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Long-term analyses of biodiversity data highlight a ‘biodiversity conservation
paradox’: biological communities show substantial species turnover over the past
century®?, but changes in species richness are marginal*>, Most studies, however,
have focused only on the incidence of species, and have not considered changesin
local abundance. Here we asked whether analysing changes in the cover of plant
species could reveal previously unrecognized patterns of biodiversity change and
provide insightsinto the underlying mechanisms. We compiled and analysed a
dataset of 7,738 permanent and semi-permanent vegetation plots from Germany that
were surveyed between 2 and 54 times from 1927 to 2020, in total comprising 1,794
species of vascular plants. We found that decrementsin cover, averaged across all
species and plots, occurred more often than increments; that the number of species
that decreased in cover was higher than the number of species thatincreased; and
that decrements were more equally distributed amonglosers than were gains among
winners. Null model simulations confirmed that these trends do not emerge by
chance, but are the consequence of species-specific negative effects of environmental
changes. Inthe long run, these trends might result in substantial losses of species at
bothlocal and regional scales. Summarizing the changes by decade shows that the
inequality inthe mean change in species cover of losers and winners diverged as early
asthe1960s. We conclude that changes in species cover in communities represent an
important but understudied dimension of biodiversity change that should more
routinely be considered in time-series analyses.

Loss of biodiversity is one of the most critical environmental
problems®’. Globally, the extinction of many taxa has been well docu-
mented®°. However, local-scale studies—that is, those at the level
of communities—do not always reflect this global trend*?, which has
sparked intense debates™ . The main reason for this discrepancy
between scalesis that species losses and gains through time areinher-
ently asymmetric. At any spatial scale, it only takes one individual of a
new speciestoresultinagain, but theloss of allindividuals of aspecies
isrequired tolead toaloss™. In consequence, atagiven sampled area,
the loss of all individuals of one species might be compensated by
single individuals of a new colonizer*". Indeed, within local communi-
ties, species turnover, rather than species loss, has been identified as
the main aspect of biodiversity change'®. For example, 28% of species
were found to be replaced per decade in an analysis of global marine
and terrestrial community data®. However, except for some studies

of forests'”*®, these analyses ignored the changes in abundance that
precede species turnover.

Time series of local communities often document the abundance of
each species, but this information is rarely available at larger scales.
Yet the strength of these data has not been used sufficiently in assess-
ments of global biodiversity. In the case of plant communities, the
most common abundance metric is the percentage of ground cov-
ered by allindividuals of a species on a particular sampling plot. This
allows changes to be calculated as percentage points of cover lost or
gained, which enables declines to be detected before local extinctions
occur. Aggregating such cover changes across many sampling plots
at aregional level allows the calculation of the rates of decrease or
increase of species’ mean cover; thatis, identifying losers and winners.
Thismightinturn help us to understand the discrepanciesintrendsin
species richness that are found at different spatial scales.

A list of affiliations appears at the end of the paper.
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Fig.1|Patterns of change in plant diversity over one century.a,b, Temporal
changeinplantspeciesrichness of plots (a) and mean cover change of species
(b). Theblack dashed line shows zero change, and the red solid line shows the
mean change of species richness (a) or the species' mean change in cover in
percentage points (b). a, Comparisons of species richness (SR) in plots
recorded at subsequent pointsintime (n=13,987). An effect size of +0.69
corresponds to double or half theinitial number of species, and an effect size of
+2.3indicates tenfold or one-tenth of the initial number of species. The

For plant species, comparisons between losers and winners have
only been performed with respect to occupancy at larger grain sizes.
Studiesbased ongrids of approximately 5 x 5 kmreported contrasting
trends in Denmark® and in Germany?°, with increasing and decreas-
ing species richness, respectively. Although both studies detected
animbalance between losers and winners, it is difficult to ascertain
changes in biodiversity at large grain sizes, as resurveys at that spa-
tial resolution often differ from the initial surveys in terms of their
sampling intensity. In 5-km-grid cells, species are easily overlooked,
which results in pseudo-turnover with erroneous gains or losses?. By
contrast, small-grain vegetation-plot records, ranging from a few to
several hundred square metres?, are usually thoroughly checked not
only for the presence of species but also for their absence.

Invegetationscience, the traditional method of analysing time series
of local communities involves following a plot’s trajectory through
time and aggregating the changing occurrence or cover of species
in the form of plot summary metrics, such as trends in species rich-
ness and diversity indices, or more sophisticated measures, such as
changes in the mean ranks or abundance curves of species®. This type
of analysis revealed both increasing* and decreasing® trends in spe-
ciesrichness, and global syntheses consequently did not detect gen-
eral trends in community-scale species richness*. However, constant
community-scale richness may be combined with biodiversity loss at
the regional scale. This might for example happen when few species
newly colonize many communities, whereas rare species (those occur-
ring in only a few plots) are lost completely. An early warning sign of
such a development would be an asymmetry of cover trends across
species; thatis, withincreases in cover being concentrated ina subset
of species but decreases being distributed more homogeneously across
many species. Indeed, a global analysis of local species turnover has
suggested that it is species that are particularly widespread—often
non-native species—that are increasing in abundance®.

Here we analyse the changes in cover of individual species in 7,738
vegetation-plot time series that spanalmostacentury and awiderange
of habitat types across Germany. Apart from comparing the magnitude
of cover decrements and increments, we tested for inequality in the
distributions of cover losses and gains across all species. To this end, we
used the Gini coefficient, ametric developedin economics to evaluate
the share ofincomes across the inhabitants of countries?. On the basis
ofthe Gini coefficients, we also tested whether cover losses were more
evenly spread among losing species than were cover gains among win-
ning species. We here define losers and winners by their mean change
incoveracrossall observationintervals and all plot records, which can
beeither negative or positive. To make sure that the observed patterns
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estimated mean overall effect size was —0.062 according to a mixed effects
model (P=2x107%, degrees of freedom (df) = 5,310) with a 95% confidence
interval between-0.071and -0.053. b, Comparisons of the species' mean
changesin cover between subsequentrecords. Only species with atleast100
observations of change (n=578) wereincluded. The estimated overall mean of
themean cover change of species was —0.165 + 0.089, which was significantly
different from O accordingtoat-test (P=3.1x107*, df =577).

are not aresult of chance alone, we also developed null models that
kept species richness constant and varied the amount and direction
of change and the concentration of cover losses and gains on losers
and winners. We hypothesized that the divergence in the distribution
between cover losses and gains is driven by (i) the proportion of spe-
cies that undergo changes; (ii) the ratio of increasing to decreasing
species; and (iii) the degree to which cover losses are concentrated on
aspecificsubset of species. Then, to assess whether losers and winners
(thatis, those species thatlost or gained cover) differed in their floristic
status or habitat requirements, we analysed whether the probability
ofadecrease oranincrease in cover depended on species being native
or non-native and their habitat preference. Finally, we assessed the
temporal dynamics of cover losses and gains and asked whether they
occurred at the same pointin time.

