
Deep Forward Networks
- Introduction

1

Wednesday
08h00 – 09h00

Géraldine Conti, Matthew Vowels, Bern Winter School on Machine Learning 2023, Muerren

Deploying a Neural Network

Given a task (in terms of
I/O mappings), we need :

1) Network model

2) Cost function

3) Optimization

2

1) Network Model

3

(Deep) Feedforward NN (DFF)

• the simplest type of neural network

• All units are fully connected (between layers)

• information flows from input to output layer
without back loops

• The first single-neuron network was proposed
already in 1958 by AI pioneer Frank Rosenblatt

• Deep for “more than 1 hidden layer”

4

Convolutional Neural Networks (CNN)

• inspired by the organization of the
animal visual cortex

• Kernel and convolution or pool cells
used to process and simplify input data
• Weight sharing between local regions

• well suited for computer vision tasks
• Image classification
• Object detection

5

Recurrent Neural Networks (RNN)

• connections between neurons include
loops

• Recurrent cells (or memory cells) used
• Weight sharing between time-steps

• well-suited for processing sequences of
inputs, when context is important
• Text analysis

6

Generative Adversarial Networks (GAN)

• More of a Training Paradigm rather than
an architecture

• Double networks composed from
generator and discriminator.

• They constantly try to fool each other,
hence contain backfed input cells and
match input output cells.

• well-suited for generating real-life images,
text or speech

7

2) Loss and Cost functions
• Loss function 𝐿 "𝑦 ! , 𝑦 ! , also called error function, measures how

different the prediction "𝑦 = 𝑓(𝑥) and the desired output 𝑦 are

• Cost function 𝐽 𝑤, 𝑏 is the average of the loss function on the entire
training set

• Goal of the optimization is to find the parameters 𝜃 = (𝑤, 𝑏) that
minimize the cost function 8

𝐽 𝑤, 𝑏 =
1
𝑚
(
!"#

$

𝐿(+𝑦 ! , 𝑦 !)

3) Optimization

• Given a task we define

• Training data

• Network

• Cost function

• Parameter initialization (weights, biases)
• random weights, biases initialized to small values (0.1)

• Next, we optimize the network parameters 𝜃 (training)
• In addition, we have to set values for hyperparameters

9

Maximum Likelihood
• Given IID input/output samples :

• Conditional Maximum Likelihood estimate (between model pdf and
data pdf):

• Mathematical tricks :

10Maximize the likelihood == Minimize the negative log-likelihood

Maximum Likelihood

11

Loss function choice

12
𝐿% +𝑦, 𝑦 = − log 𝑝 𝑦 +𝑦 = (

!"&

$

𝑦! − +𝑦!
%

• Choice determined by the output representation
• Probability vector (classification) : Cross-entropy

• Mean estimate (regression) : Mean Squared Error, L2 loss

𝐿 +𝑦, 𝑦 = −log 𝑝 𝑦 +𝑦 = − 𝑦 log +𝑦 + 1 − 𝑦 log 1 − +𝑦 (binary classification)

𝑝 𝑦 +𝑦 = +𝑦' 1 − +𝑦 (#)')

𝑝 𝑦 +𝑦 = Ν(𝑦; +𝑦)

Loss function example

• NN does simultaneously several tasks (multi-task)

13

Hyperparameters

• Parameters that cannot be learnt
directly from training data

• A long list…
• Learning rate 𝛼
• Number of iterations (epochs)
• Number of hidden layers
• Number of hidden units
• Choice of activation function
• More to come !

14

Training
• Iterative process

15

Forward propagation 𝑍 = 𝑤!𝑥 + 𝑏

𝐴 = 𝜎(𝑍)

Cost function
𝐽 𝑤, 𝑏 = 𝐽(𝜃)

Backward propagation
(dJ/dw, dJ/db)

Parameter update
(gradient descent)

learning rate 𝛼

epochs

Learning curve

16

Backpropagation
• Efficient implementation of the chain-rule to compute derivatives

with respect to network weights

17

Example

𝑥"

𝑥#

𝑥$

"𝑦

𝐿 = "𝑦 − 𝑦 #

𝐿

"𝑦 = 𝐱%𝐰+ b

Example

𝑥"

𝑥#

𝑥$

"𝑦 𝐿

𝐿 = 𝑦 − "𝑦 #"𝑦 = 𝐱%𝐰+ b

We need to calculate the gradients:

𝜕𝐿
𝜕𝒘

=
𝜕𝐿
𝜕 %𝑦

.
𝜕 %𝑦
𝜕𝒘

𝜕𝐿
𝜕𝑏

=
𝜕𝐿
𝜕 %𝑦

.
𝜕 %𝑦
𝜕𝑏

Let’s start with this part!

