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Highlights
Stabilizing conspecific negative density
dependence (CNDD) is a classical expla-
nation for diversity maintenance in
species-rich ecosystems, particularly in
tropical forests.

Fifty years after Janzen and Connell pop-
ularized this idea, a plethora of empirical
evidence suggests that CNDD can be
found at all latitudes and for many tree
species.
Half a century ago, Janzen and Connell hypothesized that the high tree species
diversity in tropical forests is maintained by specialized natural enemies. Along
with other mechanisms, these can cause conspecific negative density depen-
dence (CNDD) and thus maintain species diversity. Numerous studies havemea-
sured proxies of CNDD worldwide, but doubt about its relative importance
remains. We find ample evidence for CNDD in local populations, but methodo-
logical limitationsmake it difficult to assess if CNDD scales up to control commu-
nity diversity and thereby local and global biodiversity patterns. A combination of
more robust statistical methods, new study designs, and eco-evolutionary
models are needed to provide a more definite evaluation of the importance of
CNDD for geographic variation in plant species diversity.
On closer inspection, however, it is still
unclear if locallymeasured density effects
are indeed stabilizing community dynam-
ics and, moreover, if they have a causal
effect on large-scale diversity and abun-
dance patterns, such as the latitudinal
diversity gradient.

More robust and comparable CNDD es-
timates are needed, coupledwith a theo-
retical research program that aims at
understanding the role of CNDD for
coexistence in stochastic multispecies
communities as well as macroecological
andmacroevolutionary diversity patterns.
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CNDD: A Potential Driver of Diversity Patterns
Fifty years ago, two seminal papers by Janzen [1] and Connell [2] proposed that specialized
enemiesmaintain the exceptionally high tree diversity in tropical forests. Their hypothesis wasmo-
tivated by the assumption that more productive and stable environments favor specialization and
effectiveness of enemy control in tropical interaction networks, relative to seasonal environments
in temperate latitudes [2–4]. The idea that specialized enemies prevent any one species from
becoming too abundant in tropical forests, thus maintaining greater diversity compared with
temperate forests, became known as the Janzen–Connell hypothesis (see Glossary)
(Figure 1A). It remains one of the most prominent conjectures in ecology to this day [5–7].

The Janzen–Connell hypothesis is tightly connected to the broader concept of conspecific
negative density dependence (CNDD) [8]. For a single species, density dependence means
that its population growth rate, or more broadly, its demographic rates, vary with population
density. Most species react negatively to density and eventually all populations must show
some kind of negative density dependence, simply because of physical and biological limits to
how large a population can grow [9]. Negative density dependence becomes important for
coexistence and diversity maintenance when it is stronger for conspecifics (CNDD, typically
interpreted as intraspecific competition) than for heterospecifics [heterospecific negative
density dependence (HNDD), typically interpreted as interspecific competition] [10]. If
CNDD > HNDD, a species’ fitness decreases when it becomes dominant. If such negative
frequency dependence (Figure 1C) is strong enough to overcome intrinsic fitness differences
among species, it will lead to stable coexistence [11]. Janzen [1] and Connell [2] made this argu-
ment implicitly and it was later formalized in the framework ofmodern coexistence theory [12–14].

Stabilizing CNDD (i.e., CNDD > HNDD) can be created by a wide range of mechanisms. In for-
ests, the idea that specialized enemies cause density dependent mortality [6], notably at early life
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Glossary
Conspecific negative density
dependence (CNDD): an ecological
process (e.g., the population growth rate
or a demographic rate) of a species is
said to show CNDDwhen it is negatively
influenced by the species’ own (local)
population density.
Demographic rates: (or vital rates) the
parameters that determine the
demography of a population, including
the rates of reproduction, mortality, and
growth.
Fitness: the expected life-time
reproductive success or per capita
growth rate of an individual, phenotype,
or species.
Frequency dependence:
the phenomenon that fitness depends
on the relative abundances (frequencies)
of species in a community.
Heterospecific negative density
dependence (HNDD): the negative
influence of (local) heterospecific
population density (i.e., density of
species other than the focal species) on
demographic processes or the
population growth rate as a whole.
Interspecific competition:
competition between individuals of
different species.
Intraspecific competition:
competition between individuals of the
same species.
Janzen-Connell hypothesis:
the hypothesis that specialized enemies
maintain plant species diversity by
creating higher seed and seedling
mortality at higher conspecific densities
and closer to conspecific adults; and
that this mechanism is more effective in
the tropics, thus contributing to the
latitudinal gradient in tree species
richness.
Latitudinal diversity gradient:
the trend of decreasing species diversity
from the equator to the poles.
Modern coexistence theory:
a mathematical and conceptual
framework for the mechanisms of stable
coexistence within communities.
Publication bias: a tendency for
certain types of results to be published
more than others. In practice, this refers
to the tendency to publish only
statistically significant results in support
of a hypothesis and failing to report
negative results (the file drawer
problem).
Regression dilution: (or regression
attenuation) a statistical phenomenon
whereby error in an explanatory variable
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stages [15], is particularly prominent. However, species-specific resource requirements,
autotoxicity, and other mechanisms could also dampen population growth at high abundance
via negative effects on dispersal, growth, mortality, and reproduction [16–18] and we consider
all these possible mechanisms (Box 1) in this review.