Changesin plant diversity from1927t02020

The 7,738 vegetation-plot time series covered the period from1927 to
2020 (Extended Data Fig. 1). Plot richness change, calculated as the
log ratio of species richness (SR) at the end and the beginning of the
observationtimeinterval (Fig.1a), varied more than tenfold inabsolute
numbers. Even though we observed a significant decrease in species
richness over time, the estimated effect sizes were close to zero (mean
log.(SRy,/SRy;) = —0.062, corresponding to amean net loss of 0.06 spe-
ciesper plot). There wasatendency for shorter observationintervalsto
have significantincreases and longer observationintervals significant
decreases in species richness (Extended Data Fig. 2a-c). On average,
log.(SRy,/SRy,) decreased by 0.153 per log,, years (P < 0.001according
to a mixed model), indicating that more species were lost with time.
In consequence, the change in species richness was also close to zero,
but was significantly positive when richness change was expressed
per decade (mean log.(SRy,/SRy,) per decade = 0.062; Extended Data
Fig. 3). Although decreases in species richness were greater in larger
plots (mean change in log.(SRy,/SRy;) =—0.064 per log,, increase in
plotarea), speciesrichness significantly decreased in all different cat-
egories of plot sizes (Extended Data Fig. 4a—c). Because of the overall
very small effect sizes, we conclude that directional changes in mean
local richness are minor at best, which is in accordance with previous
studies**. Similarly, the effect sizes for Shannon’s index of diversity,
Pielou’sindex of evenness and the change in the species rank abundance
curve (as ameasure of curve change?) were significantly negative, but
of small magnitude (Extended Data Fig. 5a-c).

Across all plots, there were 458,311 observations of change; that
is, species x plot records x time interval combinations. There were
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Fig.2|Inequality of losses and gains. a,b, Lorenz curves for cover decreases
(red) andincreases (blue), reported in percentage points across the whole
observation period from1927t02020 across all change observations
irrespective of species (a) (n=172,252 and 166,554 observations of decrease
andincrease, respectively), and aggregated by species (b) by averaging all
change observations fromaacrossall plotsand timeintervals (n=1,011and 719
losers and winners; that s, species with anegative and a positive mean change
incover, respectively). Theiconsontheleftillustrate these two types of
aggregation of cover changes for six change observations, fromwhicheach
three decreased (-) orincreased (+).In a, these decreases are sorted by sign
(-or+).Inb, they are averaged by species, defininglosers and winners,
exemplified here as one species each with anegative or a positive mean change,
respectively. The Lorenz curves show the cumulative amount of cover decrease
andincrease (addedin order of their ascending absolute values) as a function of
the cumulative number of change observations (expressed as a proportion of
the totalnumber of observations). The diagonal black lineindicates the
theoretical curve that would resultifall observed changes were equal in size.
The Gini coefficient,ameasure of inequality, is the areabetween this diagonal
lineandtheactual Lorenz curve divided by the entire area under the diagonal
line. Thus, 0 and lindicate maximum equality and inequality, respectively. The
differences between the Gini coefficientsin bothgraphs were significantat
P=0.05,but the confidenceintervalsinaaresosmallthattheyareinvisiblein
thegraph.

more negative (n=172,252) than positive (n =166,554) observations,
and on average, decrements were larger than increments (4.05 and
3.97 percentage points, respectively, according to a t-test (P=0.003,
df =338,187). For each interval, species change was assessed as the
change in per cent cover, expressed as percentage points. Across all
observations, the values of both negative and positive changesin cover
were not evenly distributed, whichis illustrated by the Lorenz curves
(Fig. 2a) and the corresponding Gini coefficients. Gini coefficients
of 0.712 (95% confidence intervals (Cls): 0.710 and 0.714) and 0.718
(0.717 and 0.721 Cls) were obtained for observations of negative and
positive change, respectively. Although the two Gini values were highly
significantly different (non-overlapping Cls even at 99.9%), their small
difference might not resultin ecologically meaningful effects. Never-
theless, the finding thatlosses in cover were more equally distributed
thangainsin cover might point to animportant ecological mechanism.
If cover losses tend to occur in more uniform steps, whereas gains result
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from both small and large increments, many small losses in coverina
plot might be offset by afew large gains. The significantly different Gini
coefficients show that this was the case in a considerable number of
our change observations. Moreover, cover changes also depended on
interval length. Cover decreased significantly more in longer thanin
shorter observation intervals (by —0.042 percentage points per log,,
intervallength; P<0.001according toa mixed model), and decreased
significantly moreinlarger thanin smaller plots (by —0.14 percentage
points per log,,area; P < 0.001).

Acrossallintervals,independent ofinterval length, there were more
losers than winners per plot, with an average difference of 0.407 spe-
cies (Cls 0.246 and 0.569; Extended Data Fig. 5d), which corresponds
tothe observed decreasein plot richness (Fig. 1a). Despite on average
larger decrements than increments and fewer winners than losers in
plots there was a significant increase of 2.5 percentage points in the
mean cover of allthe speciesinaplotacross all plotrecords (Extended
DataFig. 5e). By contrast, we observed aninsignificant decrease of 0.7
percentage pointsin the median cover (Extended Data Fig. 5f). These
opposing directions of changes in the mean and the median cover are
the direct consequence of a higherinequality ofincrements compared
to decrements.

