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Machine Learning Definition

« A computer program is said to learn from
experience E with respect to some class of
tasks T and performance measure P, if its
performance at tasks in T, as measured by P,
improves with experience E.»

Tom M. Mitchell (1997)



how well the algorithm
performs on the “walking” task

Performance Measure P

Estimate the ML algorithm performance on task T using the validation set



Introduction

* To evaluate a ML algorithm, we need a way to measure how well it
performs on the task

* It is measured on a separate set (test set) from what we use to build
the function f (training set)

 Examples :
* Classification accuracy (portion of correct answers)
* Error rate (portion of incorrect answers)

* Regression accuracy (e.g. least squares errors)



Inference
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Vowels, M.J., Camgoz, N.C. and Bowden, R., 2021. VDSM: Unsupervised Video Disentanglement with State-Space Modeling and Deep Mixtures of
Experts. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 8176-8186).



risk

Bias and Variance - Overfitting and Underfitting

\ low variance high variance
X

o X

high bias ‘

underfitting

underfitting  overfitting

excess risk

Variance Bias

= ., low bias
' capacity of F

optimal capacity

optimal overfitting



Overfitting and Underfitting
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Optimization

In terms of performance and time




4

1. Performance

- Bias reduction techniques

- Variance reduction techniques



Case

* You want to find cats in images

* Classification error (portion of wrong
answers) used as an evaluation metric

Algorithm | Classification error (%)
A 3%
B 5%

> Which one is best ?

10



Evalugtion metrics

Ground Truth

A
g i
E-' K ¥
4 g~ 2
:

S . . True positive True positive
* Precision %) = =
(p) Precision (A) Number of predicted positive x 100 (True positive+False positive) x 100
° 100 = 66%
—X — 0
2+H1
o/ = True positive _ True positive
° Reca” (r) Recall (A) Number of predicted actually positive x 100 (True positive+False negative) x 100
2
X100 = 50%

242

11



Ground Truth m

N Predictions
A | el
N 7
7 .
. . True positive True positive
Precision (%) = x 100 = x 100
( o) Number of predicted positive (True positive+False positive)
2
X100 = 66%
True positive True positive
Il (%) = =
Reca (A) Number of predicted actually positive A (True positive+False negative) 100

See also Sensitivity (same as recall) and Specificity 242 X100 = 500/01
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Actual condition

Predicted condition

Total population

Positive (PP) Negative (PN)
=P+N
e False negative (FN),
. True positive (TP),
Positive (P) " type Il error, miss,
it
: underestimation
False positive (FP), .
. True negative (TN),
Negative (N) type | error, false alarm,
correct rejection
overestimation
Positive predictive value (PPV), L
Prevalence False omission rate (FOR)
= precision EN 1 — NPV
“P+N B =PNT ' T
b =pp =1-FDR
Accuracy (ACC) False discovery rate (FDR) Negative predictive value
TP+TN FP N
= 5N =pp =1-PPV (NPV)=W=1—FOR
Balanced accuracy F, score Fowlkes—Mallows index (FM)
_ 2PPVxTPR _ 2TP

(BA) = TPR ; TNR

= PPV+TPR — 2TP+ FP+FN Sy PREXTPR

Source: wiki (Precision and Recall)

Informedness, bookmaker informedness (BM)
=TPR + TNR -1

True positive rate (TPR), recall, sensitivity
(SEN), probability of detection, hit rate, power
=" —1_FNR

False positive rate (FPR),
probability of false alarm, fall-out

FP
= =1-TNR

Positive likelihood ratio (LR+)

— IPR
= FPR

Markedness (MK), deltaP (Ap)
= PPV + NPV -1

Matthews correlation coefficient (MCC)

=y TPRXTNRxPPVxNPV—+/FNRxFPRxFORxFDR

Sources: [6][7][8][9][10][11][12][13][14] view - talk- edit

Prevalence threshold (PT)

_ v/ TPRXFPR-FPR
~  TPR-FPR

False negative rate (FNR),
miss rate
= =1-TPR

True negative rate (TNR),
specificity (SPC), selectivity
= =1-FPR

Negative likelihood ratio (LR-)

_FNR
= TNR

Diagnostic odds ratio (DOR) = %

Threat score (TS), critical success index

(CSI), Jaccard index = %



F1-score

* F1-score is a harmonic mean combining p and r

-

Precrsion Reol[  FScae
2 Aol —> 0-5 DA 0 444 \/
F1-Score= L
pir Ao 2 — 03 o1 0135
O-0L 1.0 D-03T2

\Aﬁb S -

* See also balanced accuracy (average recall) 14



First of all, understand your data !

e Carry out manual error analysis

* Look at mislabeled development set examples
(do not look at test set)

* For example : check by hand 500 pictures
(incorrect labels ? Foggy pictures ? Other
causes ? )

* Clean up incorrectly labeled data
e Apply same process to your dev and test sets !