Directly demonstrating the existence of stabilizing CNDD, however, is extremely challenging,
especially for long-lived organisms such as trees (see discussion later). Most empirical stud-
ies have therefore evaluated either local density effects on plant performance (e.g., [5,19])
(Figure 1B) or patterns of community structure indicative of density dependence, for example,
decreasing spatial clustering with age [20]. Unfortunately, this has led to the confusing situ-
ation where Janzen–Connell effects (Figure 1A), empirically measured CNDD effects on tree
performance (Figure 1B), and stabilization via CNDD (Figure 1C) are effectively used
synonymously in large parts of the literature. The concepts are intimately related, but they
are not equivalent.

The idea that CNDD could be an important driver of plant community dynamics has fundamental
implications from macroevolution to community ecology to applied conservation management
[21,22], for example, regarding the relative importance of neutral and niche processes [23]
or our understanding of regional and global variation in abundance patterns [24]. A particularly
far-reaching implication is that variation in CNDD may drive or at least contribute to regional
and global diversity patterns such as the latitudinal diversity gradient, particularly in forest
tree communities [25,26].

Fifty Years of CNDD Research in Forests
In the five decades following Janzen [1] and Connell [2], research on CNDD has addressed four
aspects of their hypothesis: (i) the existence of local CNDD; (ii) whether CNDD is stronger than
HNDD; (iii) the relevance of CNDD for community diversity and coexistence; and (iv) whether
regional and global patterns of CNDD, in particular a latitudinal gradient therein, are relevant for
geographic diversity patterns. In the following, we review the evidence for these aspects focusing
on trees, although we frequently refer to other communities where CNDD and its effects on diver-
sity have been studied, including annual plants.

Does Local CNDD Exist?
Early tests of the Janzen–Connell hypothesis used either observational data to search for patterns
indicative of CNDD, such as spatial repulsion and negative effects of conspecifics on plant perfor-
mance [27–31], or experiments that exposed seeds or seedlings to different conspecific densities
[32–34]. Almost all these early studies reported signs of CNDD: seed and seedling survival was
reduced close to conspecific adults and at high conspecific seed and seedling densities and con-
specific individuals exhibited spatial repulsion.

Over time, more sophisticated approaches were introduced, for instance, spatial point
pattern analysis [35] and new experimental designs directed towards identifying the mech-
anism mediating CNDD (Box 1). An impressive number of observational (e.g., [36–39]) and
experimental (e.g., [40–43]) studies consistently reported evidence for CNDD in many, but
not all, tree species; particularly during early life stages, but less consistently among
seeds [44,45]. The bulk of this research focused on the tropics, but CNDD was reported
for temperate forests as well (e.g., [46–50]). Several reviews and meta-analyses summarize
this picture, especially those by Hille Ris Lambers et al. [26], Hyatt et al. [44], Carson et al.
[51], and Comita et al. [45], who concluded more generally that CNDD is ubiquitous in
forests worldwide.
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creates a bias in the regression slope
(typically towards zero).
Spatial point pattern: a class of
statistical data in which single
observations are recorded with their
exact location. Spatial point pattern
analysis explores statistical properties of
these patterns (e.g., deviations from
randomness).
Stabilization: the phenomenon that
species can recover fromperturbation to
low density, preventing them from going
extinct when rare.
Stable coexistence: the long-term
persistence of several competing
species in a closed system, without any
one species being excluded.

