution on 2 = [0, c0) with rate parameter A > 0,
and let A, be the smallest o-field containing all intervals [k, k4 1), k € Ny. Determine IE(X | A,)

in case of X (w) := w.

Exercise 3.6 (“Tower property” of conditional expectations). Let (2,.4, P) be a probability space
and X € L1(P). Let A; and A be o-fields over €2 such that A; C Ay C A.

(a) Show that IE(IE(X | A;)|Az) = IE(X | A;) almost surely.
(b) Show the so-called tower property: IE(IE(X | Ag) | A1) = IE(X | A;) almost surely.
We end this section with an extension of Jensen’s inequality for expectations to conditional expec-
tations.
Lemma 3.7 (Jensen’s inequality). Let X € L!(P), and let ¢ : R — R be convex such that
J(X)dP < co. Then

Y(E(X | A,)) < E@W(X)|A,) almost surely,

and

[omxianar < [oxar

Proof of Lemma 3.7. By the definition of conditional expectations and Lemma 2.20, it suffices
to show that for any fixed A, € A,,

/w(m<xon))dP s/ W(X) dP.
Ao "
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Note that by convexity of v, for any fixed =, € R there exists a slope b(x,) € R such that
P(x) > P(xo) + b(zo)(x — x,) for all z € R; see, for instance, Chapter 3 of Diimbgen (2021).
Moreover, for arbitrary x € R,

Y(x) = sup (1/)(1’0) + b(zo) (2 — xo})

z,€Q

Consequently,

[ vEeeia)ar - /;sup(¢@%>+bmwxmxxrAa-—x»dP

0 To€Q

o

_ /A sup (1 (xo) + b(zo)(X — 2,) | A) dP

o To€Q

< /A W(X)dP,

where the second last step follows from Remark 3.4 (a) and countability of (Q, while the last step
follows from Remark 3.4 (b) and countability of Q. O

3.2 Conditional expectations as orthogonal projections

In this section we restrict our attention to the space £2(P) C L!(P) of square-integrable random
variables. If we identify random variables which are equal almost surely, we obtain the Hilbert

space L?(P) with inner product
(X,Y) = /XY dP

and norm 12
1X] == (X, X)V2 = (/XQdP> .

One may view IE(- | A,) as a continuous linear mapping from L?(P) to its closed linear subspace

L?(P|4,). Indeed, applying Lemma 3.7 with (z) := 2% leads to the inequality
/IE(X | A,)?dP < /X2 dP.

Theorem 3.8. The mapping X ~ IE(X | A,) is the orthogonal linear projection of L?(P) onto
L?(P|4,). In particular, for arbitrary random variables X € L*(P) and Y, € L?(P|4,),

IX = Yol? = [[X = (X | A) " + | (X Ao) = Yo" > || X —TB(X [ A)]°
with equality if and only if Y, = IE(X | A,). Moreover,
I1X[2 = [|X — B AP+ | EX A > (B |4

with equality if and only if X = IE(X | A,).

Proof of Theorem 3.8. It is well-known from general results about Hilbert spaces that X, :=
IE(X | A,) is the orthogonal projection of X onto L?(P|4,) if and only if

X - X, L L*Pla,);
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see, for instance, Chapter 2 of Diimbgen (2021). That means,
(3.3) (X — X,,Z,) = 0 forall Z, € L3(P|4,).
Note first, that the left hand side of (3.3) equals
/XZO dP — /IE)(X | Ao)Z, dP.
This is equal to 0 whenever Z, is bounded, see Remark 3.4 (e). But for arbitrary Z, € L*(P|4,),
Zy, = sign(Z,) min(|Z,|,n)
defines a sequence (Z,),,>1 of bounded random variables Z,, € L?(P)|4,) such that
|Zo—Zyn]| — 0 asn — oo,

which may be verified by dominated convergence. Now (3.3) follows from the fact that for arbi-

trary n > 1,
’<X — Xo, Z0>‘ = ’<X — X0, Zo — Zn>‘ < IX = Xolll|Zo — Zn||
by the Cauchy—Schwarz inequality.
Orthogonality of X — X, onto L?(P|4,) implies that for any Y, € L?(P|4,),
IX = Yol? = X - Xo + X, — Yo|?
= [1X = Xo|* + [1Xo — Yo||* + 20X — Xo, X, — Y)
= X = Xo|* + [ X - Yo%,
and in the special case Y, = 0 we obtain

X1 = 11X = Xo||* + || X1
O

Exercise 3.9. As in Exercise 3.5 let P be the exponential distribution on = [0, c0) with rate
parameter A > 0, let A, be the smallest o-field containing all intervals [k, k + 1), k € Ny, and let

X (w) := w. Determine the value of
X = E(X [ A

Hint for checking your solution: || X — IE(X | A,)||? equals A™2 — e* (e} — 1)72.

3.3 Conditional expectations given another random variable

Previously we referred to A, as describing partial aspects of the random experiment (2, A, P).
Specifically, suppose that instead of the random outcome w € 2 we only know 7'(w) for some
given measurable function 7" : (2, A) — (7, B). This corresponds to the sub-o-field

o(T) = {T_I(B) : B € B}

of A. Tt is the smallest o-field A, over €2 such that T is A,-3-measurable. There is a simple result
about o (7T")-measurable functions X : 2 — R.



42

Lemma 3.10 (Lifting). A mapping X : 2 — R is o(T")-measurable if and only if
X =VoT
for some B-measurable function V : T — R.

Here V o T stands for the mapping 2 3 w — V(T (w)) € R. In connection with integrals we
often write V' (7T') instead of V o T..

Proof of Lemma 3.10. On the one hand, if X = V oT with a B-measurable function V : T — R,
then V=1(C) € Band X~ }(C) = T~ (V~YC)) € o(T) for any Borel set C' C R.
On the other hand, let X be o(7")-measurable. For n € N let X,, := 272" X |. That means, for
z €,

Apn, = {Xp=2""2} = {27"2< X <27"(z+ 1)}
By assumption on X, the latter event may be written as {1 € B,, .} for some set B,, , € B. Since
the sets A,, ., z € Z, are pairwise disjoint, we may assume without loss of generality that the sets

By, ., z € Z, are pairwise disjoint too. Just use some enumeration z(1), z(2), z(3), ... of Z, and

then replace B,, .y with its subset B,, . \ U<k B, - (¢)- Then,
X, = V,oT
with the B-measurable function V,, : 7 — R,

Valt) = 27"z ifte By.,z € Z,
o ift &,y Bns-

Since X,, < X < X,, +27",

X = lim V,oT =VoT

n—oo

with the B-measurable function V : 7 — R,

V(t) := limsup V,(t).

n—o0

But X = V o T being real-valued implies that T~ (V! ({—o00,00})) = 0. Hence, X =V o T
with the B-measurable function V' : 7 — R given by, say,

O

In addition to Lemma 3.10 we need an elementary result about the distribution P of T, i.e. the

probability measure
B> B — PT(B):=P(T € B).
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Exercise 3.11 (Change of variables). Show that for any real-valued random variable V' on the
probability space (7, B, PT) and any set B € B,

/ V(T)dP = /VdPT,
T-1(B) B

provided that one of these two integrals is well-defined in R. Hint: Use approximations of V' as

in Lemma 2.16.

Now we can prove a generalization of Theorem 3.1:

Theorem 3.12. For any random variable X € L'(P) there exists a random variable V € £ (PT)
such that

(3.4) / XdP = / V dPT  for arbitrary B € B.
T-1(B) B

This random variable V is almost everywhere unique in the following sense: If V is another
random variable satisfying (3.4), then PT(V #V)=0.

Definition 3.13 (Conditional expectation, II). A random variable V" as in Theorem 3.12 is called
(a version of the) conditional expectation of X, given the random variable T'. For any such random
variable V' we write IE(X | T') instead of V and IE(X | T = t) instead of IE(V | T')(¢) or V' (¢).

Note that IE(X | T') is a function on 7. But sometimes we and other people abuse notation slightly
to write IE(X | T') instead of IE(X | o(T')), which is a function on €.

Example 3.14. Let Q = [0,00), and let P be the exponential distribution with rate parameter
A > 0,i.e. with density fy(w) := Ae™* with respect to Lebesgue measure on §2. Let X (w) := w,
and let A, be the smallest o-field over {2 containing all intervals [k, k + 1), k € Ny. One can
easily verify that A, = o(T") with

T:00,00) = Ny, T(w):=|w].

And the result of Exercise 3.5 may be reformulated as

E(X[A) = [X]+a(N),
EX|T=t) =t+a(\) forte Ny,

with a(\) = A71(ed =1 = \)/(e* = 1).

Remark 3.15. Theorem 3.1 may be viewed as a special case of Theorem 3.12 if we define

(T, B) = (Q,AO) and T(w) = w.

Proof of Theorem 3.12. We may apply Theorem 3.1 to the sub-o-field A, = o(T"). This yields
a random variable X, € L'(P],(r)) such that

/ XdP = / X,dP forall B € B.
T-1(B) T-1(B)
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Lemma 3.10 implies that X, = V o T for some B-measurable function V' : 7 — R. Now it

follows from Exercise 3.11 that

/ V(T)dP = /VdPT for all B € B.
T-1(B) B

This proves existence of a random variable V' with the desired property (3.4). Essential uniqueness
of V is a consequence of Lemma 2.20. O

Remark 3.16 (Properties of conditional expectations). The properties listed in Remark 3.4 carry

over to the present setting with only few modifications. In what follows, let X,Y € L(P).

(a) For real numbers a, b,

E(aX +bY|T) = alB(X |T) +bIE(Y |T) PT-almost surely.

(b) If X <Y almost surely, then

E(X|T) < E(Y|T) PT-almost surely.

(c) The mapping X — IE(X |T) is a weak contraction in the sense that

E(X|T)| < E(X]||T) PTalmost surely.
(d) It follows from properties (a) and (c) that

/|IE(X]T)—IE(YT)|dPT < /|X—Y|dP.

(e) For any bounded, B-measurable function h : T — R,
(3.5) /Xh(T) dP = /IE(X | T)h dPT.

This follows again from an approximation argument. The definition of IE(X |T") implies that
equation (3.5) is true for indicator functions h = 1p, B € B, because 1p-1(p) = 1 B(T). The

remaining arguments are analogous to the arguments for Remark 3.4 (e).

An extension of the lifting lemma. Although it is not needed in this lecture, it is worthwhile to
mention that Lemma 3.10 can be generalised as follows:

Lemma 3.17 (Lifting). Let (X, d) be a complete, separable metric space, equipped with its Borel-
o-field. A mapping X : Q — X is o(T)-measurable if and only if

X =VoT
for some B-measurable functionV : T — X.

The proof is split into the following two exercises.
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Exercise 3.18. Let (£2,.A) be a measurable and (X, d) a metric space. Further let (V},),>; be a
sequence of measurable functions V,, : 2 — X, where X is equipped with its Borel-o-field with

respect to d.

(a) Suppose that (V,),>1 converges pointwise to a function V' :  — X. Show that V is

measurable.

(b) Suppose that (X', d) is separable and complete. Without any further assumptions on (V/,),>1,

show that the set C' of all w € 2 such that (V;,(w)),>1 converges is a measurable subset of (2.

Exercise 3.19. Imitate the proof of Lemma 3.10 to construct a sequence (V,),>1 of measurable
functions V,, : 7 — X converging pointwise to a function V such that X = V o T. Conclude

from Exercise 3.18 that V' is measurable.
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Chapter 4

Stochastic Kernels

In this section we collect some useful results about finite measures on product spaces. Throughout
let (X, .A) and (), B) be measurable spaces, and we consider the Cartesian product 2 := X x )

equipped with the product o-field
C = ARB,

i.e. the smallest o-field containing all sets A x B with A € A and B € B. An important property
of C is that for any C € C,

4.1) {reX:(z,y)€C} € A forally, €Y,
4.2) {yeY:(zo,y) €C} € B forallz, € X.

The reason is that the family of all sets C' C € satisfying (4.1) and (4.2) is easily verified to be a

o-field over () containing the generator
AXRB := {AxB: A€ A Bec B}

of C.

4.1 Stochastic Kernels and Fubini’s Theorem

Definition 4.1 (Stochastic kernel). A stochastic kernel from (X, .A) to (Y, B) is a mapping
K:XxB-0,1]

such that

e for any fixed x € X, the mapping K (z, -) defines a probability measure on (), B),
e for any fixed B € B3, the mapping K (-, B) is .A-measurable on X

Remark 4.2 (Randomized mappings). One may interpret a stochastic kernel K from (X, .A) to
(Y, B) as a “randomized measurable mapping” from X to ). Instead of mapping a point x € X
to a unique point k(z) € ), we choose a random point in ) with distribution K (x, -). Indeed, any
A-B-measurable mapping k£ : X — ) corresponds to the (degenerate) stochastic kernel K given
by

K(z,-) = 0@y, K@, B) = Li-1p)(2).

47
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Theorem 4.3 (Product of a finite measure and a stochastic kernel). Let P be a finite measure on
(X, A), and let K be a stochastic kernel from (X, A) to (Y, B). Then for arbitrary C € C, the

number
P& K(C) = / K(z,Cy) P(dz) withCyi={y €Y : (z,y) € C}
X

is well-defined, and P ® K is a finite measure on (€2,C) with P ® K () = P(X).

Remark 4.4 (Product measures). Let () be a probability measure on (), B). If we set K (z, B) :=
Q(B) for arbitrary x € X and B € B, then P ® K is the usual product measure P ® Q).

In the subsequent proofs, we use repeatedly the notion of a Dynkin system, see Section A.1 for

the basic concepts.

Proof of Theorem 4.3. One can easily verify that the family D of sets C' € C such that  +—
K(zx,C,) is A-measurable is a Dynkin system containing the generator A X BB of C. Since A X B
is closed under intersections, the smallest Dynkin system containing A X B coincides with the
product o-field A ® B = C. Hence P ® K (C) is well-defined for any C' € C.

It follows from the properties of K that P ® K defines a content, i.e. a finitely additive function
on A® Bwith P® K(() =0and P® K(2) = P(X). It is a measure, because for arbitrary sets
cHcc®ce® .. inCandC:={J,-,CM,

lim P K(C™) = lim [ K(z,C™)P(dz)

n—oo n—oo

- / lim K(z,C™) P(dx)

n—oo

= /K(az,Cz)P(dm) = PR K(C)
by monotone convergence. O

If a distribution on a product space is a product of a marginal distribution and a stochastic kernel,
there is a generalization of Fubini’s theorem for integrals with respect to product measures.

Theorem 4.5 (Fubini’s theorem). LetIP = P ® K with a finite measure P on (X, A) and a
stochastic kernel K from (X, A) to (Y, B).

(i) For any C-measurable function f : ) — [0, oo],

huw=éj@wKw@>

defines an A-measurable mapping h : X — [0, o], and

/QdeP = /thp.

(ii) If f € LY(IP), then there exists a set A(f) € A with P(A(f)) = 0 such that for all z €
X\ A(S),

mmr—/ﬂ%wKwnw
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is well-defined in R, and

/QdeP = /thp.

Proof of Theorem 4.5. Part (ii) is an immediate consequence of part (i). Hence we prove only

part (i). For a measurable function f : 2 — [0, 00] and n € N let

n2m

fTL = 2in21[f2k2—n}
k=1

This defines a sequence of measurable functions f, > 0 such that f,, T f as n — oo pointwise.

Indeed, for any integer £ > 0,
frn = min(£,n2")27" on {27" < f<(+1)27"}

For any fixed n,

n27l

[ dd = 2 Y (s 2 2 )
Q k=1

n2m

=9 K(z,{f > k2™"},) P(dx)
>,

= / hy, dP
x

n2™

hala) = 23 Ko {f 2 k2 = [ aley) K(ody),
k=1 y

with

This is obviously a measurable function on (X',.4). By monotone convergence, for any = € X,

hwaM@—Aﬂ%wM%w)%n%w,

whence h is measurable as well. Another application of monotone convergence yields that

/hndPT/th as m — 0o.
x x

On the other hand, by monotone convergence,

/andIPT/Qfle asn — oo,

so the asserted equation is true. O

Remark 4.6 (Fubini’s theorem for products of o-finite measures). The present results also imply
a more traditional version of Fubini’s theorem. Let P and () be o-finite measures on (X', .4) and

on (Y, B), respectively. For C' € C, the number

“3) P(C) = /X Q(C,) P(dz) withCy == {y € V: (1) € C}
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is well-defined in [0, o] and defines a o-finite measure on (£2,C). Moreover, for arbitrary C-

=/f@@@@)
Yy

defines a .A-measurable function h : X — [0, co], and

/QdeP = /thp.

To verify this, we apply Lemma 2.26 to find probability measures P, on (X, .A) and ), on (Y, B)
such that densities p = dP/dP, and ¢ = dQ/dQ), exist. Then the product measure P, := P,®Q,
is well-defined, and

measurable functions f : Q — [0, o],

Mmeéﬂm@mww»

defines a o-finite measure on (£2,C). This definition coincides with (4.3), because Theorem 4.5
implies that

Hm://mMmm@wmam>

:// 4) Qo(dy) plx) Po(dz)
:/@ P, (dz)
=Amwmm

More generally, for C-measurable functions f : Q — [0, o],

/jdw——/fmwmwM@ﬂmw@w»

with h(z) == [}, f(z,y) Q(dy).

The next result concerns uniqueness of stochastic kernels.

Lemma 4.7 (Uniqueness in product measures). Let P, P be finite measures on (X, A), and let
K, K be stochastic kernels from (X, A) to (), B) such that

PRK = PRK.

Then P = P, and for any B € B, K(-, B) = K(-, B) P-almost everywhere. If B has a countable

generating family &£, then even

K(z,) = K(x,-) forP-almostallz € X.
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Proof of Lemma 4.7. The construction of the product measures implies that for any A € A,

P(A) = PoK(AxY) = PR K(AxY) = P(A),
i.e. P = P. For any fixed B € B, the functions K (-, B), K (-, B) € L!(P) satisfy
/ K(z,B)P(dz) = PR K(AxB)=P® K(Ax B) = / K (z, B) P(dx)
A A

for arbitrary A € A. Hence K (-, B) = K(-, B) P-almost everywhere by Lemma 2.20.
Finally, suppose that £ is a countable family of subsets of )} generating . The family & of
intersections of finitely many sets in £ is countable as well, see Exercise 4.8. Then the set
A, == {z € X :K(v,B) # K(v,B) for some B € £'}
satisfies P(A,) = 0. But for any fixed x € X'\ A,,
D(z) := {Be€B:K(v,B)=K(z,B)}

defines a Dynkin system with &’ C D(z) C B. Since £’ is closed under (finite) intersections, the
smallest Dynkin system containing £’ is a o-field, so D(x) = Band K (z,-) = K(z,-). O
Exercise 4.8 (Countable set families). Let £ be a countable family of subsets of ).

(a) Show that the family &’ of all intersections of finitely many sets in £ is countable as well, and

that £ is closed under (finite) intersections.

(b) Let B, be the family of all sets of the form

withm,n € Nand Ej; € EU{Y\ E: E € £} U{0, Y}. Show that 5, is countable, and that it
is the smallest field over ) containing £.

4.2 Decomposing Measures on Product Spaces

An interesting question is whether any finite measure IP on (€2,C) may be decomposed into the
product P ® K of a finite measure and a stochastic kernel. Let us start with two examples for such

a decomposition.

Example 4.9. Suppose that X is a countable set and .A = P(X’). Then any finite measure IP on
2 may be represented as P ® K, where

P({z}) == P({z} x V)

and
P({e}) ' P({e} x B) if P({z}) > 0,

K= B) := {IP(X)—l P(X x B)  if P({x}) =0.
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Example 4.10. Let L and M be o-finite measures on (X', .A) and (Y, B), respectively. Suppose
that IP is a finite measure on (X x ), A ® B) with density f : X x Y — [0, c0) with respect to
the product measure L @ M. By Fubini’s theorem (Remark 4.6),

//1c:cy (z,y) M(dy) L(dz) //f:cy (dy) L(dx)

for arbitrary C' € C = A ® B. If we define
P(A) := PP(Ax))
for A € A, then P is a finite measure on (X', A) with P(X") = IP(£2) and
/fl P(dx) with fi(z /fl‘ y) M (dy).

Thus fi = dP/dL. Note also that P({f; = 0}) = 0= P({f1 = oc}).

Analogously, Q(B) := IP(Q) "' IP(X x B) defines a probability measure on (), B) with density
= dQ/dM given by

ﬁ@x=mm*ﬁj@wum»

For C' € C, we may rewrite IP(C) as

)= [ h@KEc L) = [ KG.Co P

:/mmmwm
B

with

and
) fi@) T f(my) 10 < fi(z) < oo,
f2|1(y!$) - {fQ( ) else.

This defines a stochastic kernel K from (X, A) to (), B) such that P = P ® K.

Exercise 4.11 (Decomposition of a probability distribution). Let IP be the uniform distribution
on the unit sphere in R x R. That is, it describes the distribution of (cos(U),sin(U)), where
U ~ Unif[0, 27]. Determine a decomposition IP = P ® K with a probability measure P on R
given by some density, and a stochastic kernel K from R to R.

Our final result in this section will show that for “nice” measurable spaces (), 3), any finite
measure on C may be decomposed into the product of a finite measure on (X', .4) and a stochastic
kernel from (X, A) to (Y, B).

Theorem 4.12 (Existence of stochastic kernels). Let (), d) be a separable and complete metric
space', and let B = Borel(), d). Then for any finite measure IP on (£2,C) there exists a finite
measure P on (X, A) and a stochastic kernel K from (X, A) to (), B) such that

P=PRK.

!'The corresponding topological space is called a Polish space.
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For the proof of this theorem, we need some basic facts about finite measures on metric spaces.
Lemma 4.13. Let (), d) be a metric space, and let ( be a finite measure on 3 = Borel(), d).

(i) Any set B € B may be approximated in the following sense: For each ¢ > 0 there exist a
closed set A C Y and an open setU C ) suchthat AC BC U andQ(U \ A) < e.

(i) If (V,d) is separable and complete, the closed sets A in part (i) may even be chosen to be

compact.

Proof of Lemma 4.13. The proof of part (i) is left to the reader as an exercise. One can proceed
as follows: Let B’ be the set of all B € B which may by approximated by closed and open sets
as stated. One can show that B’ is a field over V. Then one can show that it is even a o-field over
Y by showing that | J,,~, By, € B’ for arbitrary sets By C By C B3 C --- in B. Any closed set
A C Y belongs to B. To this end consider the neighborhoods U (A) := {y € Y : d(y, 4) < ¢}
with d(y, A) := inf{d(y, z) : z € A}. Consequently, 5’ is a o-field containing all closed sets and
contained in /3. But this implies that B’ = 5.

As to part (ii), let {y1, y2,ys, ...} be a dense subset of ). For any fixed € > 0 and arbitrary k € N
let N(e, k) € N such that

N(e,k)

Q(¥\ U (v, 1/R)) < 27

where B(y, ) is the closed ball with center y and radius 6 > 0. Then

N(k,e
U yn,l/k

is a closed subset of ) such that Q()\ K, 6) < e. Indeed, the set K is even compact. To show this,

\\38

let (2, )m>1 be an arbitrary sequence in K. Since K is closed and (), d) is complete, it suffices

to show that (z,)mm>1 has a Cauchy subsequence. There exists an index n(1) € {1,..., N(¢, k)}
such that My := {m > 1: x,,, € B(yn(1), 1)} is infinite. Suppose that for some k > 1 we have
chosen an infinit set My C N and an index n(k) € {1,..., N(e, k) such that z,,, € B(yn1), 1/k)
for m € Mj,. Then for a suitable index n(k + 1) € {1,..., N(e, k + 1)}, the set

My = {m € My :zpy € B(yn(k+1)’ 1/(k + 1))}
is infinite too. This leads to infinite subsets M1 O My D Mg O --- of N such that foreach k > 1,
Tm € B(ynw),1/k) forallm € My.

Now let m(k) be the k-th smallest element of M. Then m(1) < m(2) < m(3) < ---, and for
integers 1 < k < ¢, m(k),m(¢) € My, whence

d(zg, v0) < d(Thy Yn(ry) + AT, Ynry) < 2/k.
This implies that (2,,,())x>1 is a Cauchy subsequence of (2, )m>1, whence K is compact.

For any set B € B and € > 0 there exist a closed set A and an open set U such that A C B C U and
Q(U\ A) < ¢/2. Butthen, A := AN K. /5 is a compact subset of B such that Q(U \ A)<e O
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Proof of Theorem 4.12. Without loss of generality let IP be a probability measure on (€2, C). For
A€ Aand B € Blet P(A) := IP(A x Y) and Q(B) := IP(X x B). This defines probability
measures P and @ on (X, A) and (), B), respectively.

Since (), d) is separable, there exists a countable dense subset ), of ). Let £ be the family of all
open balls with center in ), and rational radius. This family £ is countable, and any open subset
of Y is the union of balls in £. As shown in Exercise 4.8, the smallest field B3, over ) containing
£ is countable, too. Hence, B = (&) = o(B,). Since (), d) is complete, for each B, € B, there
exist compact sets

D1 (B,) C Dy(B,) C D3(B,) C--- C B,

such that limy_,», Q(Dy(B,)) = Q(B,), see Lemma 4.13. Finally, we consider the smallest field
B, over Y containing B3, and {Dk(BO) :B, € B,,keN }, which is also countable.

For each B € B, let K (-, B) be an explicit version of IE(15(Y) | X), where X (z,y) := x and
Y (x,y) :=y for (z,y) € 2. That means, for arbitrary A € A,

P % B) = E(La(016(Y)) = E(LCOK(X.B) = [ Ko B) Plda),
A
The properties of conditional expectations imply that P-almost everywhere,

K(7®) = 07
K(-Y) =1,
K(.BUB') = K(-,B)+ K(-,B") fordisjoint sets B, B’ € B,.

The collection of all these equations is countable, so there exists a set A; € A with P(A;) = 0
such that for all x € X \ A, the mapping K (z,-) defines a probability content on B,, i.e. 0 <
K(z,-) < 1 with K(z,0) = 0, K(z,)) = 1 and K(z,BU B') = K(z,B) + K(z,B’) for
disjoint sets B, B’ € B,,.

For any set B, in the smaller set algebra B,, we know that
lim Q(Dk(B,)) = Q(Bo).
k—o0

But Q(Dy(B,)) = [ K(z,D(B,)) P(dz), Q(B,) = [ K(z,B,)P(dz), and for any = €
X \ Ay, the sequence (K (z, Dk(BO)))k>1 is increasing with a limit h(z, B,) < K(z, B,). By
monotone convergence, [ h(x, B,) P(dz) = Q(B,) = [ K(x, B,) P(dx), whence K (-, B,) =
h(:,B,) for P-almost all x € X. Since B, is countable, there exists a set Ay € A with
As C X'\ Ay and P(As) = 0 such that forany z € X'\ (A1 U As),

lim K(z,Dy(B,)) = K(z,B,) foreach B, € B,.

k—o0
These properties imply that for each z € X'\ (41 U A3), the mapping K (z,-) is a probability
measure on the smaller set algebra B,. To prove this it suffices to show that for any sequence
(Bpn)n of sets By D By D Bg D --- in B, with ngl B, =0,
lim K(z,B,) = 0.

n—o0
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Indeed, for any fixed € > 0 there exist indices k(n) > 1 such that
K(2,B,\ Dn) = K(x,Bn) — K(2,D,) < 27" with Dy, := Dy (By)).-

Note that D,, is a subset of B,,, so ﬂn>1 D,, = 0. Since all sets D,, are compact, there exists an

integer n, > 1 such that ()'>_; D,, = (). Consequently, for n > n,,

K(z,B,) < K(z,B,,) = K(x,By, \ ﬁ Dy,)
m=1
= K y ) Bno\Dm
(~U )
< Kz, O By \ Diy
(= U Bu\Dn)
< zu:K(x,Bm\Dm) < 2022_”"”6 < e
m=1 m=1

This shows that K (x, B,,) — 0 as n — 0.

For each x € X'\ (A1 U Ay), there exists a unique extension of K (z, -) to a probability measure
K*(x,-) on (Y, B). If we set

K*(z,B) := Q(B) forze Ay UAsand B € B,

then K* : X x B has the following properties:

e Foreach z € X, K*(z,-) is a probability measure on (), B);
e foreach B, € B,, K*(-, B,) is .A-measurable and a version of IE(15,(Y) | X).

But the set of all B € B such that K*(-, B) is .A-measurable is easily seen to be a Dynkin system.
Since it contains the set algebra B,, it coincides with 5. Hence K™ is indeed a stochastic kernel,
and the distribution P ® K™ coincides with IP on the family {A x B, : A € A, B, € B,}. The

latter family is closed under intersections and generates C, so P @ K* = IP. O

4.3 Conditional Expectations and Distributions

So far, we know conditional expectations as functions with certain properties. But the term “ex-
pectation” refers to integrals, so an obvious question is whether a conditional expectation may be
viewed as an integral with respect to some “conditional distribution”. As shown below, the answer

is yes.

Let (Q, F,IP) be a probability space, and consider random variables X : (2, F) — (X,.A) and
Y : (Q,F) — (Y, B). This gives rise to three different distributions:

A3 A — PX(A) = P(X € A) (distribution of X),

B> B — IPY(B) := IP(Y € B) (distribution of V),
A®B>C — PEY)(C) := P((X,Y)eC) (joint distribution of X and ).
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Now suppose that there exists a stochastic kernel K from (X, .A) to (), B) such that
PEY) = PY oK.

Then K (x,-) may be interpreted as the conditional distribution of Y given X = x. Indeed, let
f: X xY —0,00] be A® B-measurable. Then it follows from Theorem 4.5 that

Ef(X,Y) :/ FdPEY) — / hd1PX
XxY X
with the .4-measurable function i : X — [0, o],

— [ e iaan

The same conclusion is true if f € £'(IP(*¥)), the only caveat being that the integral h(z) may
not exist for points z in a set A(f) € A such that IPX (A(f)) = 0.

In particular, for g € £'(IPY) and arbitrary sets A € A,
[ )P = [ 1a@0gw)ar
X-1(4) 0

:/ 14(2)g(y) PEY)(d(z, 1))
X xYy

://1A K (z,dy) P* (dz)
= // K (z,dy) PX (dz),

:U»—)/ K(z,dy)

is a version of IE(g(Y") | X'). One often writes

SO

P(Y € B| X =)

PY (B| X = ) } instead of K(x, B),

E(g(Y)| X = 2) instead of /y o) K (2, dy).

Optimal predictions. In the special case that (), d) is a separable, complete metric space and
B = Borel(Y, d), it follows from Theorem 4.12 that a kernel K with the stated properties does
exist. In particular, let Y = R. If Y’ € £!(IP), then a version of IE(Y | X) is given by

EY|X =2 = /RyK(a:,dy).

Note that
o > [IY1dP = [ |yl K(w,dy) P (o),
X

so we may redefine K (z,-) := IPY for the exceptional points = € X such that [ |y| K (z,dy) =
oo. With the kernel K at hand, we can solve various prediction problems. The goal is to find
a predictor g(X) of Y, determined by a measurable function g : (X,.4) — R, such that the
approximation error Y — g(X) is “small”. The solution of this prediction problem depends on the

way how we measure the approximation error precisely.
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Case 1: Mean squared prediction error. Suppose that Y € £2(IP). If we want to minimize
E((Y — g(X))?), one can deduce from the considerations in Section 3.2 that IE(Y | X) solves
this problem. But let us follow a more direct route using the kernel K. Recall first that for any
constant ¢ € R, the expectation of (Y — ¢)? equals Var(Y) + (IE(Y) — ¢)2, where Var(Y) =
E((Y — E(Y))?). Note also that

00 > /YQdIP = /X/Ry?f((m,dy) PX (dz),

so we may redefine K (z,-) := IPY whenever [y K(z,dy) = co. Now we can write

E((Y - g(X))?) = /X /R (v — 9(x))? K (x, dy) P (dx)
_ /X(Var(Y X =) + (B(Y | X =) — g(x)*) P¥ (o)

where
Var(V | X =z) = /R(y —EY | X =2))? K(z,dy).

Consequently, a predictor g(X) of Y minimizes the mean squared prediction error if and only if

9(X) = IE(Y | X) almost surely.

Case 2: Mean absolute prediction error. Suppose we want to minimize IE |Y — ¢g(X)|. It is
well-known that for a real constant ¢, the expectation of |Y — ¢| is minimal if and only if ¢ is a
median of (the distribution of) Y, that means IP(Y < ¢) < 1/2 < IP(Y > ¢). This leads to an
optimal predictor g(X):

BN~ o)) = [ [ 1y 9] K(e.dy) P (o)
is minimal if and only if g(z) is a median for IP(Y" € - | X = ), that means,
P(Y < g(@)| X =) < 1/2 < P(Y < g(a)| X = a),

for IPX-almost all z € X.
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Chapter 5

Haar Measure

5.1 Locally Compact Topological Groups

Groups. Recall the definition of a group (&X', -). This is a set X with a binary operation
XXX (zr,y) — x-yeX

satisfying the following three conditions:

e (Associativity) For arbitrary x,y,z € X,

z-(y-2) = (z-y) 2

o (Identity element) There exists an element e € X" such that for arbitrary = € X,

The identity element e is unique, and for each = € X, its inverse element 2! is unique as well.

Instead of x - y one often writes xy.
Exercise 5.1. Let (X, -) be a group.

(a) For z,y € X let x xy := yx. Show that (X, %) is also a group with the same identity element

and the same inverse elements.

(b) Show that for any fixed z, € &, the mapping x — x,x as well as the mapping x — xx, is
bijective from & to X'.

Locally compact topological groups. Suppose that there is also a metric d on X" such that the
following two conditions are satisfied:!

"For simplicity of exposition, we restrict our attention to metric spaces, although the subsequent definitions and
main results may be extended to non-metric topological spaces.

59



60

e The mapping = — z~ !, from X to X’ is continuous.

e The mapping (z,y) + zy, from X x X to X is continuous.

Then one calls (X, -, d) a topological group.

Suppose that in addition,

e for each z € X there exists an € > 0 such that the closed ball B,(z) with center x and radius e

is compact.

Then one calls (X, -, d) a locally compact topological group. If the group operation and metric are

clear from the context, we just talk about the (locally compact) topological group X.
Now we provide three examples of locally compact topological groups.

Example 5.2 (Euclidean spaces). Let X = R<. With the usual addition of vectors and the usual
Euclidean distance, R? becomes a locally compact topological group which is also commutative.

The following two examples involve sets of invertible matrices in R%*? for some d € N, and
the binary operation is matrix multiplication. To stay coherent with the general theory in this
section, we denote matrices temporarily with lower-case, boldface letters, and the identity matrix
is denoted with e. Note that R4*¢ may be identified with R’ by identifying a matrix * =
[€1, T2, ..., x4) having columns z; = (xij)le € R? with the vector (z] ,x, , ... ,a:;lr)—r. Thus

. 2 . .
the usual Euclidean norm on R corresponds to Frobenius norm on R%*4, i.e.

d
(@,y) = Y wyy; and x| = /(z,x).

ij=1

Note also that any other norm on R%*¢ or R? induces the same topology. Finally, a basic fact is

that matrix multiplication is a continuous mapping from R%*¢ x R4*d to R4*4,

Example 5.3 (Linear groups). Let X’ be the set of all invertible matrices & € R?*?¢. With the
usual matrix multiplication, X’ is a non-commutative® group. Moreover, the set X is an open

1

subset of R%*?, and the mapping « — z~! is continuous from X to X. Indeed, for x € X and

0 € R4 itis well-known that  + & is invertible, provided that ||d]| is sufficiently small, and
(x+6)"' =t —x oz +O(|6]|*) asé — 0.

This follows from = + § = x(e + ~1§) and from von Neumann’s series expansion

+a)yt = S (-1t
k=

0

Rdxd

fora € with ||a|| sufficiently small. Hence X’ is a topological group.

Example 5.4 (Orthogonal groups). Let X1, be the set of orthogonal matrices € R4 that

means, « ' & = e. This is a subgroup of the set X’ of all invertible matrices and thus a locally com-

pact topological group. Indeed, Xy}, is even a compact set and a smooth d(d — 1)/2-dimensional

*Here X' x X is equipped with the metric d((z,2"), (y,y')) := max{d(z,y),d(z’,y')}.
Sunless d = 1
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manifold. To see this, note first that
Xorth - F_l(e)

with the continuous mapping

F:R> SR p(x) =z
Hence, X, is a closed subset of R%*?. Moreover, with the Frobenius norm || - ||, all matrices
x € Xy satisfy ||z|| = v/d, so Xopy, is a closed and bounded subset of R?*?. Hence it is

compact.

That X,,¢p is @ smooth d(d — 1)-dimensional manifold can be verified as follows: Note that

Rdxd _ RdXd+RdXd

sym skew?

where R%%? and R*¢ are the linear spaces of symmetric and skew-symmetric matrices in R4*¢,

Sym skew
respectively:
ngxnﬁl = {a c R4 . o = a} with dimension d(d + 1)/2,
RY? = {ae R :a" = —a} with dimension d(d — 1) /2.

Moreover, Rgl;n‘f 1L R‘Silfe‘fv, and any matrix a may be written as @ = Qgym + Ggkew With

dxd

Asym = 2*1(a + aT) eERY? Gew 1= 2*1((1 - aT) € Ry o

Sym
Note that F'(x) = « " x defines a continuously differentiable mapping

. mdxd dxd
F:R"% — Ry

For any fixed € X, and arbitrary § € R%¥¢,

Flx+d) =etx' 0+ x+6'4
= e+ 2(x" 8)sym + O(|6]*) aséd — 0.