Although these changes in individual cover observations in plots
are so subtle that they may only be detectable in large datasets, they
add up when the mean changes of species are calculated. Out of the
total 1,794 vascular plant species in our study, there were 41% more
losers than winners, with 1,011 and 719 species, respectively. In con-
sequence, the median across all species’ mean cover changes was sig-
nificantly negative (-0.063 percentage points; Cls -0.089 and -0.035;
P<0.001; Extended Data Fig. 6). The mean cover changes of species
didnot depend ontheir overall frequency in the dataset (regression of
species’ mean cover change on log,, frequency, P= 0.601). Decreases
in the mean cover of species were also consistent with respect to the
length of the observation interval (Extended Data Fig. 2d-f) and plot
size (Extended Data Fig.4d-f).Inall analyses, not only were there more
losers than winners, but the amounts of cover losses and gains were also
not distributed equally within both groups. This is shown by Lorenz
curves, whichin Fig.2b are based on mean cover changes per species.
The Gini coefficients for species with mean negative (0.692; Cls 0.660
and 0.718) and positive (0.778; Cls 0.720 and 0816) changes differed
by almost 0.1. The larger Gini coefficient for winners indicates that
there were a few winners that gained disproportionately more mean
cover than others, whereas the mean cover losses among losers were
more equally distributed. Comparing Fig. 2aand Fig. 2b shows that
two factors contributed to the inequality of biodiversity change. First,
decreases occurred in smaller and more equal cover changes than
gains. Second, the gains were concentrated in fewer winning species,
whereas the losses were distributed among more losers.

These results also hold when rare species were excluded from the
calculations. Figure 1b shows the histogram of mean cover changes
for the 578 species for which at least 100 time-interval observations
were available. Here, the change in mean cover was —0.165 percentage
points (P < 0.001), which shows that species' mean losses in cover were
significantly higher than species' mean gains. In other words, there was
aredistribution of species: fewer speciesincreased in dominance and
frequency, whereas more species decreased in cover and sometimes
disappeared locally.

Null model simulations

Tounderstand the factors that determine the divergence in Gini coef-
ficients between decreases and increases in cover and to disentangle
those from possible species richness effects, we performed a series of
nullmodel simulationsto test three different hypotheses. We hypoth-
esized thatthe divergencein the distribution between cover losses and
gainsisdrivenby (i) the proportion of species that undergoes change;
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Fig.3|Nullmodel simulations of changesinspecies cover.Inall simulations,
the number of species per community was kept constant, but species turnover
(extinctions and colonizations) was allowed (for details see Methods and
Supplementary Methods 2). The pictures at the top represent the three
hypothesesbeingtested: the divergenceinthe distribution between cover losses
andgainsisdrivenby: (i) the proportion of species that undergo changes (left
column, a,d); (ii) the ratio of increasing to decreasing species (middle column,
b,d); or (iii) the degree to which cover losses are concentrated on a specific
subset of species (right column, ¢,f). a-¢,The Lorenz curvesin the top row show

(ii) the ratio of increasing to decreasing species; and (iii) the degree
towhich cover losses are concentrated on a specific subset of species
(Fig. 3; for further explanations and a graphical illustration, see Sup-
plementary Methods 2). Inall null models, the species richness of each
plotwas kept constant to avoid confounding effects of richness change,
and only cover changes were redistributed among losers and winners
(for details, see Methods). In contrast to hypothesis (i), the divergence
inthe distribution between cover losses and gains did not depend on
the proportion of species that undergoes change. Although subject-
ing more species to cover changes increased the Gini coefficients
for observations of both negative and positive change (Fig. 3a), this
did not propagate to the mean change values of the species (Fig. 3d).

Proportion of species

Proportion of species

cover changes by plotID x species x time interval (corresponding to Fig. 2a),
separated into observations of negative (red) and positive (blue) change.

d-f, Thegraphsinthe bottom row show mean cover changes per species
(correspondingto Fig.2b), separated into species withan averageincreasein
coverand anaverage decreasein cover (losersinred and winnersinblue).Ineach
panel, the blue and red Gini coefficients next to each other refer to the same
scenario; *indicates a statistically significant difference in the Gini coefficient
between the two Gini coefficients from the same scenario; NS, notsignificant (all
atP=0.05).

We could confirm hypothesis (ii), which posited that the ratio of increas-
ingtodecreasing species drives the divergence in the Gini coefficients
of decrements and increments (Fig. 3b). Inequality is higher for the
kind of change that is more frequent. However, in the empirical data,
theincrements were more unequal (Fig. 2a), although they are less fre-
quent. Asacorollary, the observed divergence of inequality is unlikely
tobe amere consequence of the absolute number of losses and gains.
There was also support for hypothesis (iii). Concentrating losses on a
specific subset of species did not affect the inequality of decrements
and increments across all species (Fig. 3c). However, it resulted in the
mean cover losses of losers being more evenly distributed than the
cover gains of winners (Fig. 3f), as in the empirical data (Fig. 2b). This
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Fig.4|Losersand winners across one century in Germany. Probability of
increase in cover for the 161 species with asignificantly negative or positive
change (binomial testat P< 0.05, with Holm correction) and atleast 100
observations of change. Decreasing species are those with a probability of
increasing of less than 0.5, and thus, increase less often than expected by
chance, and their names are plotted below the y value of 0.5, whereas the names
ofincreasing species are plotted above the y value of 0.5. The colours of taxon
names show their floristic status, with black, purple and pink for native,

patternwas not obtained by the other two model simulations. The diver-
gence of the Gini coefficients between losers and winners was signifi-
cantly affected neither by the proportion of species that undergo cover
change (Fig. 3d) nor by the proportion of increasing species (Fig. 3e).
We conclude that environmental changes that threaten specific spe-
cies drive the inequality of mean cover changes of losers and winners.

Losers and winners

To determine the identity of losers and winners, we focused on the
578 species with at least 100 time-interval observations, of which 161
showed ssignificant differencesin cover losses and gains across all plots
(binomial test at P< 0.05, with Holm correction; Fig. 4). Among these
161 species with a directional change, native species decreased and
neophytesincreased more often than would be expected by chance (at
P <0.05). Comparing the habitat affinities of the species revealed that
significant decreases occurred among species of mires and spring fens
(level1EUNIS habitat Q), grasslands (R) and arable land (V), whereas for-
estspecies (T) increased more often than would be expected by chance.