Trends in Ecology & Evolution
Is CNDD Stronger Than HNDD and Thus Stabilizing?
It is thus tempting to conclude that the importance of CNDD for tree diversity is confirmed. One
caveat of many early studies, however, is that they measured density effects of conspecifics
only (e.g., [31,32,52–54]). Yet, for communities to be stabilized, CNDD must be stronger than
HNDD [23] (Figure 1B). Absent such a comparison, the presence of CNDD might simply indicate
general, nonstabilizing competition (i.e., CNDD ≈ HNDD).

Recent studies addressed this by estimating HNDD as well (e.g., [8,43]). Moreover, some studies
investigated whether enemies are indeed host-specific [55,56], a prerequisite for stabilizing
CNDD. However, many studies still fail to compare CNDDwith HNDD (e.g., [5,47]), or do so with-
out an explicit statistical test (e.g., [8,57]), indicating that the central importance of demonstrating
that CNDD is stabilizing is still not fully appreciated. Of the individual studies that compare CNDD
and HNDD,many report stabilizing effects (e.g., [38,58]) and a recent meta-analysis by Adler et al.
[10] from many plant ecosystems, not just forests, finds overall robust evidence for stabilizing
CNDD (see also [36,59]).

Is CNDD Stabilizing Community Diversity?
Another limitation of most existing studies to date is that they evaluate (stabilizing) CNDD in
one demographic rate during a particular life stage. It is not always clear, however, if per-
formance measures such as survival reliably correlate with overall fitness [60]. For example,
certain mechanisms could lead to a negative correlation of survival with another perfor-
mance indicator, or survival differences in early life stages could be diluted over time [11].
It would therefore be better to directly measure fitness [61], but this is challenging for
long-lived organisms such as trees in forest communities (cf. [62]). This problem is less pro-
nounced in herbaceous systems and a stronger connection between studies of CNDD in
the two systems might be fruitful (e.g., [63,64]).

In the absence of holistic measures of fitness, several prominent studies have used fitness
surrogates (such as seedling survival) to calculate CNDD and correlated these estimates to
community diversity or species abundances. Those have reported stronger CNDD in more
diverse communities [25,65–67] and for the seed-to-seedling transition during which diversity
increased, both using observational data [52], as well as experiments [68] (but see [5]).
LaManna et al. [65], Johnson et al. [25], and others [8,70] also reported stronger CNDD (or neg-
ative effects of conspecific soil pathogens) for rare species, as would be expected if CNDD
controlled species abundances [24] and as shown for other taxonomic groups [69]. Other
studies, however, found no correlation between species abundance and local CNDD [71–73]
and in some cases the correlation is in the opposite direction (i.e., stronger CNDD for common
species) [39].

A second indirect line of evidence examines the spatial variation in demographic structure. This
approach assumes that, in the absence of CNDD, the local density of recruits should be pro-
portional to the local density of conspecific adults. This proportionality assumption can be
tested by spatial discretization (e.g., [25,65]), or by spatial point pattern analysis (e.g., [74]).
Studies using this approach have also reported signals of CNDD. These results, however,
must be interpreted with caution. While the design integrates over several demographic rates
and life stages (and may thus better approximate fitness [75]), it is also prone to confounding
with environmental conditions or dispersal [76,77] and suffers from a regression dilution
bias (Box 2) [78]. These biases are likely to cause a systematic overestimation of CNDD,
particularly for rare species, which also casts doubt on reported correlations of CNDD
with abundance.
Trends in Ecology & Evolution, February 2021, Vol. 36, No. 2 153



(C)  CNDD as a mechanism to enable stable coexistence

(B) Empirically measured CNDD as conspecific local density effects on plant performance