15



underfitting

Bias Reduction techniques

- Hyperparameter tuning
- Model tuning
- Optimization algorithm



Test accuracy (percent)

96.5
96.0
95.5
95.0
94.5
94.0
93.5
93.0
92.5
92.0

yvperparameters : number of hidden layers/units

* To go deeper helps generalization (but depends on application)

* better to have many simple layers than few highly complex ones

Number of layers

Test accuracy (percent)

97 T T T I |
96 1 e—e 3, convolutional [
+—+ 3, fully connected
9 V—V 11, convolutional [
94 ]
93 |- —_— Ve il
T
92 I _
91 ' | | | |
0.0 0.2 0.4 0.6 0.8 1.0
Number of parameters x108

17



Hyperparameters : epochs

* Train longer

RMSE

4.0 ; : :
-= \/alidation set
3:3 - Training set
3.0
2.5}
' Best model
2.0

1.5

1.0

0.5

18



Hyperparameters : learning rate «

* Has a significant impact on the model performance, while being one of the
most difficult parameters to set

Too low Just right Too high

1) | 10| |

0 0 0
A small learning rate The opgfrr;al Iearr:nngh Too large of a learning rate
requires many updates FRALE SWILY IeacnesThe causes drastic updates
bgfqre reach!ng the minimum point which lead to divergent
minimum point

behaviors

* We can also design a scheduler for the learning rate

19



Hyperparameters : batch size

e At each iteration :

Gradient descent (GD) Mini-batch gradient Stochastic gradient
descent descent (SGD)
Y S 3 Y o p LA
PET s //+ \A
the whole training set a batch of samples 1 sample

e Batch size choice typically 32,64,128,256,512

20



Hyperparameters : Global Search

"8 o

e |ist: | ‘
« (0.0001 - 1)

number of hidden layers
number of hidden units

lea rning rate decay Grid Search Random Search Adaptive Selection
mini-batch size

Grid Layout Random Layout

e Advice is to use random
values

Unimportant parameter

Unimportant parameter

Important parameter Important parameter 21



Hyperparameters

Q-

DATA

Which dataset do
you want to use?

*

Ratio of training to
test data: 50%
_.

Noise: 0

Batch size: 10
—e

REGENERATE

Epoch

000,000

FEATURES

Which properties
do you want to
feed in?

XX,

sin(X.)

sin(X,)

: Global Search

Learning rate Activation Regularization

0.03 v Tanh v None

+ — 2 HIDDEN LAYERS
+ - + -
4 neurons 2 neurons
p p
> p
#
‘//
p \ The outputs are
mixed with varying
weights, shown
U by the thickness
| of the lines.
f

(

{

A This is the output
from one neuron.
Hover to see it
larger.

R

0

egularization rate

OUTPUT

Test loss 0.517
Training loss 0.553

Colors shows
data, neuron and
weight values.

[ Show test data

Problem type

Classification

([ Discretize output

v


http://playground.tensorflow.org/

Model : Weight initialization

* The initial parameters need to break the
symmetry between different units

e Use random weights from a Gaussian or Uniform
distribution. Alternatively, use Xavier weights

* Another strategy is to initialize weights by
transferring weights learnt via an unsupervised
learning method (method also called fine-tuning)




Optimization algorithm

* No consensus on what algorithm
performs best

* Most popular choices :
* SGD (mini-batch gradient descent)
* SGD + Momentum
* RMSProp
* RMSProp + Momentum
e Adam

 Strategy : pick one and get familiar
with the tuning

"""""""""

il llllll"’it“j‘:: >~

‘ \\\ \\\\i\\ :"',‘Z”I%I II; "
\\\\

W L s Wi

/’

PE = mgh

(PE = potential energy)
(m = mass)
(g = gravity)
(h = height)




Gradient Descent Variations

SGD
Momentum
NAG
Adagrad
Adadelta
Rmsprop

0,504
00

https://ruder.io/optimizing-gradient-descent/

R

/’f
7 Xy == SGD -
Z ——  Momentum [
= NAG =
— Adagrad |
Adadelta y.
2 g g g U
Rmsprop i W '/,,',"/',',‘
= s A
2 25z ""'"""’:":"I'l,l' i,
D
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W
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overfitting

Variance Reduction technigues



Regularization

* Different strategies :

* Dataset (division, augmentation,...)
* Model (dropout, L2-, ...)

* Training (early stopping)

e Use cases : if few data or if model has more than 50 layers (CNN)

27



Regularization (Dataset) : Division

 Divide the data into a training, validation and test sets
* Training set to define the optimal predictor
 Validation set to choose the capacity
» Test set to evaluate the performance

28



Regularization (Dataset) : Augmentation

* Apply realistic transformations to data affine elastic
to create new synthetic samples, with ~distortion deformation
same label

original

* Process also called jittering horizontal random hue shift
flip translation

29



Regularization (Model) : Dropout

* Apply it both in forward
and backward propagations

Randomly
drop units

* BUT use it only in the
training phase !



Regularization (Training) : Early stopping

e Limit the number of iterations

0.20 : T | |

e—e 'Training set loss

0.15 —— Validation set loss |-

Loss (negative log-likelihood)

0 o0 100 150 200 250
Time (epochs)

Stop the training when dev set error starts increasing again -



Transfer Learning

e Use weights that have been previously trained for another task

 Use cases :

* Tasks A and B have the same input X
* A lot more data for Task A than Task B
* Low level features from Task A could be helpful for Task B

/ Radiology images

X—
x —

~

000
I
00000
|
00000
o?o
000
000

A Y

Ty ~ | Radiology diagnosis
— 07

Pre-training : training on cat images
\Fine-tuning : update the weights for radiology /




2. Time

How to improve time consumption when critical to get results

33



Material Acceleration (GPUs)

END-TO-END PRODUCT FAMILY

=

HPC / TRAINING INFERENCE

:
H
:
ity |

FULLY INTEGRATED Al SYSTEMS DATA CENTER m EMBEDDED
M g

DGX-1 DGX-2

WORKSTATION

VIRTUAL
WORKSTATION

DATA CENTER

>

SERVER
E — ! Tesla T4
' ] T ’ f m Drive AGX Pegasus Jetson AGX Xavier
Jgﬁt‘ge DGX Station || Virtual GPU || Tesla V100/T4 H:é(;z/ Tesla V100

34



raCTice

Pg\ol(o,s
Tutorial / Practical PQPPQCU
Z==3)