Hence the derivative of F' at x € X,y is given by the linear mapping

DF(z) : R™4 5 R DF(x)a = 2(x' a)sym,

Sym
and the null space of this mapping equals

{a e R : DF(z)a =0} = {zb:be R by,, =0} = {zb:bec R

skew

whereas
DF(x)xb = 2b forall b e R¥?

sym
Consequently, the linear mapping DF'(x) has full rank d(d + 1)/2, and the implicit function

theorem shows that X}, is a differentiable manifold of dimension d(d — 1)/2. Its tangent space

at any point & € Xy, is the null space of DF'(x). That means, for small € > 0,

{yeXom:ly—z| <€} =~ {z+xb:be R |b]| <€}

skew’
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Exercise 5.5 (An embedding for X,.,). Consider the mapping ¥ : X — R9*?,
U(x) := a:(a:Ta:)flm.

Show that ¥ has the following five properties:

(@) ¥(x) € Xy forall x € X

(b) ¥(x) = xifand only if & € Xyh;

(c) V(zxy) =x¥(y) forall x € Xoy and y € X

(d) V(e+d)=eforalld € Rg;nﬁl such that A\pin(6) > —1;

(e) for & € R4 guchthate + 4 € X,
U(e+8) = e+ S + O(8]2) 2560,

dxd
Sym

In part (e) one should use (and possibly verify) the fact that fora € R
Amin(@) > —1 and any fixed b € R,

with minimal eigenvalue

(e+a)l = e+ba+0O(al?) asa— 0.

5.2 Left- and Right-Invariant Measures

Throughout this section let X’ be a locally compact topological group. In what follows, for A, B C
X we write
AB := {ab:ac A,bc B} and B™' := {b7':bec B}.

Moreover, for z € X we set B := {zb: b € B} and Az := {az : a« € A}. We also write
C := {compact subsets of X'},

U := {open subsets of X'},
B := {Borel subsets of X'}.

Our first main result is about the existence and (essential) uniqueness of a left-invariant measure
on (the Borel subsets of) X.

Theorem 5.6 (Haar—Weil). There exists a measure p on (X', B) with the following five properties:

(5.1) w(zB) = u(B) forallz € X,B € B,

(5.2) u(B) = UEZ}{rzléDB n(U) forall B € B,

(5.3) wlU) =  sup w(C) forallU e U,
cec.ccU

(5.4) u(C) < oo forallC € C,

(5.5) wU) > 0 forall U € U\ {0}.

If 1 is another measure with these properties, then there exists a constant v > 0 such that fi = ~yp.
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Definition 5.7 (Left Haar measure). A measure p with the properties listed in Theorem 5.6 is

called a left Haar measure on X .

The proof presented here is essentially the one of Haar (1933). Since it uses Tikhonov’s theo-
rem and thus the axiom of choice, some mathematicians came up with constructive proofs, see
Alfsen (1963) and the references therein.

Proof of Theorem 5.6. In this proof, some facts are stated without proof, and the reader should
fill in these details. For arbitrary sets A, B C X with B # () we define a “covering number”

N(A|B) := min{#X,: X, C X,A C X,B} € NyU {oo}.
These covering numbers have the following properties:
N(B|B)=1.
N(yA|zB) = N(A|B) for arbitrary y, z € X.
N(A|B) >0 ifand only if A # 0.
N(A|B) < oo if A € C and B has non-empty interior.

Furthermore, for A1, Ay C X,

N(Al‘B) < N(AQ’B) if Aq CAQ,
< N(A1|B)+ N(A2|B),

N(A1UAs | B

Finally, if B’ is another non-empty subset of X, then

(5.6) N(A|B') < N(A|B)N(B|B).

The rough idea behind Haar’s and Weil’s construction is that N (- | B) behaves almost like a left-
invariant measure if B is a “small” neighborhood of the identity element e. To make this precise,
let B, be the closed ball around e with radius ¢ > 0,

Be = {z € X :d(z,e) <e}.

Without loss of generality let By be compact*. For 0 < € < 1 we define A, : C — [0, c0) via

N(C|Be)
N(B1|Be)

It follows from the properties of N (-|-) that A.(C') is well-defined in [0, co) for any C' € C, and

A(C) =

Ae(2C) = A (C) for arbitrary x € X,C € C.

Moreover, (5.6) implies that
N(C|B1)N(Bi1|B)
- N(Bi|Be)
. N(C|B)
~ N(B1[A)N(C|B.)

= N(C[Bi)
A(C)

= N(Bi|A)™

*Otherwise, replace d(-, -) with ¢, *d(-, -) for sufficiently small €, > 0.
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with the conventions N (Bj |)) := oo and 1/0c0 := 0. In particular, \(B;) = 1. Finally, for
017 CQ c C,

)\6(01) < )\E(Cg) if C1 C Oy,

< A(C1) + Ac(Co),

5.7 A(C1UC:
67 (Gruce) {: A(Ch) + Ae(Cy) i C1B-1 N CoB! =0,

Note that each )., viewed as a tuple (A¢(C))cec, is a point in the infinite Cartesian product

[T %

Cex

with the compact intervals K¢ := [N(By |C)~!, N(C'| By)]. It follows from Tikhonov’s theo-
rem that this product, equipped with the corresponding product topology, is a compact topological
space. Hence, the functions A, € € (0, 1], have a cluster point A\ € [[o.c K¢ as € | 0. Inter-
preting A as a function A : C — [0, 00), this cluster point property means that for any finite set
C, CC,

lim inf max [A(C) — A(C)| = 0.
el0 CeC,

In particular, A inherits various nice properties of the functions A.:

MC) € K¢ forany C € C,
A(B1) =1,
AzC) = X(C) for arbitrary x € X,C € C,

and for C1,Cs € C,

ACy) < A(Cy) if Cy C Oy,

< ACh) + A(C2),

\ .
(CLUCy) {: AMCL) + ANCo) ifCLNCy=0.

The latter equality follows from (5.7) and the fact that for disjoint compact sets C; and C5, the
neighborhoods C; B! and Co B! are disjoint for sufficiently small € > 0.

Now we are ready to define the measure p. At first we set

wU) := sup A(C) forU elU.
cec:CcU

This definition implies that
u(@ =0 and p(U) < u(U’) foropensetsU C U' C X.
This allows us to extend y to a function on P(X) via

u(M) = UGZ/l{Pl;DM w(U) for M C X.

Note that
w(M) < pu(M')y forM c M' C X.
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Since A(-) is left-invariant, the same is true for y, that means,

p(eM) = p(M) forallz € Xand M C X.

Note also that

< i = .
AC) < UeLI{]?écU wlU) = p(C) forallC e€C

The first step follows from the definition of x(U) for open sets U, the second step is just the
definition of ;1(C'). Together with the monotonicity of 4(-) this implies that

wlU) =  sup w(C) forallU € U.
cec.ccU
To show that x> 0 on U \ {0} and 2 < oo on C, consider arbitrary sets C' € C \ {0} and U € U
such that C C U. For each z € C there exist U, € U and B, € Csuchthatz € U, C B, C U.

Then (U, ),cc defines a covering of C' with open sets, so by compactness of C, there exists a finite
set C,, C C such that

and

because C' has non-empty interior.

It remains to show that u defines a measure on B. To this end, we apply Carathéodory’s theory
of outer measures. It suffices to show that i defines an outer measure on X and that any open set

U € U is y-measurable in the sense that

(5.8) p(M)>p(MNU)+pu(M\U) forany M C X.

Proof that 1 is an outer measure: Let (M,,),>1 be an arbitrary sequence of sets M,, C X, and let
M C U,>; M. We have to show that (M) < > -, u(M,). We may assume that the right
hand side is finite, because otherwise the claim is trivial. For arbitrary fixed e > Olet U, € U
with M, C Uy, and pu(Uy,) < pu(My) +27"€. Then U := | J,,5; Uy is an open set containung M,

whence
p(M) < p(U) while Y pu(Un) < > u(M,)+e.

n>1 n>1
Consequently, it suffices to show that u(U) < >, -, u(Uy). For any compact set C' C U and
x € C there exist n(z) € N and a compact neighborhood B, of z such that B, C U,,). But

compactness of C implies that for some finite set C, C C,

C c UBm:G U B.=Ucn

z€Co n=1zeCy:n(z)=n n=1
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with m := max{n(z) : € C,} and the compact sets

Co:= |J B.cCUn.
2€Co:n(z)=n

Consequently, the properties of A imply that

C) < AMUGn) £ XAC) < 3 u(Un),
n=1 n=1 n=1

and for A(C) 1 u(U) the asserted inequality follows.

Proof of (5.8): It suffices to consider the case (M) < co. For any fixed e > 0, there exists an
open set V' O M such that u(V') < u(M) + e. On the other hand,

p(MNU) < w(VNU) < ANC)+e
for some compact set C' C V N U. But then
PWMA\U) < p(VAU) = p(VA(VAU)) < p(V\O) < ANC) +e
for some compact set C C V' \ C. Hence,
pM) +e > p(V) 2 NCUC) = ANO)+A(C) 2 w(MNU)+p(M\U) — 2.

As € | 0, this yields (5.8).

It remains to prove uniqueness of . up to positive multiples. To this end, let i be a second measure
on B with the stated properties. It suffices to show that i = yu on C, for some constant v > 0,
where C, is the set of compact subsets of X’ with non-empty interior. To this end, consider arbitrary
compact sets A, B C X'. Then

H(AB) = [ u(A)La(w) aldy
- / (yA)15(y) ildy) (left-invariance of 1)
— [ [1a@1() utde) itay)
_ / / 1ya(@)1p(y) fildy) u(dz)  (Fubini’s theorem)
— [ [1a e i@ uide) (e ya it yeaa
= [0 B) i)
= / (A7 N (271 B)) p(dz) (left-invariance of /i)

< / 1pa(@)i(A™) p(da) (AN (@'B) =0 ifx ¢ BA)
H(BAR(A™).
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Note that the application of Fubini’s theorem was justified because the integrand, 1,4(x)1p(y),
equals zero if t € BAory ¢ B, so u and i may be viewed temporarily as finite measures on the

compact sets BA and B, respectively. Interchanging the roles of 1 and /i yields the inequalities
W(AAB) < pBARA™) and HA(C) < G(CAA™)

for A, B,C € C. Specifically let B, C be arbitrary fixed sets in C,, and let A := B, N B! for
some ¢ € (0,1],s0 A=t = A. Then

AB) _ G(4) _ (CA)
WBA) = p(A) = W)

If we let € | 0, then the left-hand and right-hand side converge to i(B)/u(B) and i(C)/u(C),
respectively, because for arbitrary U,V € Y with BC Uand C CV, BAC U and CA C V for
sufficiently small € > 0. This shows that /i/x is constant on C,. U

By means of Exercise 5.1 (a), one can easily deduce from Theorem 5.6 that there exists a right

Haar measure (4 on X, that means, Condition 5.1 in Theorem 5.6 can be replaced with
(5.9) u(Bx) = p(B) forallz € X and B € B.
Note that in case of a commutative group, there is no difference between left and right Haar

measures, so we talk about Haar measures.

An obvious question is how left and right Haar measures are related. The next result is a first step

to clarify this.

Theorem 5.8. There exists a unique function J : X — (0, co) such that for any left Haar measure
wonX,
w(Bzx) = J(x)u(B) forallx € X and B € B.

Moreover, J is continuous, and

J(xy) = J(x)J(y) forarbitrary x,y € X.

Here is an immediate consequence of this result:

Corollary 5.9. Suppose that X is a compact topological group. Then any left Haar measure on

X is also a right Haar measure.

The reason is that J(z*) = J(x)? for arbitrary € X and integers z. Consequently, if J(x) # 1
for some x € X, then J is unbounded on X. But a continuous function on a compact set is

bounded, whence J = 1 in case of a compact topological group X.

Proof of Theorem 5.8. If 1 is a left Haar measure on X, then for fixed x € X,

B +— u(Bx)
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is easily seen to define a left Haar measure on &, too. But this means that there exists a unique
constant .J(z) > 0 such that

w(Bz) = J(x)u(B) forall B € B.

Forxz,y € X and B € B,

J(zy)u(B) = p(Bzy) = J(y)u(Br) = J(y)J(x)u(B).

Since 0 < p(B) < oo in case of B being compact with non-empty interior, this proves the

equation J(zy) = J(x)J(y) forz,y € X.

To show continuity of .J, let Ac := B. N B. ! with B, = {z € X : d(z,e) < ¢}. Further, let
C' € C with non-empty interior. Then for any x > 1 there exists an € > 0 such that u(CA¢) <
w(C)(1 + k). Thus for z € A,

_ w(Cx) _ u(CA)

10 =20 < ey SR

and
R T (%) 1(C) 1
@) = J(z=1)  p(Cz1) = u(CA.) = 14+k

This proves continuity of J at e, and continuity at arbitrary points in & is easily deduced from the

equation J(zy) = J(x)J(y) for arbitrary x,y € X. O

The function J in Theorem 5.8 is called the modular function of the locally compact topological
group X. It yields a Radon—-Nikodym derivative of a right-invariant with respect to a left-invariant

measure.

Theorem 5.10. Let i be a left Haar measure on X . Then

i(B) = [ 3@) o)

defines a right-invariant measure on X. That means, [ satisifies the same properties as p, except
that (5.1) is replaced with (5.9).

As a preparation for the proof of Theorem 5.10 the reader should verify the following two facts

about integrals with respect to left-invariant measures.

Exercise 5.11. Let u be a left Haar measure on X'. Show that for arbitrary y € X and measurable
functions h : X — R,

[ ) utin) = [ndu and [ ntay) i) = )7 [ g,
provided that [ h dyu is well-defined in R.

Proof of Theorem 5.10. We start with an arbitrary measure p satisfying the regularity conditions
(5.2) and (5.3) and consider any measure & with a continuous density f = dj/du > 0.
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Since f > 0, ii(B) > 0 whenever p(B) > 0. Hence, [ satisfies property (5.5) whenever u does.
Note also that for C' € C,

A(C) < max f(z) u(C),

so [ satisfies property (5.4) whenever p does.

To show that ji satisfies (5.3), note first that for any U € U,
iU) = Jim (Un {R™' < f < R}).
—00

Since each set {R~! < f < R} is open itself, it suffices to consider open sets U such that
a < f<bonUwith0 < a < b. In particular, au(B) < i(B) < bu(B) for all measurable
sets B C U. By assumption, there exist compact subsets C; C Co C C3 C --- of U such
that 1(Cy,) — wu(U) as n — oo. Now one can easily show that i(Cy,) — a(U) as n — oo,
distinguishing the cases (U) = oo and pu(U) < oo. Hence i satisfies (5.3), too.

To show that [i satisfies (5.2), we fix an arbitrary constant v > 1. Then any set B € B may be

decomposed as

B = JB. with B, := Bn{y <f<~y*}
2€Z

By assumption, for any integer z there exists an open set U, such that B, C U, C {f < *T'}
and p(U,) < yu(B;). Consequently, U := J,., U. is an open set containing B3 such that

pU) < aU:) < Y A TuU:) < Yy PuB) < Y APu(B.) = 7iu(B).

2€Z ZEZL 2EZL 2EZL

Hence, [1 satisfies (5.2), too.

It remains to verify (5.9) for ji in case of f(x) = J(x)~! and p being a left Haar measure on X'

Indeed, for measurable functions h : X — [0,00) and y € X,

[ itds) = [ ney) @) o)
= J) [ b)) (o)
— [ 1)) )
— [ hia) ),

where the second last step follows from Exercise 5.11. O

5.3 Some Explicit Constructions

In this section we present a few examples of Haar measure.
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Discrete groups. Let (X, -) be an arbitrary group. With the metric d(z,y) := 1(,-,, the topol-
ogy U and the Borel o-field B coincide with P(X), and C is the family of finite subsets of X.
Thus (X, -, d) is a locally compact topological group. Here, the counting measure i,

u(B) = #B,
is a left and right Haar measure on &X’. This follows essentially from the fact that for any fixed
T, € X, the mappings z — x,x and x — xx, are bijective from & to X, see ExerciseS.1 (b).
Lebesgue measure on R%. Lebesgue measure Leb on (the Borel subsets of) R¢ satisfies
Leb(z + B) = Leb(B)
for arbitrary z € R% and B € Borel(R?). Consequently, it is the unique Haar measure z on the
additive group R? such that ([0, 1]¢) = 1.
Haar measure on linear groups. Let (X, -) be the set of nonsingular matrices = € R%*? with
matrix multiplication. As mentioned before, X is an open subset of R%*?. For any fixed =, € X,
Ly, (x) == xox and Ry (x) := zx,

define bijective mappings from & to X. They may also be viewed as bijective linear mappings
from R?*4 to R¥4_ If we identify R?*¢ with R? in the usual fashion, then the determinant of

these linear mappings equals
det(Lp,) = det(Rg,) = det(zx,)?,

see Exercise 5.12. With Lebesgue measure Leb on R%*?, this means that for any measurable
function h : X — [0, 00),

/Xh(:com)dm = /Xh(:r:mo)dm = |det(wo)|_d/ h(x) dz,

X

where dx stands for Leb(dx). This implies that
W(B) = / | det(z)|~? da

B
defines a left and right Haar measure on X. For if ¢, € X, then
pw(x,1B) = / 1(zox)| det(x)| da

X
= |det(x,)| / 1p(xox)|det(xox)| ¢ da
X

= / 1p(x)| det(z)| "¢ da
X
= p(B),

and analogously one can show that u(Bz, ') = u(B).
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Exercise 5.12. Let vec : R%4 — R% be given by

vec(x) == (x],29,...,25)"
for x = [z, x2,. .., 4] With columns T; € R<. Show that for any fixed , € X and arbitrary
= Rdxd’
vec(xox) = Ly, vec(x) and vec(xx,) = Ry, vec(x)

with matrices L, , Ry, € R% %% such that
det(Ly,) = det(x,)? = det(Rg,).
A general consideration about compact topological groups. Suppose that X’ is a compact
topological group, and suppose that P is a left-invariant probability measure on /X, that means,
P(zB) = P(B) forallz € X and B € B.
Then P is also right-invariant and inversion-invariant, that means,
P(zB) = P(Bx) = P(B™') = P(B) forallz € X and B € B.

If P is another left-invariant probability measure on X', then P = P.

Proof. Let X and Y be stochastically independent random variables on some probability space
(Q, A, TP) with values in (X, B), where IPX = P while IPY is an arbitrary distribution Q. Then
Y ~1 X has distribution P, too, because for any B € B,

P(Y'XeB) = P(XeYB) = EP(X €eYB|o(Y)) = P(B).

=P(YB)=P(B) as.

In particular, if Q = P, then for any B € B,
P(B) =TP(Y'XeB) = PX 'vYeB™!) = P(YeXB™') = P(B™).
But this implies right-invariance of P, because for all x € X and B € B,
P(Bz) = P((Bz)™') = P(z'B™Y) = P(B™') = P(B).
Finally, if @) is left-invariant itself, then for all B € B,

QB) = P(X'vYeB) = Py 'XeB!) = P(B™') = P(B).
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Haar measure on orthogonal groups. Let X and X, be the groups of invertible and orthog-
onal matrices in R%*?, respectively, the binary operation being matrix multiplication. In view of
the previous consideration, it suffices to construct a random variable X with values in X4, such
that

P(X €exB) = IP(X € B) forallz € Xy, and B € B.

Then the distribution P := IPX is the unique left Haar probability measure on Xy, and it
happens to be left-, right- and inversion-invariant.

A particular construction starts with a random matrix Z = (Zij)ﬁ j=1 With d? stochastically inde-
pendent random variables Z;; ~ N(0,1). Writing Z = [Z1, Z>, ..., Z4), the columns Z; are
stochastically independent with standard Gaussian distribution Ny(0, e). For 2 < k < d,

IP(Zy € span(Zy,...,Zp-1)) = EP(Zy € span(Zy,...,Zy1) | Z1,..., Zp-1) = 0,

because IP(Z), € V) = 0 for any fixed linear space V C R? with dim(V) < d. Consequently,
the matrix Z is invertible almost surely. This allows us to apply the mapping ¥ : X — Xopin,
U(z) := z(z' z)~V/2. Defining ¥(z) := e for singular matrices z € R**?, the distribution P of
the random matrix

X = ¥(Z2)

is left-invariant. Indeed, it is well-known from probability theory that the distribution of Z does
not change if we multiply it from the left with an arbitrary matrix w € X,;,. Hence, P is also the

distribution of

V(uZ) = vwZ(Z u"uZ)™V? = uz(Z2"2)71? = uX.

Another explicit construction would be to apply the Gram—Schmidt orthogonalization procedure
to the columns of Z. That means, we define X = [X,..., X 4] via

X1 = ||Z1||_1Z1

and inductively
k—1 . k-1
Xy = HZk—ZXZ-XiTZkH (Zk—ZXinzk)
=1 1=1

for k = 2,...,d. Again, one can show that replacing Z with uZ for some u € X}, results in
replacing X with uX.

Note that the construction via Gram—Schmidt implies that for a random matrix X € X}, with
left-invariant distribution, any column is uniformly distributed on the unit sphere of R? (with

respect to the standard Euclidean norm).
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Chapter 6

Measurement Series and Estimators of
Location

6.1 Statistical Experiments and Point Estimators

Before we discuss estimation of a location parameter, let us intruduce some general terminology.

Definition 6.1 (Statistical experiment). A statistical experiment is a triplet £ = (Q, A, (]Pg)ge@)
consisting of a measurable space (€2,.4), the sample space, and a family of probability distribu-

tions Py on (€2,.4), depending on a parameter  in a parameter space O.

The sample space (£2,.4) represents all possible data sets one could observe. The elements of
the parameter space © represent potential values of an unknown true parameter 6 € ©. We
assume that the observed data are a (realization of a) random variable with distribution IPy. In
what follows, the symbol # may denote this particular true parameter or a potential parameter. It
should become clear from the context in which sense 6 is meant. The dependency of probabilities,
expectations, variances etc. on § will be denoted by a corresponding subscript, leading to [Py, IEy,
Vary etc.

Of course there is some redundancy in the definition of a statistical experiment £, because specify-
ing the family (IPy)gco implies the specification of the measurable space (€2,.4). But sometimes

we shall replace A with certain sub-o-fields, so the current definition is useful.

Sometimes one is interested in a function g(6) of the true parameter 6 with values in some metric
space (G, d), where g : ©® — G is given. In the simplest case, one would like to deduce from

observed data w € 2 a simple guess g(w) € G of g(0).

Definition 6.2 (Point estimator). A point estimator of g(f) (short: an estimator) is a measurable’

function

g:Q—G.

To compare differnt estimators g, one can quantify their inaccuracy for instance by their mean

! A-Borel(R?)-measurable
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squared error,
o (d(.9(0))%)-

Note that this quantity depends on the parameter 6. In general, it may happen that one estimator g;
is strictly better than another estimators g» in a certain region of the parameter space © but strictly

worse in another region.

6.2 Estimators of Location

Simple location families. Let § € R be an unknown parameter which has to be estimated in an

experiment which yields n single measurements X7, ..., X,,. Suppose that
X, =0+¢, 1<1i<n,

with independent random measurement errors €y, . . ., €, with a known distribution Fy. This leads

to the statistical experiment
E = (R",Borel(R"), (IP@)@GR)
with
IP@ = P9®n and Pg = P() *59.

Here ‘x’ denotes convolution?, and dg is the Dirac measure at the point 6. In other words, IPy
describes the distribution of a random vector with independent components having distribution
function Fy, where

Fy(x) = Fo(z —0),

and Fj is the distribution function of the error distribution Fy. Such a statistical experiment is

called a simple location family.

In what follows, we write x instead of w for a sample in R™. The random variables X; are just the
coordinate functions = (x;)}"_; — X;(x) := z;, and X := (X;)}", is the identity function.
Equivariant estimators. For a vector © = (z;)!_; € R™ and any number a € R let
at+x = x+a = (x;+a),
The simple location family £ has the property that for arbitrary 6, a € R,
X ~ Py ifandonlyif X +a ~ Pyi,.

This motivates the following property of an estimator 0 of 0:

Definition 6.3 (Equivariance). An estimator f:R" — Ris called equivariant, if

~ ~

O(x+a) = O(x)+a forallz € R"anda € R.

For distributions P and Q on the real line, P * Q denotes the distribution of X + Y with independent random
variables X ~ P and Y ~ Q. In particular, for 8 € R, P * Jy is the distribution of X + 6 with X ~ P.
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Note that the sample mean,

as well as the sample median are equivariant estimators. Concerning the sample mean, it follows

from the weak law of large numbers that for a fixed distribution Py with mean [ z Py(dz) = 0,

lim By |X — 6| = 0.

n—o0

If in addition, P, has finite variance o2, then even

Ey((X - 0)%) = f'

Risk functions. For an arbitrary estimator 6 : R" — R, we consider its risk function R(@, )
R — [0, oo] with

~ ~

R(0,0) := Eq((0 —6)%) = /n(é—e)QdIPQ,

the mean squared error of  in case of the true parameter being 6.

In case of an equivariant estimator 6, its risk function is constant: For arbitrary 6 € R,

~

R(0,0) = R(6) := R(§,0) = Ey(6?).

More generally, if g is equivariant, then for any measurable function 2 : R — R and arbitrary
0 R,
Eoh(6 —0) = Eyh(0),

~

provided that IEg h(0) is well-defined.

6.3 Constructing an Optimal Equivariant Estimator

An equivariant estimator 6, is called optimal (among all equivariant estimators) if

R(g*) < R(g) for any equivariant estimator 9.

If X ~ Py, then X = 0 + € with € ~ IPg, and for any equivariant estimator 5,

~ ~

O(X) = 0+0(c).

Of course, we don’t know ¢, but at least we know T'(€) for the particular function T' : R” — R"

given by
T(x) = x—x1 = (0, xg—xl,...,xn—xl)T.

Indeed, this function T is invariant in the sense that

T(x+a) = T(x) forallz € R"anda € R.
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Hence, if we observe X = 6 + €, then

~ ~

That means, we know at least T'(e). So we could try to improve the estimator (X ) = 0 + 6(¢€)

by subtracting the conditional expectation of 8| (€), given that T'(e) is equal to the observed T'( X).

That means, we subtract a reasonable guess of 6(€) from (X ). This idea leads to an optimal

equivariant estimator indeed.

~

Theorem 6.4 (Pitman’s improvement). Let § be an equivariant estimator with finite risk R(0).
Then

0, == 0—1Ey(0|o(T))

defines an optimal equivariant estimator. It is unique in the sense that for any equivariant estimator
0 and arbitrary 0 € R,

R(O) = R(g*) implies that 0 = 0. IPy-almost surely.

Remark 6.5 (Invariance and the choice of T'(-)). Our particular choice of T'(-) is somewhat
arbitrary. In principle one could take any equivariant estimator 6 : R” — R and define T(x) :=
T — é(m) Inspecting the proof of Theorem 6.4 carefully reveals that Theorem 6.4 remains valid
with this definition T". Our particular version corresponds to 6 = X, and is convenient for explicit

calculations.

Exercise 6.6. Consider an estimator § : R" — R. Show that 0 is equivariant if and only if

T(x) := x — () is invariant, i.e. T'(x 4+ a) = T'(x) for arbitrary x € R" and a € R.
Remark 6.7 (Characterization of optimality). The particular construction in Theorem 6.4 implies
that an equivariant estimator § with finite risk R(@) is optimal if and only if

IE0(§|0(T)) = 0 IPjp-almost surely.

Exercise 6.8. Let 5* : R™ — R be an optimal equivariant estimator for 6. Show that 5* is
unbiased, that means,
IEg(g*) = 0 foralld € R.
Exercise 6.9. Suppose that Py is the Laplace distribution on {0, 1}.
(a) Before starting to apply the general theory, how would you estimate 6?

(b) Determine the conditional distribution of X, given that T' = y, in case of § = 0. (Which
vectors y € R™ are relevant?)

(c) Determine the optimal (in terms of mean squared error) equivariant estimator of 6.

Proof of Theorem 6.4. The general theory in Sections 3.2 and 3.3 shows that IEy(8 | o(T)) =
g«(T') with a measurable function g, : R™ — R such that

~

Eo((6 - 9(T))*) = Eo((6 — g.(T))%) + Eo((9(T) — 9.(T))?)
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for any measurable function g : R™ — R. In particular, for g = 0 we obtain the formula

6.1) Eo(6%) = Eo((0 — g.(T))?) + Eo(g.(T)?).

~

Since 6 is equivariant and T is invariant, 6, = 6 — g.(T') is an equivariant estimator, too: For

arbitrary € R" and a € R,

~ ~ ~

O +a) = B@+a)— g.(T(@+a)) = 0(@) +a—g.(T(x)) = bu(x) +a.
—_—
=0(x)+a =g«(T'(x))

Hence, we may rewrite (6.1) as

R(O) = R(8,) + Eo(g.(T)?).

~

Consequently, R(6) > R(g*) with equality if and only if IEo(g.(T)?) = 0, and this is equivalent
to
]Eo(gl o(T)) = 0 IPjp-almost surely.

Finally, let § : R” — R be another equivariant estimator with finite risk R(é) Then h := 60—
is invariant in the sense that h(x) = h(T'(x)) for arbitrary € R™. Consequently, if we apply
Pitman’s recipe to 0 instead of 0, we obtain the estimator

0. = 0—TEo(0]o(T))
= 0+ h(T) —Eo(8 + h(T) | o(T))
= 0+ h(T) — Eo(0| o(T)) — Eo(h(T) | o(T))

=h(T) as.

= §—E0(§|U(T)) = 0, IPy-almost surely.

Moreover, since 6, — 0, is invariant, Py (6, # 0,) = IPo(6, # 0,) = 0 for arbitrary € R. [

In case of P having a density with respect to Lebesgue measure, there is an explicit formula for

the optimal equivariant estimator 6,:

Corollary 6.10. Suppose that Py has a density fy with respect to Lebesgue measure on R, and
suppose that there exists an equivariant estimator with finite risk. Then there exists a Borel set
B, C R™ such that Po(T~(B,)) = 1,} and for each x € T~1(B,), the optimal equivariant

estimator 0, is given by
b.2) = [ ofs@rao/ [ folaw) o,
R R

where fo(x) =[]} fo(xi) and fo(x) := fo(z — 0) for real numbers x. In other words, 5*(33)
is the mean of the probability distribution (), on R with density

0 — fg(w)//an(w)dn.

Po(T~!(B.)) = 1 for all @ € R by invariance of T..
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Example 6.11 (Gaussian distributions). Suppose that Py = N(0, o2) for some ¢ > 0. Then

0, = X.

This follows from Corollary 6.10 and the following calculations: fo(z) = Cexp(—2?/(20?))
with C' = (2702)~1/2, whence

But

withZ :=n"t Y"1 | 2, 50

f@) = fi@)esn(- U570,

202 /n
and this implies that the distribution @, in Corollary 6.10 is equal to A'(Z, 0% /n). Hence
0.(xz) = mean(N(z,0/n)) = 7.
Example 6.12 (Uniform distributions). Suppose that Py = Unif([—o, o]) for some o > 0. Then
f.(x) = (min(z) + max(x))/2

with min(x) and max(x) denoting the minimum and maximum of {z1,...,x,}, respectively.

This follows from the following considerations: Since fy(z) = (20) 7! li_o<a<o)>

f@(w) = (20)_n]__[1[—0§xi—0§0]

=1

= (200"

=

1[xi—o§9§xi+a]
1

-
Il

- (20) 1 [max(z)—o<O<min(x)+o]"

Hence the distribution () in Corollary 6.10 is the uniform distribution on the interval with end-
points max(x) — o and min(x) + o, unless max(x) — min(x) > 20. (Note that max(X) —

min(X) < 20 almost surely.) Consequently,

~

6.(x) = midpoint of [max(x) — o, min(x) + o] = (min(x) + max(x))/2.

(This definition makes sense no matter how large the difference max(x) — min(x) is.)

Exercise 6.13. Suppose that Py = Unif[—o, 0]. As shown before, the optimal equivariant esti-
mator of 6 is given by 0, () = (min(x) + max(x)) /2.

(a) Determine the risk of X.
(b) Show that the risk of 8, is of order O(n~2).

Bonus question: Show that
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Remark 6.14 (Maximum-likelihood estimation). In case of Py having density fo, the function

n

0 — fo(X)=]] fo(X)

i=1

is the so-called likelihood function. For any number 6 one may interpret fp(X) as a measure
of plausibility of # being equal to the true parameter. Indeed a standard estimator of the true
parameter 6 would be the maximum-likelihood estimator

Our, = argmax fy(X),
eR

provided the latter is uniquely defined. Our previous calculations show that 0, = §ML = Xin

case of Py being a centered Gaussian distribution.

The higher popularity of §ML in comparison with 0, is due to the fact that the latter estimator is
rather difficult to compute explicitly in non-Gaussian models. Moreover, in many settings one can

show that ~
(9 — GML)2>

fo(X) ~ ngL(X)eXp<— 7

for some random variable 4 > 0 such that ¥ —, 0 as n — oo. Hence Qx ~ N (gML,;V) for

large sample sizes n, and 61, seems to be a good surrogate for 6,.

Exercise 6.15. Suppose that the error distribution Fy is the standard exponential distribution.

That means, its density is given by

0 if x <0,
folz) = .
exp(—zx) ifz>0.

(a) Determine fy(x) for @ € R and € R™ in terms of min(x) and x4 := >/ | z;.
(b) Determine the maximum likelihood estimator @\ML.

(¢) Determine the optimal equivariant estimator ..
Proof of Corollary 6.10. Consider the linear transformation given by
T
x — (r1, 20— 21,...,0p —11) = Az

with the lower triangular matrix

10 0 0
-1 1 0 0
A=|-10 1
: 0
-1 0 ... 0 1]

Its inverse is given by

Yy = (Y, Rty Yt y) = Ay,
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and det(A) = 1 = det(A™1). Hence, by the transformation formula for Lebesgue integrals,
IPo(AX € B) = / liazen) fo(z) dx
R™
= / liyepfo(A™'y) dy
R’ﬂ
— [ fola ) dy
B
for any Borel set B C R”. This shows that the distribution of A X under IPg has density*

y = fo(A7y) = folyr,y2 + 1, yn +41).

Note that AX = (X, T5,...,T,,)" while T; = 0. Thus the considerations in Example 4.10
imply the following: The distribution of (75, ...,T),) is given by the density

(tay .. ytn) = g(ta, ...ty /fout2+u b + u) du.
In particular, there exists a Borel set B, C R"™ with IPo(T" € B,) = 1 such that for any t € B,,
0 < g(ta,... tn /foutg—i-u +u)du < oo,
and the conditional distribution of X, given that T" = ¢, has density
u = g(ta, ... tn) Hfoluta +u, .ty + ).

Coming back to our estimator 6 with finite risk IEO(§2), note that a(:n) = x1 + h(T(x)) for some
measurable function 4 on R™, and

o > Ty || = / /|u—|—h(0,t2,...,tn)|f0(u,t2+u,...,tn—i—u)dud(tg,...,tn).
R7-1 JR
Hence for a Borel set B, C B, with IPo(T € B,) = 1 and arbitrary ¢t € B,,
/\u|f0(u,t2+u,...,tn+u)du < 0.
R

In particular, if we plug in t = T'(x) for some = € T~ !(B,), then

fO(u7t2+u7"'7tn+u) - f()((l:l—£U1+U,ZU2—xl"—u,...,xn_l‘l‘i‘u) - fxl—u(:n)a

g(tay ..., ty) = /Rf;,;l_u(zc)du = /ng(a:)dﬁ

IEo(m T=T(z)) = /R(u—i- hMT(x))) fo,—u(x) du /fg(a:) do
= o+ h(T () - /@u—wﬁlu au/ [ fo@a

- /9f9 de//fg

*In this proof, densities are with respect to the corresponding Lebesgue measure.

SO

and
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Consequently,

~ ~

0.(x) = O(x) — Eo(0|T = T(x)) = /Refg(w)de//Rfe(m)da

for all x € T~ '(B,), as claimed. O

We end this section with the interesting result that in case of an error distribution Py with finite
second moment and Lebesgue density fj, the optimal equivariant estimator is the sample mean if

and only if Py is a centered Gaussian distribution.

Theorem 6.16 (Kagan-Linnik—Rao). Letn > 3, and let Py have finite second moment. Then
0, = X almost surely if and only if Py = N'(0, 0?) for some o > 0.

Proof of Theorem 6.16. We have verified already that 0, = X in case of Py being a centered
Gaussian distribution. Hence it suffices to prove the reverse statement.

In what follows all probabilities and expectations refer to the distribution IP = IP(. The proof of

Theorem 6.4 shows that optimality of X is equivalent to
E(X|o(T)) =0

almost surely, where T' = X — X; = (0, X2 — X1,..., X, — X1)T. In other words,
n
6.2) IE(Z Xl-g(T)> = 0 whenever g(T) € L*(IP).
i=1

With g = 1 this implies that X := X; has mean

EX) = /xfo(x)d:c = 0.

If n > 3, we may take g(T") = h(T»,T3) = h(X2— X1, X3— X;) and deduce from independence
of X1, Xo,..., X, and IE(X;) = 0 that

(6.3) E((X1 + X + X3)h(T2,T3)) = 0 whenever (T, T3) € L*(IP).

Now let ¢ be the characteristic function of P, i.e.