(A) The Janzen−Connell view: natural enemies cause distance and density dependence
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Figure 1. Different Viewpoints on Conspecific Negative Density Dependence (CNDD). (A) The classic formulation of the Janzen–Connell hypothesis depicts how
specialized enemies can create CNDD in a spatially explicit context [85], here visualized following the graphical model of Janzen [1]: pathogen loads are higher close to
conspecific adults (distance dependence, red); and where the density of conspecific seeds, seedlings, or recruits is high (density dependence, blue). As a result,
recruitment happens preferentially for individuals that have dispersed further away [132], thereby increasing the spacing of adults, the spatial intermingling of species,
and ultimately the number of species per unit area [157]. (B) The main empirical approach to CNDD has been to measure aspects of plant performance (e.g., mortality
[5] or the transition probability between life stages [19]) as a function of local conspecific and sometimes heterospecific density [8]. (C) Coexistence theory is interested
in CNDD as a stabilizing mechanism that decreases population growth when a species becomes relatively more abundant (frequency dependence [69]). In both
(B) and (C), the slopes of the lines correspond to the strength of density or frequency dependence, indicating strong and weak stabilization for the unbroken and
broken purple lines, respectively. Arrows in (C) point towards equilibrium frequency. See [8,23,92].

Trends in Ecology & Evolution
Does CNDD Exhibit Regional or Global Patterns?
The final assertion of the Janzen–Connell hypothesis is that CNDD explains geographic varia-
tion in species diversity, including the latitudinal diversity gradient. The first large-scale test of
this idea was a meta-analysis of field studies by Hille Ris Lambers et al. [26] in the early
2000s, who found no latitudinal gradient in the proportion of tree species that experience
CNDD. The study was limited in that it used vote-counting [79], but later meta-analyses
using more robust methods found no latitudinal trend in CNDD from experiments on seed
and seedling survival either [44,45].
154 Trends in Ecology & Evolution, February 2021, Vol. 36, No. 2
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Box 1. MechanismsCausing Conspecific Negative Density Dependence (CNDD) to Be Stronger Than Heterospecific Negative Density Dependence
(HNDD)

A prominent explanation for stabilizing CNDD is that specialized enemies accumulate where a host tree species is abundant [132], thereby suppressing its population
growth, in particular via elevated mortality of seeds, seedlings, and saplings (Figure IA). Organisms that could exert such effects in trees include fungi, bacteria,
arthropods, and small mammals [72,133–135].

A second explanation for stabilizing CNDD is interspecific variation in resource requirements, including nutrients, moisture, and light [117]. Stabilization occurs because
the resource that a species specializes on gets locally depleted when the species is at high abundance (Figure IB) and the species therefore limits itself more than others.
For trees, although there is certainly some resource specialization, the number of essential resources seems too small to allow coexistence of a large number of species
(see also the ‘paradox of the plankton’ [136]). Ecologists have explored various mechanisms that could expand the number of niches, such as the temporal storage
effect [137], but even so, there has been no convincing explanation for how resource niches alone could stabilize hundreds of species. This is part of the motivation
for focusing on natural enemies and empirical evidence seems to support the importance of such Janzen–Connell effects [6,138,139] (but see [7]).

Additional mechanisms have been suggested, though less frequently. For example, root secretion or decomposition could lead to accumulation of toxic substances
around a plant that disproportionately damage conspecifics [56,140] (Figure IC). Such autotoxicity has been observed for some tree species [56,141,142], but it has
questionable adaptive value [143] making it rather unlikely as a broad mechanism. Another mechanism is specialized plant–pollinator interactions, which create a dis-
advantage when a tree species becomes more common and its pollinators are limited [18]. A third example is interspecific facilitation, for instance through hydraulic lift
[144], which could weaken HNDD, thus contributing to a situation where CNDD > HNDD.

Each species most likely has its own combination of mechanisms, which may even be of varying importance over space and time [120,121,145]. For example, mycorrhizal fungi
and higher-order predators can interact with CNDD-inducing enemies [146–148]. Despite these challenges, experiments, notably plant–soil feedback studies, pesticide
treatments, enemy exclosures or inoculations [16,68,135,149], and observational studies that correlate CNDDwith species’ traits such as defense strategy, resource acquisition,
and mycorrhizal type [6,72,146] have helped to identify, or at least narrow down, the CNDD-inducing mechanisms for individual tree species (e.g., black cherry Prunus serotina
Ehrh. [16,145]). Correlations between CNDD and species traits [5,15,71] may be helpful to identify CNDD mechanisms also for less well-studied species.