The times when cover losses and gains occurred were highly
species-specific, as can be inferred from the temporal course of the
Gini coefficients for the 1,011 losers and 719 winners (Fig. 5). Changes
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archaeophyte and neophyte, respectively. The bar colourindicates the species’
affinity tolevel LEUNIS habitats®® and the error bars indicate the 95% Cls. The
three most decliningand increasing species areillustrated with photographs
and named. Plant photographs were obtained from https://www.floraweb.de/.
Copyrightfor C. aureum, C. cyanus and B. racemosus: Thomas Muer; for

1. aquifolium: Haupt Verlag; and for A. carinatum and Q. rubra: Regensburgische
Botanische Gesellschaft.

started tobe more unequally distributed among winners than among
losers as early asin the1960s. Since then, inequality of both gains and
losses in cover increased, with cover gains always being significantly
more unevenly distributed among winners than losses among losers
until 2010.

Discussion

Our work reconciles some issues in the debate surrounding the ‘bio-
diversity conservation paradox™; that is, the discrepancy between
observing a loss of species at a broad scale but marginal changes in
speciesrichness at the plot scale. With the support of anull model, we
showed that the changesin cover may affect winners and losers differ-
ently, even if plot richness does not change. Although the observed
declinein species richness might be linked to the greater number of
species that lost than gained cover, our analyses show that a change
of richness at the plot level is not a necessary prerequisite for this
asymmetry. Overall, we found a higher number of losers than win-
ners at the country (Germany) scale. This depends on two processes.
First, cover losses were more evenly distributed than gains at the
community scale. Second, cover losses and gains were concentrated
in different species.


https://www.floraweb.de/
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Fig.5| Temporal course of theinequality of species losses and gains. The
Gini coefficient was calculated using amoving window approach withawindow
width of five years, separately for losers (species with mean cover losses; red)
and winners (species with mean cover gains; blue) in this time window. The
coloured lines show the mean values of 100 resampling events of 300 species
each per time window; the confidence bands show the s.d. across these
samples. Non-overlapping confidence bandsindicate significantly different
Gini coefficients between losers and winners. The increasing Gini coefficients
indicate anincreasingly unequal distribution of cover changes with time.

Finding 41% more losers than winners nationwide might even be
considered a conservative estimate for Germany’s low to mid eleva-
tions, and certainly underestimates the total change in plant biodi-
versity. On the one hand, our study also includes plots in the alpine
region, where positive changes in richness have been described”. On
the other hand, our work suffers from most of the shortcomings that
have been noted in other studies on local time series™?, including
the lack of spatial representativeness, varying lengths of observation
intervals and a bias towards habitats that are least affected by human
activities (Extended Data Figs. 7 and 8). For example, time series are
usually discontinued in cases of substantial land-use change, such as
when anatural (or semi-natural) habitatis converted into agricultural
orurban land (with a few exceptions such as ref. %, which is included
inour analysis). In consequence, itis not surprising that the predicted
30% of local species extinctions due to land conversion® remain mostly
unnoticed in vegetation-plot time series such as ours. We do not want
toaddressthe criticisms that have been raised with regard to calculat-
ing changes in biodiversity from local time series™*®, which we think is
mostly justified. However, we note that our time series covered about
halfthe number of vascular plant species that occurin Germany, includ-
ing rare habitats that often contain rare plant species. This means that
evenifthe spatial representativenessisincomplete for entire Germany,
therepresentativeness at the level of individual speciesis very high and
gives robustness to our results.

Our results show that minor asymmetries of cover losses and gains
incommunities sum up when being aggregated by species, potentially
hinting at population declines and extinctions at larger spatial scales.
This is in agreement with trends observed across Germany?**-33—
including biotic homogenization®*, which has already been put for-
ward instudies on time series"?, but had not yet been properly tested”.
Homogenization occurs because, across all time series, few species
consistently increase in their cover, meaning that the same species are
winning in many communities. This supposedly results in a decreas-
ing dissimilarity between communities. Other studies that analysed
species changes conformto our finding of a prevalence of losers over
winners, including studies from Denmark?®, the UK* and Germany?.
Although neophytes were more frequently found to be increasing
than decreasing, confirming global observations**, most winners

were native species, as has been reported already for German forest
communities® ., Similarly, the habitat affinities of declining species
being concentrated inmires, grasslands and arable land reflect both the
trends revealed by Germany’s Red List of vascular plants**and floristic
mapping programmes?.

Ourtime series also provide temporal information on species losses
and gains. The strongest asymmetry between cover losses and gains
occurred between the end of the 1960s and the beginning of the 21st
century, indicating rapid species turnover, which is most likely to be
aresult of substantial changesinland use*®. All systematic monitoring
programmes on vegetation, however, only started after the year 2000,
and thus cannot provide information on the second half of the 20th
century. Our findings confirm the early warnings from the first Red Lists
in Germany**, as well as estimated changes in richness from floristic
mapping programmes when intervals between 1997 and 2017 were
compared tointervals between1960 and 1987?°. However, these results
havetobeinterpreted withgreat caution for several reasons. First, itis
probable that later time series were established at locations and habi-
tats in the focus of nature conservation efforts, which may thus have
received more favourable management than the average landscape.
Second, datadensity on observations of species changes was highest in
thisintermediate period, which could give rise to amid-domain effect?,
Inconsequence, the stronger overlap of time seriesin the middle of the
study period could have strengthened the observed trends. We note,
however, that early inequalities in cover losses and gains at the plot
scale will ultimately resultin species extinctions at the regional scale,
representing another aspect of extinction debt®.