(1) = TB(eitX) = / ¢t Py (dx)

with the imaginary unit ¢ € C. We know that ¢ : R — C is bounded and continuous with
¢»(0) = 1. Moreover, since Py has finite second moment, ¢ is twice continuously differentiable
with derivative ¢(F) () = ¢ (X *e*X) for k = 1,2, so

¢'(0) = sIB(X) = 0 and ¢"(0) = —IE(X?).
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We may apply (6.3) to the (real and imaginary part of the) complex-valued and bounded function

h(z1, z9) = e**1+#22 with arbitrary real numbers s, t. This leads to

0 = B((X) + Xz + Xg)eis(Xzle)Jrit(ngXl))
— B(X, o~ i(sHt) X1 isXo ¢itXs)
+ IE(e—i(s+t)X1X2€isX2€itX3) + IE(e—i(s+t)X1 eisX2X36itX3)
— B(X e DX [f(eisX2) [ (iXs)
4 E(e X (Xt X2) (eiX3) 4 (e i +0X1) (X2 ) [B(X5eitX3)
= ¢/(~(s + D)S()D(0) + o(—(s + )¢ ($)9(0) + o(— (s + )9(5)0/ (1),

where the latter two equalities follow from X, X9, X3 being independent and identically dis-

tributed. Consequently,

&' (—(s+1)p(s)p(t) + d(—(s + t))(¢’(s)¢(t) + ¢(5)¢'(t)) = 0 for arbitrary s,t € R.

Now let
¢ = max{t € (0,00] : ¢ # 0on (—t,t)}.
Then 0
v =

defines a continuous function ¢ : (—¢, ¢) — C with ¢(0) = 0 and
PY(—=(s+1))+¢(s)+1(t) = 0 whenever |s|, [t],[s +t] < c.
But this implies that for some o € C,
P(t) = at forallt € (—¢,c),
see Exercise 6.17. In other words,
&' (t) = atg(t) fort € (—c,c).
Together with ¢(0) = 1, standard results for differential equations imply that
o(t) = /2 fort e (—c, ).

But continuity of ¢ and the definition of ¢ imply that ¢ = oo. For otherwise, continuity of ¢ and
the definition of ¢ would imply that 0 = ¢(+c) = ¢*/2_ Consequently,

o(t) = /2 forallt € R.

Since ¢ (t) = (a + a?t?)¢(t), we may conclude from ¢”(0) = o = —IE(X?) that v is a
negative real number. It is well-known from probability theory that for any o > 0, the char-
acteristic function of N (i1, 02) is given by t — exp(itp — o*t?/2). Hence the characteristic
function of Py coincides with the characteristic function of A'(0,02), where o := \/—a. Since
any probability distribution is uniquely determined by its characteristic distribution, this shows
that Py = N'(0,02). O
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Exercise 6.17. For some ¢ € (0, 00], let ¢ : (—¢, ¢) — C be a continuous function such that
Y(—(s+1t))+1(s)+(t) = 0 whenever |s|,|t],|s +t] < c.
Show that there exists a constant o € C such that
P(t) = at forallt € (—c,c).

Exercise 6.18 (Distribution of order statistics). The contents of this exercise are probably known
from other courses in Statistics. Let X (1) < X(g) < -+ < X, be the order statistics of indepen-
dent random variables X7, ..., X,, with distribution function F' on R.

(a) Show that for k € {1,2,...,n},
P(Xx) <2) = 1= By poy(k — 1),

where B, ,,(-) denotes the distribution function of the binomial distribution Bin(n, p).

(b) Show that for c € {0,1,...,n — 1}, Byo(c) =1, By 1(c) = 0 and

n—1

Buple) = nf

Cc

1
> / u®(1 —u)" "¢ du forp € [0, 1].
p

(¢) Deduce from parts (a-b) that
n—1 F(2)
P(X <z) = F=11 — )" du.
(X <) n<k_1>/0 uF (1 —w) R du

Exercise 6.19 (Distribution of the sample median). Let X7, ..., X,, be independent random vari-
ables with density f and differentiable distribution function F' on R. Suppose that n = 2m + 1

for some integer m > 1.

(a) Show that the sample median M, := median(X7, ..., X, ) has density

te) = n(2) P~ P ).

m
(b) Suppose that f is the standard Cauchy density, f(z) = 7~ (1 + 2%)~L. For which values of
mis IE(M?2) < oo?

Remark 1: One can answer (b) without computing IE(M?2) explicitly, utilizing rough bounds for

Remark 2: One can show here that n IE(M?) — 72 /4.

6.4 Beyond Equivariance: Admissibility

Although equivariance is a rather natural requirement, it is not obvious that it isn’t too restrictive.

Let us first consider a different estimation paradigm.
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Bayesian estimation of 6. Suppose that P, is given by a density fy on R, so the distribution
of X is given by the density fo(x) = [[, fo(z; — 0), x € R™. Now imagine that 6 itself is
a random variable which is chosen by “mother nature” according to a so-called prior distribution
with probability density 7 on R. That means, for arbitrary Borel sets C C Rand D C R”,

B = T = £ £Xr T
PBgeC, X e D) = /Ong(D) (0)do /C/ng( ) d (0)d0

Here and thoughout the sequel, the superscript ‘B’ stands for ‘Bayesian’ and means that 6 is
considered as a random variable. (We do not distinguish notationally between the random variable

0 and an explicit value 6.)

The latter display and Fubini’s theorem show that the joint distribution of (6, X) is given by the
density (6, x) — ¢(0,x) := fo(x)n(6). That means, for any Borel set B C R x R",

PP(0.X) < B) = [ gl6.2)d0.).
B
Moreover, by Fubini’s theorem,

PE(X € D) /fB

= /ng(zc)ﬁ 0)do

Hence fB describes the marginal distribution of X in the Bayesian framework.

with

More generally, for any measurable function 4 : R x R” — R,

BB h(0, X) = /R  hlo.)gl0.2)d(6.3),

provided that the latter integral is well-defined. By Fubini’s theorem this may be rewritten in two

ways:

= // (0, @) folx) da 7(0)dO = /IEgh(Q,X)w(O)dH,
R n R

_ / n / h(6, ) QB (df) 1P () da

where QP is conditional distribution of 6, given X = @, with density

Blx) i By 00
0 s 7(0]) {(<)> OIE) 102 ) <o

Within the Bayesian framework, Q5 and 7(- | ) are called the posterior distribution and posterior

and

density, respectively, of 0, given X = .

The Bayes risk of any estimator 6 : R" — R in this framework is defined as

R%(9) = EP((0(X) - 0)°)

= | [ @) =02 fufa) dz =(o)a0
= /R(@,@)w 0)do
R
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The general theory of conditional expectations implies that the (essentially) unique minimizer of

the Bayes risk is given by

0%(x) = EP(A| X =x) = /97T(9|m)d9 = mean(Q2).
R

Furthermore,
R@) = [ 0P @) he)n(0)d0,2)
RxR"™
= [ [0-P@)? k) /e e
= [ Var(@®) (@) da
Note the similiarity between the Bayes-optimal estimator 6B and the optimal equivariant estimator
0.:

75 (z) — /Refg(x)ﬂ(Q)dQ//ng(m)ﬁ 0)do
@) = [ on@d/ [ fola)as

Hence 6, may be interpreted as a Bayesian estimator with prior distribution Lebesgue measure,

corresponding to 7 = 1. Moreover, suppose that 7 is the density of A'(v, 72) for some v € R and

7> 0. Then 7(#) is proportional to e~ (®=*)?/(27)  whence

/9f9 —(0-v)2/(2r2) d9//f9 2/(2r%) gg.

Since (0, 1] e~ (0=)?/(27) 1 as T — oo, it follows from dominated convergence that
x) — 0.(x) asT — o0,

provided that the integrals in the enumerator and denominator of 67*(3:) are well-defined.

Example 6.20 (Gaussian model and prior). Suppose that 7 is the density of A(0, 72) for some
7 > 0, and let Py = N(0, 0%) for given o > 0. Then

To verify this, recall that
60— 1 2
folz) = fulz) exp<_ u>

Since 7(#) is proportional to exp(—602/(272)),

2 n - T 2
fo@)r(0) = Cula)exp(— o — "0 1)

0% o2 +nr?  nz
= Cawe(=5 T 55+ 5 0)
0 — Bz)?
= Cs(x) exp(— 7( 2762 ) )
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with certain terms C (x), Ca(x), C3(x) > 0 and

, o272 o2
¥ = = :
o2 +nrt? n+o?/7?
5 ny? n
' o2 n+o2/7?

In particular, Q5 = N (Bz,+?), so

0%(x) = Bz and Var(QB) = 4% = RB(P).

Admissibility. The use of any estimator fis justified if it is admissible in the following sense:

Definition 6.21 (Admissibility). An estimator 0 of 0 is called admissible if there exists no other

estimator 6 such that

R(6,6) < R(6,0) foralld c R,
R(6,60,) < R(g, 6,) for some 6, € R.

Example 6.22. A rather trivial example of an admissible, but non-equivariant estimator is given
by 8 = 6, with some fixed value 6, € R, provided that fo > 0. Here, R(é\, 0) = (6, — 0)2. If
6 would be another estimator with R(6,-) < R(6,-), then R(6,6,) = 0 is equivalent to IPg, (6 #
6,) = 0. But for each 6 € R, the distribution IPy is absolutely continuous with respect to IPy_, so
Py (6 # 6,) = 0, whence R(6,6) = (6, — 6)>.

Exercise 6.23. Suppose that Py([—1,1]) = 1. Show that the trivial estimator § = 0 is not
admissible.

Proposal: Show that if X ~ Py, then max(X) — 1 < # < min(X) + 1 almost surely. Now
deduce that 6(X) := (max(X) — 1)+ — (min(X) + 1)~ outperforms 6(X) = 0.

The following theorem shows that in case of a centered Gaussian error distribution F, the estima-
tor X is indeed admissible.

Theorem 6.24. If Py = N(0,0?) for some o > 0, then X is an admissible estimator of 0.

Proof of Theorem 6.24. The risk function of X is constant o /n. Suppose that gis an arbitrary
estimator such that R(a, -) < 0?/n on the whole real line. As shown in Exercises 6.25 and
6.26, it follows from R(f,-) < oo on R that the risk function R(6,-) is continuous. Hence
if R(6,6,) < 0/n for some 6, € R, then there exist real numbers § > 0 and a < b such that

R(g, 0) < 0%/n—¢for 6 € [a, b]. Now we evaluate the performance of 0 in a Bayesian framework
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with @ ~ A(0,72) for some 7 > 0. Here

RB(H) = EPR(,0)
O'2 0'2
< PP(O ¢ [a,b) -+ PP(0 € [a, b])(z - 5)

—1PB(6 € [a,b])6
~(2(7) -2(9)

2 O(En)(b—a)d

T

3‘q 3‘qw3‘qm

for some number £(7) € [a/T,b/T]. On the other hand,

o? o? ot

B(p B (7B
R°(0) > R"(0 = >
©) (67) n+o2/12 n  n’r?

by the elementary inequality 1/(1 + y) > 1 — y for y > —1. These inequalities for RB(§) imply

that .
O (E(r))(b—a)s < ——

n?r
for arbitrary 7 > 0. But as 7 — oo, the left hand side converges to ®'(0)(b — a)d > 0, whereas
the right hand side converges to 0. This contradiction shows that R(g, ) < o2/n implies that

R(0,) = o%/n. O

Exercise 6.25 (Some basic considerations). Let M be a measure on a measurable space (2, .A),
and let g, h : Q — R be A-measurable functions such that for real numbers a < b,

/(eag + e")|hldM < oo.

(a) Show that
L(t) = /etgh amM
defines a continuous function L : [a, b] — R.

(b) Show that L is continuously differentiable on (a, b) with derivative
L'(t) = /getgh dM.
(c) Show that L is infinitely often differentiable on (a, b) with k-th derivative
LW () = / gFetIh dM.

Exercise 6.26 (Continuity of risk functions in simple Gaussian location families). Consider the
simple location family with Py = N(0, o) for some o > 0. Let 6 : R" — R be an estimator of §
such that the risk

R(S.0) = Ey((0 - 0)?)

~

is finite for any 6 € R. Show that R(6, -) is continuous on R.



90

Exercise 6.27. Let Z ~ N(0,1) and a € R. Show that IE(1[;- 1 Z) = ¢(a) and E(1[5- ) Z?) =
®(—a) + ap(a), where ¢ and ® arethe density and distribution function of Z, respectively.

Exercise 6.28. Suppose that the error distribution equals Py = A (0, o%) for some o > 0. If one
assumes that § > 0, a possible estimator would be

Xt

(a) Determine R(X*,0) for arbitrary § € R. (Hint: Exercise 6.27.)
(b) Compare R(X™,-) with R(X).
Remark: This exercise shows that the estimator X of 6 is inadmissible in the statistical experiment

(R", Borel(R"), (N(8,02)%™) 0>0), because X has strictly smaller risk than X. Whether or

not Xt is admissible itself is a different question.

6.5 Location Functionals and Gross Error Models

Estimators as functionals of (empirical) distributions. Consider a random vector X € R"”

o~

with independent components X; having distribution P. Most estimators (X ) may be viewed as

a functional S (ﬁ) of the empirical distribution

~ 1 &
P = n;éxi’

1.e.

S5 oo #{i<n:X; €B} 5 1¢ A
P(B) = - and /thn;h(Xz)

for B C Rand h : R — RR. For instance

X = mean(P),

median(X1, . .., X,) = median(P),

where for arbitrary distributions @) on R,

mean(Q) = /xQ(dm) provided that /]m|Q(d$) < 00,

min{z : Q((—o0,z]) > 0.5} + max{z : Q([z,0)) > 0.5}.
2

median(Q) :=
It is well-known that the empirical distribution P is a consistent estimator for the underlying
distribution P. Precisely,

B( s |P(B)-P(B)]) = O

intervals BCR

uniformly in P, and for arbitrary measurable functions » : R — R with [ |h|dP < oo,

E‘/hdﬁ—/th‘ 0 asn — oo.
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Hence ‘reasonable’ functionals S(-) should satisfy S(P) —p S(P) as n — oo, at least if P itself

18 ‘reasonable’.
In what follows we consider the families

P o= {probability distributions on R},

P

{PEP:/]w\TP(da:)<oo}, r >0,

ie. PO =P.

Definition 6.29 (Equivariant location functional). An equivariant location functional on P” is a
function S : P — R such that
S(Pxdq) = S(P)+a

for arbitrary P € P" and a € R.

Indeed, mean(-) is an equivariant location functional on P!, and median(-) is an equivariant

location functional on PY = P.

Gross error models. For a given exponent > 0 we consider a simple location family
(R™, Borel(R"), (P;")ger) with Py = Py * by,

generated by a given distribution Py € P”". Now suppose that X7, X», ..., X,, are independent
random variables with distribution P in a “contamination neighborhood” of some distribution
in {Py : § € R}. Precisely, we assume that for some unknown parameter # € R and some
e € (0,0.5),

Peu ) ={(1-eP+eQ:QecP}
={Q € P": Q(B) > (1 — €)Py(B) for any B € Borel(R)}.

The idea behind this “gross error model” is that each observation X; stems from P, with proba-

bility 1 — €, but with a (small) probability € it could follow any other distribution ) € P".

For instance, a well-known problem in sociology is that a certain percentage of people give non-
sensical answers on questionnaires. In the natural sciences, it may happen that a measurement
device fails completely with small probability or that the measured value is recorded with a wrong

or missing decimal point which may result in extreme outliers.

If such a model is realistic, for large sample sizes n we should not worry too much about the
sampling error S(P) — S(P) but rather about the systematic error S(P) — 6. Note that in case of
an equivariant location functional S : P" — R,

sup [S(P)—0] = sup [S(P)|
PeUr(6) Peur(0)

for any 6 € R. For instance, for any » > 1 and any ‘generator’ Py € P" with mean(FPy) = 0,

sup |mean(P)| > sup ‘mean((l —e)Py —|—65a)’ = 0.
Peld(0) a€R

=€a
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Hence the mean is a problematic functional in the presence of gross errors.

The following theorem of Peter J. Huber, a Swiss mathematician and co-founder of the field of
“robust statistics”, shows that the median is an optimal equivariant location functional for a broad

class of generators F.

Theorem 6.30 (Huber). For any fixedr > 0 let Py € P" with density fy such that f; is even on
R and non-increasing on [0, 00). Then for any equivariant location functional S : P" — R and
arbitrary e € (0,0.5),

sup ‘S(P)‘ >  sup ‘median(P)‘ _ F0_1< 0.5 )7
PEL{Z(O) PGZ/{Z(O) 1 —

where Iy and F|; 1 are the distribution and quantile function, respectively, of P,.

Proof of Theorem 6.30. We first show that indeed

sup |median(P)| = z. := Fo_l(lo'5 )
Peld(0)" — €

The assumptions on f imply that with =, := sup{z > 0 : fo(z) > 0} € (0, o], the interval

(—x4, ) coincides with {x € R : 0 < Fy(x) < 1}, and Fy is continuous and strictly increasing

on (—z«, x4). Moreover, Fo(—z) =1 — Fy(z) for all z € R. Since 0 < € < 0.5, the number z.

lies in (0, ). The distribution function F of P = (1 —€) Py + €@ € U] (FPp) is strictly increasing

on (—x,, x,) as well and satisfies

0.5
1—¢

F—z) < (1— €)Fo(—) +¢ = (1—e)<1— )—i—e ~ 05
with equality if, and only if, Q((—o0, —z]) = 1. On the other hand,
F(ze) > (1 —€)Fy(ze) = (1 —€)0.5/(1—¢€) = 0.5

with equality if, and only if, Q((—o0, z.]) = 0. These considerations show that the maximum of
|median(P)| over all P € U!(0) equals ..

Now we construct two particular distributions P(1), P() € 1/ (0) such that
P? = pW 5y,
If this is possible, then for any equivariant location functional S : R" — R,
S(P?)y - s(PM) = 2z,
This implies that S(P(M) < —z, or S(P?)) > ., whence

sup ‘S(P)} > z..
PeuUr(0)

The construction starts from the function (1 — €) fp and noting that

/xé (1— o) fo(x)dz = (1— e)Fp(ze) = 0.5.

—00
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0.4

fo(x)

0.3

0.2

0.1

0.0

-4 -2 0 2 4

Figure 6.1: Construction of two particular distributions P, P(?) € 14 5(0) with densities
fD £ in case of Py = N(0, 1).

Shifting this function to the right by 2 yields the function (1—e¢) fo(z —2x.), and the assumptions

L
oo

/Oo(l—e)fo(x—ng)d:r _ / (1= folx)de = 1— Fy(—z) = 05.

—Te

about f( imply that

-9t {

IN IV

}(1—6)f0(:1:—2x6) if x{

IV IA

and

This shows that
F = (1 = )y max{fo(), fo(z - 2xc)}
defines a probability density such that the corresponding distribution P(?) belongs to U (0). In-

stead of shifting (1 — €) fy to the right, we could shift it by 2z, to the left and would obtain the
density

f(l) = (1—¢) max{fo(w), folx + 21‘6)}

of a distribution P € 1¢7(0). But f@ = (. —2z,), so P® = P « §,, , as desired.
Figure 6.1 illustrates the construction of f(1), f(2). O

Remark. There seems to be no simple location family such that Median(x) is the correspond-

ing Pitman estimator. On the other hand, if Py is the centered Laplace distribution with density



94

fo(x) = (20)~!exp(—|z|/c), then Median(z) = §ML(m), and one can show that this estimator

is approximately optimal as n — oo.



Chapter 7

Statistical Tests

In this chapter we consider a general statistical experiment (also called statistical model)

(2, A, (Pg)geo)

consisting of a sample space (€2,.4), a parameter space O and given probability distributions IPy

on (2, .A) for arbitrary parameters 6 € ©.

Recall that (IPy)gco describes potential distributions of the observed data w € 2. Suppose for the
moment that the observed data are indeed a realization of a random variable with distribution 1Py
for an unknown true parameter 6. Sometimes we conjecture that # does not belong to a given set
O, C O. That means, our working hypothesis is that 6 € © \ 6, and we would like to falsify the
null hypothesis that § € ©, based on the observed data. This can be formalized by a measurable
function
w:0Q—{0,1}.

If o(w) = 1, then we claim that 6 ¢ O,. In other words we reject the null hypothesis. In case of

¢(w) = 0 we make no assertion about 6.

For theoretical and other reasons it is useful to consider so-called randomized tests , i.e. measur-
able mappings
v :Q—[0,1].

The idea is that after observing the data w € (2, we reject the null hypothesis with (conditional)
probability ¢(w). For instance, we could generate an additional random variable U ~ Unif|0, 1],
independently from w, and reject the null hypothesis if U < ¢(w). All in all, by Fubini’s theorem,
the probability of rejecting the null hypothesis equals

Ey(p) = /@dlpe.

This is equal to IPy(¢ = 1) in case of a {0, 1}-valued mapping ¢.

Definition 7.1 (Statistical test, power function). A (statistical) test is a measurable mapping ¢ :
Q0 — [0,1]. If o takes only values in {0, 1}, this can be indicated by saying that ¢ is a non-
randomized test. The power function of a test ¢ is the function

©30 — IE@(QO)_/QOdIPQ,

95
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and IEy () is the power of ¢ for parameter 6.

Note that this definition does not involve any null or working hypothesis. Let us come back to
observed data w coming from IPy for an unknown true parameter § € ©. If we use a test ¢ to
check the null hypothesis that 6 € ©,, there are two possible types of error:

Error of the first kind: The true parameter 6 belongs to ©,, but we reject the null hypothesis.
Error of the second kind: The true parameter § does not belong to ©,, but we do not reject the null

hypothesis.
An error of the first kind happens with probability

Eo(p) iff € O,,
0 if0 ¢ 0,,

whereas an error of the second kind occurs with probability

0 if @ € ©,,
1—TEy(p) iff¢O,.

Traditionally one tries to control the probability of an error of the 1st kind.

Definition 7.2 (Test level). Let ) C ©, € O, and let « € (0,1). Suppose that ¢ is a test such
that
Ey(p) < o forallf € O,.

Then ¢ is called a test of the null hypothesis O, at (test) level . A shorter formulation: ¢ is a

level-a test of ©,,.

Example 7.3 (Quality control). The producer of a certain gadget wants to learn something about
the unknown probability p that such a device fails in a standardized test of endurance. To this end,
he runs an experiment in which n such gadgets are exposed to that endurance test. The outcome of
this experiment could be described by a tuple w = (w;)!*; in {0, 1}", where w; specifies whether
the ¢-th gadget fails (w; = 1) or not (w; = 0). Assuming that the n gadgets perform independently,

this leads to the statistical model

({07 1}n7 'P({O, 1}71)’ (IPp)pE[O,l])

with IP,, given by

n

P,({w}) = pri(l —p)l_‘“i = pT(w)(l —p)n_T(‘“),
=1

Here T'(w) := > " | w; is the total number of failures in the experiment.

Alternatively, the producer could focus immediately on the total number of failures in his experi-
ment. Indeed, in a later chapter it will be shown that this reduction is well justified. This leads to

the statistical model

({0,1,...,n}, P({0,1,...,n}), (Bin(n,p))pepn.]) -



97

Suppose the producer wants to verify that the unknown probability p is smaller than a given (small)
number p,. Then he should test the null hypothesis O, = [p,, 1]. If he performs a statistical test
of ©, at level «, and if that test rejects the null hypothesis, he may claim with confidence 1 — «
that the unknown parameter p is smaller than p,,.

General goal. Typically we specify a nonempty subset © 4 of © \ ©, and focus on testing the
null hypothesis ©, versus the alternative hypothesis © 4. The goal is to construct a level-« test ¢

of ©, with maximal power IEy(y) for 6 € © 4.

Exercise 7.4 (De-randomisation). Let ¢ : Q2 — [0, 1] be a statistical test. Show that for any fixed

B €(0,1),
¢ = lipg
is a non-randomized test satisfying
IEHB(@ > TEy(¢) > Egl(gb_)ﬁ b forall € ©.

7.1 The Neyman-Pearson Lemma

We start with the very simple setting of © = {0, 1} and ©, = {0}.

Theorem 7.5 (Neyman—Pearson). Suppose that IPq and IP, have densities fy and f1, respectively,
with respect to some measure M on (2, A). For any o € (0, 1) there exist constants k, > 0 and
Yo € [0, 1] such that
1 iffi > kofo
Px = (Vo I f1 =Fkafo
0 iffi < kafo

defines a test @, of {0} with the following properties:

(i) The test o, has exact level « in the sense that
Eo(ps) = o
(ii) For any level-« test ¢ of {0},
Ei(p) < Ei(p).
(iii) If p is a level-a test of {0} with IE;1(¢) = IE;(py), then
M(fy > kofoandp < 1) = 0 = M(f1 < kafo and ¢ > 0).

If in addition ko > 0, then IEg(¢) = a.
(iv) If Py # 1Py, then
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Note that the optimal level-« test o, could also be defined in terms of the likelihood ratio f/ fo
with the conventions that a/0 := oo for a > 0 and 0/0 := 0:

L if f1/fo > ka,
Yx = Vo i fl/fO = kq,
0 if fi/fo < ka.

Remark 7.6 (Existence and choice of M). The assumption that IPy and IP; have densities with
respect to some measure M on (€2, .A) is not a real restriction. If we take M := Py + IPy, then
it follows from the theorem of Radon—Nikodym that there exist densities fj = dIPy /dM° for
6 = 0, 1. If M is an arbitrary measure such that a density fy = dIPy /dM exists for § = 0, 1, then
one can easily verify that f§ = fy/(f1+ f2) ontheset { fi + fo > 0}, and M°(f1 + fo = 0) = 0.
Hence, the resulting optimal test ¢, would be essentially the same, no matter which measure M

we start from.

Proof of Theorem 7.5. For the construction of our special test ¢, we consider the auxiliary func-

tion H : [0, 00) — [0, 1] given by
H(r) = Po(f1 <rfo).

One can easily verify that H(r) = Po(f1/fo < r), where a/0 := oo for @ > 0 and 0/0 := 0.
Since IPo(f1/fo = 00) < IPo(fo = 0) = 0, H is a distribution function on [0, c0). That means,
H is nonnegative, nondecreasing and right-continuous with limit H (+o00) = 1. Consequently, the

number
ko == min{r >0:H(r) >1—a}

is well-defined. It has the property that

Po(f1 > kafo) = 1= H(ka) < a < 1—H(ko—) = Po(f1 > kafo)-

If IPo(f1 = kafo) = 0, we set 7, := 1. Otherwise we define

_ a —Po(f1 > kafo) _ a—Py(f1 > kafo) € [0,1]
Too Po(f1 > kafo) = Po(f1 > kafo) Po(f1 = kafo) T

In both cases the test . := 1z —p 1Y + L5 >k, fo) Satisfies

IEU(QD*) = IPO(fl = kosz)’Voz +IP0(f1 > kafo) = Q.

This proves property (i).

As to properties (ii-iv), note that for any test (,

(o =) (fi = kafo) <0,

because

B e —=1<0 on{fi —kafo> 0},
LR v >0 on {f; — kafo <0}
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Consequently,

0> /(<P—90*)(f1 — ko fo) dM

= Bi(p) — Ei(p.) — ka (Bo() — Eo(p))
= Ei(p) — Ei(ps) — ka(Eolp) — a).

In other words, for any test ¢,

(7.1) E1(p) — Ei(ps) < ka(Eo(p) — )
with equality if and only if

(7.2) M(fi > kafoandp < 1) = 0 = M(f1 < kofo and ¢ > 0).

If o is a level-a test of {0}, then the right hand side of (7.1) is non-positive, so IE; () < IE;(py).
This proves property (ii).

If p is a level-a test of {0} with IE; (¢) = IE; (. ), then the right hand side of (7.1) has to be zero,
and the first half of property (iii) is just (7.2). Moreover, if k, > 0, then the right hand side of
(7.1) being zero means that IEy () = «, which proves the second half of property (iii).

Finally, we may compare ¢, with the trivial test ¢ = «, so [Eg(¢) = I[E1(¢) = a. Then (7.1) and
(7.2) show that IE; (.) > « with equality if and only if

M(fl ?’é kafO) = 0.

That means, IP; has density k,, fo with respect to M. But then 1 = IP1(Q2) = k, IPo(Q) = kg, so
IP; = IPy. This proves property (iv). O

Example 7.7. Let Q = (0,00) and IPg := Gamma(ag, b) with shape parameters a; > ag > 0
and a common scale parameter b > 0. Then the density fy of [Py with respect to Lebesgue measure
on Q equals fy(z) = I'(ag) " 1b~%z%1e=2/b so

ﬁ(a:) _ Dlaolptom® |
fo I'(a1)

a1—ao

is strictly increasing in > 0. Hence the optimal level-« test of {0} versus {1} — in other words:
of Gamma(ag, b) versus Gamma(a1, b) — is given by

0x(T) = 1p>ka)

where k, is the (1 — a)-quantile of Gamma(ao, b).

Exercise 7.8. Let IPq = A(0,0?%) with ¢ < /2. The corresponding distribution function is
Fy(x) = ®(x/0). Further let IP; be the standard logistic distribution with distribution function
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Show that the Neyman—Pearson test of IP( versus IP; (i.e. of {0} versus {1}) at level a € (0, 1)
is given by

" =1 .
@) = 11 pe11ma/m)]

Hint: Show first that

fi(z)
log o)

is strictly convex and even, where fy and f; are the density functions of IP( and IP;, respectively.
Exercise 7.9. Letbe IPq = N(0,1) and IP; = N (i, 0?) with o > 1.

(a) Show that the Neyman—Pearson test of IP versus IP; at level « has the form

P = g -oryaan)
for some 0, = d,(p, 0, ) > 0.
(b) Determine ¢, in the special case of u = 0.

(c) Show that the special test ¢, in part (b) has the following property:

/<p* dN (p, 0%) > /cp* dN(0,0%)  for arbitrary 1 € R.

Determine the latter power.

7.2 Monotone Density Ratios

In this section we consider a parameter space © C R, and we assume that each distribution 1Py
has a density fy > 0 with respect to a measure M on (£2,.4). Moreover, we assume that there
exists a measurable function

T:Q—>R

with the following property: For arbitrary 61,62 € © with 8; < 65, there exists a non-decreasing

function gy, 9, : R — (0, 00) such that

fo,

= = ).
for 9.91,92( )

Example 7.10 (Bernoulli experiments). Motivated by Example 7.3, let = {0,1}" and © =
(0,1), and let IPy describe the joint distribution of n independent random variables with values in

{0, 1} and expectation 6. That means, with M denoting counting measure on 2, IPy has density
_ H 9“”(1 o 9)1_wi _ ¢9T(w)(1 o e)n—T(w)

with T'(w) := > w;. Thenfor 0 < 0; < 0y < landw € €,

fo,
fo

(1 = )T

0 e )( —0;)n"Tw)

(1 —By)" /65(1 — 61)\T()
(1—6,)n <(1 - 92)91)

= 991,92(T(W))

(w) =
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with and

(1= 0)" (021 — 1)\
96, .0, (t) == (1— Qi)n <(i — 02)01> ’

Note that gg, g, (t) is strictly increasing in ¢ € R, because

0,(1—01) 6y 2

= 1.
10206 1-6/1-6,

Example 7.11 (Gaussian location family). Let Q@ = R", © = R and Py = N (0,02)®" for a
fixed standard deviation ¢ > 0. Recall that the density fy of IPy with respect to Lebesgue measure

on R" is given by

— 2\—n/2 _ |l — 6] _ 2y—n/2 B | — Z|* + n(z — )
fo(=) (2m”) exp( 202 ) (2mo”) exp( 202 )

Thus for 1 < 0o,

Jos
for

(T — 601)? — n(z — 63)?
202 : >

n(fy—601) _ n(67 — 93))

= exp( 52 T+ 252

= 90,0, (T'(z)),

(x) = eXp(

where T'(x) := Z, and

n(92 — 91) n 92 — 92
991,92(t) = eXp( 0_2 t+ ( ;0_2 2)>

is strictly increasing in ¢ € R.

Example 7.12 (Gamma families). As in Example 7.7, let Q = (0, 00), and let Gamma(a, b) be
the gamma distribution with shape parameter a > 0 and scale parameter b > 0. Its density with
respect to Lebesgue measure on 2 equals f, p(w) := fo(w/b)/b with fo(y) := '(a) twr le .
Hence, for parameters (a1, b1), (a2, b2) € (0,00) x (0, 00),

faQ’bQ — F(al)bclll az—ai —
TR W) = pp " exp((L/h — 1/ba)),

which is strictly increasing in 7T'(w) := w whenever a; < a9, by < by and (a1, b1) # (a2,b2).
Consequently, our assumption is satisfied if, for instance, © = (0, 00) and IPy = Gamma(6, b)
for a given b > 0 or IPg = Gamma(a, #) for a given a > 0.

In statistical models with monotone density ratios as above, there exist optimal tests of null hy-

potheses of the form
©, = ON(—00,6,] or O, = ON[f,,0)

with arbitrary 6, € ©.
Theorem 7.13 (Uniformly most powerful (UMP) right-sided tests). Let 6, € ©.

(i) For any fixed o € (0, 1) there exist constants k, € R and v, € [0, 1] such that the test

s = lpep)Va + 1rsk,)
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satisfies
]:Eeo ((IO*) = .
(ii) A test p, as in part (i) has the following properties:

(ii.1) The power function 6 — IEg(p.) is non-decreasing on © with values in (0, 1). In particular,
Eg(ps) < a foralld € © N (—o0,b,).
(ii.2) For any test p with Eg_(¢) < a,
Ey(p) < Eg(ps) foralld € ©N (6,,00).
(ii.3) For arbitrary parameters 01 < 0 with IPg, # IPy,,

]Et91 (90*) < IE92 (4,0*)

Remark 7.14 (UMP left-sided tests). The previous theorem carries over with obvious modifica-
tions to null hypotheses ©, = © N [6,, o) for some 6, € O. Here the optimal level-« test of ©,
has the form

O« = Lir=p,)Ya + Lir<ka]

with suitable constants k, € R and v, € [0, 1].

Proof of Theorem 7.13. The existence of 7, € [0,1] and k, € R such that s := 1j7p—p 170 +
L7k, satisfies IEg, (p.) = o can be verified with the same arguments as in the proof of the

Neyman—Pearson lemma: We consider the distribution function H : R — [0, 1] with
H(r) = Py (T <r).
Then we define
ko = min{r e R: H(r) > 1— a},
SO
Py (T > k) < a < Py (T > kq).
In case of IPy, (T = ko) = 0 we set 7, = 1, otherwise

= ]P90<T > k‘a)
Yo T TP (T = ka)

€ (0,1].

Then one can easily verify that the resulting test ¢, has power « at 6,. This proves part (i).

As to part (ii), we start with a rather general consideration. Let h : R — R be a non-decreasing

and bounded function. Then
/ h(T)d TP,
is a non-decreasing function of ¢ € ©. For if 61,03 € © with ¢ < 03, then with g := gy, g,,

[r@yawe, - [nyave, = [nng@)dvs, - [br)aw,
— [ HD)e() - 1y, .



103

For h = 1 we obtain
[tom) - 1w, = o

Since g is non-decreasing, the latter equation implies that for some ¢, € R,

< 1 forallt <t,,
g9(t)
> 1 forallt > t,.

But then we may conclude that

/ W(T)(g(T) — 1) dTPy, = / ((T) — h(to))(9(T) — 1) APy, > 0,

because the latter integrand is everywhere non-negative.

Note that ¢, = h(T’) with the nondecreasing function 2 : R — [0, 1], h(t) := 1p—p.17a + Lgska)-
Consequently, the power function of ¢, is non-decreasing on ©. Moreover, for arbitrary 6 € O it
follows from gy, 9 > O that

/w* 90,0 APy, > 0,
/go*d]f’e -
1—/(1—90*)990,96”1)90 <1,

because otherwise IPy_ (¢, > 0) = 0 or [Py, (¢ < 1) = 0, a contradiction to IEy,(¢.) = a €

(0,1). These considerations prove property (ii.1).

For arbitrary 01,6 € © with 6; < 05, the function g := gy, g, is non-decreasing. Hence any test
( satisfies the inequality

(0 — ) (fo, — 9(ka) fo,) = (0 — @) (9(T) — g(ka)) fo, < 0.

Consequently
0> /(so — ) (fo, — g(ka) fo,) AM
= IEg,(¢) — Eg, () — 90,0, (ka) (o, () — IEg, (¢4)),
SO
(7.3) IE92 ((,0) - ]E92 (90*) < 961,02 (koé) (IE91 (90) - IE91 (‘P*))

with gg, 9, (ka) > 0 by assumption.

In the special case of 6, = 0, it follows from (7.3) that IEg, (¢) < IEg, (@) for arbitrary 62 > 6,
and any test ¢ satisfying IEq_ () < o = IEg,(4). This proves property (ii.2).

As to property (ii.3), (7.3) shows that for arbitrary parameters 67 < 65, the test w, is an opti-
mal test of the simple null hypothesis {61} versus the simple alternative hypothesis {62} at level
IEg, (¢«) € (0,1). Thus it follows from the Neyman—Pearson lemma that IEg, (¢.) > Eg, ()
unless IPg, = IPy,. Ul
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Example 7.10 (Bernoulli experiments, cont.) Note that the distribution ]PGT of T equals the
binomial distribution Bin(n, §). Let b,, ¢ and B,, y denote the weight and distribution function of

Bin(n, #), respectively, i.e.

bno(k) = (Z)e’fu_e)n—a
Byg(x) = an,e(k)
k<zx

for k,x € {0,1,...,n}. With the corresponding quantiles

B,;Il,(u) = min{z : Byp(x) >u}, we(0,1],

for fixed 6, € (0,1) and v € (0, 1), the optimal level-« test of (0, 6,] versus (6,, 1) is given by
O« = L= Ya + 1r>kas
where

B, (ko) — 14+«
bnﬂo (ka)

ko = B,y (1—a) and 7, =

The power of this test at § € (0, 1) equals

EQ(SO*) =1- Bn,e(ka) + bn,@(ka)Va-

Example 7.11 (Gaussian location family, cont.) Note that in case of X ~ N(6,02)®", the
sample mean X = T'(X) has distribution (6, 72) with 7 := o //n. Hence,

P, 2r) = 1-a(" %) = o(2T)

T T

equals « if and only if 7 = 6, — ®~!(a)7. Consequently an optimal level-a test of (—oo, 6]

versus (6,,00) is given by
(@) = sy, Wwith ko = o — @ ().