(A) Specialized enemies (C) Autotoxicity(B) Abiotic niche differentiation
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Average habitat availability
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Local toxin exposure

Abundance

Local pathogen exposure

TrendsTrends inin EcologyEcology & EvolutionEvolution

Figure I. Functioning of the Mechanisms That Create Conspecific Negative Density Dependence (CNDD). The upper panels show the spatial association
of each mechanism (colored area) and the focal species (black dots), while the lower panels indicate how the mechanisms depend on a species’ abundance.
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By contrast, two studies that used the local tree demographic structure to quantify CNDD
however found striking regional and global variation in CNDD consistent with predictions of the
Janzen–Connell hypothesis [25,65]. Both studies, however, have been criticized for the earlier-
mentioned methodological problems and simulations demonstrate that these biases are strong
enough to produce the reported patterns, even when CNDD is completely absent [76,80,81].

Evidence for variability in CNDD along other gradients is similarly limited [82]. While a global meta-
analysis revealed slightly stronger CNDD in wetter climates [45], variability in CNDD along edaphic
gradients is typically studied only locally. For instance, Huang et al. [83] identified stronger CNDD
where nitrogen availability is locally higher.
Trends in Ecology & Evolution, February 2021, Vol. 36, No. 2 155
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Box 2. Regression Dilution and Apparent Conspecific Negative Density Dependence (CNDD) in Recruitment
Studies

Regression dilution, also known as regression attenuation, is a well-known cause of statistical bias [150]. It occurs when a
regression model assumes that the explanatory variable is quantified without error, but this assumption is violated [151]. In
this case, the regression slope (i.e., effect size) is usually biased towards zero (Figure I).

Although regression dilution is likely present in most ecological analyses, it is regularly ignored. This may be justifiable in stud-
ies where the null hypothesis is the absence of a relationship between predictor and response, because then the bias in-
duced by regression dilution is conservative. The problem becomes more insidious when the null hypothesis specifies a
specific relationship between predictor and response, as in studies that test for CNDD in recruitment. For example, if the null
hypothesis is a proportional relationship between recruitment and adults, with negative deviations fromproportionality at high
conspecific abundance being interpreted as CNDD [152], then regression dilution can create the appearance of CNDD even
where there is none [68], both for linear and nonlinear models of density dependence. This bias is doubly pernicious because
its strength can be affected by species’ abundances, leading to spurious correlations between CNDD and abundance [78].

Despite warnings by Freckleton et al. [153], several analyses have used a design based on proportionality to test for CNDD
in trees over the last decades, both for spatial associations of adults and recruits (e.g., [25,65]) and transition rates be-
tween different life stages (e.g., [52,154]). While errors in study designs that analyze CNDD in transition rates are random
and can be corrected via repeated measurements, for example, using multiple seed traps (e.g., [68,78]), errors in studies
that rely on spatial associations of recruits and adults have a different nature.

Here, problems arise in particular from the assumption that the parent trees of saplings observedwithin a given quadrat are
all still alive and within the same quadrat. LaManna et al. [155,156] responded to critiques of their sapling–adult analyses
[76,80] by presenting an alternative distance-weighted approach to estimating conspecific adult density, along with null-
model simulations using species-specific estimates of dispersal. Although this improves upon the original quadrat-based
approach, the resulting CNDD metric is still prone to regression dilution, because of dispersal distances not being
accurately known for most of the species and other possible sources of error in the adult counts, arising, for example, from
adult trees being dead or outside the plot boundaries. These errors are extremely difficult to eliminate [76,78].
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Figure I. Regression Dilution and the Effect of Measurement Errors onConspecificNegative Density Dependence
(CNDD) Estimates in Recruitment Studies. Analyses of associations betweenadults and recruits canbebiasedby regression
dilution. Here we apply a linear model on log–log transformed densities, such that the null hypothesis is a slope of one indicating
proportionality, and a slope smaller than one is interpreted as CNDD. We simulated data for which recruits are proportional to
adults (i.e., there is no CNDD). When there is no error in measured adult density, the estimated slope on log–log axes is unbiased
and centered around one (A). However, with errors in the measurement of adult density (error bars), the regression slope is biased
towards zero (B), creating apparent disproportionality that could be mistakenly interpreted as CNDD. This problem is general and
not limited to the particular linear model fitted here. Each broken line is averaged over independent linear fits to 1000 simulated
datasets; the black dots on each panel show one simulated dataset for illustration purposes. Adapted from Detto et al. [78].
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A Synopsis of Current Knowledge
In summary, there are four subhypotheses to the overall hypothesis that CNDD drives large-scale
diversity patterns: (i) CNDD exists; (ii) CNDD > HNDD; (iii) CNDD stabilization scales up to the
community; and (iv) this effect varies along ecological gradients and drives diversity patterns.