Overall, our analysis of local vegetation-plot time series provides
a useful source of information for ongoing attempts to assess biodi-
versity change and understand the underlying mechanisms. We have
shown that changesinspecies cover within communities are aneglected
aspect when assessing changes inbiodiversity at large spatial extents.
We advocate therefore the compilation of further existing community
time series worldwide, especially from vegetation plots of which few
have already been mobilized in global databases, such as BioTime*.
Compared to temporal analyses of databases* and meta-analyses*s,
repeated observationsinthe samelocations represent the most sensi-
tive strategy for analysing temporal changes in vegetation*. However,
careful quality control is a key prerequisite for this type of analysis".
In particular, aggregating changes across different communities by
speciesrather than aggregating changes per plot requires much more
attention, so that different taxonomies can be combined to prevent
pseudo-turnover®. With appropriate care taken, plot time series of
community dataacross larger regions should forma crucial backbone
for future monitoring of biodiversity. Characterizing the temporal
taxonomic turnover at a community scale’? allows insights into the
mechanisms of species losses and gains that monitoring at coarser
spatial grains alone—such as floristic mapping at grid sizes of several
kilometres—cannot provide.
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Methods

Data compilation

We compiled as many long-termrepeated vegetation-plot records from
Germany as we could access, including data from published studies,
as well as results from grey literature and conservation assessments.
The datainclude 92 projects (Supplementary Table1; for adescription
of the data seeref.*°).

The different steps of data preparation and analysis are summarized
in Supplementary Methods 1. Within each project, the plot resurvey
ID indicates which plot observations from different times were made
on the same plot or set of plots at the same site, allowing them to be
compared between different pointsintime. Plot resurvey IDs generally
refer toasingle plot that was repeatedly visited (which was either per-
manently marked, using poles, magnets and so on, or semi-permanent;
for example, provided with exact coordinates or other ways of descrip-
tions of the exact locality). Insome cases, when the exact locations were
not precise, resurveys used several plots to match one previous plot,
resulting in a one-to-many relationship. In this case, all plot records
received the same plot resurvey ID and all plot records for the same
point in time were combined. There were also resurveys with sets of
plots at a site that could not be matched by single plots but only by
another set of plots, resulting in a many-to-many relationship. Such
resurveys were done to compare a particular community at a particular
siteat two pointsintime, eachrepresented by aset of plots, whichthen
all received the same plot resurvey ID. Accordingly, all plot records
for the same point in time were combined by averaging the species
cover values, and then treated as a single observation. Some of our
studiesincluded experimental treatments with different management
of habitats (for example, abandonment or establishment of grazing,
succession and disturbance). To exclude treatments that are not rep-
resentative of biodiversity change in Germany, from these studies we
included only the control plots® and plots that reflected the ambi-
ent land use at the site®, that were unfenced™ or that were subjected
to continuous grazing™. At the end, 7,738 unique plot resurvey IDs
remained, comprising a total of 23,641 vegetation-plot records that
ranged from 1927 to 2020. We retrieved coordinates for all locations
(longitude and latitude), either from the original sources or by looking
up plot locations from maps. The duration and survey times of each
project are shown in Extended Data Fig. 1. As different projects used
different cover scales, we converted cover into per cent, following the
default conversion of the Turboveg 2 program®. For example, for the
seven-grade Braun-Blanquetscale, the transformationwasr+12345~>
1%2% 3%13% 38% 63% 88%, respectively.

The locations of all plots of all projects are shown in Extended Data
Fig. 7. We assigned the individual plot locations to the grid cells of the
quadrants of German ordnance maps (MTBQ', 0° 5’ x 0° 3’, approxi-
mately 5.6 km x 5.9 kmin the centre of Germany), and tested whether
the grid cells analysed differed from those without observations with
respect to population density, road density, urban cover, cropland
cover and protected areas. This clearly revealed that the sampled
grid cells were not representative of the whole area of Germany. They
showed significantly higher human population densities, road densi-
tiesand urban cover, whereas the cover of cropland and the amount of
protected areawere lower, which indicates that many time series were
made inregions with higher human pressures. Our time series were also
biased with respect to habitat types. This was illustrated by assigning
all plot records of the time series to EUNIS classes, using the expert
system EUNIS-ESy*® and the corresponding R code®. Each time series
was assigned to the habitat type by using the earliest plot record that
resultedinlevel 3 EUNIS classification (Extended Data Fig. 8). Although
the time series covered 92 of the approximately 150 EUNIS habitat
types encountered in Germany, most of the 23,641 plot records came
fromgrasslands (level LEUNIS habitat R; n = 14,849; 62.8%), followed by
forestsand other wooded lands (T; n =5,440; 23%). By contrast, arable

land, which makes up more than 36% of the land cover in Germany,
was only represented by 816 plot records (V; vegetated man-made
habitats; 3.5%).

Taxonomic harmonization

All projects were linked to the standardized species list German SL1.3
(ref.>®). The nomenclature for vascular plants followed the concepts
of the German taxonomic standard list*®, with additional aggregations
to higher taxonomiclevelsaccording to German SL1.3 (ref. *8). Assome
authorsrecorded subspecies and other infraspecific taxa, species were
aggregated at the species level, using vegdata®®. Some closely related
species that, from our experience, were often mistaken in the field
were merged at the aggregate or genus level. Species aggregates were
also used when different taxon names of the same aggregate occurred
in different projects, to prevent the same taxon appearing under dif-
ferent taxon names. The harmonization of taxon names was a crucial
stepinourapproach, asouraimwasto assess changes inspecies cover
across projects. We used our own R code to merge taxon names and the
notation of the ESy expert system>® to protocol all steps. The species
harmonization forms the first section of the ESy system and shows
which taxon names were aggregated under the name of a broader taxo-
nomic concept (Supplementary Table 2). In addition, within single
projects, we used customized aggregations when the same taxa were
reported at different taxonomic levels at different points in time in
the same plot resurvey IDs (Supplementary Table 3). For example,
whereas Orchis militariswasreported inall but one year of atime series
of a specific plot, only one year reported Orchis species at the genus
level. Unaccounted for, such a leap between taxonomic levels within
atimeserieswouldresultinincorrect observations of species change.
To avoid losing the predominant information at the species level by
aggregating all records to Orchis, we assumed that the taxon was also
Orchis militarisinthat particular year. If more than one taxon occurred
in previous years, we equally distributed the cover among those taxa.
This happened, for example, when a record was taken late in spring
whenthe two species Anemone nemorosa and Anemone ranunculoides
could no longer be distinguished.