The power of this test o, at an arbitrary parameter 6 equals

0 — kq

T

Py(T > ko) = <1>( ) = (@ () + (0 — 0,)/7).

Exercise 7.15. Motivated by the Hardy—Weinberg law in genetics, consider the statistical model
(IPg)oe(0,1) With

Py := Mult(n,p(d)) and p(0) := ((1-6)%20(1—0),6%).

(a) Show that this model has monotone density ratios for a suitable test statistic 7 : Ng — Np.

(b) Determine the distribution ]PQT of this test statistic 7.
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7.3 Stochastic Order, P-Values, Confidence Bounds

In practice, only non-randomized tests, i.e. tests with values in {0, 1}, are used. Nevertheless the
results in Section 7.2 show that certain non-randomized tests based on so-called p-values are essen-
tially optimal. In the present section we describe non-randomized tests, p-values and confidence

regions which are valid under a weaker condition on our statistical model (€2, A, (IPy)gco)-

Stochastically ordered distributions. We still assume that © is a subset of R. Further we
assume that there exists a measurable function 7" : {2 — R such that the corresponding distribution
functions Fp : R — [0, 1] with

Fy(t) == Po(T' < ¢)
satisfy the following conditions, which are equivalent:
(SO.1) For any fixed t € R, Fy(t) is non-increasing in 6 € ©.
(SO.2) For any fixed t € R, Fy(t —) = IPo(T < t) is non-increasing in § € R.
(SO.3) For any fixed u € (0,1), F, ' (u) = min{t € R : Fy(t) > u} is non-decreasing in 6 € R.
(SO.4) For any non-decreasing function i : R — [0, 00), [ h(T') dIPy is non-decreasing in § € R.

If (SO.1-4) are satisfied, we say that the distribution functions Fy are stochastically ordered in the
sense that Fy, < Fp, whenever 0 < 6.

Exercise 7.16. Show that Conditions (SO.1-4) are equivalent.
The proof of Theorem 7.13 (ii) shows that any statistical model with monotone density ratios

satisfies condition (SO.4) and hence (SO.1-4). Note also that in Example 7.10 one may extend the
parameter space to © = [0, 1], and the stochastic order constraint remains valid.

Tests in terms of p-values. To test whether a hypothetical parameter 6, is plausible for a partic-

ular data set w € €2, we could compute

o the left-sided p-value

o the right-sided p-value
1= Fy,(T(w) =) = Py, (T = T(w)).

The left-sided p-value is non-decreasing in 7'(w), and small values indicate that 7'(w) is “suspi-
ciously small” for the parameter ,. The right-sided p-value is non-increasing in 7'(w) with small
values indicating that 7'(w) is “suspiciously large” for 6,,.

These p-values lead to tests which are similar to the UMP tests in Section 7.2: Let us fix a test

level o € (0,1). On the one hand, with the right-sided critical value

B = min{t € R: Fy,(t) > 1— a}

a,00
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we can conclude that

KL it Fy, (B7) ) <1—a,
1-Fy (T-) < « ifandonlyif T N
A, R, =10

Thus by stochastic ordering,
Pyo(l—Fy, (T —)<a) <Py (1—-Fy(T—-)<a) <« forarbitrary 6 < 6,.

Consequently,

8o = -y, )<a] = Ly, (1 )21
defines a level-a test of © N (—o0, 6,].

Similarly, with the left-sided critical value

k(()f)eo = max{t e R: Fy (t—) < a}

we can conclude that

0) . )
< k if Fo, (ko p ) > o,

Fy,(T) < o ifandonlyif T 0;:90 0290
< kY i, (k) =

whence by stochastic ordering,
Py(Fp, (T) <) < Py, (Fp,(T) <) < a for arbitrary 6 > 6,.

Consequently,

0
90&,90 = g, (1)<q

defines a level-« test of © N [,, 00).

Confidence bounds. By means of the p-values just constructed, one can also construct confi-

dence regions for the parameter 6 € O:

For given test level « € (0, 1) and data set w €  let

CO(w) = {0 €0: Fy(T(w) > al.

That means, Cg) (w) is the set of all parameters such that the corresponding left-sided p-value

Fy(T(w)) is larger than «. Since Fy(T') is non-increasing in § € O, the set cf) (w) is always an

interval © N (—o0, by (w)) or © N (—o0, by (w)] for some b, (w) € [—o0, 00].

Consequently, ¢ and b, comprise a (1 — a)-confidence interval and an upper (1 — a)-confidence

bound in the folling sense: For arbitrary 6 € ©,
Py(by > 0) > Pe(CP 36) > 1—a.

In other words, assuming that an observed data set w is a realization of a random variable with
distribution IPy for some unknown true parameter § € ©, we may claim with confidence 1 — «
that § € ¥ (w) and 0 < ba (w).
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Similarly let
C(w) == {#€0: F(Tw)-)<1-a},

«

the set of all parameters such that the corresponding right-sided p-value is larger than «.. Since
Fy(T'(w) —) is non-increasing in § € ©, the set el (w) is always an interval © N (aq(w), 00) or

O N [aq(w), o) for some ay(w) € [—00, 00].

Consequently, c&’") and a,, comprise a (1 — «v)-confidence interval and a lower (1 — «)-confidence
bound in the folling sense: For arbitrary § € ©,

That means, assuming that an observed data set w is a realization of a random variable with dis-
tribution IPy for some unknown true parameter f € ©, we may claim with confidence 1 — « that
0 € C(w)and 6 > an(w).

Example 7.10 (Bernoulli sequences, cont.) For any 6, € [0, 1] the left- and right-sided p-values
are given by
By, (T(w)) and 1— By, (T(w)—1),

respectively. The resultung confidence intervals are

Cg)(w) _ {[O’ bo(w)) fT(w) <n,
[0,1] if T(w) = n,
) (w) = {[0, 1] if T(w) =0,
(aa(w),1] if T(w) >0,

where b, (w) is the unique p € (0,1) such that B, ,(T'(w)) = o (if T(w) < n) while aq(w) is
the unique p € (0, 1) such that B), ,(T'(w) — 1) = 1 — « (if T'(w) > 0). Here we utilize the fact
that for any integer z € {0,1,...,n — 1}, the function p — B,, ,(x) is continuous and strictly

decreasing with boundary values B,, o(z) = 1 and By, 1 () = 0.

Example 7.17 (Gaussian location family, cont.). Since
Fy(t) = @((t—0)/7),
the left- and right-sided p-values for any given parameter 6, are given by
®((z—06,)/7) and @((6, —2)/7),
respectively. The resulting confidence intervals are

CO(x) = (—o0,ba(x)) with by(x) == T+ (1 —a)r,
C(x) = (an(x),0) with aq(x) == 72— (1 —a)r.
Exercise 7.18. Find probability distributions Py and P; with finite support X C R and distri-

bution functions Fy and F}, respectively, such that Fy <y Fy (i.e. Fy > F) but g(x) :=
Py({z})/Po({z}) is not monotone in = € X.
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Example 7.19 (Capture-recapture). The unknown size N of a population of animals is sometimes
estimated with a capture-recapture experiment: At first, a random sample of size n; is drawn from
the population without replacement, and all animals in this catch are marked and then released.
After some time a second sample of size ny is drawn without replacement, and one determines the
number X of marked animals in this second catch. That means, X is the number of animals which
were catched twice. Ideally, X is a random variable with distribution Hyp (N, n1, ng). This leads
to the statistical experiment

(X,P(X), (Hyp(N, nl,nz))

N>max(ny ,ng)) ?

where X := {0,1, ..., min(ny, n9)} and

soneten = (2) (,22)/2) = () (22 C)

for € X with the convention that () := 0 if £ > k. Possible point estimators for N are given

by
~ ~ 1 1
N(z) = e or N(z) := (m + Dn2 + )
T r+1

It follows from Exercise 7.20 below that the distributions Hyp(/V, n1,ng) are stochastically de-
creasing in N. That means, if Fy denotes the distribution function of Hyp(V, n1,ng2), then

Fx(z) is non-decreasing in N > max(nq, na)

for any x € X, and
lim Fy(0) = 1.
N—o0

Consequently, a lower (1 — «)-confidence bound for N is given by
ao(z) == min{N > max(ni,n2) : Fy(z) > o}

while an upper bound is given by

o —
bo(z) = {oo if x =0,

maX{N > max(ni,n2) : Fn(z —1) <1— a} if x > 0.

Exercise 7.20. For integers nj,ng > 1and N > max(ny, ng), let Fiy be the distribution function
of the hypergeometric distribution Hyp(N, nq, n2).

(a) Show that Fiy(z) < Fyy1(x) for arbitrary x € {0, 1, ..., min(ny,n2)}. Proposal: Think of
an urn with n; black, N — n; white and one red ball from which you draw ny + 1 balls one by

one without replacement.

(b) Show that
lim Fn(0) = 1.

N—oo

Exercise 7.21. Let X be a random variable with distribution Hyp (N, n1, n2) with given param-

~

eters n1, ng € N and an unknown parameter N > max(ny, na). Determine IE (V) for the point
estimator N := (ny + 1)(ng + 1) /(X +1).
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7.4 The Generalized Neyman—Pearson Lemma

Our goal is to construct optimal tests of null hypotheses ©, such that #0, > 1. In the setting of
monotone density ratios, we solved this problem for ©, = ON(—o0, 6,] or ©, = ON[f,, 00) with
a “least favourable parameter” 6, € ©. But what about null hypotheses without such a unique least

favourable parameter? To deal with such settings, we start with a rather general consideration.

Theorem 7.22 (Generalized Neyman—Pearson lemma). Let T be the set of all statistical tests
¢ : Q — [0,1]. Let M be a o-finite measure on (2, A), and let f1,..., fm, fms1 € LY(M) for

some integer m > 1. Further let o« € R™ and define

T(o) == {(pET:/gofdM—a}
with f = (f;)™, : Q — R™,

(i) If T (cx) # 0, then there exists a test p, € T (a) such that

/¢*fm+1 dM > /SDfm+1 dM  forallp € T(cv).

(ii) Suppose that @, is a test in T () such that

o) = {1 if fni1(w) > ko f(w)
' 0 if fng1(w) < ko f(w)

for a certain ko = (ka,j);-”:l € R™. Then ¢, has the optimality property in part (i). More
generally,

/(P*fm—i-l dM > /@fmﬂ amM

for arbitrary tests ¢ € T such that for1 < j <m,

/@fde > Q; I:fk'a,j<0,
< Qa; Ifk‘a,j > 0.

(iii) Suppose that o is an interior point of the set
{/cpfdM:gpeT} c R™.
Then there exists a test .. as described in part (ii).
Proof of Theorem 7.22. In what follows let
K = {/(pfdM:(pET} c R™,
K1 = {(/gpfdM,/gomedM) (9 €T} C R"XR.

The set /Cp, 11 is a compact and convex subset of R”* x R. This can be verified in two different

ways:
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With F := £1(M), the set

¢ {(foran),, oe7)

is a compact and convex subset of R”, equipped with the product topology, see Theorem A.12 in

Appendix A. But KC,,, 1 is the image of X under the linear and continuous mapping
R]: = (.Tf)fe]—' — ((.Tfj)}nzl, xfm+1) e R™ x R,

whence it is a compact and convex subset of R™ x R.

Alternatively, one can verify directly that /C,,,+; is a convex and bounded subset of R™ x R. But

Theorem A.14 implies that it is closed, whence it is compact.

Proof of part (i): Since KC;,+1 is compact and convex, its intersection with the set
{a} xR

is empty or of the form
{a} x[a, 0]

with real numbers a < b. In the latter case there exists a test ¢, € T () such that

/go*fm+1dM = b = max /(pfm+1dM.
€T (o)

Proof of part (ii): Let 9. € T () have the specified special form. Then for any other test ¢,

(e — ©)(fmns1 — ko f) > 0,

whence

/<P*fm+1 dM—/@me dM = /(@*—w)(fmﬂ —k&f)dM

m

+ 3 ko (o —/gofde>
j=1
> ika,j<@j_/<ﬁfde)-
j=1

The right hand side equals 0, if ¢ € T (e), so ¢, maximizes [ ¢fm11dM over all tests ¢ €
T (ax). More generally, the right hand side is non-negative for all tests ¢ such that for 1 < j < m,

Proof of part (iii): Let

with
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Then ;41 and C are disjoint convex subsets of R™ x R. Consequently they may be separated

weakly by a hyperplane. That means, there exists a nonzero vector (k,u) € R™ x R such that
((=,y), (k,u)) < {(a,2),(k,u)) forarbitrary (x,y) € K41 and z > b
with (-, -) denoting the standard inner product on R x R. Thus
E'x+uy < k'a+uz forarbitrary (z,y) € K1 and z > b.

Fixing one point (x,y) € K,,+1 and letting z — oo shows that u > 0. In case of u = 0, we
would have k # 0 and
'z < k"o for arbitrary & € IC,,.

But then o« would be a boundary point of X, rather than an interior point. Consequently, u > 0,

and we may assume without loss of generality that u = 1. Consequently, for arbitrary tests ¢ € T,

kT/cpfdM~|—/gpfm+1dM < kTa+0.

If o. € T(a) with [ @y fmy1dM = b, then with ko := —k, we may rewrite the previous
inequality as

/(90* — ) (frns1 — k& F)dM > 0

for arbitrary tests ¢. Applying this inequality to the special test

1 if frg1 > kL Sf

pux = Q0 i frnr <Ko f
py. else
shows that
M (s # pux) = 0.
Hence we may replace ¢, with @,.. ]

7.5 Tests of Two-Sided Hypotheses

7.5.1 One-parameter exponential families (with natural parametrization)

In what follows we apply the generalized Neyman—Pearson lemma to a particular type of statistical
model (Q, A, (IPg)gee): Let © be a real interval, and suppose that for some o-finite measure M

on (2, .A), P
folw) = TMO

for given measurable functions A : 2 — [0,00), T : 2 — R and the normalisation constant

c(9) = ( / heerM)il.

We also assume that M (h > 0 and T # ¢) > 0 for any real constant ¢, so IPy, # Py, for arbitrary
different 61, 05 € O.

(W) = C(O)h(w) exp(T (w))
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Example 7.10
Q= {0,1}", M = counting measure on €2, and

(Bernoulli sequences, cont.) This statistical model is an exponential family with

0 = R,
0(p) = log(p/(1—p)),
h(w) = 1,
T(w) := zwi,
=1
c) = 1+, ie. C(O(p)) = (1—p)™

Example 7.23 (Poisson distributions). The family of Poisson distributions Poiss(\), A > 0, is a
exponential family with Q = Ny, M = counting measure on {2, and

© =R,
B0 = log(V),
hw) = W),
Tw) = v,
C(6) := exp(—e), ie. C(O(N) =e .

Example 7.11 (Gaussian location family, cont.) The family of distributions N (u, o)™, 1 €
R, is an exponential family with 2 = R", M = Lebesgue measure on R", and

0 = R,
0(n) == np/o?,

h(x) = (2r0®)" 2 exp(—|=|*/(207)),
T(x) = =z,

C(0) = exp(—0?6?/(2n)).

Alternatively, one could choose, for instance,

O(p) = u,

T(x) = nZ/o?,

C(0) exp(—nb?/(20?)),
O(n) == vnu/o,
T(@) = vaz/o,

C() = exp(—62/2).

An advantage of the latter parametrization is that IP} = A/(6, 1).
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7.5.2 Two-sided hypotheses, version 1

Now we consider the problem of testing
0, = {9 €cO:0<6iorf > 02} versus ©4 = (61,62)

with given parameters 61, 02 € © such that #; < 0.

Theorem 7.24. (i) For any fixed « € (0, 1) there exist real constants ¢; < cg and v1,72 € [0, 1]
(with v = 0 in case of ¢; = c2) such that

Py = 1[T:C1}’yl + 1[T:C2]72 + 1[01<T<62]

is a test satisfying
IEy, ((P*) = IEy, (90*) = .

(ii) A test p, as in part (i) has the following properties:
(ii.1) For any level-« test p of {01, 02},
Eg(ps) > IEg(p) forall® € (61,02).
(ii.2) For arbitrary tests ¢ such that IEg, (¢) = IEg, () = a,
Eg(ps) < Eg(p) forallf € ©,.
In particular, @, is a level-a test of O, i.e.

Eg(¢s) < a forallf € O,.

For the proof of this and later theorems, we need an elementary result about weighted sums of two

exponential functions.

Lemma 7.25. For real numbers ¢; < cg and dy < ds there exists a unique vector b € R? such
that the function A : R — R,

2
At) = Z bjeddt
j=1

satisfies

A(Cl) = A(Cg) = 1,
A/(Cl) =0 ifc1 = C9.

Ifd; < 0 < do, then by, by > 0 and

A {< 1 on(cy,co),

>1 onR)\ [c1,co.

If0 < di < da, then by > 0 > by, whereas d; < do < 0 implies that by < 0 < bo. In both cases,

A {> 1 on(cy,co),

<1 OHR\[Cl,CQ].



114

Proof of Lemma 7.25. Suppose first that ¢; < c¢2. The condition A(c;) = A(c2) = 1 is equiva-

lent to

Ab = (1,1)7

with the matrix
dicy dacy
e e
A = [ ] )

edic2  pdaca

Note that

det(A) = ehertdacs _ gaertdies — gdreritdics (e(d2—d1)(02—01) _ 1) > 0.
Hence the equation Ab = (1,1) " has the unique solution

daca _ pdact dacy (pd2(ca—c1) _
b:det(A)_l[e e } [1 e e 1

_ —1
_€d1€2 edlcl 1:| - det(A) |:edlcg (e*dl (c2—c1) _ 1) ’
and the stated inequalities for by, by are clearly satisfied.

In case of ¢; = ¢ = ¢, the equations A(c) = 1 and A’(¢) = 0 are equivalent to
Ab = (1,0)"

with the matrix
dic dac
e e
A= [ e ]
Again, det(A) = (dy — dy)el®192)¢ > 0, 50 the equation Ab = (1,0) T has the unique solution

B d2€dzcc _edgc 1 _ edg cd2
b = det(A) ! |:_dledlc 6dlc 0 = det(‘A‘) ! _edlcdl )
and the stated inequalities for by, by are clearly satisfied.

In case of b1,be > 0 the function A is strictly convex, whence A < 1 on (c1,¢2) and A > 1 on
R \ [Cl, CQ] .

In case of 0 < dy < dy and by > 0 > bs,

bidy _ >0 ift<t,
A1) = bidie™ + bodse®™! = |by|d ed1t<7 _ old2 dl)t)
(0= b o [l |b2|d> <0 ift>t,

for some t, € R. If ¢; < ¢y, it follows from A(c;) = A(cz) = 1 thatt, € (c1,c2), whence
{A > 1} = (c1,¢2) and {A < 1} = R\ [e1,¢2]. If ¢1 = cg, it follows from A’(¢;) = 0 that
to = c1, whence {A > 1} =0and {A <1} =R\ {c1}.

Analogous considerations apply in case of d; < do < 0and by < 0 < bs. O

Proof of Theorem 7.24. Since IPy(h = 0) = 0 for all # € ©, we may replace €2 with {h > 0}
and M (dw) with h(w)M (dw), so h = 1.
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Proof of part (i). We fix an arbitrary parameter 03 € (61, 63) and construct an optimal level-«
test ¢, of {61, 62} versus {63} by means of the generalized Neyman—Pearson lemma. To this end

we consider the point a := (a, )" and the set

Ko = {/gpfdM:goET}

with f := (fa,, fo,) " : © — R2 Let ¢y = 0, let ¢1 be an optimal level- test of {6} versus
{62}, and let ¢ be an optimal level-« test of {62} versus {6 }. Then

/gpofdM = (0,0)7,
/LplfdM = (04,041)T for some a1 > «,
/cpgfdM = (OZQ,OZ)T for some ay > «.

This implies that « is an interior point of the set Ko, see also Exercise 7.26 below. Consequently,
there exists a test ¢, such that IEg, (¢.) = Eg, (ps) = o with

o = 1 if fo, > k1 fo, + kafo,
0 iff93 < klfel + k2f92

for certain constants k1, ko € R. With b; := k;C(6;)/C(63) we may also write

1 ifA(T) <1
Pr =

0 if A(T) > 1
with
A(t) = brel70)t 4 pyelf270s)t,
Since Ey, (¢4), Eg, (¢«) < 1, we may conclude that max(by, b2) > 0. But then the function A

is strictly monotone or strictly convex. Hence the set {A = 1} has at most two elements, and we

may replace ¢, with

1 if A(T) <1
Py = / gp*hdM// hdM ifT =ce {A=1}
{T=c} {T=c}
0 else

with the convention that 0/0 := 0. This does not change the power function of ., because

/ @, dIPy = C(e)e"C/ o hdM = 0(9)690/ G dM = / @, d 1Py
{T=c} {T=c} {T=c} {T=c}

forany 0 € © and ¢ € {A = 1}. Consequently, we may assume that the test o, has the form

1 ifA(T) <1
0o =0 AT >1
v(e) fT=ce{A=1}

with numbers 7. € [0,1],c € {A =1}.
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Suppose that by < 0 < by or by > 0 > by. In this case A(-) would be strictly monotone, so
[Eg(¢.) would be strictly increasing or strictly decreasing in § € ©, see Theorem 7.13 (ii). But
this would contradict the equation IEy, (p.) = IEg,(¢s). Hence by, by > 0, and A(-) is strictly
convex with A(t) — oo as |t| — co. Consequently, our test ¢, has the asserted form

P = 1[T=01]71 + 1[T=62]'72 + 1[61<T<02]

with real numbers ¢; < ¢y and 71,72 € [0, 1], where y2 = 0 if ¢; = co.

Proof of part (ii). Let ¢, be a test as in part (i). For arbitrary fixed 0 € © \ {61,602} let dpy :=
th — 6 < dp := 02 — 0. Then Lemma 7.25 shows that there exist constants by, by, > 0 such that

Ap(t) = bgle(el_g)t + b926d(92_9)t

satisfies
Ag(cl) = Ag(CQ) = 1,
Aé(cl) =0 ifCl = C9.

With kg; := bg;C(0)/C(0;), we may write

Ag(T) = ke

for | k(;g& > 1 if fo < ke1fo, + ko2fo,,
Jo fo | <1 if fo > keifo, + ko2 fo,-

Suppose first that 1 < 6 < 6. Lemma 7.25 shows that both components b, ; are strictly positive,

and
>1 onR\ [c, ),
Ag
<1 on(c1,c2).

Hence
o — 1 if fo > ko1 fo, + ko2 fo,,
0 if fo < ko1 fo, + ke fos-

Consequently, property (ii.1) follows from part (ii) of the generalized Neyman—Pearson lemma.

In case of § < 01 or § > 6, Lemma 7.25 yields the inequalities

<1 onR\ [c, 2],
Ap
>1 on(c1,c2).

Hence
. L if fo > ko1 fo, + ko2 fo,,
0 if fo < ke1fo, + ko2 fo,-

Consequently we may deduce from part (ii) of the generalized Neyman—Pearson lemma that
Eg(p) < IEg(1 — ¢.) for any test ¢ such that [Eg, () = IEg,(¢) = 1 — a. In other words,
Eg(p) > IEg(ps) for any test ¢ such that IEg, () = IEg,(¢) = «. This is property (ii.2).
Considering the special test ¢ = « shows that ¢, is a level-« test of O,,. O

Exercise 7.26. Let K C R? be a convex set containing the three points (0,0)", (o, a1)" and

T

(ag, )T with real numbers a > 0 and @1, ap > . Show that (a, @) " is an interior point of K.
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7.5.3 Two-sided hypotheses, version 2

Version 2a. At first we consider tests of
O, := [6h,02] versus©y := O\ 0O,

with given interior points 1 < 63 of ©. This testing problem is essentially the reverse of the

testing problem in Theorem 7.24.

Theorem 7.27. (i) For any fixed a € (0, 1) there exist real constants v1,72 € [0,1] and ¢; < co
(with 5 = 0 in case of ¢; = cg) such that

Vs = Lip—e )1 + Lr=cy)72 T LiT<c; or T>eo]
is a test satisfying
IEg, (‘P*) = IEy, (90*) = .
(ii) A test p, as in part (i) has the following properties:

(ii.1)
Eg(¢x) < a forallf € O,.
(ii.2) For any test ¢ satisfying IEg, (¢) = Eg,(¢) = a,
Eg(ps) > Eg(p) foralld € © 4.
Proof of Theorem 7.27. We may apply Theorem 7.24 with 1—« in place of « to obtain an optimal

level-(1 — ) test pu of O\ (61, 62) versus (01, 602). Then the precise properties of .. provided
by Theorem 7.24 imply that ¢, := 1 — ., has the properties stated in Theorem 7.27. 0

Version 2b. Now we consider tests of
O, := {0,} versus O4 = ©0\0,

for a given interior point 6, of ©. Without further constraints on the tests, there exists no globally

optimal level-« test of {6, }. For let
Pal = Lr<ky ) T Lr=ka ) Vo ls
Po,r = 1[T>ka,r} + 1[T:ka,r}’7a,r

with real constants k, j, ko, and a1, Ya,r € [0,1] such that IEy_ (¢,1) = IEg, (@a,r) = a. Then
by Theorem 7.13 (ii), the power functions of ¢, ; and ¢, , are strictly decreasing and strictly

increasing, respectively, and any test ¢ with IEq () < « satisfies

Ey(pa) if0 <0,

E <
ole) = {Ea(@a,r) if0 > 6,

To obtain a unique optimal test we shall restrict our attention to tests ¢ such that

Eg(p) > a = IEg,(¢),
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i.e. the power of ¢ is nowhere lower than the power of the trivial level-a test ¢ = a.

Before going into further detail, let us mention an important property of power functions in the
present setting of a one-parameter exponential family: It follows from Exercise 6.25 that for any
test ¢, the power function

©36 — IEy(p)

is continuous on © and continuously differentiable on the interior of © with derivative

d d [ pe’ThdM
~E _ L) e
a6 B = G0 T ant
_ JeTehdM [T dM [ Te dM
J e'ThdM (J eor dM)2
— /@Td]Pg—/QOdIPg/Td]Pg
= Covy(p,T).

Hence, if ¢ is a test such that
(7.4) Eg(p) > a > Ey () forallde O\ {0,

then
Eg,(¢) = a and Covy (¢, T) = 0.

Theorem 7.28. (i) For any fixed « € (0, 1), there exist real constants v1,72 € [0,1] and ¢; < c2

(with v = 0 in case of ¢; = c2) such that

s = Lr—c M1 + Lr=co)V2 + LT<c; or T>es)

is a test satisfying
Eg,(p«) = a and Covy (o« T) = 0.

(ii) A test o, as in part (i) has the following property: For any test ¢ such that IEg_ (¢) = « and
Covgo(cp,T) =0,
Eg(ps) > Eg(p) forallf € ©.

In particular, ¢, has property (7.4), and its power function is pointwise maximal among all tests

with that property.

Proof of Theorem 7.28. Without loss of generality we may assume that 6, = 0 and M = Py,
h =1, because
fo _ C(0)
fo, — C(0)
that means, C(6)C(0,) " exp((0 — 6,)T) is a density of IPy with respect to IPg,. We may further
assume without loss of generality that IEy(7") = 0, because

exp((f — 6,)T) on{h > 0},

C(8) - exp(0T) = C(0) exp(IE(T)) - exp(6(T — Eo(T))).
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Now we construct for a fixed #; € O \ {0} a test ¢, maximizing IEy, (¢.) under the constraints
that

Eo(ps) = /cp*dIPg = a and Ey(p.T) = /cp*TdIPO = 0.
This may be achieved with the generalized Neyman—Pearson lemma applied to f; := 1, fo := T,
f3 := fp, and M := IPy. With the four tests ¢ := 0, ¢ := 1, ¢ = Lir>o] and ¢ := Lir<ol it
follows that

KQr—{/wa%:weT}

with f := (f1, fo) contains the points (0,0)", (1,0)", (3,7)" and (1 — 3,—)" with 8 =
IPo(T > 0) € (0,1)andy = [T+dPy= [T~ dIPy > 0. Hence («,0) " is an interior point of

ICo. Consequently there exist a test o, and real constants k1, k2 such that

/(p*dIPU = «, /(p*TdIPQ =0

and
1 i fay >k + kT,
o 0 if fy, < k1 + koT.
Note that f; = C(Ql)eng. Since ¢ — 0(91)69” is strictly convex, and since ¢, #Z 1, there have
to exist points ¢; < ¢ such that C(Ql)ealcﬂ' = k1 + kacj for j = 1,2, and

. 1 ifTGR\[Cl,CQ],
770 T € (e, ).

Finally, we may replace ¢, with

1 ifTGR\[Cl,CQ}
Py = / @ dIPo /IPo(T =¢) if T =c€ {c1,c2}
{T=c}
0 else

with the convention that 0/0 := 0. This does not change the power function of ¢,, and then ¢,

has the properties mentioned in part (i).

As to part (ii), consider an arbitrary fixed parameter § # 0. One can easily verify that there exist
real constants kg1, kgo such that Ag(t) := C(0)e? — kg, — kpot satisfies

Ag(cr) = Ap(e2) =0,
A’g(cl) =0 if01 = C9.

By strict convexity of Ay,
Adﬂ{>0%ﬂeR\hmﬂ
<0 ifte(e,c),
whence
)1 if fo > gy + kgoT,
*_{Oﬁﬁ<m+mﬂ
Consequently, it follows from part (ii) of the generalized Neyman—Pearson lemma that TEg (. ) >
IEy(¢p) for any test ¢ such that [ ¢ dIPy = awand [ ¢T dIPy = 0. Taking p = « reveals that ¢,
has property (7.4) and is optimal among all tests with that property. 0
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Exercise 7.29. This exercise provides further details about the power function of statistical tests

in a one-parameter exponential family with natural parametrization and test statistic 7" : @ — R.

(a) Suppose that f : 2 — R is such that

is well-defined in R for all § € ©. Show that h is continuous on © and differentiable on the

interior of © with

Wp(0) = Ee(fT) —Ep(f)Ee(T) = Covp(f,T).

Hint: Consider Exercise 6.25.

(b) Show that for interior points 6 of ©,

Wi(0) = Covg(f,T?) — 21'+(0) Eg(T).

(¢) Let 0 be an interior point of © such that /s (6) = 0. Show that

Wi0) = Ep((T — er)(T — c2)(f — Eq(f)))

for arbitrary c1,co € R.

(d) Now consider optimal tests of two-sided hypotheses, that is

1[01 <T<cz) (Type 1)

Ox = lp—em + lr=cy)r2 +
[T=e] (T=c2] {1[T<cl or T>ca) (Type 2)

with ¢; < ¢g and 71,72 € [0, 1]. Show that

<0 (Type 1)

(s = Bo(p))(T — c1)(T — c2) {> 0 (Type2)

with strict inequality in case of T ¢ {c1,c2}. Deduce from this and part (c), that in case of
h:o* (9) =0,

X 0 <0 (type D)
P >0 (type?2)

unless IP7 is concentrated on {cy, ca}.

7.5.4 Summary and some first applications

For notational convenience, we formulated and derived the previous results for one-parameter ex-
ponential fanilies with “natural parametrization”. That means, the exponential term of the density
fo contains the product of the test statistic 7" with the parameter 6. In the examples we looked at in
Section 7.5.1, this necessitated a transformation of the original parameters. To get a more complete

picture, let us summarize the main results of this section in terms of the original parametrization.



121

Definition 7.30 (One-parameter exponential family). A one-parameter exponential family is a

statistical experiment
(2, A, (IPx)ren)

of the following form: The parameter space A is a real interval. For a o-finite measure M on
(€, A) and measurable functions h : Q — [0,00), T : Q — R, each distribution IP) has density
fa=dIPy /dM given by

frlw) = Ch(w)exp(0(NT(w)),

where § : A — R is a differentiable mapping with #/ > 0 on A or / < 0 on A. Moreover,
M(h > 0and T # ¢) > 0 for any real constant, so IPy, # IP,, whenever \; # A.

The parameter §(\) in the previous definition is called “natural parameter”. The set © = (A) is

a subset of the “natural parameter space”

Opat = {HGR:/heerM<oo}.

Now we consider tests ¢, of one of the following types:

(7.5) Px = 1[T:cl]71 + 1[c1<T<CQ} + 1[T=02]727
(7.6) Px = 1[T:cl]71 + 1[T:czﬁ/2 + 1[T<cl or T>ca)]’

where ¢; < cg and 71,792 € [0, 1] (with vo = 0if ¢; = ¢2).

If MT is continuous in the sense that M (T = ¢) = 0 for any ¢ € R, it suffices to consider tests
@4 of the following type:

(7.7) ©x = lig <T<eo)s

(7.8) Pr = l[Tgcl or T>ca)»

where ¢; < co.

Two-sided test, version 1. For given points Ay < A in A, an optimal level-« test of
A \ (Al, )\2) versus ()\1, )\2)
is given by (7.5) or (7.7), provided that

1E>\1(90*) = = IE)@(QO*)'

Two-sided test, version 2a. For given interior points A\; < A2 of A, an optimal level-« test of
[)\1, AQ] versus A \ [)\1, )\2]
with exact power « at A\; and Ao is given by (7.6) or (7.8), provided that

IE)\l(‘P*) = @ = ]EAQ(SO*)'
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Two-sided test, version 2b. For a given interior point A, of A, an optimal level-« test of
{Xo} versus A\ {\,}
with power function bounded from below by « is given by (7.6) or (7.8), provided that

d
E, (0,) = d —w
Ao (SO ) a an d)\ A=Ay

Ex(¢x) = 0.

Example 7.11 (Gaussian location family, cont.) Suppose we observe a random vector X €
R™ with distribution IP,, := N (p, 02)®" for a given ¢ > 0 and some unknown p € R. As
shown before, the model (N (i, 02)®”)u R p
parameter (1) = nju/o? and test statistic 7'(X ) := X. For any fixed y,, an optimal level-« test
of

is a one-parameter exponential familiy with natural

{po} versus R\ {uo}

is given by

1 if | X — o] > @711 — a/2)T,
pu(X) = °
0 else,

where 7 := o /y/n is the standard deviation of X. This follows from the fact that ¢, is of type
(7.8), and with Z := (X — u)/7 ~ N(0, 1), the power function of ¢, is given by

Eu(0)) = ]P(Z > g + (1 - a/2)> + IP(Z < “TJ o1 - a/2)>

—1- @(@ T o1 a/2)) + @(‘;0/\_/5 el a/2))

- <I><<I>_1(a/2) + %) + 007 (a/2) - g)

This equals « for 4 = p,, and it is an even function of p — p,, so the derivative of the power

function at i, equals 0.

Suppose we want to verify the working hypothesis that

|N_#o| <0

for given numbers i, € R and § > 0. This corresponds to Version 1 of a two-sided test with

boundary parameters \; = p, — 0 and Ay = p, + 0. By symmetry reasons, a possible ansatz for

1 if| X — p| <
(P*(X) = 1 ’ IU’O’ — COCT
0 else

. would be

for a suitable constant ¢, > 0. Indeed, this defines a test of type (7.7), and with Z as above we

may write

E, +5(ps) = Pus(|X| <car) = P(|£6/7+ 2| <ca)
= ®(co FO/7) — P(—cq FI/7)
= ®(co +0/7) + P(cq — /1) — 1.
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This is obviously a continuous and strictly increasing function of ¢, with value 0 for ¢, = 0 and

limit 1 as ¢, — o0o. Hence there exists a unique ¢, (d/7) > 0 such that

]Euoié(w*) = .

The precise value of ¢, (6/7) has to be computed numerically.

If we let 6 | 0, we obtain ¢, (0) = ®~1((1 4 «)/2). Indeed, an optimal level-« test of

R\ {po} versus  {uo}

rejects the null hypothesis if
X — po| < 7@7H(1 4 @)/2).

In this case, we may claim with confidence 1 — « that ¢t = p,. This sounds almost miraculous, but
note that the inequality | X — y,| < 7®71((1 + «)/2) occurs with probability at most «. Instead

of trying to prove that ;1 = fi,, one should rather compute an upper (1 — «)-confidence bound for

[ — ho

, see later.

Exercise 7.31. Let X ~ Gamma(a,b) with shape parameter a > 0 and scale parameter b > 0,

i.e. X has density f, ; with respect to Lebesgue measure on (0, co), where
fas(@) = T(a)™ b~ (/b)* e/,

(a) Suppose thata > 0is given but b > 0 is unknown. Verify that (Gamma(a, b)), _  corresponds

b>0
to a one-parameter exponential family with test statistic 7'(X) = X.

(b) Suppose that b > 0 is given but @ > 0 is unknown. Verify that (Gamma(a, b))a>0 corre-

sponds to a one-parameter exponential family with test statistic 7'(X) = log(X).

(c) Assuming that a > 0 is given but b > 0 is an unknown parameter in (0, c0), determine an

optimal level-« test of
{1} wversus (0,00)\ {1}.

(d) Modify your test in part (b) to become an optimal test of

{bo} wversus (0,00)\ {bo}.

for arbitrary fixed b, > 0.
Exercise 7.32. Let X ~ Bin(n,p) with given n € N and unknown p € [0, 1].