Example

𝑥"

𝑥#

𝑥$

"𝑦 𝐿

"𝑦 = 𝐱%𝐰+ b

First: 𝜕𝐿
𝜕 %𝑦

= −2𝑦 + 2%𝑦 = 2(%𝑦 − 𝑦)

𝐿 = 𝑦 − "𝑦 #

= y# − 2y"𝑦 + "𝑦#

𝜕𝐿
𝜕𝒘 =

𝜕𝐿
𝜕 %𝑦 .

𝜕 %𝑦
𝜕𝒘

Example

𝑥"

𝑥#

𝑥$

"𝑦 𝐿

"𝑦 = 𝐱%𝐰+ b

Second: 𝜕
𝜕𝒘

(𝐱!𝐰+ b) = 𝒙" .
𝜕
𝜕𝒘

𝐰 = 𝒙"

𝐿 = 𝑦 − "𝑦 #

𝜕𝐿
𝜕 %𝑦

= −2𝑦 + 2%𝑦 = 2(%𝑦 − 𝑦)

𝜕𝐿
𝜕𝒘

=
𝜕𝐿
𝜕 %𝑦

.
𝜕 %𝑦
𝜕𝒘

Example

𝑥"

𝑥#

𝑥$

"𝑦 𝐿

"𝑦 = 𝐱%𝐰+ b

Putting these together:

𝜕
𝜕𝒘

(𝐱!𝐰+ b) = 𝒙"

𝐿 = 𝑦 − "𝑦 #

𝜕𝐿
𝜕𝒘

=
𝜕𝐿
𝜕 %𝑦

.
𝜕 %𝑦
𝜕𝒘

= 2 %𝑦 − 𝑦 . 𝒙"

𝜕𝐿
𝜕 %𝑦

= −2𝑦 + 2%𝑦 = 2(%𝑦 − 𝑦)

𝜕𝐿
𝜕𝒘

=
𝜕𝐿
𝜕 %𝑦

.
𝜕 %𝑦
𝜕𝒘

Example

𝑥"

𝑥#

𝑥$

"𝑦 𝐿

"𝑦 = 𝐱%𝐰+ b

Now for the bias…

𝜕
𝜕𝒘

(𝐱!𝐰+ b) = 𝒙"

𝐿 = 𝑦 − "𝑦 #

𝜕𝐿
𝜕 %𝑦

= −2𝑦 + 2%𝑦 = 2(%𝑦 − 𝑦)

𝜕𝐿
𝜕𝒘

=
𝜕𝐿
𝜕 %𝑦

.
𝜕 %𝑦
𝜕𝒘

𝜕
𝜕𝑏
(𝐱!𝐰+ b) = 1

Example

𝑥"

𝑥#

𝑥$

"𝑦 𝐿

"𝑦 = 𝐱%𝐰+ b

Putting these together:

𝜕
𝜕𝒘

(𝐱!𝐰+ b) = 𝒙"

𝐿 = 𝑦 − "𝑦 #

𝜕𝐿
𝜕 %𝑦

= −2𝑦 + 2%𝑦 = 2(%𝑦 − 𝑦)

𝜕𝐿
𝜕𝒘

=
𝜕𝐿
𝜕 %𝑦

.
𝜕 %𝑦
𝜕𝒘

𝜕𝐿
𝜕𝑏

=
𝜕𝐿
𝜕 %𝑦

.
𝜕 %𝑦
𝜕𝑏

= 2 %𝑦 − 𝑦 . 1

𝜕
𝜕𝑏
(𝐱!𝐰+ b) = 1

Example

𝑥"

𝑥#

𝑥$

"𝑦 𝐿

"𝑦 = 𝐱%𝐰+ b

Finally the updates for the weights:
𝜕
𝜕𝒘

(𝐱!𝐰+ b) = 𝒙"

𝐿 = 𝑦 − "𝑦 #

𝜕𝐿
𝜕 %𝑦

= −2𝑦 + 2%𝑦 = 2(%𝑦 − y)

𝜕𝐿
𝜕𝒘 =

𝜕𝐿
𝜕 %𝑦 .

𝜕 %𝑦
𝜕𝒘

𝜕
𝜕𝑏
(𝐱!𝐰+ b) = 1

𝒘𝒕'𝟏 = 𝒘𝒕 − 𝛼
𝜕𝐿
𝜕𝒘

!

= 𝒘𝒕 − 2𝛼 "𝑦 − 𝑦 𝒙

𝑏𝒕'𝟏 = 𝑏𝒕 − 𝛼
𝜕𝐿
𝜕𝑏

!

= 𝑏𝒕 − 2𝛼 "𝑦 − 𝑦
And the biases:

Gradient Descent Illustration

Gradient Descent

27

∇𝐽 𝑤 =
𝑑𝐽(𝑤, 𝑏)
𝑑𝑤 ∇𝐽 𝑏 =

𝑑𝐽(𝑤, 𝑏)
𝑑𝑏

• Iterative method to find the parameters 𝜃 = (𝑤, 𝑏) that minimize 𝐽(𝜃)

28

Optimization pitfalls

Saddle point

29

Tutorial / Practical