The percentage cover values of the same aggregated taxon name as
wellasthose of taxaoccurring in different layers of the same plot were
merged, assuming arandom overlap of their cover values and making
sure that the combined cover values could not exceed 100% (ref. ).
Weremoved bryophytes and lichens using the vegdata package in R.

Finally, the original list of 3,280 taxon names that included bryo-
phytesand lichens wasreduced to1,794 taxon names of vascular plants.
Inthe following, for the sake of simplicity, we refer to these taxon names
as species.

Analysis of temporal change

Instead of fitting trends for individual time series, differentintervals of
the same time series were treated as separate observations of change.
This was achieved by separating all records into 458,311 plot resurvey
triplets; that is, ID x species x time interval observations, where the
interval designated two subsequent observations between year 1and
year 2 for the startand the end of the interval, respectively. Separating
atimeseriesinits differentintervals avoids the problem of establishing
abaseline against which the changes are being compared®™?,

Analysis of temporal change at the plot level

At the plot level, the triplets were aggregated into plot resurvey ID x
time interval combinations (in total n =13,987). With atotal of 7,738 plot
resurvey IDs, this corresponds to an average of 1.81 resurvey intervals
per plot resurvey ID. This means that, on average, a time series had
about three observation events. Although most plot resurvey IDs were
only repeated once (one interval; n=6,006), 798 had 2 intervals, 213
had3intervalsand 721had 4 or moreintervals. The longest time series
comprised 54 intervals (Uwe Wegener, montane Harz meadows®).
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Foreachintervaland plotresurvey ID, we calculated the change in spe-
cies richness (SR), Shannon’s index of diversity and Pielou’s index of
evenness. Inaddition, we calculated the change inthe rank abundance
curves, using the formulafor curve change in ref.?*. The change in rank
abundance reflects the area between the two rank abundance curves
for thelater observation and the earlier observation. Rank abundance
curves are constructed by plotting the species’ cumulative relative
cover (ranging from O to 1) against the species’ ranks in cover values,
calculating ranks from highest to lowest cover and then dividing the
ranks by the maximum rank (with scaled ranks ranging from O to 1).
Furthermore, we calculated the number of species with decreases and
increasesin cover as well as mean and median cover across all species
inaplotrecord.

For all change metrics that were calculated at the plot level, we cal-
culated log response ratios of the metric at time Y2 divided by that at
time Y1, except for the change in rank abundance curves and losses
and gains, for which we used the difference between areaand number
of species, respectively. To assess the effect of plot size on the change
of speciesrichness, we tested the effect of log,,(surface areainm?) on
log.(SRy,/SRy,). Inaddition, we analysed the distribution of plot records
with respect to log.(SRy,/SRy,) separately for small (less than 25 m?),
medium-size (25 m?) and large (greater than 25 m?) plots. A similar
analysis was used for testing the effect of the observation length (log,,
interval lengthin years) onthe change of species richness and analysing
the distribution of plot records separately for short (two years or less),
medium (> two years and < 10 years) and long observation intervals
(more than 10 years) . We also expressed richness change per decade
(meanlog.(SRy,/SRy,) decade™). The departure of effect sizes and dif-
ferences from O in all these analyses were assessed with mixed effects
models, using the time-series ID as arandom factor, thus taking into
accountthe non-independence of intervals from the same time series.
Astherewere 13,987 plot resurvey ID x time interval combinations, the
test statistics tended to be significant, even when the mean of the test
metric was close to zero. We used mixed models to calculate confidence
intervals using Wald-test approximation®,

Analysis of temporal change by species

In total, there were 458,311 plot resurvey ID x species x time interval
combinations, for which the difference in cover for every species k
and timeinterval mwas calculated as Acover, ,, = covery ,,y, — COVer; v,
and expressed as percentage points. Here, Y2 and Y1 refer to the end
and the start year of aninterval, defined as the two nearest pointsina
time series. Similar to our analyses for the change of speciesrichness,
we also tested the effect of log;o(surface areain m?) and of observation
length (log,, interval lengthin years) on Acover, ,, using mixed effects
models with the time-series ID as random factor.

To compare the distribution of cover changes across all species,
we considered observations of positive and negative cover change
separately (n=184,678 and 192,162 time interval observations, respec-
tively). We then sorted the cover changes in each category (positive or
negative cover changes) according to increasing absolute values and
plotted the cumulative sums of cover changes against the proportion
of observations in each category, thus obtaining a Lorenz curve. We
calculated the unweighted Gini coefficient for each category, accord-
ing to a previous report® and using the bias correction implemented
in the DescTools package®*:

'Y |Acover,~ Acover)| p
23'Y] Acover,

’

Gcover - n-1
with Acover;and Acover;being cover changes of change observations i
andjinplots, irrespective of species, and nthe total number of change
observations. G, is calculated separately for observations of negative
and positive change, using either only all negative change observa-
tions or only all negative change observations. The Gini coefficient is

ameasurement of inequality in distribution®, given as a value between
0 and1, with Oindicating a perfectly equal distribution.

Acrossall plotresurvey IDs, there were 458,311 species x time interval
combinations with avalue for cover change. For species comparisons,
we aggregated cover changes by species across all plot resurvey IDs and
intervals. We counted the number of positive, zero or negative cover
changes per species and subjected themto an exact binomial test, using
the stats package. We adjusted the significance levels for multiple test-
ing using Holm correction. When showing changes by speciesin graphs
(Fig. 4), we confined the list to those species with P < 0.05 after Holm
correction and with 100 or more time interval observations (n=161).
To compare the distribution of cover changes among all species, we
calculated the mean cover change per species, expressed as percentage
pointsin cover. As the cover changes were highly dependent on species
and many species occurred only rarely in the time series, we tested the
probability of increase with a non-parametric exact binomial test. We
assigned the floristic status native, archaeophyte and neophyte (the
latter two being exotic species arriving in Germany before or after
1492, respectively) to these 161 species, using the BIOLFLOR database®.
We assigned species to their preferred habitat using the level 1 habi-
tats of the EUNIS habitat classification®. This was achieved by assign-
ing all 225,606 vegetation plots in the German Reference Vegetation
Database®” to EUNIS classes, using the expert system EUNIS-ESy*® and
the corresponding R code”. We then calculated the affinity of the 161
species with asignificant change to each of the 150 EUNIS classes that
occurred in Germany, using the @ coefficient of association®®®’, Then,
the habitat preference of a species was defined as the EUNIS class to
which the species had the highest @ coefficient. For further analysis,
we used the highest hierarchy of the EUNIS system (level 1). To assess
which categories of floristic status and EUNIS habitat level 1 preference
departed from the expected probability to increase, which is 0.5, we
scaled the probability responseto—-1to1and calculated linear models
withoutintercept.Inaddition, we tested whether mean cover changes
of species depended on their overall frequency in the dataset and ana-
lysed subsets of species on the basis of different interval lengths and
plotsizesin which the species occurred, using the same categories of
intervallengths and plots sizes as used for analysing species richness.