(a) Fix small numbers « € (0,1) and 6 € (0,0.5). Construct a statistical procedure to verify with
given confidence 1 — « that |[p — 0.5| < 4.

(b) How large should n be such that for a given small o’ € (0, 1), this conclusion is drawn with
probability at least 1 — o in case of p = 0.5? Give a numerical answer to this question in case of
a=0.05ac =03and § =0.1.
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7.6 Tests and Confidence regions

For any statistical model (€2, A, (IPp)pco) there is a close relationship between tests and confi-

dence regions. Let uns first clarify what we mean by confidence regions.

Definition 7.33 (Randomized confidence region). A (randomized) confidence region is a map-
ping C' :  x © — [0, 1] such that for any fixed € O, the mapping C(-, #) is .A-measurable.

Suppose that for a given test level o € (0, 1),
/C’(w, 0) IPy(dw) > 1 — « for arbitrary 6 € ©.

Then C'is called a (randomized) confidence region with confidence level 1 — «, or shortly: a

(1 — «)-confidence region.

Interpretation, and the meaning of confidence. Suppose that we observe a random data set
X € Q with distribution IPy, where 6 € © is unknown. Let U be a random variable with uniform

distribution on [0, 1] and independent from X. Then we claim that 6 is contained in the set
C(X,U) = {#eO:C(X,0) > U} C ©.

In case of C being non-randomized, i.e. C' taking only values in {0, 1}, we don’t need the extra
random variable U, because the set C(X, U) equals

C(X):={0ec0:C(X,0)=1} C ©
almost surely.

If C'is a (1 — «)-confidence region, then

Py (6 € C(X))

> 1 - for all 0 € ©.
IPH(GGC(X,U))} @ Joralve

That means, the confidence region covers the unknown true parameter with probability at least
1 — «. This statement involves the random variable X (and U, if needed) and is true prior to
observing X (and generating U).

Once we have observed X (and generated U, if needed), the claim that C(X') or C(X, U) contains
the unknown true parameter is simply true or false. Hence it would be ridiculous to say that “with
probability 1 — «, the confidence region C(X) or C(X,U) contains #”. Instead, one may claim
with confidence 1 — « that § € C(X) or § € C(X,U). This formulation indicates that for a
specific observed data set, the claim is simply true or false, but we use a procedure which leads to

a correct statement in at least (1 — «) - 100 percent of applications in the long run.

Duality between confidence regions and tests of one-point hypotheses. IfC : Q2 x 0 — [0, 1]
is a (randomized) confidence region, then for any 6, € ©, a test of {6,} is given by ¢(+,0,) :=
1 —C(-,6,). On the other hand, if for any 6, € © we have defined a test (-, 6,) of {6,}, then
C(w,0) :==1— p(w, ) defines a confidence region C. The confidence region C' has confidence
level 1 — «vif and only if each test ¢(+, 6,) is a level-« test of {6, }.



125

Example 7.34 (Simple Gaussian shift model). Suppose we observe X ~ P, = N (u,1) for
some unknown parameter € R. One can easily verify that for any hypothetical parameter

to € R, an optimal level-« test of { i, } with power function at least « everywhere is given by

P X po) =1 [1X —po|>=1 (1-a/2)]"
This leads to the (1 — «)-confidence region C' given by

CXom) = 1 = petxoia—asz)]’

X —p| <1 (1-a/2)]
ie.C(X)=[X+®1(1-a/2).

Exercise 7.35. As in Exercise 7.31, suppose we observe X ~ Gamma(a, b) with given shape
parameter a > 0 and unknown scale parameter b > 0. An ansatz for a confidence interval for b is

C(X) = [X/K/Q,X/H/l]

with constants 0 < k1 < Ksg.

(a) Show that for any choice of (1, k2), the coverage probability IP,(p € C(X)) is constant in
b > 0. Then characterize the set of all pairs (k1, k2) such that the confidence level is exactly equal

tol — a.

(b) A potential measure for the size of C(X) is the ratio of its upper and lower boundary,

X/k1 ko
X/HQ N :‘4,17

or the logarithm thereof. Determine the unique pair (1, £2) minimizing this size. (The solution
is characterized by some equation which could be solved numerically for specific .) Show also

that this pair satisfies k1 < a < ka.

(c) What is the relation of the solution in part (b) to the optimal test in Exercise 7.31 (b)?

Duality between confidence regions and tests of composite hypotheses. Sometimes we are
not interested in a confidence region for the unknown true parameter ¢ but only in an upper bound
for g(6) with a given function

g:0 >R

For instance, if (O, d) is a metric space, we are sometimes interested in the distance between the

unknown true parameter and some given point 6, € ©, so g(8) := d(0,6,).

An upper confidence bound b, (X) for g() corresponds to a measurable function b, : & — R
such that

IPy(by > ¢g(#)) > 1 —a forall§ € O.

Such a confidence bound gives rise to the level-« test

Pa(X,0) = 1y, (x)<g]
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of the null hypothesis
0(8) = {#€0O:9() >4}

for arbitrary numbers § > 0. Indeed, if g(#) > 4, then

Py(pa(-6) = 1) = Pylbe < 5) < Pylba < g(8)) < a.

On the other hand, suppose that for any number 6 > 0, we have constructed a level-a test (-, 0) :
2 — {0, 1} of the null hypothesis ©(J). Then

bo(X) = sup({0} U {0 > 0: a(X,d) =0})
defines an upper (1 — «)-confidence bound for ¢(#), because for any § € © and § := g(0),

Py(g(6) < ba) > Pp(¢a(8) =0) = 1 - Py(ga(-8) =1) > 1 -a.

Finding an “optimal” upper confidence bound b, may be interpreted as finding optimal level-«
tests pq(+,0), & > 0, of the null hypotheses ©(4). Ideally, the function ¢, (+,-) is even non-

decreasing in its second argument.

Example 7.34 (Simple Gaussian shift model, cont.). As shown in the next exercise, for any
given p, € R, a simple upper (1 — «)-confidence bound for | — | is given by | X — po| +
®~1(1 — ). But if we think about the duality of tests and confidence regions, a good upper
(1 — «)-confidence bound b, (X) for |1 — p,| should satisfy the following condition: For any
4>0,

Pa(X,0) = Ly, (x)<q

defines an optimal level-« test of
R\ [po £ 6] versus [po £ 0]

This is essentially Version 1 of our two-sided testing problem, except that the alternative hypoth-
esis is chosen to be a closed rather than an open interval. We know already a solution for this
testing problem: An optimal level-« test is given by

(X,0) =1
ol X, 0) [1X —po| <ca ()]

where ¢, (0) > 0 is the unique number such that
D(ca(d) +0) + P(ca(d) —0) = 1+

Recall that ¢, (0) = ®1((1 + )/2), but for § > 0, there is no simple formula for ¢(§). An
optimal upper confidence bound for | — i, is given by

ba(X) := max({0} U {6 >0: ¢a(X,0) =0})

= max ({0} U {6 >0:¢(d) <|X — pol})
= max({0} U {6 > 0: P(|X — po| +0) + ®(|X — po| — 8) > 1 + a}).
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2.5 3.0
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Figure 7.1: Optimal (black) and ad hoc (blue) upper 95%-confidence bound for || in the simple
Gaussian shift model.

If | X — po| < @7L((1 4 )/2), then by (X) = 0. Otherwise, b, (X) is the unique solution § > 0
of the equation
(I)(’X_,U/O‘ +5) +®(‘X_,U'o‘ _5) = l+a,

which can be computed numerically.

Figure 7.1 depicts the optimal upper 95%-confidence bound (black curve) for |y — p,| and the
simple upper bound | X — ji,| + ®7!(1 — «) (blue broken line).

Exercise 7.36 (Simple Gaussian shift model). Let X ~ IP, := N(u,1) for some unknown
parameter ;2 € R. A standard (1 — a)-confidence interval for 4 is given by [X £ ®~1(1 — a/2)].

(a) Show that for any given p, € R,
Ca(X) = [min(X — (1 — a), o), max(X + & 1(1 - @), Ho)|
is also a (1 — «)-confidence interval for p, i.e.

P,(t€Cq) > 1—a forallpueR.

(b) Show that
ba(X) 1= [X = jio] + 07 (1—a)

is an upper (1 — «)-confidence bound for | — p,|, i.e.

IP,(|p— po] <ba) > 1 —a forall p € R.
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Exercise 7.37. Suppose we observe X ~ Bin(n,p) with given n € N and unknown p € [0, 1].

(a) Show that for arbitrary integers 0 < c¢; < cp <nwithecy —c; < n,
[0,1] 2 p = logIP,(c1 < X <) € [—00,0]

is strictly concave.

(b) Describe an optimal upper (1 — «)-confidence bound b, (X)) for [p — 0.5].
Hint: Consider IP,,(k < X <n—k)fork=0,1,...,|n/2].

(c) Write a computer program to compute the confidence bound b, (X) in part (b).



Chapter 8

Decision Problems and Procedures,
Sufficiency and Completeness

In the present chapter we introduce some fundamental concepts and results from statistical deci-
sion theory. Estimation and testing problems may be viewed as special cases of decision problems,

while point estimators and statistical tests are corresponding decision procedures.

8.1 Decision Problems and Procedures

As in the previous chapters, we consider a statistical experiment
E=(Q,A (IPg)co).

If there is no doubt about the sample space (€2, .4), we just write £ = (IPg)pco.

Decision spaces. A decision space is a measurable space (V, B) representing the possible con-

clusions we could draw about the unknown true parameter 6.

Loss functions. A loss function is a mapping
L:Vx0 — (—o00,x]

such that L(-, 0) is B-measurable for any fixed § € ©. Here L(v, ) quantifies the loss (e.g. the

costs) when drawing the conclusion v € V while the true parameter equals § € ©.

Example 8.1 (Point estimation). Consider a given mapping ¢ : © — RY. For instance, for the

statistical experiment £ = (N (g, 02)®")( , one could think about g(u, o) := p or

o) ERX(0,00)
g(p, o) := 0. Our decision could be a guess v € R? for the unknown true value g(6). A potential

loss function would be given by
L(v,0) = [lv = g(@)"

129
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for some norm || - || on RY and some exponent > 0. In case of > 1, this loss function is a

special case of the more general loss function L given by

L(v,0) = ¢(v—g(0))
for some convex function ) : R? — [0, co) such that 1)(v) — oo as ||v|| — oc.

Example 8.2 (Statistical tests). Suppose we have split © into two disjoint sets O and ©1. The
question is whether the unknown true parameter 6 belongs to © or to ©;. Hence the two potential
decisions would be 0 and 1, respresenting the claims that 6 € ©g or § € O, respectively. A

potential loss function would be the indicator of a wrong conclusion, i.e.

L(v,0) = 1jy—1,6e00] * Ljv=0,6c01]-

More generally, one could specify costs A; > 0 for an error of the j-th kind and set

8.1) L(’U,H) = 1[1):1796@0})‘1 + 1[11:0,96@1])‘2'

Decision problems. A triplet (£, (V,B), L), consisting of a statistical experiment, a decision
space and a loss function is called a decision problem. If there is a standard o-field 5 on V, we
just write (£, V, L).

Decision procedures. A non-randomized decision procedure is a measurable mapping p : {2 —
V. That means, if we observe X ~ 1Py with unknown 6 € ©, then we draw the conclusion
p(X) € V about 6.

More generally, a decision procedure is a stochastic kernel p from (€2, A) to (V, 3). That means,
p:QxB—]0,1]
is a mapping such that

foranyw € Q, p(w, ) is a probability measure on (V, ),
forany B € B, p(-, B) is A-measurable on €.

Now the interpretation is that having observed X ~ Py, we draw a random conclusion about 6
from the probability measure p(X, -).

With slightly ambiguous notation, a non-randomized decision procedure p : {2 — V corresponds

to the stochastic kernel p(-, -) with

Risk functions. The performance of a decision procedure p is quantified by its risk function
R(p7 ) O [—O0,00],

R(p,0) = /Q/VL(U,H) p(w, dv) Py(dw).

In our explicit examples, the loss functions L are non-negative, so R(p, 0) is well-defined in [0, oo].
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Example 8.1 (Point estimation, continued). A point estimator for g(6) is a measurable mapping

g : © — RY. This corresponds to the (non-randomized) decision procedure

Its risk function is given by

R(.6) = /Q li— 9@ dPs = Eq(|5— g(6)]")

or

g ¢ (llg — 9(0))-

R(3.60) = /Q OG- 9(8)) dTPy

Exercise 8.3 (De-randomisation for point estimation). This exercise shows that in the context of
point estimation, it is often sufficient to consider non-randomized decision procedures, i.e. simple
point estimators. Let L(v,6) = (v — ¢g(#)) with a convex function ¢ : RY — R such that
Y(v) — oo as ||v|]| — oco. Show that for any decision procedure p, i.e. a stochastic kernel from
(22, A) to (R?, Borel(R%)), there exists a point estimator g :  — R? such that

R(.6) = /Q L(G(w), 6) Py(dw)

is no larger than

R(p,0) = /Q/]Rd L(v,0) p(w,dv) Pg(dw).

Example 8.2 (Statistical tests, continued). With the decision space V = {0, 1}, any decision
procedure p may be written as

plw,") = (1 —pw))do + p(w)d

for some measurable function ¢ : @ — [0, 1], i.e. a test on 2. With the power function 6 — IEgy(¢p)
of ¢ and the loss function L in (8.1),

R(p,0) = ljgcogA Eg(p) + Lgeo,1X2(1 — Eg(p))-

Bayes risks. Suppose that O itself is equipped with a o-field C, and suppose that the loss function
L:0 xV — (—o00,00] is C ® B-measurable. Further suppose that § — IPy(A) is C-measurable
for any fixed A € A. Then we may view (IPy)pco as a stochastic kernel, too, and consider the
following Bayesian model: Let IT be a probability distribution on (©,C), a so-called prior (distri-
bution). One could imagine “mother nature” choosing a parameter § € © from that distribution II,
and then, conditional on #, we observe a random variable X ~ IPy. The Bayes risk of a decision

procedure p for the prior II is defined as

Rip,TI) = /@ Rip,0) TI(df) — /@ /Q /V L(0,v) plw, dv) TPy (dw) TI(d0).
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8.2 Some Optimality Concepts and Results

Let (£, (V,B), L) be a given decision problem. Our goal is to devise decision procedures p with
low risks R(p, #). Typically there is no “free lunch”: If p has very small risk R(p, 6;) for some
parameter 0; € ©, it will often have rather large risk R(p, f2) for some other parameter 62 € ©.

Minimax-optimality. A decision procedure p, is called minimax-optimal, if
sup R(ps,0) = min sup R(p,0).
0c© P e

Throughout this chapter, “min,” and “inf,” stand for the minimum and infimum, respectively,

over all decision procedures p.

Admissibility. A decision procedure p, is called admissible, if there exists no decision procedure
p satisfying
R(p,0) < R(ps«,0) foralld € ©

and
R(p,0,) < R(ps,0,) foratleastoned, € O.

Bayes-optimality. For a given prior II on ©, a decision procedure p, is called Bayes-optimal
for this prior IT, if
R(p.,1I) = min R(p,II).
P

Least favourable priors. A prior II, is called least favourable, if

inf R(p,II,) = max inf R(p,1I),
p mp

where “maxyy” stands for the maximum over all priors II on ©.

Here are three simple results establishing minimaxity, Bayes-optimality and admissibility of deci-

sion procedures.

Lemma 8.4. Let 11, be a prior on ©, and let p, be a Bayes-optimal decision procedure for I1,.
Suppose further that

R(p«,11,) = sup R(ps,0).
0cO

Then p, is minimax-optimal, and 11, is a least favourable prior.

Proof of Lemma 8.4. For any decision procedure p,

sup R(p,0) > R(p,IL,),
0cO

and by our assumptions on p,

R(p,11.) > R(ps,I.) = sup R(p«,0).
0o
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Hence p, is minimax-optimal.

For any prior IT on ©,

inf R(p,II) < R(p«,II) < sup R(ps«,0) = R(px, 1) = inf R(p,IL)
P 6€o P

by assumption. Hence I, is least favourable. O
Lemma 8.5. Let p, be a decision procedure such that for a sequence (IIj,)>1 of priors,

sup R(p«,0) = lim inf R(p, ).
) k—oo p

Then p, is minimax-optimal.

Proof of Lemma 8.5. For any decision procedure p,,

sup R(po,0) > limsup R(p,,1x) > lim inf R(p,I)) = sup R(ps,0).
=) k—00 k—oo p =)
O
Lemma 8.6. Let © be a topological space equipped with its Borel-o-field. Suppose that any
decision procedure p has continuous, real-valued risk function. If 11, is a prior on © such that
I1,(U) > 0 for any non-void open set U C ©, and if p, is a Bayes-optimal decision procedure for
I1, with R(p,,11,) < oo, then p, is admissible.

Exercise 8.7. Suppose that each distribution [Py has a density fy with respect to some o-finite
measure M on (€2, A) such that for every w € Q, § — fg(w) is continuous on ©. Further,
suppose that the loss function L is bounded, and for any v € V, let § — L(v, ) be continuous
on O. Show that each decision procedure has bounded and continuous risk function. (Hint: Use

Scheffé’s theorem and dominated convergence.)

Proof of Lemma 8.6. Suppose that p, is not admissible. That means, there exists a decision
procedure p such that R(p,-) < R(po,-) and R(p,0,) < R(po,0,) for some 6, € ©. Since both
risk functions R(p, ) and R(po,, -) are continuous, there exist an open set U C © and an € > 0
such that R(p,-) < R(po,-) — € on U. But then

Mana=3éwR@ﬁﬂnw>géRmmnwm

gémemmm+Lm%@—mwm

= R(po,11,) — €ll,(U)
< R(P07Ho)7

a contradiction to Bayes-optimality of p,. O

Example 8.8 (Gaussian location model). For a given sample size n € N and a given standard
deviation o > 0, let & = (N (i, 02)®")M cg- The sample mean /i, (z) := Z is a minimax-optimal
point estimator of g(u) = u, if

L(v,p) = (v —p)*
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To see this, note first that R(fi.,-) = o2/n. By Exercise 8.3, it suffices to consider non-rand-
omized point estimators. Moreover, if II; = N(0, k), we know from Example 6.20 that the
Bayes-optimal estimator is given by fix(x) = nz/(n + o2/k) with Bayes-risk R(iy, [Iz) =
o2/(n + o2 /k). Since this converges to o2 /n as k — oo, Lemma 8.5 shows that fi, is minimax-

optimal.

Exercise 8.9 (Point estimation of a binomial parameter). For p € [0, 1] let IP,, := Bin(n,p). We
consider point estimators of p with loss function L : [0, 1] x [0, 1] — [0, c0) given by

L(v,p) = (v—p)*

(a) Consider the Bayesian model with a random parameter p ~ Beta(a, b) with given “hyper-
parameters” a,b > 0, and a random observation X with £(X |p) = IP,. Here Beta(a,b) is the
distribution on (0, 1) with Lebesgue density

a—1 b—1 1
p (I—P) / a—1 b—1 I‘(a)F(b)
_r v7r g = 1— = Y
ﬁa,b(p) B(a, b) ) (aab) 0 U ( U) du F(a+b)
Show that
L(p|X) = Beta(a+ X,b+n—X) and IE( \X)—LJFX
P - bealam A, n P T atbtn

(b) Adapt arguments from previous chapters to show that the estimator

a-+x

Pasl®) = iyim

minimizes the Bayes risk
1
R(p.Beta(a,h) = [ R(p.p) Beta(a, b)(dp).
0

(c) Determine the risk function R(pg, -) of the estimator p, ; in part (b) explicitly.

(d) Now find parameters a, b such that the risk function in part (c) is constant. What are the

consequences for the corresponding prior Beta(a, b) and the corresponding estimator py, ;?

Unbiasedness. Sometimes it is difficult to find decision procedures satisfying some optimal-
ity criterion. But often the problem gets easier if we impose some additional constraints which
are quite natural by themselves. Here is one such constraint: A decision procedure p is called
unbiased, if for arbitrary 6,1 € ©,

(8.2) R(p // v,0) p(w, dv) IPy(dw) // v,m) p(w, dv) Py(dw).

Example 8.1 (Point estimation, continued). Let L(v, ) := ||v — g(#)||?> with some Euclidean
norm || - || on RY, that is, ||z|| = V2T Ax for some symmetric, positive definite matrix A € R7*4.
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For any estimator § : Q — R, the risk R(g,0) = Ey(||g — g(6)||?) is finite if, and only if,
IEg (||9]%) < oc. In the latter case,

Eo(l7 — 9()|%) = Eo(l|g — Eo@)|*) + | Ea(@) — g(0)||”,
Eo (15— 9(0)1*) = Eo(|7— (@) + |Ea(@) — 9(0)|

)

80 ¢ is unbiased if an only if for all § € ©,
e (9) — 9(0)|| = min o (9) — 9(n)]]-
Consequently, if g is an estimator such that
IE9(||§||2) < oo and IEy(g) € closure{g(n):n € O}
for all § € O, then g is unbiased if, and only if],

Ey(g) = g(0) foralld € O.

Example 8.2 (Statistical tests, continued). We consider the general loss function L(v,0) =
1[11:1,6690])‘1 + 1[11:0,96@1])‘2 with A1, Ao > 0. Then

/ / L(v,n) p(w, dv) IPg(dw) > R(yp,6) for arbitrary 6,7 € ©
QJV
is easily shown to be equivalent to

{)‘2<1 —Eg,(¢)) > AiIEg, () forany by € O,
M Eg, (@) > A2(1 —IEg, (¢)) foranyb; € O;.

In other words,

Ey(p) < «a forf € O
A\ > o forfc O

with \
2

= € (0,1).

“ A1+ A2 (0,1)

Coming from the other end, for a given test level a € (0, 1), a level-« test of ©, with power at

least o for each 6 € © 4 is unbiased in the sense of (8.2) if, say, A1 = 1 — @ and A2 = a.

Exercise 8.10 (Estimating functions of a binomial parameter). Unbiasedness of point estimators
seems often a natural constraint. But it is potentially too restrictive. Consider the statistical exper-

iment (Bin(n, p)) and an arbitrary function g : [0, 1] — R.

pe[0,1]
(a) Suppose that g : {0,1,...,n} — R is an unbiased estimator of g(p), i.e. IE,(g) = g(p) for
all p € [0, 1]. Show that g(p) is a polynomial in p of order at most 7.

(b) Show that an unbiased estimator g as in part (a) is unique.

(¢) Determine the estimator § explicitly in case of g(p) = p* for some k € {1,...,n}. Hint:
Consider factorials [z]y, := [[)<; 1 (z — 7).
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8.3 Informativity and Sufficiency

This section is about the comparison of two statistical experiments with one and the same param-

eter space ©.

8.3.1 Informativity

Let £ = (Q, A, (IPg)geo) and £ = (Q, A, (IPy)geo) be statistical experiments. Experiment & is
called at least as informative as experiment &, if the following condition is satisfied: Let (V, B)
be an arbitrary decision space and L : V x ©® — (—o0, o0] be any loss function. Then for any
decision procedure p : Q x B — [0, 1], there exists a decision procedure 5 : Q x B — [0, 1] such
that

R(ﬁ’) < R(p,‘) on ©.

This looks like a very strong condition, because it involves arbitrary decision spaces and loss

functions. Nevertheless there is an elegant criterion due to David Blackwell:

Lemma 8.11 (Blackwell’s criterion). Let £ = (Q, A, (IPg)geo) and £ = (2, A, (IPg)geco) be
statistical experiments. Suppose there exists a stochastic kernel K from (Q, A) to (Q, A) such
that for any 0 € © and A € A,

Py(A) = Py @ K(Q x A) :/QK(@,A) Py(d).

Then € is at least as informative as £.

The intuition behind Blackwell’s criterion is as follows: Suppose that Bob and Alice are planning

statistical experiments £ and g, respectively, to do inference about an unknown parameter in ©.

Alice: “My experiment is at least as good as yours!” Bob: “How do you know?”
Alice: “Well, tell me any decision space and loss function.” Bob: “(V,B) and L.”
Alice: “Okay, and what is vour favourite decision procedure for that?” Bob: “p”

Alice: “All right, this is what I will do: If my experiments yields data X ~ 1Py, where 6 € © is

unknown, I will use Mr. Blackwell’s kernel K to generate new data X ~ K (X,-). And then, I'll
use your p to draw a decision V' ~ p(X,)!” Bob: “That’s cheap!”

Proof of Lemma 8.11. The assumption implies that for any measurable function h : (2, 4) —

[0, oc],
/thIPQ = /Q/Qh(w)K(w,dw)IPQ(dw).

By assumption, this is true for indicator functions h = 14 with A € A. By linearity of integration,
this is true for measurable functions taking only finitely many different values in [0, c0). By mono-
tone convergence, the asserted equation is true for arbitrary measurable functions h : (22, 4) —
[0, o).
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For a given decision space (V, ) and decision procedure p : 2 x B — [0, 1] we define a decision

procedure 5 : Q x B — [0, 1] as follows: For B € B we set
p6.8) = [ pleo, B) K (5 do).
Q

This construction of /5 implies that for any measurable function h : (V, B) — [0, 00] and & € Q,

/Vh( (@, dv) // o, dv) K (@, d).

Hence for loss functions L : V x © — [0, 00| and any 6 € O,
R(30) = [ [ L0.6) 56, d0) Po(d)
QJvV

_ /Q /Q /V L(v,0) plw, dv) K (&, dw) P(dis)
= [ [ £0.0) s, 0) Po(a)
(p,0)

The same equation is true for loss functions L with values in (—o0o, 00|, provided that R(p’, 6) or
R(p, 0) is well-defined in (—o0, co]. Just write L = Lt — L~ with L* := max(+L,0). O

Example 8.12 (Sampling with and without replacement). Let M be a population of known size
N = #M, but with unknown characteristics § € O, the latter describing certain properties of
the individuals in M. Suppose we draw a random sample of size n > 2 from M with replace-
ment. That means, we obtain a sample w = (w1, ...,w,) in the set  := M"™ with N" different
elements. Here the corresponding distributions IPg, 8 € ©, are all identical: the uniform distribu-
tion on 2. The subscript # just indicates that the potential samples may differ in terms of certain

characteristics of the individuals.
In case of N > n, sampling without replacement would be an alternative strategy, leading to the
experiment £ = (€, P(Q), (IPg)gco) with IPy denoting the uniform distribution on

={weQ:w#£ajforl <i<j<n},

asetof [N], = N(N —1)--- (N — n + 1) different samples. Indeed the experiment £ is at least
as informative as £ = (Q, P(Q), (IPy)geo). For if we draw a sample & € Q from the uniform
distribution on €, we may generate a new sample w € {2 as follows: We choose w; := @1 and

independent random points wo, . . . , w, with distribution
1 )
= 1 —J7+1 5
~ 2o T “5°
=1

In other words, we go through the “list” w, and each component w; is kept with probability 1 —
(j —1)/N or replaced with a randomly chosen predecessor @;, i < j. This defines a probability
distribution K (@, -) on 2 such that the resulting w is uniformly distributed on 2.



138

Exercise 8.13 (From sampling without to sampling with replacement). Show that the construction

of w from @ in Example 8.12 corresponds to a stochastic kernel K from Q to  such that

K@ {@1,...,@,}") =1

and for any y € M",

Z K(@,{y})

weQ
Exercise 8.14 (Estimating the reciprocal of a population size). At first glance one could think that
sampling from a population M without replacement is always more informative than sampling
with replacement. But this is not true in general. For instance, suppose that the size N of the
population M is unknown. Then drawing a random sample of size n < N without replacement
from that population reveals nothing about the population size N, but sampling with replacement

yields some information:

For a given integer n > 2, let IP 54 be the uniform distribution on M". We are interested in

constructing an unbiased estimator of g(M) := 1/N.

(a) Determine the expectation of X; where

. 1[wi€{wj:j7ﬁi}] n
Xi(w) = Fon,wnr o] forw € M".

forallw € M™andi € {1,2,...,n}.
(b) Propose an unbiased estimator of g(M).

(¢) For1 <1< j<n,let X (w) = 1[401::0-)]']‘ Determine the expectation of X;; and propose an
unbiased estimator of g(M).

(d) Determine the standard deviation of your estimator in part (c).

8.3.2 Sufficiency

The concept of sufficiency is a special instance of Blackwell’s criterion. We consider a statistical
experiment £ = (Q, A, (IPp)pco). Now we want to know whether it is sufficient to restrict one’s
attention to partial information about the experiment’s outcome. Partial information could mean
that we want to replace an observation X ~ IPy with a given function 7'(X), or we want to restrict

our attention to events A, in a sub-o-field A, of A.

Definition 8.15 (Sufficient statistic). A measurable mapping T : (€2,.4) — (Q, A) is called a
sufficient statistic for &, if there exists a stochastic kernel K from (, A) to (2, A) describing the
conditional distribution of X ~ [Py, given T'(X), for any # € ©. In other words, for arbitrary
cO,Ac Aand A € A,

Py({T € A} N A) = /AK(t,A) 7 (dr).

Sufficiency of T implies that the experiment £7 := (Q, A, (IP] )gco) is at least as informative as

£. In other words, one may reduce raw data X ~ IPy to 7'(X) without any loss of information.
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Indeed, having reduced X to T'(X ), one could generate an artificial observation X ~ K (T(X),-),
and X ~ IPy, too, no matter what value the unknown parameter 6 € © has. Sufficiency can often

be verified with the following criterion:

Theorem 8.16 (Neyman’s factorization criterion). Suppose that (2, d) is a separable and com-
plete metric space, and let A = Borel(£2, d). Further let M be a o-finite measure on (€2, A)
such that each distribution 1Py has a density fy with respect to M. Suppose that there exists a
measurable function h : (2, A) — [0, 00) such that for any § € © andw € ,

with gg : (Q, A) — [0, 00) measurable. Then T is a sufficient statistic for &.

Corollary 8.17. Let Q and Q2 be countable sets equipped with A = P(Q) and A = P(Q).
Suppose that there exists a function h : 2 — [0, 00) such that for any € © and w € (),

Py({w}) = go(T(w))h(w)
with gg : Q — [0,00). Then T is a sufficient statistic for &.

For readers feeling uneasy about measure theory it may be instructive to prove the latter corollary
directly. It is a consequence of Theorem 8.16 if we use the metric d(©, &) := Lz on £ and
the counting measure M on €, that is, M ({w}) = 1 forall w € Q.

Proof of Theorem 8.16. A measure M on (£2, A) is o-finite if, and only if, there exists a measur-
able function J : (2, A) — (0,00) such that [ J dM = 1. But then we could replace M with the
measure .J - M, ie. A [, JdM,and h with h/.J. Hence we may and do assume without loss of
generality that M is a probability measure. By our assumption on (€2, .A) there exists a stochastic
kernel K, from (€2, A) to (€, .A) such that for arbitrary A € Aand A € A,

M{T e A}nA) = [Ko(t, A) MT(dt),
A

see Chapter 4. More generally, for arbitrary measurable and non-negative functions f on (2 x

QA A),
/ f(T(w),w) M / / f(t,w) Ko(t, dw) MT(dt).
Q
This implies that for arbitrary § € ©, A € Aand A € A,
(T € A1) = [ 1T ) 1aw)lTw)h) M(d)
_ / / A (@) h(w) Ko (t, dw) M (dt)
- [t / () Koft. d) M7 ().
A A
Taking A = 2 shows that the density of IPQT with respect to M” is given by

fE@) == go(t)H(t) with H(t) := /Qh(w)KO(t,dw).
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In particular, the set N := {t € Q: H(t) = 0 or H(t) = oo} satisfies IPZ (N) = 0 for any § € ©,
because {H = 0} C {fF =0} and {H = oo} C {ff = 0}U{f] = oo}, and both P} (I = 0)
and IP] (f§ = o0) are equal to zero. Hence

H(t)—l/ h(w) Ko(t,dw) if0 < H(t) < oo
A
M(A) else

K(t,A) =

defines a stochastic kernel K from (€2, A) to (€, .A) such that
Py({T € A} N A) — /fg K(t, A) M7 (dt) /KtA T (dt)

for arbitrary 6 € ©, AcAdand A € A. O

Example 8.18 (Bernoulli sequences). Let X1, Xo, ..., X, be independent, identically distributed
random variables with values in {0, 1} and unknown parameter p = P(X; = 1) = IE(X;) €
[0, 1]. This leads to the statistical experiment £ = ({0,1}",P({0,1}"), (IPp),e[0,1]) With IP), :=
((1 = p)do + pd1)®™. The density f, of IP, with respect to counting measure on {0, 1}" is given
by

n

folw) = T[p*(1—p)'~ = p"@ (1 —p)» T,

i=1
i.e. a function of T'(w) := )., w; only. Hence T is a sufficient statistic for £. Indeed, 7" has
distribution Bin(n, p), and for any ¢ € {0,1,...,n}, the conditional distribution IP,,(- | 7" = t) is
the uniform distribution on the set of all w € {0, 1}" with T'(w) = t.

Example 8.19 (Gaussian samples). Let X1, X», ..., X, be independent, identically distributed
random variables with distribution A/(yz, o2), the mean p € R and the standard deviation o > 0
being unknown. This leads to the statistical experiment & = (R", Borel(R"™), (IPp)pce) with
O =R x (0,00) and P, , := N (u, 0?)®". Setting X;(w) := w;, the density f, , of P, , with

repect to Lebesgue measure on R™ times (27)~"/2 i

Juo(x) = exp(—ZW—nloga)

is given by

i=1
n — —
(i 8?2 (e —p)?
- exp(— ; 202 202 nlog U)
= Guo(T(x)),

where T'(x) = (T1(x), T>(x)) and
Ti(x) = z=n""! ina
To(x) = (z; — 3_3)2,

n
Guo(ti,ta) = eXp(—i 552 nlogo).
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Hence the statistic 7" = (T, 72) : R™ — R x [0, 00) is sufficient for the experiment £.

It is worthwhile here to verify sufficiency directly, based on standard arguments in connection with
student’s ¢ distribution: Let by, bo, ..., b, be an orthonormal basis of R", where b; = n~1/21,,.

Then the distribution IP,, , coincides with the distribution of

n
X = uly, + O'Z Z;b;
=1

with stochastically independent random variables Z1, ..., Z, ~ N (0,1). The statistic T'(X) is

equal to
n

(,u + nil/QaZl, o2 Z Zi2>,

=2

and we may write
n

X = Ti(X)1, +/Ta(X) > Wib;

i=2
with
n —-1/2
wo= (322) z
j=2
The random vector W := (W;)"", is uniformly distributed on the unit sphere in R"~! and

stochastically independent from > , ZZ-Q. Hence the conditional distribution of X, given T,

does not depend on the parameter (1, o).
Exercise 8.20 (Gamma distributions). Let X = (X;)"_; have n > 2 independent components
with

X; ~ Gamma(a,b)

and unknown parameters a, b > 0.

(a) Determine an R2-valued sufficient statistic 7'(X) for the corresponding statistical experiment

(Gammal(a, b)) ab>0"

(b) Determine the conditional distribution of X given 7'(X) in case of n = 2.

Exercise 8.21 (Markov chains with finite state space). Let X = (X;)}., be a Markov chain with
values in a finite set X and fixed starting point Xg = xg € X. That means, for 1 < k < n and
Yo,--->Yn, 2 € X

Py (Xk+1 =z ‘(Xt)fzo = (yt)fzo) = Oy.z

with an unknown “matrix” 6 € [0, 1]*** such that

ZQW =1 foralye X.
zeX

Let © be the set of all such “matrices” §. Determine a sufficient statistic for the statistical experi-
ment (9777(9), (]Pg)@ee), where Q = {y € X{O0Lon} oy — xo}.
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Exercise 8.22. Let M be a population of individuals with identification numbers in Z. We assume
that the set of all identification numbers equals {a, ..., b} with unknown integers a < b. We only

know that b — a > n for some given integer n > 2.

Now we draw a random sample of size n without replacement from M and note the tuple w =

(w1, w2, . ..,wy,) of identification numbers.

Show that T'(w) = (min(w), max(w)) is a sufficient statistic for this experiment. Describe the

conditional distribution of w given T'(w) = (s1, $2).
Hint: The formal definition of the experiment is
QO = {weZ": w; # wj whenever i # j},

Py, = Unif(Q N {a,...,b}”),
C) {(a,b) €Z" :b—a >n}.

Definition 8.23 (Sufficient sub-o-fields). Let A, be a o-field over €2 such that A, C A. Itis
called a sufficient sub-o-field for £, if there exists a stochastic kernel K from (2, .A4,) to (12,.A)
describing the conditional distribution of X ~ Py, given A,, for any § € O. In other words, for
arbitrary 6 € ©, A € Aand A, € A,,

Py(A, N A) = /A K(w, A) Py(dw).

Note that sufficiency of A, is equivalent to sufficiency of the statistic
T: (4 — (QA4), Tw):=w.

Sufficiency of A, implies that the experiment &, := (2, A,, (IPg)geco) is at least as informative
as £. In other words, when analyzing raw data X ~ IPy, we may restrict our attention to decision
procedures which are A,-measureable rather than .A-measurable.

Example 8.24 (Invariant distributions). Let G be a finite group of measurable bijective mappings
g:(Q,A) — (Q,A). That means, for arbitrary g, h € G, both h o g and g~! belong to G, too.
Now let Ag be the set of G-invariant sets A € A, i.e.

g(A) ={g(w) :we A} = A forallgeg.

This is obviously a sub-o-field of A.

Now suppose that all distributions [Py, § € ©, are G-invariant in the sense that
IPj = Py forallg e g,

where IPJ is the image measure 1Py og~!. Then Ag is sufficient for &, and the conditional distri-

bution Py (- | A,) is given by the stochastic kernel

K(w,A) = #22 1a(g(w))
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1.e.