For tree communities, there is ample evidence for claim (i), and somewhat weaker, but still con-
vincing evidence for claim (ii) in the published literature. We have highlighted some technical prob-
lems in this research and it can be expected that, just as in other fields, publication bias may
have favored dissemination of those studies that found support for CNDD [84]. Nevertheless,
we believe that the multiple lines of evidence outweigh such uncertainties and conclude that
seedlings and saplings of many tree species likely experience stabilizing CNDD, although the phe-
nomenon may be not as strong or pervasive as sometimes claimed (e.g., [52,65,85]).

The empirical evidence for claims (iii) and (iv) is much weaker, both because of the large spatial
and temporal scales involved and the technical problems when evaluating CNDD indirectly via
static patterns. Although models show that local CNDD can scale up to the community and be-
yond ([86,87] but see [88,89]), no compelling empirical evidence for a significant causal effect of
CNDD on larger-scale patterns of tree diversity has been presented to date.

Obstacles to Assessing CNDD and Its Implications in Forests
The validity of the Janzen–Connell hypothesis in its entirety is thus still surprisingly unresolved. In
this section, we provide a more detailed account of current challenges.

Conspecific Exposure Is Difficult to Quantify
Analyses of CNDD in forests and other communities inherently rely on a definition of local conspe-
cific exposure. This poses several questions that likely require species-specific answers: how
does the conspecific effect attenuate with distance [90,91]? Should we measure conspecific ex-
posure by distance or density [44]? Is density better approximated by stem number, basal area,
or biomass, and what classifies as an adult versus a juvenile tree? Is the functional response to
density linear or does it accelerate or saturate above certain density thresholds [78]? These con-
siderations are crucial because using imperfect proxies of true conspecific exposure can create
regression dilution that biases analyses (Box 2).

Performance in One Life Stage Does Not Necessarily Translate into Fitness
Ultimately, we are interested in how conspecific density regulates population growth [92]. When
measuring CNDD in plant performance, particularly in early life, we have to understand if those
effects propagate through the entire life cycle, rather than being canceled out or diluted at later
life stages [11,39,93].

Indirect Measures Calculated from Static Data Are Prone to Confounding Factors
Looking for indirect evidence of CNDD via emergent patterns in forest structure (e.g., [20,65,94])
seems appealing, but comes with additional caveats, in particular the need to control for con-
founders. For example, repulsion between conspecifics is often interpreted as evidence for com-
munity stabilization via CNDD (e.g., [95,96]), but other processes, including environmental
variability, dispersal, and nonspecialized biotic interactions, also affect this pattern and it is difficult
to correct for them [77,97].

Furthermore, many studies that examine such emerging patterns essentially perform an
ontogeny-for-time substitution (recruits versus adults) to assess the influence of conspecific den-
sity on population dynamics (e.g., [25]). This approach is associated with additional uncertainties:
Trends in Ecology & Evolution, February 2021, Vol. 36, No. 2 157
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By what criteria are adults and recruits separated? Are recruits far away from adults because of
broad dispersal or because they suffer from strong CNDD? What happens if adults and recruits
have different habitat preferences?

Measuring Multispecies Coexistence Is an Open Problem
Another, more subtle point, is how to define stable coexistence. As Broekman et al. [11] point out,
CNDD > HNDD or frequency dependence in population growth rates is a sufficient (though not
necessary) condition for stabilization, but not a sufficient condition for stable coexistence at the
community level. For the latter, the comparison of all pairwise density effects from a focal species
to itself and to and from all other species would be needed [10,11]. But even if those values could
all be estimated (an unlikely prospect in a diverse tree community), it is still unclear how to trans-
late them into a meaningful metric for coexistence in stochastic multispecies communities with a
much richer set of dynamics than a two-species system [98–100]. Possibly, it would bemore pro-
ductive to discard the concept of stable coexistence in favor of broader stability concepts such as
average residence time of species in the community (e.g., [101]).