We calculated the Gini coefficient for inequality of changes, separately
for species with negative and positive mean cover changes (thatis, losers
and winners), respectively. The Gini coefficient based on species means
was also calculated using the DescTools package®*, and is defined as:

G- Z,'-V Z'}/ |Acover; - Acover| N
cover 2 2[/\/ zf; err} N-1

with Acover; and Acover; being the mean cover changes of species i
andjand Nthe total number of species. G is calculated separately
forlosers or winners, using either only all negative or positive species
mean cover changes. Applied in this way, the Gini coefficient Gy indi-
cates that either the losses or the gains in cover were not distributed
equally among species. To assess the significance in the difference
between the Gini coefficients of losers and winners, we calculated 95%
confidenceintervals from bootstrapping, using percentiles, bias cor-
rectionand 1,000 replicates. For analysing the temporal course of the
distribution of cover changes in the groups of winners and losers, we
calculated the Gini coefficient G; as described above using a moving
window of five years, using only records from 1945 onwards because
of data scarcity before this date. Cover changes of all resurvey ID x
species x time interval combinations were aggregated by species and
year for all years that fell into awindow of five years. In every window,
300 species were resampled by chance, which was 100 times, and Gini
coefficients were calculated separately for all decrements and incre-
ments of the means of these 300 resampled species. Temporal trends
with confidence intervals were calculated from the Gini coefficients
from these 100 runs.



Null model scenarios

To assess the mechanisms that might drive the inequality of cover
changes among losers versus winners, we set up a simple model, serv-
ing as a theoretical null expectation (see illustration in Supplementary
Methods 2). Corresponding to our data analysis, the null model was
not spatially explicit. In contrast to previously developed null models',
our aim was also not to model stochastic colonization or extinction,
but stochastic changes in cover, which to our knowledge had not been
attempted before. Extinction only happened when cover decreased
below zero, and was exactly counterbalanced by colonization. In this way,
wekept species richness constant, in contrast to previous null models'.
Our null model also differs from traditional null models in community
ecology, which reshuffle cover values across communities and/or spe-
cies™7?but do not allow for random decreases and increases in cover.

Simulating random communities. We simulated random communi-
tiesand subjected them to different scenarios. First, we created a pool
of 200 species with frequencies randomly drawn from a log-normal
distribution, using the rinorm functioninR (meanlog =1.5,sdlog =1.2).
Summing up all frequencies resulted in a total of 1,810 occurrences.
We then drew random species richness values for 100 communities
fromanormaldistribution, varying the mean and standard deviation
to obtain the same total number of occurrences (1,810), which was
achieved by using a Gaussian distributionwithmean=19.13ands.d. =9
species). We chose these parameters in a way to be similar to the rich-
ness distribution of our empirical dataset (mean =23.4,s.d.=13.7).
Finally, cover values were randomly assigned to the speciesin each
community according to a broken-stick distribution”, using the drbs
function of the sads package™, which resulted in asum of a total cover
0of100% in each community.

Imposing cover change with three different scenarios. We then
introduced different types of change to this random community,
using three different scenarios. Inall scenarios, the species richness was
kept constant, which reflected our own findings and those of previous
studies"* . However, we allowed species turnover by replacing species
that—owing to randomly introduced decreases—had cover values of
less than 0. Newly colonizing species were randomly selected from
the pool of 200 species, with the drawing probability weighted by the
species’ frequency. In scenarios 1and 2, this made sure that the spe-
cies frequency distributionin the species pool remained constant (ex-
ceptforrandom noise). Species decreasesin cover were introduced by
varying three parameters, which corresponded to the three scenarios
in which these parameters were varied: (1) the proportion of species
affected by cover change in acommunity (to simulate different rates
of turnover in community composition); (2) the proportion of spe-
cieswithanincrease in cover among those species affected by change
(to simulate differences in the distribution of cover losses and gains,
irrespective of species); and (3) the identity of the species to decrease
in cover (to simulate that cover losses and gains might be concentrat-
ed in certain species). Decrements were either assigned randomly or
accordingtothe descending ID of the species, which resulted in species
with higher ID values being more frequently selected for losing cover
than other species.

In each community, according to these parameters, species were
randomly chosenthatunderwent adecrease. The cover of all decreasing
speciesin eachcommunity was summed up and redistributed accord-
ing to a geometric distribution. For example, in a community of 24
species in which 50% of all species were selected to change in cover
and 50% of those were subjected to decrease in cover, the summed
cover of these 6 species was redistributed (but randomly assigned) to
thesame 6 species as 0.125,0.0625,0.03125,0.015625,0.0078125 and
0.0078125. Note that the smallest change occurred twice to result in
asum of 0.25. If the decrease in cover assigned to a species was larger

thanthe current cover of that species, its cover became O and the spe-
cieswasreplaced as described above. The actually applied decrements
were then assigned to the species that—accordingto the given param-
eters—were selected for increase. The number of increasing species
also comprised the newly colonizing species in acommunity. If the
number of decreasing and increasing species was the same, the exact
same cover changes of decreasing species were randomly assigned
as increments to the increasing species, taking the decrements and
changing their sign. In this case, the absolute values of all increments
and decrements across all communities were exactly the same, and,
thus could notresultin differences in the equality of their distribution.
If the number of decreasing species was higher than that of increas-
ing species, each two randomly chosen decrements were combined
until the number of required increments was reached. Conversely, if
the number of decreasing species was lower than that of increasing
species, randomly selected decrements were divided by 2 until the
number of required increments was reached. In the latter two cases,
theequality of the distribution of decrements was no longer the same
as that of the increments.