K(w,-) #gz5

geg

Hence the experiment £g := (Q, Ag, (IP@)QE@)) is at least as informative as £.

Proof: Obviously, K (w, -) is a probability measure on (£2,.A) for any w € 2. For fixed A € A,
the function w — K (w, A) is certainly .A-measurable. To verify Ag-measurability it suffices to
show that K (h(w), A) = K(w, A) for arbitrary w € Q and h € G, see Exercise 8.25 below. But

K(h(w), A) #QZ1A9 o h(w #QZ1A

geg

because for any fixed h € G, the mapping G >— g o h € G is bijective, see Exercise 5.1. It
remains to be shown that for arbitrary § € ©, A, € Ag and A € A,

9(A,NA) / K(w, A) Py(dw).
But the right hand side equals

1
76 2

geg

[ tatate)) Po(de),
and each summand equals

/A 1(g(w)) Py(dw) = Py(A, Mg~ (4))

= Py(g~ " (9(A ) n4))

= Py(g (A, N A)) (by G-invariance of A,)
= P§(4, N )

= Py(A,NA) (by G-invariance of IPy).

Exercise 8.25. In the setting of Example 8.24, let (V, B) be another measurable space, and let
p:(Q,A) — (V,B) be a measurable mapping.

(a) Suppose that p is G-invariant in the sense that p o g = p for arbitrary g € G. Show that p is
Ag-B-measurable.

(a) Suppose that p is .Ag measurable, and suppose that B “seqarates points in V. That means, for
arbitrary different points vq, v € V there exists a set B € B such that v; € B but vo ¢ B. Show

that p is G-invariant.

Example 8.26 (Permutation-invariance). For some integer n > 2 let (2, 4) = (X", B®").

Further let S,, be the group of all permutations of {1,...,n}, that means, bijective mappings
m:{l,...,n} = {1,...,n}. Any w € S,, induces a measurable bijection g, : 2 — €,
w= (wi)icy = gr(w) = (Wr(e))ict-

Indeed one can easily show that for permutations 7,0 € S,

9gr © 9o = Yoon-
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(Note also that 7 € &, is uniquely determined by the mapping g,, unless #X = 1.) Thus
G :={gr : ™ € S, } is a group of measurable bijections of (£2,.4).

A distribution IP on (€2, .A) is called permutation-invariant or exchangeable if it is G-invariant. In
other words, if X' = (X;)j, has distribution IP, then for any 7 € S,,, the random tuple (X (;))7;
has distribution IP, too.

If £ = (2, A, (IPg)geco) consists of permutation-invariant distributions, then the sub-o-field Ag
of all permutation-invariant sets is sufficient for £. The corresponding stochastic kernel K from
(Q, Ag) to (2,.A) is given by

1
K(w,) = — > 050

TESH
Example 8.27 (Sign invariance). For some integer n > 1 let & = R". Any sign vector £ €

{—1,1}" induces a measurable bijection g¢ : R" — R",

w=(wi)izy = ge(w) = (§wi)iz1-

Note that {—1, 1}" with component-wise multiplication is an Abelian group. The corresponding
family G := {g¢,& € {—1,1}} is an Abelian group, too. Indeed, for arbitrary ¢, € {—1,1}",

geoge = gy Wwith v = (&G)izq.

A distribution IP on R" is called sign-invariant, if it is G-invariant. In other words, if X = (X;)? ;
has distribution IP, then for any sign vector & € {—1,1}", the random vector (&X;)? ; has
distribution IP, too.

If & = (R", Borel(R™), (IPy)geco) consists of sign-invariant distributions, then the sub-o-field Ag
of all sign-invariant sets is sufficient for £. The corresponding stochastic kernel K from (2, .4g)
to (€2, A) is given by

ge{-11}n
8.4 Complete Statistical Experiments

Definition 8.28 (Complete statistical experiment). A statistical experiment £ = (2, A, (IPg)gpco)
is called boundedly complete, if for any bounded and measurable function f : (2, 4) — R,

/fleg =0 foralld € ©

implies that
Po(f#0) = 0 foralld € O.

The experiment £ is called complete if for any function f € () g L1(IPy),

/dePg =0 forallfe0®

implies that
IPy(f #0) = 0 forallf € ©.
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Obviously, completeness of £ implies bounded completeness.

Example 8.29 (Simple d-parameter exponential families). Let M be a o-finite measure on R?
and b : R? = [0, 00) a measurable function such that for all parameters 6 in a set © C RY,

0 < /exp(GTx)h(x)M(dx) < o0.

Then we consider the statistical experiment £ = (Rd, Borel(R?), (IPy) geRd) where

dIPy

T (@) = c) exp (6" 2)h(z)

with C(0) := ([ exp(6 " z)h(z) M(dz)) ~'.If © has nonempty interior, then & is complete.

This follows immediately from Theorem A.15 in Appendix A.3.

Example 8.30 (Product measures). Let (X, B, M) be a o-finite measure space, and let © be
a family of probability densities with respect to M. For some integer n > 2 consider £ =
(X", BE", (QF")geo) with Qg given by dQy/dM = 6. This experiment is not boundedly com-
plete. To see this, consider some bounded measurable function & : X — R with Vary, (h) > 0
for at least one 0, € O. Then f(w) := h(w1) — h(w2) defines a bounded and measurable func-
tion f : X" — R such that [ fdQ§" = 0 for any § € ©, but Q(?;”(f # 0) > 0, because
[ f2dQg" = 2 Vary,(h) > 0.

However, if we replace A = B®" with the sub-o-field A, of all permutation invariant sets A € A,

then the experiment £, = (X", A,, (Q?n)geg) is often boundedly complete or even complete:

Special case 1. Suppose that © contains the convex hull of all probability densities M (B)~'1p
with B € B satisfying 0 < M (B) < oo. Then &, is boundedly complete.

Proof: For arbitrary fixed sets By,...,B, € B with 0 < M(B;) < oo and arbitrary tupels
v € (0,00)", consider the probability density

n
= 0" ) il
=1

with Cy := """ | v, M(B;). Then by assumption, 6, € ©. If f : (Q,.A) — R is bounded and

measurable, it follows from

/fd@;?” =0 foralldec©

that

(8.3) /f Zylej (m) M®"(dz) = 0 forally e (0,00)".
=1 j=1
The integral on the left hand side equals

> e/ Fanr,

3(1),-d(n)=11=1 5% X Bjtn)
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and this is an n-variate polynomial in v of degree n. Since

H% _ {1 it (1), ()} = {1,....n}

a’Yl 872 0 else,

it follows from (8.3) that

> / fdM®™ = 0.
€Sy ¥ Br(1) XX Br(n)

If f is permutation-invariant, that means, .4,-measurable rather than just .4-measurable, then the

n!/ fdMe™,
BiXx-+XBpn

/ fdM®" = 0
Bi1Xx--XBp

for arbitrary sets B, ..., B, € B with finite measure M (B;). As shown in Exercise 8.31, this
implies that M (f # O) =0. O

latter sum equals

All in all, we know that

Exercise 8.31. Let M be a o-finite measure on (X, 3), and let f : X — R be bounded and

measurable such that
/ fdM @n —
Bi1X--XBp,

for arbitrary sets By, ..., B, € B with finite measure M (B;). Show that

ME(f £0) =

Hint: Consider first the case of M (X') < oo and the two finite measures Q% given by Q*(A) :=
IA f:l: dM®n.

Special case 2. Let M be Lebesgue measure on X = R. Suppose that for an arbitrary fixed
o > 0, the set © contains all finite convex combinations of Gaussian densities ¢,, », 1 € R, where
2

_(z—p) )

1
¢N70(x) = \/%0' eXp( 20-2

Then &, is complete.

Proof: With the same arguments as in the previous special case, one can show that for any A,-

measurable function f : R™ — R, it follows from

/fdQ(?” = 0 for arbitrary § € ©
that

/f Hqﬁuh (x;)dx = 0 for arbitrary p € R",
=1

and this is equivalent to

/f(a:) exp(—||z||*/(20%)) exp(p' ) dz = 0 for arbitrary p € R™.

But then it follows from Theorem A.15 in the Appendix that the two finite measures A +—
fA fE dM®™ are identical, whence M®"(f # 0) = 0. O
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Unbiased estimation. With the concepts of sufficiency and completeness one can say something

about unbiased point estimators. This was first noted by P.R. Halmos [7].

Theorem 8.32 (Halmos). Let & = (0, A, (IPg)gco) be a statistical experiment with a sufficient
statistic T : (Q,A) — (Q,.A). Consider some function g : © — RY and a loss function L :
RY x © — [0, 00) such that L(-, 0) is convex for any fixed 6 € ©.

(a) Suppose g : (2, A) — RY is an unbiased estimator of g(6). That means,
Ey(g) = g(0) foranyf € ©.

Then
gw) = E@G|T=T(w))
defines another unbiased estimator with

Eg L(g,0) < IEgL(g,0) foranyf € ©.

If L(+, 0) is strictly convex, then the latter inequality is strict unless IPy(g # g) = 0.

() IfET = (O, A, (P]) gco) is complete, then the unbiased estimator § in part (a) is essentially
unique. That means, if § = h(T) is another unbiased estimator of g(f), then IPy(§ # §) = 0 for
arbitrary 6 € O.

Proof of Theorem 8.32. By sufficiency of T', there exists a stochastic kernel K from (£, A) to
(€, A) describing the conditional distribution of X ~ Py, given T'(X), for any parameter 6 €
©. This gives rise to conditional expectations IE(h | T = ¢) := [ h(w) K (¢, dw). Note that by

assumption, for any § € O,

w>mm=éﬂmW=WWm

so the set N := {te Q: IE(||g]l !T =t) = oo} satisfies IPT(N) = 0. In particular,
ht) = E(@G|T =t)
is well-defined in RY for any ¢ € Q \ N.

As to part (a), § = h(T) with h(t) defined before. Since § is unbiased,

h(t) g (dt) = Eg(h(T)) = Eq(g)-

Q

9(0) = TBy(g) = /QIE(ﬁ\T:t) PI(dt) = /

Hence, g is unbiased, too. Moreover, applying Jensen’s inequality to the conditional expectations
E(-|T = t) leads to

Ey L(g,0) = /Q]E(L@,e)\T:t) P} (dt)
> [ LEGIT = 0.0) P

:ﬁmewwﬂm
Q
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If L(-,0) is strictly convex, the inequality

E(L(g,0)|T=t) > L(E(g|T =t),6)
is strict, unless P(g # | T =t) = 0. Hence IEg L(g, 0) > IEy L(g, ), unless IPy(g # §) = 0.
As to part (b), suppose that § = h(T) is another unbiased estimator of g(#). That means, the

difference A := h — h satisfies

/AdIP;{ = 0 foralld € ©.
Q

But then completeness of 7 implies that 0 = P} (A # 0) = IPy(§ # §) for arbitrary § € ©. [

8.5 U-Statistics

The material in this section is based on the famous paper [8] by W. Hoeffding. Let X1, X, ..., X,
be independent random variables with unknown distribution P on a measurable space (X, ). To
establish a link to the previous sections, let P be a given family of probability distributions on
(X,B). Assuming that the unknown distribution P belongs to P, the corresponding statistical
experiment is
(X", B%", (P®")pep).

Note that all distributions P®", P € P, are exchangeable (permutation-invariant). Hence for any
given function g : P — RY, an unbiased point estimator g of g(P) can be improved by replacing
9(X1, Xo,..., X,) with

1 .
m Z g(Xw(l)v X7T(2)7 s 7X7r(n))
ﬂ'ESn

And if P is sufficiently rich, the latter estimator is essentially unique, see Example 8.30 and
Theorem 8.32.

U-Statistics. Now we consider a particular type of parameter g(P). Let h : (XY™, B®™) — R
be a given measurable function such that

g(P) = /th®m € R.

In case of m > 2, we assume without loss of generality that h is permutation-invariant, i.e.

symmetric in its m arguments. Otherwise we could replace h(x1, ..., z,,) with
~ 1
h(xl, e ,{L‘m) = @ Z h(xﬂ(l), ce ,J}ﬂ,(m))
TESm

which defines a permutation-invariant function A satisfying [ h dP®™ = [ hdP®™,

Obviously, for n > m, a naive unbiased estimator for g(P) is given by g := h(X1, ..., X;,). Av-
eraging this naive estimator over all permutations of X ,, = (X;)?_, yields the following unbiased

estimator of g(P):

-1
n
Vn = E th,XZ,,XZ .
g <m) ( 1 2 m)

1<i1 <ia < <im<n
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Such an estimator is called a U -statistic with kernel h or a U -statistic of order m.

Example 8.33 (Mean and variance of a distribution and sample). Let X = R, and suppose that
[ |z| P(dz) < oo. Then the mean u(P) := [z P(dx) equals g(P) with h : R — R, h(z) = z,

and the sample mean is a U-statistic of order 1:

X, :—igxi = G)l 3 h(Xa).

1<i<n

In case of [2? P(dx) < oo one may write

o?(P) := /(a:—,u(P))zP(dx) = /thp®2 with  h(zy,29) = (21 — 22)%/2.

The corresponding U-statistic is just the usual sample variance:

n

) g2y = L x2
() T X ol Y- Xy

1<ii<iz<n i,j=1
1 - " 2
— 2 .
~ n(n—1) <nZXl B (ZXJ )
=1 i=1
1 n
- n—1 (ZX’Q —n)_(g)
i=1

= - i - D (X - X)%

i=1

Example 8.34. Let X = [0, c0), and suppose that we want to quantify whether P has strong right
tails. On possibility to quantify this property would be consider

g(P) = IP(Xg > ,/X12+X22).

(Maybe this is not such a brilliant proposal; the main point is to illustrate the construction of
U-statistics.) This corresponds to IE h( X7, X2, X3) with Az, x2,23) =1 (o3> /7523 Sym-

metrizing this kernel leads to

1 3

h(flﬁl, €2, 373) = 3

1
32 o /TR

where ||z||? = 22 + 23+ 23, and the resulting unbiased estimator for g(P) would be the U-statistic
with this symmetric kernel h.
Here is a first result about the variance of a U-statistic which will suffice for our purposes:

Lemma 8.35 (Hoeffding). Suppose that [ h? dP®™ < co. Let

ho(z1, ... 2m) = h(z1,...,2m) — g(P),
) = Ehp(z1,..., 25, Xpg1,- .., X)) forl <k <m,
op = E(hg(X1,...,Xg)?) forl <k <m.

hi(z1, ..., zk
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Thena%ﬁ-~§a2

=, and

Var(jn) = Y P(Y =k)oj
k=1

withY ~ Hyp(n,m,m), ie. P(Y = k)= () (20 /(1)

m—k m

This lemma is only a simplified version of Hoeffding’s [8] findings. Stronger statements about
the variances ai and the distribution of g, will be derived in Exercise 8.43 from the so-called

Hoeffding decomposition, introduced in Section A.4.

Proof of Lemma 8.35. For any index set J C {1,...,n} with1 < #J <mlet X;:= (X;)ic.

Then we may write
n\ !
Jc{1,...n}h:#J=m

It follows from independence of the X;, Fubini’s theorem, symmetry of h and the definition of hy,
1 <k <m, that

(8.4) E (hp(X1)hm(X))) = ai(m) for I,J C{1,...,n},#I = #J =m,

where 08 := 0. Indeed, IE h, (X7, . .., X;») = 0 by definition of h,,, so in case of I NJ = 0, it
follows from stochastic independence of X7 and X ; that

IE(hm (X1)hin(X1)) = E(hm(X1)) E(hn (X)) = 0.
Moreover, by definition of U?n,

E(hm(X1)hm(X)) = o2, ifI=J.

m

If 1 <k :=#(INJ) < m, then stochastic independence of X;n s, X 1\J» X s and the definition
of hj, imply that

IE (hin(X1)hm(X 1)) = B(hm(Xins, X ) hn(Xins, X0 1))
= EIE(hm(Xins, Xn2)hm(Xins, X 1) | Xins)
= E(hy(Xins)?)

_

Equation (8.4) yields the specific formula for Var(g,,), because

-1
Var(g,) = E(U,U,) = (g) Z IE(hm (X1)Uy),

Ic{l,...n}:#I=m
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and for any fixed index set I C {1,...,n} with m elements,

-1
E(h(X1)U,) = <ZL> S B (X)ha(X)))
JCA{L,...n}:H#J=m

—1 m

Z) So#{Tc{l,on} i #T =m#INI) =k}op
k=1

() (D))
= k)o}.

P(Y

I
7N

[
NE

k

I
NE

b
Il
—

Since this value does not depend on the particular choice of I, this proves the asserted equation
for Var(g,).

It remains to prove the inequality o7 < o7, for 1 < k < m. Note first that

he(w1,.. o 2x) = Ehgyp (o, .. o8, Xpgr).

In case of k = m — 1 this is just the definition of hg(x1, ..., x), and otherwise it is a consequence

of Fubini’s theorem, because

hk(xl,...,xk) = Ehm(l‘l,...,l’k,Xk+1,Xk+2,...,Xm)
= IE]E(h/m(xla . 7xk’7Xk+lan+27-- . 7Xm) ‘Xk—‘rl)

= Ehppi(zr, .o 2p, Xeg1)-
But then the Cauchy—Schwarz inequality implies that

op = B(BE(hps1 (X1, .., Xi, Xps1) ‘X17---an)2)
E(IE (hg1 (X1, - -, Xoo Xe41)? | X1, Xi))
= E(hp1(X1s o Xiy Xit1)?)

IN

2
= Ok+t1-

Corollary 8.36. In case of [ h* dP®™ < oo,

2 2

Var(gn) = +O0(n72).

Proof of Corollary 8.36. This expansion follows immediately from Lemma 8.35 and the fact that
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for Y ~ Hyp(n,m,m),

-1 —m
ror=n = () (0%
_ mlm]i [n — m]m—g
(1] El(m — k)!
[mlg ™ (1 +0(n" 1))
kK'nm(1+4 O(n=1))
[mlz(1+0(n~)

k! nk
~m?/n+0(m7?) ifk=1,
lom?) if k> 2.

The following result shows that U-statistics may be approximated by an average of independent,

identically distributed random variables and satisfy a Central Limit Theorem:

Theorem 8.37 (Hoeffding). Under the conditions of Lemma 8.35,

~ m -
gn = g(P)+ - Zhl(Xz‘) +R,
=1

where
E(Ry) = O(n™?)
Moreover,
V(g = g(P)) =, N(0,m?0%)
asmn — oo.

Our proof of Theorem 8.37 utilizes a general approximation result of Jaroslav Hajek:

Lemma 8.38 (Hajek projection). Let X1, Xo, ..., X, be arbitrary independent random variables
with values in (X1, B1), (X2, Ba), ..., (Xn, By), and let T be a random variable of the form T =
f(X1,Xs,...,X,)suchthatIET = 0 andIE(T?) < oo. ThenT; := IE(T | X;) satisfies IE(T;) =
0 for 1 < i < n. Moreover, for arbitrary random variables Y1,Ys,...,Y, of type Y; = fi(X})
with IE(Y;) = 0 and IE(Y?) < oo,

B((T-Y 1)) = B@) - STE(T) + 3 (Y - 1))
i i=1 i=1

IE(T?) - zn:IE(Tf)
i=1

v

with equality if and only if Y; = T; almost surely for 1 < i < n.



Proof of Lemma 8.38. By Fubini’s theorem, 0 = [ET = IEIE(T | X;) = IE T;. Moreover,

B((r-3%)7) = B 23w+ 3 wo)

4,j=1

= E(T?) - 2ZIEIE(TYZ- | Xi) + ZH:IE(YZ-Q)
i=1 =1

E(T?) —ZZIE (T X:)Y;) + Y TE(Y?)
= E(T?) - 22113(@1@-) + > E(Y?)
i=1 i=1
— > E(T)+ ) E(Yi - T,)%)
i=1 i=1
because IE(Y;Y;) = IE(Y;) IE(Y;) = 0 in case of i # j.
Proof of Theorem 8.37. It follows from Lemma 8.38 that

gn—g(P) = Uy = Y E(U,|Xi)+R
=1

with .
E(R}) = EU) - Y E(EU,|X;)%).
=1
But
n -1
E(U,|X;) = <m> > IE (hnm (X 7) | Xi)
JC{1,...m}:#J=m
-1
n
= <m> > Liienh1(Xi)
JC{1,...m}:#J=m
—1
- (g) #LICc {1, om} S =myicJ}h
-1
n n—1
— X,
(m) m — 1) hl( )
- %hl(Xi).
Hence
m n
Up = — Y (X)) + Ry
=1
with 5 5 o
E(R2) = EU2) - "7 = Var(g,) - =L = O(n?)

according to Corollary 8.36. Consequently, R,, = Op(n_l), whence

nvn_ ﬂ n 71/27
V(g \Fg )

153
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and it follows from the usual Central Limit Theorem that the right hand side converges in distri-

bution to a Gaussian random variable with mean 0 and variance m? IE(h1(X1)?) = m?0?. O

Remark 8.39 (Hoeffding’s decomposition in case of m = 2). In case of m = 2 one may write
2 — n\ !
= o)+ 2 )+ (5) X )
i=1 1<i<j<n
with

h3(xq,x2) = ha(x1,x2) — hi(x1) — hi(22)
= h(a:l,a:g) — IEh(a:l,Xg) — IEh(Xl,.%'Q) + IEh(Xl,XQ).

Moreover, the n + (Z) random variables h1(X;) (1 <7 < n)and h§(X;, X;) (1 <i < j <n)are

easily shown to be centered and uncorrelated with
E(h§(Xi, X;)?) = o3 — 207 < o03.

Hence the remainder .
n
ro=(3) X mx)
1<i<j<n
satisfies the (in)equalities

-1 2 2 2

n 205 — 4o 20
E(R2) — 2 _ 9,2y — 292 1~ 2
(Fn) <2> (o = 207) nin—1) — n(n—1)

Example 8.33 (Sample variance, continued). With h(z1,72) = (z1 — 22)?/2, the auxiliary
function h; is given by
m(z) = Bh(z, X1) - 0*(P)
= 2%/2 = ap(P) + B(X})/2 - o*(P)
= [(a - u(P)? - a*(P)]/2,

and this leads to the representation

S2 = (’;) Y KX, X))

1<i<j<n
2 n
2
= P)+ — h1(X;) + Ry,
PP)+ 5D mX) +

_ %Z(Xi — ()2 + Ry,
=1

where
E(R?) = O(n™2) if /:1:4P(dx) < oo.

Moreover, as n — 00,

V(% = o(P)?) = N(0,E[(X1 — u(P))*] - o(P)*).
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Example 8.40 (Kendall’s 7). Let (X1,Y7), (X2,Y2), ..., (Xy,Y),) be independent random pairs
with distribution P on R x R. A nonparametric measure of correlation of X; and Y7, proposed by

Maurice Kendall [9], is given by
7(P) = IE(sign(Xs — X1)sign(Ys — Y1)).
This is the probability, that the two observation pairs (X1, Y1) and (X2, Y2) are “concordant”, i.e.
sign(Xo — X;) = sign(Ya — Y1) # 0,
minus the probability that they are “discordant”, i.e.
—sign(Xe — X;) = sign(Ya — Y1) # 0.

If X; and Y] are stochastically independent, then the four random variables X; X5, Y7, Y> are

stochastically independent, and
7(P) = IEsign(Xs — X1) Esign(Ys — Y1) = 0,
because the distributions of Xy — X; and Y5 — Y; are symmetric around 0.
Note that 7(P) = IE h((X1,Y1), (X2, Y2)) with the kernel
h((z1, 1), (22,42)) = sign(zo — 1) sign(y2 — y1).

Consequently, an unbiased estimator for 7(P) is given by Kendall’s 7 statistic

-1
. n . .
T = <2> E sign(X; — X;) sign(Y; — Y5),

1<i<j<n
which is a U-statistic of order 2 with kernel h.

Since |h| < 1, we may apply Theorem 8.37 and conclude that
2 n
o= 7(P)+ Z;hl(Xi,Yi) +R,
P
with hy(z,y) := E(sign(z — X1)sign(y — ¥1)) — 7(P) and a remainder term R,, such that
IE(R2) = O(n~2). Moreover, as n — 00,
Vn(in —7(P)) = N(0,4FE(h(X1,Y1)?)).

Let us consider the following special case: Suppose that X; and Y; are stochastically independent

with continuous distribution function F' and G, respectively. Then one can easily verify that

hi(z,y) = (2F(z) = 1)(2G(y) = 1).

But 2F'(X;1) — 1 and 2G(Y1) — 1 are stochastically independent and uniformly distributed on

[—1, 1]. From this one can easily deduce that
E(hi(X1,Y1)%) = 1/9,

SO

Vni, —r N(0,4/9).



156

Exercise 8.41. Let X, Xo,..., X, be independent random variables with unknown distribution
PonR. Form € N let
gm(P) = IEpMed(X1,...,Xn)

with sample median function Med(. . .).
Show that for n > m, the corresponding U-statistic
n\ !
J = <m> 191;;%9 Med(X;,,. . -, Xi,,)

is a L-statistic, that means,
n
g = wiXq
i=1

with suitable weights wy, wo, ..., w, > 0.
Hint: Distinguish the cases of odd and even m.

Exercise 8.42. Suppose that X, X9, X3, ... are independent and identically distributed with dis-
tribution P on R. Suppose further that ]E(]X 1 ]3) < o0.

(a) Determine an optimal unbiased estimator of the centered third moment,

9(P) = B((X1 - B(X1))*).

Hint: Determine a measurable function h : R? — R such that g(P) = IE h(X1, X2, X3), and

construct a corresponding U-statistic §.

(b) A naive estimator for g(P) is given by
Gnaive = > (X - X)?
gnalve L E ' ( [ ) .

Show that this estimator can be written as a function of the sums Sy := Z?Zl Xf, 1</ <3, and

that the computation of gyaive requires O(n) steps.

(c) Show that the unbiased estimator § is also a simple function of Sy, So, S3 and can be computed

in O(n) steps.

(d) Show that for some constant C'(P),
E |g - :q\naive| < C(P)n_l

for all n > 3. Proposal: One can write § — Gnaive as a linear combination of the three sums
53, 521 = E?,jzl 1[i7éj}Xi2Xj and 5111 = sz7k:1 1[i,j,k different]XinXk with coefficients
depending on n.
Exercise 8.43 (Refinements via Hoeffding’s decomposition). With the notation of Lemma 8.35
and its proof, let

k
Wz, .. mp) = (=1 > he(xr)

(=1 IC{1,.. kh#I=¢
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for 1 < k < m. The general Hoeffding decomposition, presented in Section A.4, implies that the

random variables
hp(Xy), ke{l,...,m}andJ C{1,...,n},#J =k,

are centered and uncorrelated, where

k

(T, me) = ) hg(xy).

(=1 Jc{1,...k}:#J=¢
Let
7 = B(h)(X1,..., Xg)?).

(a) Show that o7 = IE(hi(X1,. .., X))?) equals

2 : k 2
O'k:ZETE.

(=1
Deduce from this representation that o7 /k is non-decreasing in k € {1,...,m}.

(b) Show that U,, := g, — g(P) equals
m -1
n m\,,
n-3(3) X (e,
and that

(¢) Deduce from (a) and (b) that

m2a

=
N
=
N

n -~ n n2

Show that n IE(U?) is non-increasing in n > m with limit m20% as n — oo.
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Chapter 9

Exponential Families

9.1 Definitions and Basic Properties

Definition 9.1 (Exponential families). A statistical experiment & = (Q, A, (]Pg)g.g@) is called an
exponential family if there exist a o-finite measure M on (€2, A), a measurable mapping h : 0 —

[0, 00), a mapping o : © — R? and a measurable mapping 7" : 2 — R such that for any § € ©,

I (1) — (o) exp(al®) T(e) — n(0)
with

k(0) = log/hexp(a(G)TT) dM.

(In particular, we assume that [ hexp(a(f)T)dM < oo forall § € ©.)

Definition 9.2 (Natural exponential families). For a given measure space (€2, .4, M ) and measur-
able mappings h : Q@ — [0,00), T : Q — R, the corresponding natural exponential family is
given by & = (Q, A, (IPg)gco,.,) With the natural parameter space

Onat = {0 eR?: /hexp(eTT) dM < oo},

and the probability distributions Py are given by

dIPg
aM
k(0) = log/hexp(GTT) dM.

(w) = h(w)exp(@TT(w) — k(8)),

Example 9.3 (Gaussian samples). Let 2 = R", equipped with its Borel o-field, let © = R x
(0,00), and for @ = (u,0) € O, let

Puo = N, 0%,
With M denoting Lebesgue measure on R, h(w) := (27)~"/2 and X;(w) := w; for w € €, the
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log-density of IP,, , with respect to M is given by

n

2
df]\;"’ = h(w) exp(— ; (XZQUQ'M) —nlog a)

_ A S B o
= h(w) exp(g2 ;XlJr 552 ilei nloga)
= h(w)exp(a(p,0)'T — k(p, o))

with

poo—1NT
O{(/L,O') = (ﬁaﬁ) )

n n T
re (Y
i=1 =1
k(v,y) = nlogo.

Here one easily verifies that
®nat = R x (—OO, 0)

Example 9.4 (Gamma distributions). Let Q = (0, 00), equipped with its Borel o-field. For
a,b > 0 let Gamma(a, b) be the gamma distribution on (0, co) with shape parameter ¢ > 0 and

scale parameter b > 0. That means, Gamma(a, b) has Lebesgue density

i) = g (5)" oo (-5)
= exp(a(a, b) " T(w) — k(a, b))

with

ala,b) == (a—1,-1/b)7,
T(w) := (logw,w)',

alogb+logI'(a).

X
—
8

=
N—

I

Here one easily verifies that
Onat = (—1,00) X (—00,0).

Remark 9.5 (Convexity and smoothness). Let £ be a natural exponential family as in Defini-
tion 9.2. It follows from convexity of the exponential function that the set O, is a convex subset
of R%. Moreover, if f € Ny, L*(IPg), then the function h : © — R,

no) = [ ram,

is twice continuously differentiable on the interior of ©,,,; with gradient

Vh(@) = COVg(f,T) = /deIPg —h(@)/Td]Pg

Remark 9.6 (Sufficiency). Suppose that £ is an exponential family as in Definition 9.1, where
(Q,d) is a separable and complete metric space and A = Borel(£2,d). Then T is a sufficient

statistic for £. This follows immediately from Neyman’s factorization criterion.
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Theorem 9.7 (Completeness in exponential families). Let £ be an exponential family as in Det-
inition 9.1. Suppose that the set {a(f) : § € ©} C RY contains an interior point. Then the
statistical model (R?, Borel(R?), (P} )geo) is complete.

Proof of Theorem 9.7. We may assume without loss of generality that h = 1. Otherwise we
could replace M with M, where M (B):= [  hdM. Note that the image measures' M7 and IPg

on R satisfy
dP]
dMeT (x) = exp(oz(@)Tm — k(0)).

Hence for a measurable function f : R? — R, the property

fdP} =0 forallf c©
R4

is equivalent to

f(x)exp(a(8)Tz) MT(dz) = 0 foralld € ©.
Rd

Since a(©) contains an interior point, it follows from Theorem A.15 in Section A.3 that f(x) = 0
for MT-almost all z € R?. In particular, P} (f # 0) = 0 forall § € ©. O

9.2 Nuisance Parameters
In this section we consider statistical experiments & = (Q, A, (]Pg)@ee) of the following type: ©

is a convex open subset of R% x R with projections

N.
I‘.

{veR*: (v,7) € O for some y € R},

{y€eR: (v,v) € O for some v eRd}.

Each parameter = (v,) € O consists of a “nuisance parameter” v € N and a parameter v € T’
of primary interest. The question is how to deal with the nuisance parameter v if we are only

interested in .

We assume that £ is an exponential family with natural parametrization: There exist a o-finite
measure M on (€2, .A) and measurable functions S : (Q,.A) — R%, Y : (2, A) — R such that for
arbitrary (v,v) € O,

with
k(v,7y) = log/exp(l/TS—l—’yY) dM < 0.

Here the pair (S,Y) is a sufficient statistic, provided that (2, d) is a separable and complete
metric space, equipped with its Borel o-field. Thus we may restrict our attention to decision
procedures depending only on (S,Y"). The following result shows that under the measure IP,, .,
the conditional distribution of Y, given that S = s, depends on s and the parameter v but not on

the nuisance parameter v. Hence we may get rid of the nuisance parameter by conditioning on S.

'MT(B) := M(T € B) and IP} (B) := IP4(T € B)
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Proposition 9.8. Let us fix any parameter (v,,,) € © and choose a stochastic kernel K from
R% to R describing the conditional distribution of Y, given S, under the measure IP,, -, . That
means,

P, ~,(Y eB|S=-) = K(,B) forany Borel set B C R.

Then there exist a measurable weight function w : R — (0, 0c0) and a Borel set C' C RY with the
following properties: M (S € C') = 0, and for any v € T,

R(s,y) = log/ReXp('yy)w(y) K(s,dy) < oo foralls € R\ C.

Moreover,

/ exp(yy — #(s,7)) w(y) K (s,dy) ifs € RY\ C,
B
1[0€B] ifs € C,

K,(s,B) :=

defines a stochastic kernel K, from R9 to R describing the conditional distribution of Y, given S,

under any measure IP,, ., v € N. That means,

P,,(YeB|S=-) = K,(-,B) forallve N and any Borel set B C R.
Proof of Proposition 9.8. The assumption on K is equivalent to
Euy i (9(SI(Y)) = Eu, (9(S) [ 1io) K (S.)

for arbitrary measurable functions g : RY — [0, 00] and h : R — [0, oc]. For any other parameter
(v,v) € O, this implies that

E, (9(S)h(Y))
B exp(v'S +7Y — k(v,7))
O = B (s e i)
©92) =~ E,,., (g(s) exp((v = vo) TS — £(1,7)) /h(y) exp(vy) w(y) K (S, dy))

with
w(y) = exp(K(Vo, %0) = VoY)
Taking h = 1 shows that
E,~(9(5)) = By, ., (9(5)f4(9))
with
fua(s) = exp((v =) = k(7)) [ explom) wly) K s dy).
Taking g = 1 shows that for any fixed 7 € T, the set C(v) of all s € R? such that the integral

J exp(vy) w(y) K (s, dy) is infinite satisfies IP,, (S € C(v)) = 0 forall v € N. Since IP,, ., has
a strictly positive density with respect to M, we may even conclude that

M(S € C(y) = 0.
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But then the set C' := {J,cpng C(7) satisfies
M(SeC) =0,
and by convexity of the exponential function,
/exp(’yy) w(y) K(s,dy) < oo foralls € R\ C'andy €T.

Hence the stochastic kernel K, described in the proposition is well-defined, and it follows from
(9.2) that for arbitrary measurable functions g : R? — [0, 00] and i : R — [0, o0,

Euoy (9(SAY) = Bry, (905) [ 00 K, (S.d) £ ()
= Eu, (9(5) [ ho) K (5. d)

This shows that the kernel K, describes the conditional distribution of Y, given S, under the

measure IP,, . ]

Neyman’s construction of tests. Suppose we want to find a good level-« test of the null hy-
pothesis

O, = {(,7) 17 <}
for a given number 7, € I" such that

{veR: (v,7,) €0} = N.

To this end we fix any nuisance parameter v, and choose for any s € R? numbers k,(s) € R and
Ya(s) € [0,1] such that the test ¢, : R? x R — [0, 1] with

0 ify < kq(s)
Pals,y) == {Va(s) ify=ka(s)
1 ify > kqo(s)

satisfies
Ey, , (0a(S,Y)|S) = o almost surely.

Then ¢,, is a level-a test of ©,, and has a certain optimality property:

Theorem 9.9 (UMP unbiased tests). For given test level a € (0, 1), let ¢, be the special test just
described. This test belongs to the class ®,, of all tests ¢ : R? x R — [0, 1] such that

<a ify <,

By $(5,Y) {> a ify >~

For arbitrary ¢ € ®,, and (v,7) € O\ O,,

Eyr 60(S,Y) > B, 6(S,Y).
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Proof of Theorem 9.9. With the stochastic kernels K, v € I, and the Borel set C' C R? as in

Proposition 9.8, we may alter the set C'if necessary such that

/ ba(5,y) Ky (s,dy) = o foralls € RT\ C.
R
For any test ¢ : RY x R — [0, 1], its power

E,,¢(S,Y) = /Q<b(5, Y) exp(uTS + Y — k(v, ’y)) dM

is a continuous function of v € I'(v) for any fixed v € N; see exercises. Here I'(r) denotes the

open interval
I'v) == {yeR:(v,y) €O} 3> .

If ¢ € ®,, this implies that
IE,~, ¢(S,Y) = o forarbitrary v € N.

We may also write
Buiy (8,Y) = Bu [ 9(5.0) I (S,)).