Statistical Methods Are Often Biased or Misinterpreted
Finally, the statistical methods for evaluating CNDD have a history of bias and misinterpretation. In
particular, regression dilution distorts CNDD estimates that rely on a null hypothesis of proportion-
ality between two variables of interest (e.g., recruit and adult abundance) and typically results in an
overestimation of both the frequency and strength of CNDD (Box 2). Another, less appreciated
issue is that many CNDD analyses (mortality studies in particular) rely on generalized linear models
with a nonlinear link function. The resulting estimates of regression slopes cannot be directly com-
pared across models, species and sites, because, depending on the intercept of the model, their
effect on the predicted mortality probability changes [102,103].

How to Move Forward: A Roadmap for CNDD Research
Despite the challenges, we are optimistic about research on CNDD and plant diversity. Here, we
delineate what we think are suitable methods for this research program.

Generating Robust and Comparable Estimates of Local CNDD
The first component of a successful CNDD research program in forest tree communities is to
quantify the strength of CNDD more reliably and comparably. Long-term observational studies
on large forest plots can in principle yield estimates of CNDD within entire communities under
natural conditions [104]. We strongly advocate that such plots be continuously measured and
expanded in the coming decades, with more consistent efforts directed towards collecting
associated data on confounders of CNDD (cf. [39,47,91]), alternativemetrics of conspecific expo-
sure (cf. [78]), and information on seeds and seedlings [47,78]. This will facilitate estimation of
CNDD over large parts of species’ life cycles and ultimately its effect on population growth
rates (e.g., [105]). Remote sensing may become an additional source of observational data that
could, for example, help to estimate the strength of repulsion between conspecifics at unprece-
dented scales [106,107].

Observational studies nevertheless have inherent limitations in identifying causality and underlying
mechanisms [78,108]. We therefore recommend accompanying experiments to validate the
findings from observational data and to identify CNDD mechanisms and the conditions under
which they are effective. We recognize that practical limitations may confine experiments to
early life stages of a relatively small number of species [45] and thus recommend that focal spe-
cies be stratified across functional groups, relative abundance, and expected strength of CNDD.
Experimental designs should also consider advice formulated for herbaceous systems (e.g., [63]).
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In both observational and experimental studies, there is a need for CNDD metrics that are
unbiased, comparable between species and ecosystems, and relevant for stabilization and
coexistence. Until better metrics of multispecies coexistence are developed, studies should
continue to evaluate the strength of CNDD relative to HNDD [23], with explicit statistical tests
against a null hypothesis of CNDD = HNDD (not CNDD = 0). Studies should focus on estimating
CNDD in dynamic responses (i.e., growth, mortality, and transitions between life stages; cf. Box 2).
When comparing the strength of CNDD between species, species groups, or sites using
models with a nonlinear link function, effect sizes should be expressed as a change in the response
(e.g., in mortality probability; marginal effects, see [109]). Regression models where the null
hypothesis is a zero effect size should be preferred to reduce the risk that regression dilution creates
apparent CNDD if there is none (Box 2) [78].

If null hypotheses of proportionality or specific effect sizes must be used, there are a couple of
ways to mitigate the regression dilution problem. One is to verify that the null hypothesis holds
in a no-CNDD treatment, indicating that the regression dilution problem is minimal. For example,
Bagchi et al. [110] used a fungicide treatment to show that the relationship of final to initial seed-
ling density was roughly proportional in the absence of CNDD. Another is to collect data such that
the strength of the predictor error can be estimated (Box 2), which permits the application of
models that account for such random errors (e.g., [69]).

In general, given the challenges of designing a reliable CNDD metric, we recommend an abun-
dance of caution in all CNDD studies. For instance, it may be instructive to check whether different
reasonable CNDD metrics lead to consistent conclusions [26]. Also, candidate CNDD metrics
should always be validated by showing that they give estimates close to zero without spurious
correlations when applied to null models without CNDD [111]. Using null models to correct biased
CNDD estimators, however, although theoretically possible, is far less robust than using an
unbiased estimator in the first place [76].

Assessing Geographical Variation in CNDD
To assess geographical variation in CNDD, we advocate observational cross-site studies
(e.g., [39,45]) with standardized data (e.g., ForestGEO network [112]) over meta-analyses.
Even so, a challenge in these studies will be to determine the direction of causality. Structural
equation modeling and adjustment for confounding variables can to some extent address the
problem of causality [113,114]. More ambitiously, a coordinated global experiment (for an example
see NutNet [115]) could be used to estimate CNDD with standardized methods at many sites
for a subset of species to corroborate observational analyses and yield a more mechanistic
understanding of CNDD [116], albeit at large monetary cost.