Forallscenarios, we measured theinequality ofincrements and dec-
rements by the Gini coefficient as described above. As in the empirical
data, we calculated the Gini coefficient (i) across all cover changes, sepa-
rately forincrements and decrements, butirrespective of species; and
(ii) on species-aggregated mean values of increments and decrements.

The analyses were calculated in R v.4.0.3 using the packages stats,
foreign, reshape2, data.table, tidyverse, Hmisc, sads and Desctools.
Graphs were produced with the packages ggplot2, egg and vcd.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

All data are available as a data paper®® and available at https://doi.
org/10.25829/idiv.3514-0qsq70 under the terms specified by CC BY 4.0.

Code availability

TheRcode forretrieving resurvey ID x species x time interval combina-
tions and that was used to calculate the results presented in this paper
isprovidedin Supplementary Codelandis available at https://github.
com/idiv-biodiversity/ReSurveyGermany_Analysis. The R code that was
used to produce the nullmodels in Supplementary Code 2 is available at
https://github.com/idiv-biodiversity/ReSurveyGermany_null_models.
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Data deposition
|:| Confirm that both raw and final processed data have been deposited in a public database such as GEO.

|:| Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links For "Initial submission" or "Revised version" documents, provide reviewer access links. For your "Final submission" document,
May remain private before publication. | provide a link to the deposited data.

Files in database submission Provide a list of all files available in the database submission.

Genome browser session Provide a link to an anonymized genome browser session for "Initial submission" and "Revised version" documents only, to

(e.g.UCSC) enable peer review. Write "no longer applicable" for "Final submission" documents.
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Sequencing depth Describe the sequencing depth for each experiment, providing the total number of reads, uniquely mapped reads, length of reads and
whether they were paired- or single-end.
Antibodies Describe the antibodies used for the ChiP-seq experiments; as applicable, provide supplier name, catalog number, clone name, and lot

number.

Peak calling parameters | Specify the command line program and parameters used for read mapping and peak calling, including the ChIP, control and index files
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Data quality Describe the methods used to ensure data quality in full detail, including how many peaks are at FDR 5% and above 5-fold enrichment.
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Methodology

Sample preparation Describe the sample preparation, detailing the biological source of the cells and any tissue processing steps used.

Instrument Identify the instrument used for data collection, specifying make and model number.

Software Describe the software used to collect and analyze the flow cytometry data. For custom code that has been deposited into a
community repository, provide accession details.

Cell population abundance Describe the abundance of the relevant cell populations within post-sort fractions, providing details on the purity of the
samples and how it was determined.

Gating strategy Describe the gating strategy used for all relevant experiments, specifying the preliminary FSC/SSC gates of the starting cell

population, indicating where boundaries between "positive" and "negative" staining cell populations are defined.

|:| Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.

Magnetic resonance imaging

Experimental design

Design type Indicate task or resting state, event-related or block design.

Design specifications Specify the number of blocks, trials or experimental units per session and/or subject, and specify the length of each trial
or block (if trials are blocked) and interval between trials.

Behavioral performance measures State number and/or type of variables recorded (e.g. correct button press, response time) and what statistics were used
to establish that the subjects were performing the task as expected (e.g. mean, range, and/or standard deviation across

subjects).
Acquisition

Imaging type(s) Specify: functional, structural, diffusion, perfusion.

Field strength Specify in Tesla

Sequence & imaging parameters Specify the pulse sequence type (gradient echo, spin echo, etc.), imaging type (EPI, spiral, etc.), field of view, matrix size,
slice thickness, orientation and TE/TR/flip angle.

Area of acquisition State whether a whole brain scan was used OR define the area of acquisition, describing how the region was determined.

Diffusion MRI [ ] used [ ] Not used

Preprocessing

Preprocessing software Provide detail on software version and revision number and on specific parameters (model/functions, brain extraction,
segmentation, smoothing kernel size, etc.).

Normalization If data were normalized/standardized, describe the approach(es): specify linear or non-linear and define image types used for
transformation OR indicate that data were not normalized and explain rationale for lack of normalization.

Normalization template Describe the template used for normalization/transformation, specifying subject space or group standardized space (e.qg.
original Talairach, MNI305, ICBM152) OR indicate that the data were not normalized.

Noise and artifact removal Describe your procedure(s) for artifact and structured noise removal, specifying motion parameters, tissue signals and
physiological signals (heart rate, respiration).




Volume censoring Define your software and/or method and criteria for volume censoring, and state the extent of such censoring.

Statistical modeling & inference

Model type and settings Specify type (mass univariate, multivariate, RSA, predictive, etc.) and describe essential details of the model at the first and
second levels (e.qg. fixed, random or mixed effects; drift or auto-correlation).

Effect(s) tested Define precise effect in terms of the task or stimulus conditions instead of psychological concepts and indicate whether
ANOVA or factorial designs were used.

Specify type of analysis: [ | Whole brain [ | ROI-based [ | Both

Statistic type for inference Specify voxel-wise or cluster-wise and report all relevant parameters for cluster-wise methods.
(See Eklund et al. 2016)

Correction Describe the type of correction and how it is obtained for multiple comparisons (e.g. FWE, FDR, permutation or Monte Carlo).
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Models & analysis

n/a | Involved in the study
|:| |:| Functional and/or effective connectivity

|:| |:| Graph analysis

|:| |:| Multivariate modeling or predictive analysis

Functional and/or effective connectivity Report the measures of dependence used and the model details (e.g. Pearson correlation, partial correlation,
mutual information).

Graph analysis Report the dependent variable and connectivity measure, specifying weighted graph or binarized graph,
subject- or group-level, and the global and/or node summaries used (e.g. clustering coefficient, efficiency,
etc.).

Multivariate modeling and predictive analysis  Specify independent variables, features extraction and dimension reduction, model, training and evaluation
metrics.
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