But the restricted statistical experiment &, := (2, A, (IP,,)ven) is an exponential family with
natural parametrization, because
dlP,,,
dM

1.e. with the modified measure

= exp (VTS — k(v, 'yo)) exp(7,Y),

My(dw) = exp(7,Y (w)) M (dw)

we may write
dIp,
770

dM,

Since NN is open, the corresponding family (R?, Borel(R¢), (]Pi%),,e ~) is complete, that means,

= exp(uTS — k(1,7%))-

it follows from
a =1, (/ (S, ) K%(S,dy)) forallv € N
R

that
/¢(S, y) K,,(S,dy) = a almost surely
R

under any measure IP,, , , v € N. But our special construction of ¢, and Theorem 7.13 imply
that for v > 7, and s € R?\ C,

/gf) s,y) K+ (s,dy) /gf)a s,y) Ky(s,dy) whenever /qb 5,y) Ky, (s,dy) <

Thus for arbitrary (v,y) € © with v > ~,,
E,, $(S,Y) = E,, / 6(S.y) K (S, dy) )

< B ([ 6u(8.0) K (S.) = By (5.7,
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Example 9.10 (Fisher’s exact test and odds ratios). Suppose that (X1, Y1), ..., (X,,Y,) are in-
dependent, identically distributed random variables with values in {0, 1} x {0, 1} such that all four
probabilities

pay = P(X =2,Y =y), =x,yec{0,1},

are strictly positive; here (X,Y") denotes any of the n pairs (X;,Y;). With the parameter p :=
(P00, Po1, P10, P11). the “correlation” between X and Y may be quantified in terms of the odds

ratio
piipoo  odds(X =1|Y =1)  odds(Y =1|X =1)

poipio odds(X =1]Y =0)  odds(Y =1|X =0)

Suppose we are only interested in p. To design good tests or confidence regions for p let us rewrite

p=p(p) =

the model as a suitable natural exponential family:
Viewing the X; and Y; as random variables on  := ({0,1} x {0,1})", equipped with counting

measure )/, we obtain a statistical experiment with distributions IP,, on €2 such that

dIP Hoo, Ho1, Hio, H
log i — log(poooopmmpmwpnu)

= Hyologpoo + Ho1logpo1 + Hiplogpio + Hi1logpis

with the absolute frequencies
Hyy = #{i<n: X;=2,Y; =y}
With the marginal frequencies

Hyy := Hy+Hy = #{i<n:Y; =1},

Hyy = Hyp+Hi = #{i<n:X;=1},
we may write Hog = n — Hi1 — Hiy + Hyy, Hyy = Hyy — Hyy, Hio = Hi4 — Hip, and this
leads to

dP,
- H+110g—+H1+1og—+H111 g DA1P00
dM Po1P10o

log + n log poo-

With

v=v(p) = <log@ lo p10) € R?
Poo Poo
)

Po1P10

v=~(p) := log = logp € R,

we may write

Poo Por| _ v vo vitvadyy—1 | 1 eVl
[plo pll] (14+e"+e”?+e ) [6”2 ovitvaty |
In particular, for any choice of v € R? and v € R there exists a probability vector p such that
v =v(p) and v = (p). Moreover,

log CilI]\Z = v S+9Y —k(1,7)
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with

H(Vaﬂy) = —TLlngOO = nlog<1+elll _i_el/2+€1/1+1/2+»y)‘

Consequently, if we want to construct tests or confidence regions for p, we should concentrate on

the conditional distribution of Hi, given (Hy1, H14). For arbitrary integers s,z > 0, it follows

from H,; = sand Hi; = z that H1; has some value in
{max(0,5+ 2z —n),...,min(s,2)}.
For any number £ in the latter set,

Pp(Hy =k, Hyy =s,Hiy = 2)
= Ipp(Hll:]{?,Hol:S—k‘,Hlo:Z—k,HQ():n—S—Z—f—ki)

_ n! k  s—k, z—k, n—z—s+k
T K —k)(z —k)l(n—2— s+ k) PrPor Pio Poo
o

— ! S z n—z—s .
1! Po1P10Poo El(s — k) (z—k)!(n—2z—s+k)!

Consequently,

IP,(Hyy =k, Hyy =s,Hiy = 2)

Pp(Hiy =k|Hiy = s, Hiy = 2) =
p(Hi1 |Hi1=s,Hiy = 2) YuPp(Hi =40, Hiy =5, Hiy =2)

k
with
min(s,z) pg
Cln,s,2,p) = 2 s =0z =0l (n—2z—s+0)

{=max(0,s+z—n)

Alternatively one may write
]PP(Hll =k | H+1 = S7H1+ = Z) = é(nv S, va)_l Hypn,s,z({k}) pk

with the hypergeometric distribution Hyp,, , . and

min(s,z)

é(’l’L,S,Z,p) = Z Hypn,s,z({g}) pf'
{=max(0,s+z—n)
In particular, if p = 1, the conditional distribution of H1y, given H,; = s and Hy = z, equals
Hypy, s,z
Example 9.11 (McNemar’s test). Traditionally, McNemar’s test is described in the context of

two-by-two tables as in the previous example. But it may be transferred to a more general setting:

Let X, Xo,..., X, be independent and identically distributed random variables with values in
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a finite set X' := {z1,z2,...,zx} with K > 3 different elements. The parameter vector p =

(pr)E_, with p := IP(X = x) > 0 is unknown. Suppose we are mainly interested in the ratio

b1
p=pp) = —.
(p) =
To this end we consider the X; as random variables on the finite set () := X, equipped with

counting measure M. This leads to a statistical experiment with distributions IP,, on €2 given by

K
log & dM = log Hp] ZHj log(p;)
with the absolute frequencies
= #{i <n: X; =z}

Since Hg =n — ZKK H;, we may rewrite this as

K-

AP,
log P = Z jlog(p;/pic) + nlog(pk)

= Hilog? + (H, + Ho)log 22 + Y H; 1ogf+nlog(pz<)
p2 2<j<K PK

With
pe+1)K_2 K—2
v =v(p) (og ey :

b1
v=7(p) = log=— = logp
D2

we may write

(vt e ... evk=2 1)1
p = eVt 4 eVl 4 peVE-2 + 17
In particular, for any choice of v € R¥~2 and v € R there exists a probability vector p such that

v =v(p) and v = v(p). Moreover,

dIP
log d]\f = v ' S+Y —k(1,7)
with
S, := Hy+ Hs,
Sg = Hg_H fOI‘QSEEK—Q,
Y = Hl,
k(v,y) == —nlog(pr) = nlog(e?™ + "t + ... 4’62 4 1).

Consequently, if we want to construct tests or confidence regions for p, we should concentrate
on the conditional distribution of Hj, given (H; + Ha, Hs,...,Hg). For arbitrary integers
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m,s;;,...,sK2Owithm+2§i35j:nandkze{O,...,m},
]Pp(Hl :k,H1+H2:m,Hj = s; for j >3)

= IPp(H1 =k,Hy=m —k,H; = sj forj > 3)
n!

_ k., m—k Sj
= P1po p;
k!(m_k)!njzgsj! g J
m k —k n! m Sj
= (1 =) e (p1 + p2) o
(k) m! >3 85! jl;lg J
with
T =m(p) = P ¢ (0,1).

p1+ D2 I+p
Consequently, the conditional distribution of Hy, given Hy + Hy, Hs, ..., Hg, equals

. ) p
Bin(H, + Hy,7) = B (H Hy, )
in(Hy + Ha, ) In| 111 + 21+p

Any test or confidence region for m may be translated into a test or a confidence region for p via

the inverse transformation
T

p= -7

Example 9.12 (Comparing two Poisson parameters). Suppose we observe independent random
variables X ~ Poiss(\) and Y ~ Poiss(u) with unknown parameters A, 4 > 0. Suppose further
that we are mainly interested in the ratio p := A/p. With Q := Ny x Ny, X (w) := w1, Y (w) := wo
and counting measure M on €2, this situation corresponds to a statistical model with distributions
Py, given by

APy, _ e_’\&e_“ﬁ _ exp(XlogA+Ylogu—\—p)
dM X! Y! XY!

Replacing M with the measure M, given by M,({w}) := (w1lwa!)™

1 we may write

dPy,
IOgT]WO = XlogA\+Ylogu— (A+p)

Xlog(Ap) + (X +Y)logp— (A+p)
=v(X+Y)+9X —k(v,7)
with
v = logpu,
v = log(A/n) = logp,
k(v,y) = A+ p = exp(2v + 7).

Consequently, for inference about p we should analyze the conditional distribution of X, given
X + Y. But for arbitrary integers m > 0 and k € {0,...,m},

Py (X =k X+Y =m) = Py (X = k) Py, (Y =m — k)

_ O A

El(m — k)!
_ (M kg om0 AT )™
= <k>ﬂ' (1—m) e \TH -

— Biny, ({k})Poissy i, ({m})
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with \
)
= = € (0,1).
U vl

This shows that the conditional distribution of X, given X + Y, is equal to

Bin(X +Y,7) = Bin<X+Y, L).
1+p

Hence we may construct tests and confidence regions for 7, and these translate into tests and

confidence regions for p via the inverse transformation p = 7/(1 — 7).

Avoiding conditional distributions

In the previous examples we computed the conditional distribution of Y, given S, explicitly. In
various settings this step can be avoided by means of the following result:

Lemma 9.13 (Bast). Let& = (2, A, (IPy)gco) be a statistical experiment, and let S : (2, A) —
(9, A') be a sufficient statistic for £ such that the experiment £5 = (', A, (IP3)gee) is bound-
edly complete. IfV : (Q, A) — (9", A") is a measurable mapping such that its distributions P} ,

0 € ©, are identical, then S and V are stochastically independent under each measure Py, 6 € O.

Proof of Lemma 9.13. By sufficency of S there exists a stochastic kernel K from (2,.4) to
(€, A’) describing the conditional distribution of X ~ 1Py, given S, simultaneously for all § € ©.
That means, for arbitrary A’ € A’, A” € A” and 0 € O,

Py(S e A,V e A") = Eg(IEg(1a(S)1an(V)]5))
= Ey(1a(S)Py(V € A”|5))
= Ep(1a(S)K(S,{V € A"})).

Setting A" = €)', we obtain the equation
Py(V € A”") = By K(S,{V € A™).

By our assumption on V/, the left hand side does not depend on 6 € O, and we denote this number
with P(V € A”). Hence f(s) := K(s,{V € A"}) — P(V € A") defines a bounded measurable
function on (€', A”) such that IEq f(S) = 0 for all # € ©. By completeness of £7,

Py(f(S) #0) = Py(K(S,{VeA})#P(VeA”) =0 foraldeo.
Hence for arbitrary A’ € A, A” € A" and 6 € O,

]PQ(S S A/, Ve A”) = Eg(lA/(S)K(S, {V S A”}))
= IEg(lA/(S)P(V € A”))
= Pe(S e A)P(V e A",

which proves stochastic independence of .S and V' under IPy. U
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Application to exponential families. Let & = (2, A, (IPp)gco) be a natural exponential family
as described at the beginning of this section with open and convex parameter space © = N x ' C
R? x R and sufficient statistic (S,Y) € R? x R. Writing § € © as § = (v, ), we know from
Neyman’s theory how to construct optimal unbiased level-« tests of the null hypotheses “v < ~,”
or “y > ,” or “y =, for any given value v, € T".

Note that for the restricted experiment £, = (2, A, (IP, 5, ) en) the statistic S is sufficient, and
the family €5 = (R?, Borel(R?), (IP] ),en) is complete. Suppose we can identify a real-valued
statistic

V = f(S5,Y)

with the following two properties:
o V = f(S,Y) is strictly increasing in Y almost surely,
e the distribution of V" under IP, ., does not depend on v € N.

Then optimal unbiased level-a tests of the null hypotheses above may be constructed in terms of

V' and its unconditional distribution under IP, ,, where v € N is arbitrary.

For instance if V' has continuous distribution function £, in case of v = +,, then the right-sided

p-value

1—- F’Vo (V)
yields an optimal unbiased level-a test of “y < ~,”, whereas the left-sided p-value
Fy, (V)

is optimal for the null hypothesis “y > ~,”.

Example 9.14 (Student’s ¢-test for a Gaussian mean). As in Example 9.3 we consider the statisti-
cal experiment £ = (R", Borel(R™), (N (1, 02)®™ ) (1.0)eRx (0,00) ) - SUPpOse we want to construct
optimal unbiased level-« tests of “u < p,” or “u > p,” or “u = p,”, where i, is a given fixed
number. In all three cases we have to deal with the nuisance parameter o. With M denoting

Lebesgue measure on R” times (27) /2 and X;(w) := w;, we may write

dP, o " (X — p)?
logiMu’ = —Z(gaz)—nloga
i=1
n _
(Xi = p10)® | 1pt — p10) (X — p1o)
= _Z; 572 + 2 —nlogo
1=

= VS"“,YY*K’(V”Y)?
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where
-1
v = T.‘Q € (—O0,0),
Vn(p — o)
7:7(/%) - 0_2 ; € R’

S =S(po) = Y (Xi = po)?,

Y =Y (o) = Vn(X — po).
Hence an unbiased test of “p < p,” (or of “u = p,”") may be identified with an unbiased test of
‘67 S O” (Or Of 6‘,‘)/ — 0”).

Instead of determining the conditional distribution of Y, given S, under IP,,, , for some o > 0

directly, we apply Basi’s lemma and recall student’s method from introductory statistics courses:

With the sample standard deviation

1 _
_ Y2
Sx = n—1 Z(Xl )
=1
it is well-known that ~

n(X —

V= Vi) = W ~ b
X

whenever 1 = p,, irrespective of o > 0. But
X = X)? = (X - o)’ —n(X — po)? = 5V,
i=1 i=1

SO

v - vn—1Y
/S —v?’

which is monotone increasing in Y almost surely. (Note that S > 0 and Y? < S almost surely.)

Hence with F;,_; denoting the distribution function of ¢,,_1, the left-sided p-value
Foo1(V(1o))
yields optimal unbiased tests of “u > u,”, the right-sided p-value
1 — Fp1(V(po))

yields optimal unbiased tests of “u < p,”, and the traditional (1 — «)-confidence interval

_ SX
X+ — tnfl;lfa/2}

vn

for  is based on optimal unbiased level-« tests of one-point hypotheses “i = 1,7, to € R.
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Example 9.15 (Comparing two Gamma scale parameters). Suppose we observe independent ran-
dom variables
Y1 ~ Gamma(ai, 1) and Yy ~ Gamma(ag,32)

with given shape parameters a1, a2 > 0 and unknown scale parameters 51, 32 > 0. Suppose we

are mainly interested in the ratio
p=p(B) = b1/
where 3 = (B1,32) € (0,00) x (0,00). With Q := (0,00)2, Lebesgue measure M on (2 and

Yi(w) := w;, this corresponds to the statistical model with distributions IPg given by

dPg _ (Y1/B)" " exp(=Y1/B1) (Y2/B2)" " exp(—Y2/B2)
dM F(al)ﬁl F(ag)ﬁQ

With the modified measure M, given by

dMO }/1a1—1Y2a2—1

dM T F(al)F(ag)

we may write
dIPg -1 -1
1 = —YI+—Yy—al —ayl .
08 ML 3 1+52 2 — ailog f1 — azlog B2

For a hypothetical value p, of p we may rewrite the log-likelihood as

dlPg — p—po -1
2, T mp T

= vS+7Y —k(v,y)

(Y1/po + Ya) — ay log B1 — az log B2

with
v=v(B) = % € (—00,0),
o P~ Po
v =78, p0) = B € R,

S = S(po) = Yl/po+Y2a
Y =Y(po) = Y1/po

and the normalization constant x(v,7y) = a1 log 81 + ag log 32. Note that (v,+) lies in the open

convex set

{(l/,’}/) € (—O0,0) XR: v < _V}v
which contains (—o00,0) x {0}. Hence optimal unbiased tests of the null hypothesis “p < p,” or
“p > po” or “p = p,” may be viewed as optimal unbiased tests of the null hypothesis “y < 0”
or “y > 0” or “y = 0” and could be constructed with the conditional distribution of Y, given S,

under any distribution P g, ,, 5,

In case of p = p,, the distribution of (Y7 /p,, Y2) coincides with the distribution of 5(Z1, Z2)

with independent random variables

Z1 ~ Gamma(ai,1) and Zy ~ Gamma(ag,1).



173

Then the test statistic

Y Y
V(po) — (pO) — 1/[)0
S(po) Yl//)O + Y5
has the same distribution as 7
1
—— ~ Beta(ay, a2),
Zn + Zo (a1,02)
irrespective of B3 = —1/v. Thus by Basd’s lemmaor a direct argument, V' (p,) and S(p,) are

stochastically independent in case of p = p,, and optimal tests are obtained by comparing V' (p,)
with Beta(ay, az).

Specifically, if we denote the u-quantile of Beta(ai, ag) with Betay, 4,4, then an optimal unbi-

ased level-a test of “p > p,” rejects this null hypothesis if
V(po) < Betag, ag:a-
This leads to the (1 — «)-confidence region
Co(W1,Ys) = {po >0:V(py) > Betaal,az;a}

Yy
Z{po>0:

Y1 + poYo
= (O’ E(BU«L@Z?Q B 1))

for p. Analogously, an optimal unbiased level-« test of “p < p,” rejects this null hypothesis if

> Betaal,az;a}

V(po) > Betaal,az;l—a>

and this leads to the (1 — «)-confidence region

Y1,
Ca(YleQ) = (E(Bml,az;l—a - 1)’ OO)

for p.
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Chapter 10

Some Asymptotics

10.1 Testing, Total Variation and Hellinger Distances

Let P, (@ be two probability distributions on a measurable space (€2,.4). In this section we in-
troduce statistically meaningful measures of distance between P and () and establish connections

between them.

Testing affinity and distance. Let X be a random variable with unknown distribution in { P, Q}.
Now we consider a statistical test ¢ :  — [0, 1] and interpret ¢ (X ) as the probability of claiming
that X ~ @, whereas 1 — (X)) is the probability of claiming that X ~ P. The quality of ¢ could

be measured by the risk
IP(error of 1st kind) + IP(error of 2nd kind) = /godP + /(1 — ) dQ.

Hence a natural measure of similarity between P and () is given by the testing affinity

np(P,Q) := inf (/gde+/(1—go)dQ).

tests ¢
As shown in the next lemma, the latter infimum is always a minimum.

Lemma 10.1 (Testing affinity and distance). Suppose that P and () have densities f and g, re-

spectively, with respect to some measure M on (2, A). Then

nr(PQ) = / min(f, ) dM.

The minimum is attained by any test @ such that p = 0on{f > g} andp =1 on {f < g}.

There exists always a measure M dominating both P and (), and the testing affinity n,(P, Q)
does not depend on the choice of M. The related quantity

Dr(P.Q) = 1~ [min(fg)ar = 5 [ 1f —gldn

is the so-called testing distance between P and (). It defines a metric on the space of probability

measures on (§2, M) with values in [0, 1].
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Proof of Lemma 10.1. Note first that for any test ¢,

/ pdP + / (1- ) dQ = / (@) F(@) + (1 — p(w))g(w)) M(dw)
> /min(f(w),g(w)) M (dw)

with equality if

o) — {o if f(w) > g(w),

1 if f(w) < g(w).
This proves already the first part of the lemma.

As to the second part, consider the particular measure M, := P + Q. Then M,(2) = 2 and
P(A) = Q(A) = 0 whenever M,(A) = 0. Hence by the theorem of Radon—Nikodym there exist
densities f, and g, of P and @), respectively, with respect to M,

Now let M be an arbitrary measure such that f := dP/dM and g := dQ/dM exist. Then M, has
density h := f + g with respect to M. Defining f, := f/h and g, := g/h with the convention
0/0 := 0, we have

[win(Gogoyarty = [ min(s/hg/mhars = [ minz,g)d

This shows that the infimum in 7,(P, Q) is always a minimum, and its value does not depend on
the choice of M.

Since f,g > min(f, g) > 0, itis clear that 0 < fmin(f, g)dM < 1. Moreover,
1 —np(P,Q) = / (%—mm(f, g) dM

= ;/(f+g—2min(f,g))dM

= 1 /(max(f, ) — min(f, )) dM

=5 [ 1f=glanr

Obviously this equals 0O if, and only if, f = g M-almost everywhere, which is equivalent to
P=qQ.

Finally, if P, Q, R are probability distributions on (€2, .4), we may assume that there exists a finite
measure M on (2, A) such that f = dQ/dM, g = dQ/dM and h = dR/dM exist. For instance,

M := P+ @Q + R would do the job. But then by the triangle inequality for the norm || - |7, in
LY (M),

Lf = Pllaey o 1f =gl +1lg = Al _
2 = 2

Dr(P,R) = Dr(P,Q) + Dr(Q, R).
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Total variation distance. Another measure of distance is given by the total variation distance

Dry(P,Q) = iteujl}P(A) - Q(A)|.

One could easily verify directly that this defines a metric on the space of probability measures on
(92, A). But the next lemma shows that D, = D.

Lemma 10.2. For arbitrary probability distributions P and () on (0, A),

Dry(P,Q) = max(P(4) = Q(4)) = max(Q(B) — P(B)) = Dr(P.Q).

If P and () have densities f and g as in Lemma 10.1, then the latter two maxima are attained for
arbitrary sets A, B such that {f > g} CAC{f>g}and{f < g} C BC{f <g}.

Proof of Lemma 10.2. Since P(A) — Q(A) =Q(Q\ A) — P(Q2\ A),
Dyy(P,Q) = sup (P(A) — Q(4)) = sup(Q(B) - P(B)).
AcA BecA

In case of P and @) having densities f and g, respectively, with respect to some measure M on

(Q,A),

P(A) - Q) = [La(f=g)ad < [(7-g)" am
with equality if {f > g} C A C {f > g}. Analogously,

AB)-P(®) < [g-prau = [(7-g)au

with equality if {f < g} € B C {f < g}. Consequently,

Dro(P.Q) = 5 [(F=9 +(F =gy )adt = 3 [17=gldst = Dr(P.Q).
O

Hellinger affinity and distance. In many situations it turns out that D.(P, Q) is difficult to
compute explicitly. As we shall see later, interesting proxys are given by the

Hellinger affinity 74 (P, Q) := /\/ fgdM,

and

Hellinger distance Dy (P, Q) := \/;/(\/]7_\/5)2 dM,

where M is some measure on (£2,.A) such that f := dP/dM and g := dQ)/dM exist. As in case
of np(P, Q) and D(P, @), the choice of M is irrelevant. Note also that

Dy(PQP = 5 [(+9-2V/Fg)aM = 1= 1y (P.Q).

The following lemma shows that testing and Hellinger distance induce the same topology on the
space of probability distributions on (€2, A).
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Lemma 10.3 (Relationships between testing and Hellinger distance).

L—y/1=nf < np < ny
D} < Dy < Dyy/2— D%.

Proof of Lemma 10.3. With explicit densities f := dP/dM and g := dQ/dM it follows from
min(a, b) < v/ab for real numbers a, b > 0 that

m(P.Q) = / min(f, g) M < / VigdM = ny(P.Q).

and

In particular,
Dp(P.Q) = 1=np(P,Q) = 1—ny(P,Q) = Dy(P,Q)*

As to the other bounds, it follows froma — b = (\f — \/5) (\/E + \/l;) for real numbers a,b > 0
and the Cauchy—Schwarz inequality that

1 m(P.Q) = Dr(P.Q) = 5 [IVF = VallVF + val am

< ;\//(f+g—2\/ﬁ)dM/(f+9+2\/E)dM

= /(=g (P,Q)( + 1y (P.Q))

_ V l_nH<P7Q)27
DH(PaQ)\/2_DH(P>Q)2'

where the latter inequality is equivalentto 7, > 1 — /1 — 77%[. O

This proves that

Remark 10.4. As mentioned already, the formulae for 7, D, 1 and D, are independent of

the choice of the dominating measure M. Thus some authors write symbolically
n(P.Q) = [ win(aP.dqQ)
Dr(P.Q) = [ 4P da)
(@) = [ ViPda.

Dur.Q) = |[§ [P~ iy

Remark 10.5. Let (€', A’) be a second measurable space, and let 7 : 2 — €’ be a bijection such

that both 7 and 7! are measurable. Then

k(P,Q) = k(P",Q7) fork =np, Dp,ng, Dy

The proof of this claim is left to the reader as an exercise; see also Exercise 2.19.
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Example 10.6 (Testing and Hellinger distance for univariate Gaussian shift). For real numbers

Wi, po and o > 0,

i (N(’ul’ 0-2)"/\/(“27 02)) = QQ)(_W)?

_ 2
N (N (1, 0%), N (g, 0%)) = exp(— M)

802

where ® is the standard Gaussian distribution function. Hence

DT(N(MlaU2)7N(M2’02)) - 2(1)(’/“2_0'“2‘) -1

Dy (N (11, 0%), N (12, 0%)) = J 1—exp(- M).

82

To verify these formulae, we first apply Remark 10.5 to the bijection 7 : R — R with 7(z) :=
o~ (z—min(uy, pu2)). Then it suffices to verify the asserted formulae for the testing and Hellinger
affinity in case of P = A/ (0,1) and Q = N (p, 1), where

_ |M1 - M2|

W
o

But with C' = (27)~ Y2 and ¢(z) := C exp(—x?/2),
WO N 1) = [minola),o(z - ) do
max(a?, (2 — )°)
= C’/exp(— )da?

2
/ _
= QC/j 2exp( (;U2,u)2) dx
w/2
=2 da-pde
— 20(—p1/2).

Moreover,
WO N (D) = [ Vool — ) da

_ c/exp(_ W) da

= C/exp(— xz—x,u—I—,uQ/Z) dx

2
= C/exp (— (=~ ,u/2;2 i ,u2/4> dx

— exp(—4?/8) / oz — p1/2) da

= exp(—p?/8).

Exercise 10.7 (Hellinger distance for multivariate Gaussian shift). For any dimension d > 1,

consider arbitrary vectors y1, y1o € R% and a symmetric, positive definite matrix ¥ € R?*?. Show
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that

nr (Na(p, 2), Na(p2, X)) = 2‘I><—\/(M2 — 1) T (2 — M1)/2)7
M (Na(pa, 2), Na(p2, ) = exp(—(p2 — 1) 'S (2 — 111)/8).

Hint: Consider the transformation 7(z) := ©~Y2(x — ;) of z € R%.

Exercise 10.8 (More about the relation between testing and Hellinger distance). (a) Show that

D} < Dy < Dyy/2- D%
\/1—14/1—D2 < Dy < /Dr.

(b) Visualize these two pairs of bounds graphically.

the inequalities

are equivalent to

(¢) Construct for any v € [0, 1] two distributions P, and @ on a suitable sample space (£2,.A)
such that Dy (Py, Q) = D% (Py, Q) = .

Remark 10.9 (Product measures). For j = 1,2, let P; and ); be probability measures on a
measurable space (£2;,.4;). Then

N (PL @ P, Q1 ® Q2) = ny(Pr, Q1)ng (P, Q2).

For if dP;/dM; = f; and dQ;/dM; = g;, then by Fubini’s theorem,

(P ® P, Q1 ® Q2) = - V Fi(wr) fa(w2)g1 (w1)g2(w2) My @ Ma(d(wy,ws))

I/ \/flgldMl/ V fag2 dM>
Ql QQ

= ny (P, Q1)ny (P2, Q2).

Inductively this implies that
N (PP, Q%") = np(P,Q)"

for arbitrary integers n > 1.

10.2 Asymptotics for Repeated Binary Experiments

Suppose we observe independent random variables X1, ..., X, with unknown distribution R €
{P,Q}, where P and @ are two different given probability distributions on (£2,.4). Then

Dp(P®",Q%") > Dy (P®",Q%")* = 1—ny(P,Q)"

converges to 1 exponentially fast. That means, there exists a sequence of tests ¢, : Q" — {0,1}
such that

IEPQDn(Xn)—l_IEQ(l_(Pn(Xn)) — 07
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where X, := (X;)!"_,. Throughout this section, asymptotic statements are meant as n — 00,

unless stated otherwise.

More interesting is the situation when P and () depend on the sample size n. That means, for
each sample size n > 1 we observe X, = (X,,;)I"; with independent components X1, ..., Xy,
having unknown distribution R,, € {P,,Q,}, where P, and @, are different distributions on
(€2, A). The question is, under which conditions on (F,,),, and (Q),, the potential distributions
P2 and Q%" of X, satisfy one of the following three conditions:

e The are (asymptotically) indistinguishable, i.e.
Dr(PE", Q™) — 0.
e They are (asymptotically) perfectly distinguishable, i.e.
Dr(P",Qp") — 1.
e They are (asymptotically) “interesting” in the sense that

liminf Dp(PE™,Q%™) > 0 and limsup Dr(P2",Q%™) < 1.

n—ro0 n—o00

It follows from Lemma 10.3 and Exercise 10.8 (a) that the previous three scenarios are equivalent
to the analogous ones with Dy or D%I in place of Dr. But note that

Dp(Py", Q"2 = 1—ng (P, Q5")
=1 _nH(Pan)n
=1- (1_DH(Pn7Qn>2)nv

and the subsequent Lemma 10.11 shows that
Dy (PE", Q™2 = 1 — exp(—nDpy (P, Qn)?) + 0.

This implies the following results:

Lemma 10.10. (a) Fora € {0, 1}, the following two conditions are equivalent:
lim Dp(P2", Q%") = a,
n—oo

. 9 o ifa=1,
nh—>Holo nDH(Pan) - {0 ifa = 0.

(b) Asn — oo, the distance Dp(P2"™, Q%™) stays bounded away from 0 and 1 if and only if
nDg (P, Qn)z stays bounded away from 0 and co.

Lemma 10.11 (Ailam 1968). For arbitrary real numbers x € [0, 1] andn > 1,

0<e™—(1-2)" <elnl
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Proof of Lemma 10.11. Since ¥ > 1 + y for arbitrary y € R, we know that
Hy(z) = e ™ —(1—a)"
satisfies the inequality
Ha(2) = ()"~ (1= a)" > 0

for arbitrary = € [0, 1]. Note also that H,,(0) = 0 and H, (1) = e~™ > 0. Moreover,

>0 ifn=1,
H (z) =n(l—2)"'-ne™ {=10 ifn>1landz =0,

<0 ifn>landx=1.

Hence

max Hi(z) = Hi(0) < e
z€[0,1]

For n > 1, any maximizer x,, of H,, over [0, 1] has to satisfy 0 < x,, < 1 and H) (z,,) = 0, i.e.

(1 _:L,n)n—l — ¢ MTn
Consequently,
max H,(x) = Hy(z,) = e ™" — (1 — zy)e” ™"
z€[0,1]
= n ' nz,e "
< n~! max se”*
s>0
— ple !,
because elementary calculations show that se™® is maximized for s = 1. O

Expansions of root-densities and log-likelihood ratios. Suppose that for some measure M on
(€2, A) and arbitrary n > 1, the densities

dry, dQn

fn = W and gn ‘= dM

exist. Suppose that these densities satisfy the following condition:

(C1) For some probability measure P on (€2, A) with density f = dP/dM,
fn — f in LY(M).
Furthermore, for some function h € L?(M) with ||h||az2 > 0,

ho = v1(\/Gn —/fa) — h in L*(M).

Here and throughout the sequel, L" (M) is the space of all (equivalence classes of) measurable
functions functions h : @ — R such that ||h|[s,» < oo, where

I A

for r > 1. (Two functions h, h are viewed as equivalent if M (h # ﬁ) =0.)

Some first consequences of this condition:
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Lemma 10.12. Under Condition (C1),

nDH(PTH Qn)z - ”hH?\/[,2/27

and
DT(P7Pn)uDT(P7Qn>7DT(Pn7Qn> — 0

Proof of Lemma 10.12. The convergence of h,, to h in L?(M) implies that

h2 — h? in L*(M),

n

because
/\hi —h*ldM = /\hn — |l + h| dM
< |hn = hllar2llhn + bl a2 (Cauchy—Schwarz)
< |hn = Bl a2 (2l Rlla2 + |Bn — Rl ar2) (triangle inequality)
— 0.

In particular,
0Dy (Pay Qn)* = halira/2 = I0l32/2-

Note that f,, — fin L'(M) is equivalent to D.(P, P,) — 0, and by Lemma 10.3, D.( Py, Q) <
V2 Dy (P,, Q) — 0. Hence by the triangle inequality, D (P, Qy,) — 0 as well. O

For the next result we have to augment Condition (C1) by an additional one:

(C2) The functions f and A in (C1) satisty
Mh#0=f) = 0.

Lemma 10.13. Suppose that Conditions (C1-2) are satisfied. Let (A,,),, be an arbitrary sequence
of events A,, € A such that

min{P,(4,), Qn(4,)} = O(n™").

Then
n}Qn(An) — Pn(An)‘ — 0.

Proof of Lemma 10.13. In terms of the densities f,, and g, we may write
n(@u(dn) ~ Puld) = n [ (o fr) bt
=n [ (Vo VE) W+ V) M
/A hi(2v/nfn + hn) dM,
/ hn (24/1gr, — i) dM.

n
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Consequently, by the Cauchy—Schwarz inequality,

n|Qn(An) — Pa(4y)| < 2\/nmin{Pn(An),Qn(An)}/A h%dM+/A h% dM.

Hence it suffices to show that
/ h2dM — 0.
An

Since h2 — h? in L'(M), this is equivalent to

/ h2dM — 0.
An

But it follows from Lemma 10.12 and the assumption that min{ P, (4,), Q,(4,)} = O(n™1) that
P(A,) — 0. Consequently, for any fixed C' > 0,

/ h2dM < / h*dM + CP(A,) — / h*dM,
An {r?>Cf} {r2>Cf}

and
lim h?dM = / h?dM = 0
o0 Jin2>cf} {n2>0=F}
by dominated convergence and our assumption (C2) on f and h. O

Implications for log-likelihood ratios. Now we consider again the random observation tuple
X, = (Xpni); with independent components X ,; having distribution R,, € {P,,, @, }. Optimal
tests of “R, = P,” versus “R, = (),,” are based on the log-likelihood ratio

dQe™ dpen - In
A, = log(dM®n(Xn) dM®”(Xn)> = Zlog E(Xm) € [—o0, 0]
i=1

with the conventions that log(0) := —oo, log(co) := 00, a/0 := oo for a > 0 and 0/0 := 0.
Indeed, since P,(f, > 0) = 1 = Q,(gn > 0), the random variable A,, is well-defined almost
surely, and

Pp,(Ap <o0) =1, Pg,(Ap > —00) = 1.

It may happen with strictly positive probability that A,, € {—o0, 00}, but this probability con-
verges to 0. Here is a precise statement:

Theorem 10.14. Under condition (C),

N(—2Hh|ﬁw’2,4HhH?\4,2) if R, = P, for alln,

A, —
N (4207132 410l3s2)  if Ry = Qn for all n.

In this result “— " stands for convergence in distribution, meaning that for any fixed continuous

function J : [—o00, 0] — R,

E J(2||hlla2Z — 2||h|3) if Ry = P, foralln
EJA,) (2] 17113,2
EJ(2(hllm2Z +2||hl35) if Ry = Qy forall n
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with a random variable Z ~ N(0, 1). Since the limiting distributions are continuous, and since

ki?HMI?w;)

P2lAllvaZ 2002, < k :<I><
(217l ar2Z F 2||R)I32 < k) 2Mhlars

Theorem 10.14 may be rephrased as follows: For arbitrary k € R,

k+2||h|?
(””]‘“) if R, = P, forall n,
2|7l as,2
POSB = ko
- M,2) .
_ if R, = @,, for all n.
(STl N

This implies the following result about optimal tests of “R,, = P,” versus “R,, = Q,”:

Corollary 10.15. Let ¢, o : Q" — [0,1] be an optimal level-a test of “R,, = P,” versus
“R, = Q,". Then
EQ, ¢na(Xn) = (@7 (@) +2[[h]a2).

Remark 10.16. Theorem 10.14 and Corollary 10.15 show that under Conditions (C1-2), testing
P2™ versus Q2™ is asymptotically as difficult as testing
N(0,1) versus N (u,1),
where
o= 2||hllare2-

Indeed,
Dy (P, Q5" = 1—exp(—nDy(Pn, Qn)?) +O(n ™)

converges to
1—exp(—[|hl32/2) = 1 —exp(—p?/8) = Dy(N(0,1),N (. 1))".

Proof of Corollary 10.15. According to the Neyman—Pearson lemma, we may assume that for

some constant k,, o, € [—00,00),

0 ifA, <kpa,
n,o Xn == ’
#nalXn) {1 it Ap > ko
But for fixed £ € R, )
k+2||h
Pp (A, > k) — 1-@(‘”“)
2|[hlla2

The right hand side is strictly decreasing in £ and equals « if, and only if, & is equal to
ko = =2||hlfig2 +2[Rl227 (1~ ).
Hence k;, o — ko, and IEg,, ¢n, (X)) converges to

1~ ooz 21hlray

=1—-&(-2|h o1 — = $(d ! 2 A )
2l (=2lhllarz + @711 =) = &(®" (@) +2lhln2)

O
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Proof of Theorem 10.14. Tt suffices to consider the case (R,,), = (P, )n, because interchanging
the roles of (P,), and (Q), would result in replacing A,, with —A,,, and Condition (C) would
still be satisfied with —h in place of h.

Since \/Gn = V/[n + hn/\/n, we may write

n

A, = 2 lo (Xni) = 2 log(1+ ——=
Xt 7o) = 2 o1 2 )

with h,, := hy, /N fn € [—\/ﬁ, oo]. It follows from the wellknown Taylor series of log(1 + y) for
y € (—1,1) that

2

y . lyl®
log(14+y) = y— = +rem(y) with [rem(y)| < —F———

for arbitrary y € [—1, 00). Consequently, with

P ix
D, = max Ln( ni)|
1<i<n /n
we obtain the expansion
2 s 1~
(10.1) An = == ho(Xni) = = ) hn(Xni)? + Rem,
vn i=1 s
with
2D, 1 .- )
R < g hn (X
| emn\ 3(1—Dn)+ ni:l n( nz)

Now we apply the Central Limit Theorem as formulated in Corollary A.24: Suppose we can show
that

(10.2) \/ﬁ/ﬁn dP, — p,

(10.3) /}32 P, — o2,

(10.4) / R Lz sng) APy — 0 for any fixed e > 0.
Then

J R 1<
\/ﬁ;hn(Xm-) —z N(p,o?), HZhn(xm-)2 —, 0%, D, —, 0.
These facts and (10.1) imply that
Ay =2 NQ2up— o2, 40?).