Linking CNDD to Community Stabilization and Diversity
An alternative to experimental studies for answering the question of how CNDD affects diversity
would be a mechanistic model that accurately predicts community assembly and dynamics.
Such mechanistic models have been successfully developed for resource-based CNDD in simple
two-species communities [117] and for low-diversity temperate forests [118]. Also, models with a
phenomenological representation of CNDD, parameterized with species-specific empirical data,
have helped to link CNDD and diversity in herbaceous systems (e.g., [62,119]). But in tropical
tree communities, with hundreds of long-lived species, such approaches seem doomed by the
curse of dimensionality [11]. A minimal set of processes would include dispersal, demographic
stochasticity, CNDD, and species’ responses to spatial and temporal variation in resources and en-
vironmental conditions, all of which require species-specific parameters. To complicate matters,
CNDD itself may vary temporally and spatially in response to resource availability and enemies
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Outstanding Questions
How prevalent is strongly stabilizing
conspecific negative density dependence
(CNDD) in tropical and temperate forests
and is there a latitudinal gradient in
CNDD?

What is the relative importance of the
different mechanisms that cause CNDD
and are natural enemies as important
for CNDD and diversity as the Janzen–
Connell hypothesis suggests?

Does locally stabilizing CNDD scale up
to regional and global diversity patterns
and how does it interact with macro-
evolutionary processes?

Whatwould be a robust and comparable
CNDD metric that is meaningful for
stabilization and community diversity
and is it possible to develop back-of-
the-envelope calculations that approxi-
mate whether CNDD is strong enough
to outweigh other processes based on
a few key parameters?

How can we address the problem that
CNDD is not a fixed attribute of a
species but an emergent property of
spatial and temporal variability, including
enemy dynamics?
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[120,121]. The problemmay be simplified by modeling functional groups (e.g., [122] but see [123])
or tradeoffs between CNDD and life history strategies or defense traits [5,6,15,124,125], but the
feasibility of creating predictive community models via this route is uncertain.

While we wait for breakthroughs in scaling up forest dynamics mechanistically, one possible con-
tribution for theoreticians may be to provide back-of-the-envelope calculations that approximate
how important CNDD is at the population level (e.g., [88]). In population genetics, there is a rule of
thumb that assesses when selection is stronger than drift for a focal allele (2Ns≫1, whereN is the
effective population size and s the selection coefficient). A similar approximation for CNDD may
involve parameters such as community size, mean community CNDD, and mean community in-
vasion growth rate. Another important parameter is within-community variability of CNDD, which
must be low for coexistence to occur [89,126]. It is conceivable that, via such back-of-the-
envelope calculations, we will be able to broadly accept or reject the hypothesis that CNDD is
strong enough to have an important effect on diversity.

Examining CNDD in an Eco-Evolutionary Context
If the scientific question of interest is not just about how CNDD affects local diversity, but also
whether it scales up to affect regional diversity over longer timescales, mechanistic models will
need to go even further and follow a multiscale eco-evolutionary approach [127–129]. Recent
theoretical studies have only begun to look at the cross-scale question [86,88,89]. Also, the
topic of how CNDD affects speciation, which has been experimentally touched on in other life
forms [130], seems an area ripe for theoretical investigation [131].

Concluding Remarks
Our review shows convincing evidence that stabilizing CNDD occurs in forest tree communities at
all latitudes. It remains unclear, however, to what extent CNDD maintains local species diversity
and contributes to geographical diversity patterns (see Outstanding Questions). As these are
two crucial aspects of the Janzen–Connell hypothesis, also fundamental to our general under-
standing of the role of CNDD for biodiversity, future research should focus on testing these
subhypotheses. In our roadmap for CNDD research, we argue that the key to this will be devel-
oping more robust and meaningful CNDD metrics, conducting large-scale comparative studies
based on dynamic data, and integrating CNDD into both community-ecological and macroevo-
lutionary modeling frameworks. This will pave the way to a more holistic understanding of
CNDD and its implications for species diversity.
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