Consequently, it suffices to verify (10.2) with p = —\|h||?w,2/2, (10.3) with 02 = HhH?M2 and
(10.4).
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As to (10.2),
\/ﬁ/ﬁndPn = /\/97‘ mfndM

— / (VT — f) dM
= n(ny (P, Qn) — 1)

= —nDy(Pn,Qn)?

— —|hll3r2/2,

see Lemma 10.12. Concerning (10.3),
h; dP, = / -2 f,

/ 7

/fn>0}

= / h*dM + o(1)
{fn>0}

= /thM— h*dM + o(1)
{f2=0}

h% dM

= Al

because A, := {f, = 0} satisfies P(A,)) = P,(A4,) + o(1) = o(1), see also the proof of
Lemma 10.13.

It remains to verify (10.4), that means, for any fixed € > 0,

/ h2dM — 0.
{h2>e2nfn}

Again, since h2 — h? in L1 (M), it suffices to show that

/ h2dM — 0,
{h%252nfn}

and the left hand side is equal to
[e.e] oo
/ M(h* > rand h2 > *nf,)dr < / M(h* > r)dr = /h2 dM.
0 0
Consequently, by dominated convergence, it suffices to show that for any fixed r > 0,
M(h* > rand h2 > €nf,) — 0.

Indeed, it follows from Markov’s inequality that for any fixed § > 0,

M(h* > rand h2 > €nf,)
M(h* >rand h* +6 > en(f — 8)) + M(|hZ — h?| > &) + M(|fn — f| > 0)

< M(h*>randh®+0 > n(f —6)) + 6 k2 — B |larg + 6| fo — Fllma

— M(h* > rand f <9).

IN

Letting § | 0, the right hand side converges to M (h? > r and f = 0), and this equals 0 by
assumption (C2). L]
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10.3 Fisher Information

Consider a statistical experiment & = (£2, A, (Py)geo) With © being an open subset of R?. Sup-
pose that each Py is given by a density fy > 0 with respect to some measure M on (£2,.4) such
that for M -almost every w € (2,

©360 — fo(w)

is continuously differentiable with gradient

o = (.

Assuming that for any 6 € ©, each component of f, 12 f9 belongs to L2(M), the matrix

J(0) = ‘]EjgrdM

is well-defined and called the Fisher information (matrix) of £ at 6.

Here is yet another interpretation of this matrix: Let Ay := log fy. Then for M-almost every

w € €} the mapping

0360 — /\g(w)
is continuously differentiable with gradient
d

)

=1

Jo

Ao(w) = <f9

and
J(6) = / SA dPp.
Let (6,,), be a sequence in © such that for fixed § € © and § € R,
Vn(0, —0) — 6.

Then the densities fg, and fy satisfy

T f
ﬁ(\/ﬂ— \/fie) — hgs = o Ts

almost everywhere. If in addition

(10,5 n [V =) st = [ gan

then by Scheffé’s theorem, Condition (C) in the previous section is satisfied with Py in place of
P,, Py, in place of @), and limit function h = hy ;. That means, testing Pg% versus Pgi" is
asymptotically as difficult as testing N'(0, 1) versus N (s, 1) with

p = 2||hllpmae = /o7 J(0)d.

Condition (10.5) is satisfied, if

_6TJ(0)s

3 +o(||6]*) asé — 0.

(10.6) Ni(Fo; Pots) = 1
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Definition 10.17 (Regular statistical experiment). A statistical experiment £ = (€2, A, (Py)sco)

satisfying the conditions above is called regular statistical experiment.

Example 10.18 (Fisher information in natural exponential families). Suppose that
fo = exp(@TT — /<;(9))

for some measurable mapping 7" : (£2,.4) — R?. Then the experiment & is regular: Obviously,
fo > 0. As shown in the exercises, « is infinitely often differentiable with

1
K(O+6) = K(0)+ 8T Bo(T) + 1 57 Varg(T)5 + o)
as 0 — 0. In particular fy(w) is a smooth function of # with
fo = (T =Tg(T))fo, Ao = T —TEp(T),

J(0) = Varyg(T).

This matrix is positive definite for any # € ©, unless M7’ is concentrated on some hyperplane in
R4,

Condition (10.6) is satisfied, because

Ni(Po, Poys) = exp(k(0+6/2) — k(0)/2 — k(0 +6)/2)

and
T T
k(O46/2) —k(0)/2 —k(O+)/2 = 0 J8(9)5 9 J4(0)5 + o(||6]])
T
= IO )

Remark 10.19 (Smooth transformations of parameters). Let £ = (2, A, (FPy)pecp) be a regular
statistical experiment with Fisher information J(-), and let 7 : ¥ — Q be a diffeomorphism from
another open set ¥ C R? onto ©. That means, 7 is bijective and continuously differentiable with

Dr(y) = (Tgﬁ))jﬂ

nonsingular Jacobian matrix

for any ¢ € .
Then the experiment £ := (Q, A, (Py)ypecy) with Py := Py (y) is regular, too, and its Fisher

information J(-) is given by

J() = Dr(e) " J(r(¥)) D7 ().

This follows from the fact that ]5¢ has density fr(y) with respect to M, and with 6 = 7(1)) the
chain rule implies that

Ofp(w) _ N~ 0fo(w) O7i(¥)

— T4
v o0, ou; DT )

i
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Moreover, as § — 0,

A = r(+6) —7(¥)

Dr(@)d +o([l5]) = O(l4]),

whence

77H(131/1+6a Isw) = g (Posn, Py)

i
= 1= 2208 4 oiap
T T

8

Example 10.20 (Binomial distributions). We observe X ~ Bin(n,p) with an unknown pa-

rameter p € (0,1). The natural parameter for the experiment (Bin(n, p)) is given by

pe(0,1)
7(p) := log(p/(1 — p)) with sufficient statistic 7’ = X, and 7 : (0,1) — R is a diffeomor-
phism with 7/(p) = (p(1 — p)) L. Since Var,(X) = np(1 — p), Fisher information at p is given

by J(p) = 7'(p)? Var,(X), i.e.
J(p) = m

Note that .J(p) = Var,(p)~" with p := X, which is not a coincidence as explained later.

Example 10.21 (Poisson distributions). We observe X ~ Poiss(A) with an unknown parameter

A > 0. The natural parameter for the experiment (Poiss()\)) is given by 7(\) := log A with

A>0
sufficient statistic T = X, and 7 : (0,00) — R is a diffeomrophism wit 7/(\) = A~!. Since
Vary(X) = A, Fisher information at \ is given by J(\) = 7/(\)? Vary (X)), i.e.

J) = AL

Again J(A) = Vary(A)~! with A := X.

Implications for point estimation

With our results about testing in Section 10.2 one can prove various precision bounds for point

estimators. We present one particular result:

Theorem 10.22 (Asymptotic version of the Cramér-Rao bound). Let & = (Q, A, (Py)geco) be
a regular statistical experiment with Fisher information J(-). For each sample size n > 1 let
@L : Q" — R4 be an estimator such that for a fixed § € ©,

VO Xn) = 6) = Na(0,%(6))
whenever 6,, = 0 + O(n~/?) and X, ~ Pgi”. If J(0) is positive definite, then
¥(0) > J(O)*

in the sense that " X(0)n > n'.J(0)~'n for arbitrary n € R%.
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Proof of Theorem 10.22. For a fixed vector § € R?\ {0} define
0, == 0+n"'/%.
Then for any vector n € R?\ {0},

N(O.n7TS0)) i X~ PP

\/ﬁ(é\n(Xn) - 9)T77 —L
N(Tn,n"S(0)n) if X, ~ P,

because
Vo —0)Tn = V(s —60,) "+ 0",

Consequently,

on = {(1)} if ‘/ﬁf_ﬁgg;;” {z} o1 —a)

defines a test of P(;@” versus Pgi" such that

a it X,, ~ P

IE e, (X, )
n'E(0)n

If we would replace ,, with the optimal level-« test of P(;X’" versus Pgi", then the asymptotic
power under the alternative hypothesis would be

(@7 (a) + /6J(0)9).
Consequently,
6Ty
—— \/oTJ(6)6.
ViTE(0)n : )

In other words, for arbitrary 6,77 € R%\ {0},

5Ty < \/nTS(0)/67 1(0)6.
Setting § = J(0) 7 yields the inequality
' J(0) ' < n'S(0)n
for arbitrary n € R\ {0}. O

Example 10.23 (Maximum-likelihood estimation in natural exponential families). Let £ be a nat-
ural exponential family with sufficient statistic 7 : (€2, .A) — R? such that M is not concentrated
on a hyperplane in RY. Let (6,,),, be a sequence in © with limit § € ©, and let X,, ~ Pgi“. Then
the log-likelihood function

Ly=Ln(Xn):0 = R, Ly(0) := Y log fo(Xni)
i=1
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has the following property: With probability tending to 1, there exists a unique maximizer §n =
an(Xn) of L,, and

V(O = 0n) = Na(0,7(0)71) = Ny(0, Varg(T) ™).

To verify these claims, note first that
L,(0) = n(T, 0 — k(9))
with T, := n= 23" | T(X,;), and thus

VLn(0) = n(T, — Ey(T)),
D?L,(8) = —n Vary(T).

This shows that L, is strictly concave, whence L,, has a unique maximizer or no maximizer at all.

One can deduce from the multivariate version of Lindeberg’s Central Limit Theorem that
Zn = (T, — g, (T)) —, Ny(0, Vary(T)).
Now we introduce the localized log-likelihood function H,, : R — [~o00, 00) with
Hy(8) = L (0 +n25) — Ln(6y),

where H,(§) = —oo if, and only if, x(6,, + n~'/26) = co. Then elementary calculations reveal
that
Ty Lot
H(8) = 275~ 587 Varg(T)3 + Rem (9)

where

sup |Rem,(d)] —, 0
s:flofl<c

for any fixed C' > 0. From this one may deduce that with probability tending to one, H,, has a
unique maximizer given by
Varg(T) ™ Z,, + 0,(1).

But this is equivalent to saying that with asymptotic probability 1, the unique maximizer §n of L,

exists and satisfies
V0, — 0,) = Varg(T) ™' Z, + 0,(1).
In particular,
V(0 — 0n) =, Ny (0, Varg(T) ™)
because Z,, — Ny(0, Varg(T)).

Example 10.24 (Maximum-likelihood estimation in smoothly parametrized exponential families).
Let £ = (Q, A, (Py)yew) be an exponential family with sufficient statistic 7' : Q — R?, i.e. P,
has density

fo = exp(r(¥) T = K(7(¥)))
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for some bijective mapping 7 : ¥ — ©, where ¥ and © are open subsets of R, and

k(0) = log/exp(GTT) dM.

Suppose further that 7 is a diffeomorphism.

Now let (1), be a sequence in ¥ with limit ¢ € ¥, and let X,, ~ 15152”. Then the log-likelihood
function L,, = L,(-, X,) = > i, log fw(Xm-) has the following property: With asymptotic

probability 1, there exists a unique maximizer v, = 1,,(X,,) of Ly (-), and

V(e —n) =z Na(0,J()7")

with the Fisher information J(-) of £, i.e. J(v)) = D7(¢)) T Vary(T)D7(1).

With 6, := 7(1,,) and 0 := 7(1)), it follows from Example 10.23 that with asymptotic probability

1 there exists a unique maximimum likelihood estimator @\n = @\n(X n) for the experiment £ =
(2, A, (Pp)oco) with P,y := Py such that

V(On — 0,) = Nyg(0, Vary,(T) ™).

But then Jn =71 (§n) is a maximum likelihood estimator for £, and elementary calculus reveals
that

V(tn — ¥n) = D)0 — 0n) + 0p(1)
— ¢ Ny(0, D ()~ Vary (T) (D7 ()™ ")
= Na(0,7()71).
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Appendix A

Auxiliary Results

A.1 Some Basics from Measure Theory

For reference in the main text, we collect some basic notions and results in this section; for a
thorough account of measure theory, we refer to the monograph of Bauer (2001). Throughout this
section let €2 be a nonvoid set, and let P(€2) be the family of all subsets of (2.

Fields, o-fields, contents and measures

Definition A.1 (Field and o-field). A family A C P(€2) is called a field over (2, if it satisfies the
following three conditions:

(F1) 0,0 € A.

(F2) f Ae A, thenQ\ A € A

(F3) If A,Be A,then AUB,ANB € A.

A family A C P(9) is called a o-field over (2, if it satisfies (F.1-2) and the following condition:
(E3), If Al, AQ, Ag, ... € A, then Unzl An, ﬂnzl A, € A.

Remark A.2. If condition (F.2) is satisfied, then (F.1) is equivalent to 2 € A, and in condi-

tions (F.3) and (F.3), it suffices to consider only the unions or only the intersections of sets in

A.

Definition A.3 (Content and measure). Let A be a field over 2. A mapping M : A — [0, 0] is
called a content, if it satisfies the following two conditions:

M.1) M(0) = 0.

(M.2) M(AUB) = M(A) + M(B) for disjoint sets A, B € A.

The mapping M is called a measure, if it satisfies (M.1) and the following condition:

M.2), M(U7121 An) = anl M(A,,) for pairwise disjoint sets Ay, Ay, As, ... in A such that
Un21 A, € A.

A content or measure M is called finite if M(Q) < oo. In case of M(Q) = 1, it is called

probability content or probability measure, respectively.

195
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Any measure is obviously a content. More interesting is the question under which additional

property a content is a measure.

Lemma A.4. A content M on a field A is a measure if and only if it satisfies the following
continuity property: If By C By C Bs C --- are sets in A such that B := Un21 B,, € A, then
M(B) = limy,—y00 M (By,).

A finite content M on a field A is a measure if and only if lim,,_,, M (A,,) = 0 for arbitrary sets
A1 DAy D A3 D --- inAWithﬂn>1An:®.
Here is an important result about the extension of measures:

Theorem A.5 (Carathéodory). Let M be a finite measure on a field A over €2, and let A, be the
smallest o-field over €) containing A. Then there exists a unique measure M, on A, such that
M,(A) = M(A) forall A € A.

Measurability and integrals

Measurability. Let (2, .4) and (X, B) be measurable spaces, that means, A is a o-field over €2,
and B is a o-field over X'. A mapping X : Q — X is called A-B-measurable if

X YB)={weQ: X(w)e B} ¢ A forall B € B.
Sometimes one abuses notation slightly and talks about a measurable function X : (2, 4) —
(X, B).
Suppose that B is generated by some family £ C P(X). That means, B = o(€) is the smallest
o-field containing £. Then X is A-B-measurable if and only if

X HE) € A forall E€é&.

If it is clear from the context which o-field B the set X’ is equipped with, one talks about a .A-
measurable mapping X : Q@ — X or a measurable mapping X : (2, A) — X. In particular, if
X is some interval in R = [—o0, 00}, then B is tacitly understood to be the Borel-o-field, i.e. the

smallest o-field containing all intervals in .

If (fn)n>1 is a sequence of A-measurable functions f,, : £ — R which converges pointwise to a
function f : Q — R, then f is A-measurable as well.

Lebesgue integrals. Let M be a measure on a o-field A over €. For an A-measurable function
f: Q — R, its integral with respect to M is defined as follows:

Case 1. Let G, be the set of all functions f of the form f = > """ | \j14, withn € N, \; € [0, 00)

and A; € A. For such a function we define

1=1

One can show that this definition does not depend on the particular representation of f.
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Case 2. Let f : Q — [0, 0o be A-measurable. Then
[ raar = sw{ [gar g e < 1},
Two important properties of this integral are: For A-measurable functions f, g : Q — [0, o0],
/(af +bg)dM = a/fdM + b/ng for arbitrary constants a, b € [0, o],

and

/fdMg /ng if f < g.

Case 3. Let f : Q — R be A-measurable. We write f = f+ — f~ with f* := max(%f,0), so

|fl=f*+ f. Then
/fdM = /f*dM—/fdM,

provided that one of the two integrals [ f +dM is finite. Otherwise the integral J fdM is not
defined. This definition implies that

[ ran| < [ir1aar

Moreover, [ f dM is well-defined in R if and only if [ |f| dM is finite.

Sometimes it is useful to indicate arguments of the functions to be integrated, so we also write

[raar = [ ).

In addition, for sets A € A one often writes

/AfdM = /1AfdM,

so [ fdM = [, fdM.

Monotone convergence. If (f,,),>1 is a sequence of .A-measurable functions f,, : Q@ — [0, o],

and is f, T f pointwise as n — oo, then

n—oo

lim | fodM = /fdM.

Dominated convergence. Let (f,),>1 be a sequence of .A-measurable functions f, : Q — R
converging pointwise to a function f. Suppose that |f,| < g for some .A-measurable function
g:Q — [0,00] such that [ gdM < oco. Then all integrals [ f,, dM and [ f dM are well-defined
in R, and

n—oo

lim /|fn—f|dM =0, JL%O/fndM = /fdM.
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Scheffé’s theorem. Let (f,),>1 be a sequence of .A-measurable functions f,, : @ — R con-

verging pointwise to a function f. Suppose that

n—oo

limsup/]fn\dM < /f\dM < oo0.

Then the integrals [ f,, dM and [ f dM are well-defined in R for sufficiently large n, and
lim/|fn—f|dM:0, lim/fndM:/fdM.
n—oo n—oo

Dynkin systems

To verify measurability of certain functions or identity of two measures, the following type of set

families is very useful.

Definition A.6 (Dynkin system). A family D of subsets of {2 is called a Dynkin system over ) if

the following three conditions are satisfied:

(D.1) Q eD.
(D.2) f A€ D,then Q\ A € D.
(D.3) If Ay, As, As, ... are pairwise disjoint sets in D, then Un21 A, €D.

Remark A.7. Conditions (D.1-3) are equivalent to the following three conditions:

D’.1) QeD.
(D’.2) If A, B € Dwith A C B, then B\ A € D;
(D’.3) If By C By C B3y C --- are sets in D, then Un21 B, €D.

Remark A.8. Let D be a Dynkin system over §2. Then D is a o-field over 2 if and only if it is
closed under (finite) intersections, that means, A N B € D for arbitrary A, B € D.
Recall also the following well-known fact about Dynkin systems.

Theorem A.9 (Dynkin). Let £ be an arbitrary family of subsets of 2. There exists a smallest
Dynkin system D(E) over Q) such that £ C D(E). If € is closed under (finite) intersections, then
the Dynkin system D (&) coincides with the smallest o-field o(€) containing .

A classical application of Dynkin systems is the following result about uniqueness of measures.

Theorem A.10 (Dynkin). Suppose that P and () are probability measures on (€2, A), where A =
o (&) for some family € C P(Q2). Suppose further that P = Q) on &. If £ is closed under (finite)
intersections, then () = P on A.

Proof of Theorem A.10. One can easily verify that D := {A € A : P(A) = Q(A)} defines
a Dynkin system containing £. Thus D(£) C D C A. But N-stability of £ implies that D(E)
coincides with o(€) = A, see Theorem A.9. Hence, D = A. O
Exercise A.11. Let Q = {1,2,3,4}, and let £ = {{1,2}, {1,4}}.

(a) Show that o(&) = P(Q).
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(b) Determine D(E).
(c) Find two different probability measures P, ) on P(£2) such that P = @ on D(E).

A.2 Two Compactness Properties of Statistical Tests

Let M be a o-finite measure on a measurable space (£2,.A). Further, let F be the set of all A-
measurable functions f : © — R with [ |f|dM < oo, and let T be the set of all .A-measurable

functions ¢ : © — [0, 1]. Then the set 7 satisfies the following compactness condition:

Theorem A.12 (Weak compactness of 7). The set

{(foram), ,coeT}

is a convex and compact subset of R, where the latter set is equipped with the usual product

topology.

The set R” is the set of all tuples (= ) fer with components x ¢ € R. The product topology on this
set is the smallest topology such that the mapping R” > = — « ¢ € Ris continuous for arbitrary
ferF.

Exercise A.13. The proof of Theorem A.12 relies on Tikhonov’s theorem, hence on the axiom
of choice. Prove a simpler result without this tool in the special case of a countable set {2 and M

being the counting measure on §2: For arbitrary m € N and functions f1,. .., f,, € £Y(M), the

{(/wfde); :LpET}

is a convex and compact subset of R™.

set

Proof of Theorem A.12. Writing f € Fas f* — f~ with f* := max(%f,0), we know that

/gofdM € K; = {—/fdM,/f*dM}

forany ¢ € T and f € F. Hence,

= {([oran),,oeT)

K = {xeszxfEKfforalleF}.

is a subset of

Since each Ky, f € F, is a compact interval, it follows from Tikhonov’s theorem that K is a

compact subset of R”.

Linearity of integrals implies that /C, is a subset of

Ko = {x e frrapis linear}.
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That means, K, consists of all tuples € K such that for arbitrary f,g € F and A € R,

Trf = Axy,

Tfrg = Tf+ Tg.

Note that each of the previous two constraints defines a closed subset of R”. Hence the set /C, is

a closed subset of K, i.e. it is compact. Moreover, one can easily verify that K, is convex.

Now the assertion of Theorem A.12 is true if we can show that I, = K,. That means, we
have to show that for any fixed z € I, there exists a test ¢ € 7 such that = [ ¢f dM for
arbitrary f € F. Indeed, it follows from linearity of f +— x; and the inclusion z; € K for all
f € Fthat f — x ¢ defines a continuous linear functional on £ (M), equipped with the seminorm
|fll == [|fldM. Consequently, by Theorem 2.29, there exists a bounded measurable function
¢ :Q — Rsuchthatzy = [ fodM forall f € F. In particular, since 0 < 1, = [, o dM <
M(A) for all A € A, the function ¢ satisfies M ({¢ < 0} U {¢ > 1}) = 0. Hence, we may
assume that p € T. O

The next results establishes a sequential compactness property of 7. Its proof is constructive in

the sense that it does not use the axiom of choice.

Theorem A.14 (Weak sequential compactness of 7). Let (¢n)n>1 be a sequence in 7. Then
there exist a subsequence (¢,(x))r>1 and a test ¢ € T such that

lim /cpn(k)fdM = /gofdM forany f € F.
k—o00

Proof of Theorem A.14. As in the proof of Theorem A.12, one can reduce the claim to the case
of a probability measure M. Let A, be the o-field generated by the tests ¢, n > 1. This sub-
o-field of A has a countable generator, for instance, the family of all sets {¢,, < ¢}, n € N,
q € Q. Consequently, there exists a countable field A, of €2 such that A, = o(A,,). By Cantor’s

diagonalisation trick, there exists a subsequence (y,(x))x>1 such that

L(1a,,) := lim /gon(k)leo dM
k—o0
exists for all A,, € Ago.

Let F, be the set of all f € F such that the limit

L(f) == lim [ @up)fdM

k—o00

exists. One can easily verify that F, is a linear subspace of F, and L is continuous on F, with
respect to the seminorm f — || f|| := [ |f| dM. Precisely, for any f € F and n > 1,

_/f‘dM < /%fdM < /f+dM>

and thus,

(A.1) —/fdM < L(f) < /f*dM forall f € F,.
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The space F is also closed with respect to || - ||. For if (f;)¢>; is a sequence in F, with limit
f € F, then for any fixed £ > 1,

limsup‘/gon(k)fdM—/gon(k/)fdM’

kK — 00

< 2’f—fe||+1£I’?SHP‘/90n(k)fedM—/%(k/)fsz‘ = 2||f = fel,
k' —o00

and the right hand side tends to 0 as £ — oo. Consequently, ( i On)f dM ) x> 1s a Cauchy
sequence in R.

The space F., contains all indicator functions 14,,, Ao € Asp, and the linear span of the latter
functions is dense in £ (M| 4, ) with respect to || - ||. Thus, F contains all functions in £!(M|4,).
But for an arbitrary function f € F and its conditional expectation f, := IE(f|.A,) with respect
to the probability measure M,

[enrart = [ouodnt

foralln > 1,s0 F. = F.

It follows from (A.1) that L is a continuous linear functional on £*(M), so Theorem 2.29 implies
the existence of a bounded measurable function ¢ : Q — R such that L(f) = [ f¢dM for all
f € F. In particular, since 0 < L(14) = [, odM < M(A) for all A € A, the function ¢
satisfies M ({p < 0} U {¢ > 1}) = 0. Hence, we may assume that ¢ € T. O

A.3 Uniqueness of Moment-Generating Functions

In the context of completeness of statistical experiments and exponential families we utilize a

classical result from measure theory.

Theorem A.15. Let M be a measure on R?, and let f : R* — R be a measurable function such
that

/Rd exp(u'z)f(z) M(dz) = 0
for all v in a nonempty open set U C R?. Then
M(f #0) = 0.
Proof of Theorem A.15. Suppose first that 0 € R is an interior point of UU. Then for some € > 0,
L(u) := /exp(uTx)f(x) M(dz) = 0 forallu € (—e,e)?
One can easily verify that L(u) is well-defined in C for all complex vectors
uw e Ul with U, := {z€C:—e<Rez<e}.

Moreover, for any given index j € {1,...,d}, L(u) is a holomorphic (i.e. complex differentiable)

function of u; € U, while (uy)r; is fixed; see Exercise A.16. But it is well-known from complex
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analysis that a holomorphic function H : U, — C with H = 0 on (—e, €) satisfies H = 0 on U,

Consequently, we may conclude inductively for j = 1,2,...,d that
L=0on(—¢¢)? whence L=0onU,x (—¢,e)¢!
whence L =0onU? x (—¢,e€)
whence L =0on Ug .
Since {iy : y € R} C UZ (with i = /—1), the latter equality for L implies that
/exp(in:c)f+(:c) M(dz) = /exp(inx)f(x) M (dz) forally € R%
That means, the characteristic functions of the finite measures Q" and Q—, where
Q*(4) = [ rram

are identical. But a finite measure is uniquely determined by its characteristic function, so QT =
Q. In particular, QF (R?) = QT (f* > 0) = QT (f* > 0) = 0, and this implies that M (f #
0) =0.

In case of a general open set U, let u, be an interior point of U. Then V' := U — wu, is an open
neighborhood of 0, and with g(z) := exp(u, ) f(x) the assumption reads

/exp(vTx)g(a:)M(d:c) =0 forallveV.

But then the previous considerations show that M (f # 0) = M(g # 0) = 0. O

Exercise A.16. Let (2, A, M) be a measure space, g : (2,,4) - Cand T : (2, 4) — R be

measurable, and suppose that for real numbers a < b,
/ lg|exp(cT) dM < oo forc =a,b.

Show that
f(z) = /gexp(zT) dM

defines a holomorphic function on {z € C : a < Re(z) < b}.

A.4 Hoeffding’s Decomposition

Hoeffding’s decomposition is a generalization of Hijek’s projection as described in Lemma 8.38.
The setting is the same, we consider a probability space (€2, .4, IP) with stochastically indepen-
dent random variables X1, ..., X,, with values in (X1, B1), ..., (X, By), respectively. Now we
consider the Hilbert space H of all random variables Y € L?(IP) which are a measurable function
of the random tuple X := (X71,..., X,,) with values in X' := A} x -+ X A,.
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For any nonvoid set X C {1,...,n} let H be the subspace of all random variables Y € H which

are a measurable function of
Xr = (Xi)iek,

and let Hy be the subspace of all constant random variables. In particular, H = Hy; ). The

orthogonal projection of H onto H is given by IIx with
EY if K =
My = 4 B irR=0
E(Y | Xk) else

for Y € H. Strictly speaking, we should write IE(Y | o(X)), but IE(Y | X ) is more convenient
and intuitive. One treats X temporarily as a fixed tuple, and if Y = f(Xg, Xp) with L =
{1,...,n}\ K, then

B(Y | Xk) = [ F(Xk.2) Puld2)
where P;, denotes the distribution of X7,.

A key property of these projections IIx is that
(A.2) II;lIg = Hjnx forarbitrary J, K C {1,...,n}.
This can be easily derived from Fubini’s theorem. In particular, 11 ;11 = [I1xI1;. Now we define

Mg = Z (—1)#EDT,
ICK

The next result shows that 117, describes an orthogonal projection, too. And the corresponding
subspaces I19-H, K C {1,...,n}, comprise a decomposition of H into pairwise orthogonal sub-

spaces.

Theorem A.17. (a) For arbitrary sets K C {1,...,n}.
O = Y 05
In particular, the identity operator I may be written as

I= Y %

Kc{1,...n}
(b) For arbitrary sets J, K € {1,...,n},
I = Hglly = 15cxIl,
and
5% = 1= 115
(¢) Each operator 119, describes the orthogonal projection of H onto the linear space
1L
Hy = Hen (Y HJ) .
JCK

These spaces H}., K C {1,...,n}, are pairwise orthogonal.
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Corollary A.18 (Hoeffding’s decomposition). Any random variable Y € H can be written as
vo oY my
Kc{1,..,n}

and the random variables 113 Y, K C {1,...,n}, are uncorrelated with II§Y = IE(Y') and
EISY) = 0if K # 0.

For an additional random variable Z € H,

E(YZ) = > EYIiZ2).
Kc{1,..,n}

This corollary follows essentially from Theorem A.17, except for the statements about II7Y" and
IE(TI%Y). But Hj = Hy is the space of constants, so II§Y = IIjY = IE(Y), and for any
nonempty set K C {1,...,n}, it follows from HY, L Hj that IE(TI%Y) = (II%Y,1) = 0.

(
Example A.19 (The case n = 2). Suppose that Y = f(X;, X3). Then the Hoeffding decompo-
sition of Y reads
Y —E(Y) = f(X0) + f5(Xa) + fia(X1, Xo).

The three summands on the right hand side are given by
f(x1) = IE f(z1,X2) = E(Y), [f3(z2) = Ef(Xy,22) - E(Y)

and
fia(w1,22) = f(21,22) — IE f(21, X2) — IE f(X1,22) + E(Y).

Moreover, for arbitrary random variables g1 (X1) and g2(X>) in L2(IP),
E(ff(X1)g2(X2)) = 0 = E(f{a(X1, X2)g2(X2))

and
E(f5(X2)g1(X1)) = 0 = E(ffa(X1, X2)g1(X1)).

In particular, the random variables f{(X1), f9(X2) and f{, (X1, X2) are centered and uncorre-
lated.

Proof of Theorem A.17. We start with a simple combinatorial fact. For any finite set .S,

(A3) > (=DFE = gy

LcS

This follows essentially from the binomial formula, for

#S
D (=)F = > L C S #L=03(-1)
LCS /=0

#S

=0
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As to part (a), by definition of II%, and formula (A.3),

> - > S

JCK JCKICJ

S0 e

ICK JCK:ICJ

= Z( Z (—1)#L)H[ = Z I[K\]:@]HI = k.

ICK LCK\I ICK

As to part (b), it follows from (A.2) that

11911
J K} — Z(_l)#(J\I)HmK

I 115 IcJ
_ Z Z #(JI\( IUL))HI
IcJnk LCI\K
— Z (_1)#<J\f>< Z (—1)*#L)HI~
IcJnk LCJ\K
= Z (-1) #IM )1[JCK} I = 1JCK]Z J\I) 1y 1[JCK}H3a
IcJnk IcJ

where the second to last step follows from (—1)~#L = (—1)#! and formula (A.3). This proves
the first identities of part (b), and the second one follows from

SG = Y (~)FIIg,

ICK
= ) (=)#FED TG

ICK
= 1[JCK}( > (—1)#(K\I))HO

ICK:JCI

= 1[JCK}( Z (—1)#L>H?} = lycklikcnly = 1 =g1L7.
LCK\J

It remains to prove part (c). As shown in Exercise A.20, a linear operator II : H — H describes an
orthogonal projection if and only if it satisfies II> = II and is self-adjoint, that means (I1Y, Z) =
(Y,I1Z) for all Y, Z € H. By definition, all operators II;, J C {1,...,n}, have these properties,
so II%, being a linear combination of self-adjoint operators, is self-adjoint, too. Moreover, it
follows from part (b) that IT3II- = II%-, whence II%- describes the orthogonal projection of H
onto some linear subspace Hf.. The subspaces HY,, K C {1,...,n}, are pairwise orthogonal,
because for different index sets J, K and Y € HY, Z € HY.,

Y, 2) = (I3Y, 1% 2) = (Y, II71% Z) = (¥,0) = 0.

Finally, by part (a), forany K C {1,...,n},

Hg = > HY = Hy+ > HY,

JCK JCK
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so H%- equals

Hy N (Z H‘})L.

JCK

But H; C H for I C J, so HS C H,;, whence

d H C ) Hy

JCK JCK

On the other hand, for any fixed J C K,

> H > ) Hy = Hjy,

JCK Jcj
so
S5 Y,
JCK JCK
Consequently,
> Hy = Hy
JCK JCK
and this leads to the asserted representation of HY,. ]

Exercise A.20 (Projections and orthogonal projections). Let (H, (-,-)) be a real Hilbert space,
and let IT : H — H be a linear mapping which is idempotent, that means, 11> = II.

(a) Show that there exist linear subspaces H;, Hy of H such that H; N Hy = {0}, H; + Hy = H

and
e — T ?f:ceHl,
0 ifz e H,.

Hint: Write x € Has ¢ = 1 4+ zo with 1 = Ilz and 2o = x — 1lz.

(b) Show that H; | Hp if and only if IT is self-adjoint, that means, (Ilz,y) = (x,Ily) for all
x,y € H. In this case, II is the orthogonal projection onto Hj

Exercise A.21. Let (H, (-,-)) be a real Hilbert space, and let Iy, ITy be orthogonal projections
onto subspaces H; and Hy, respectively. Further let Iy be the orthogonal projection onto Hy :=

H; N Hy. Show that the following three statements are equivalent:
() Hy NHy L Ho N Hg.

@) 111 = I1,.

(i) 1115 = ILLI05.

A.5 Weak Law of Large Numbers and Central Limit Theorem

In connection with asymptotic considerations, the subsequent versions of the Weak Law of Large
Numbers and Lindeberg’s Central Limit Theorem are rather useful. Throughout this section

asymptotic statements refer to n — oo, unless specified differently.
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Theorem A.22 (WLLN). For any integer n > 1 let Y1, Yn2, ..., Yy, be independent random

variables such that
n
SB[Vl = o),
i=1

n
ZE(l[IYmI>6}|Ym|) — 0 forany fixed e > 0.

=1

Then with ji,,; == TE(Yy;),

— 0 and IE max |Y,;| — O.
1<i<n

n
E’Z(Ynz — [ni)
i=1

Theorem A.23 (CLT). For any integern > 1 letYy1,Yno, ..., Yy, be independent random vari-

ables such that for some real numbers . and o > 0,
n n
Y E(Yn) = p oand Y |E(Y)| = 0(1),
i=1 i=1
n
Y E(Y;) — o
i=1
n
ZE(I[Y2_>€]Yn2i) — 0 for any fixed e > 0.
i=1
Then

ZYTM _>l: N(,U,,O'Q)
i=1

and

n n
]E‘ZY%—O—Q‘ ) IE(lrE% Yn%.) =0, S EY.)? - o.
i=1 - i=1

Corollary A.24. For any integer n > 1 let X1, Xn2, ..., Xnn be independent and identically

distributed random variables such that for some real numbers p and o > 0,

\/EIE(an) — W,
E(Xgl) — 027
]E(l[X21>en]X,2Ll) — 0 for any fixed € > 0.

Then
1 n
—= ZXni =z N(p,0%)
vn i=1

and
2

1 & X2
IE‘— X2, - 2‘ , IE( ”> .
n; =0 — 0 max — 0

1<i<n n
Proof of Theorem A.22. Let M := limsup,,_,o, » .y IE|Y;;|. For arbitrary fixed ¢ > 0 set

Yoit == 1)y, 1<qYni>  Yniz = 1|y, |>qYni
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and ik = IE(Y,x). Then

n
E‘Z(Ynz - an) < ]E‘Z nil — Hnil ’ Z(IE |Ym2| + |an2|)
=1 =1
n n
< Var(z Ym'1> + 2ZE|Ym'2|
\ i=1 =1
S \ZIE ml )
n
< (€ B[Vl +o(1)
=1

< VeM +o(1) +o(1)
— VeM.

Furthermore,
n
< i .
B, o) < e+ 3 Bl +
1=
Since € > 0 may be arbitrarily small, these calculations yield the assertions. O

Remarks on the proof of Theorem A.23. One can deduce from Theorem A.22, applied to Y2
in place of Y};, that

n
E‘ZY@-&‘ ~ 0 and E(max Y,
=1

i<i<n ™

2) =0

In particular, with p,,; := IE(Y};),

whence
;/L?L‘ = 1I£a<x |:un]|z‘,um| — 0.
1=

But with 02, := Var(Y,,;) this implies that

n
207212 ZIE Z:U’m - 02
i=1

Moreover, for any fixed € > 0, the inequality maxi<;<n |tni| < €/2 is satisfied for sufficiently
large n, and in that case, |Y,,; — pini| > € implies that |Y,,;| > €/2 and |Y,,; — pini| < 2|Y;|. Hence
for sufficiently large n,

> By pnsd Yoi = ini)?) < 4> Bl se2Yn) = 0.
i=1 =1
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Consequently, the centered random variables Z,,; := Y; — jin; satisfy the assumptions of the more
traditional CLT:

E(Zy) = 0 forallm >1and1 <i<mn,
n
Z ]E(Ziz) - 021
i=1
n
ZIE(l[IZniIX]Z?n') — 0 for any fixed € > 0.
i=1
These conditions imply that

n
> Zni = N(0,07),
i=1

and thus

S Voi = pt o)+ > Zui =z N(p,o?).
i=1 i=1 ]



