

Transformer Family

Sukanya Nath Data Science Lab (DSL) University of Bern

u^b Transformer Applications

Encoder Encoder Decoder Decoder Sentence Summarization classification Named Entity **Text Generation Translation** Recognition Extractive Generative Question question Answering answering

u^b Transformer Family

Data Science Lab

u^b Transformer Family

 u^{b}

Bidirectional Encoder Representations from Transformers

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.

u^b Dimension Comparison

	Transformer (Vaswani et al 2017)	BERT- base	BERT - large
N (Number of encoder layers)	6	12	24
d_{model} (Model Dimensions)	512	768	1024
A (Number of attention heads)	8	12	16
z_a (Dimension of each head)	512/8 = 64	768/12 = 64	1024/12 = 64

u^b Three ways of attention

Encoder Decoder attention

Encoder Self-Attention

Masked Decoder Self-Attention

u^b BERT Pre-Training Objective 1

Masked Language Modelling

- MLM randomly masks some of the tokens from the input, and the objective is to predict the original vocabulary id of the masked word based only on its context.
- The MLM objective helps in training in a deeply bidirectional manner by fusing the left and the right context.
- 15% of the tokens are masked in each sequence at random

I liked it because it was a Bluebird

u^b BERT Pre-Training Objective 1

- 1. Masking whole sequence by a decoder
 - I liked <Masked Sequence>

- 2. Masking by MLM
 - I liked <Mask> because it was a Bluebird

u^b BERT Pre-Training Objective 2

Next Sentence Prediction

- Binary classification if Sentence B follows Sentence A.
- 50% of the time B is the actual next sentence that follows A
- Special tokens added
 - [CLS] for binary classification
 - [SEP] denoting end of a sequence.

I liked it. It was a Bluebird | [CLS] i liked it [SEP] it was a Bluebird [SEP]

u^b BERT Input Representation

Input	[CLS]	I	liked	it	[SEP]	lt	is	а	blue	##bird	[SEP]
Token Embeddings	$E_{[CLS]}$	E_i	E _{liked}	E_{it}	$E_{[SEP]}$	E_{it}	E_{is}	E_a	E_{blue}	$E_{\#bird}$	$E_{[SEP]}$
'	+	+	+	+	+	+	+	+		+	+
Segment Embeddings	E_A	E_A	E_A	E_A	E_A	E_B	E_B	E_B	E_B	E_B	E_B
	+	+	+	+	+	+	+	+	+	+	+
Positional Encoding	E_0	E_1	E_2	E_3	E_4	E_5	E_6	E_7	E_8	E ₉	E_{10}

u^b BERT Architecture

Input

u^b Pre-Training BERT Steps

- 1. Prepare dataset in the desired language.
 - Original BERT used the BookCorpus dataset.
- 2. Train a Tokenizer on the training dataset.
- 3. Preprocess the dataset.
- 4. Pre-train BERT using MLM and NSP objectives.

u^b Fine Tuning BERT Steps

- Initialise a pre-trained BERT model with the respective configurations.
- 2. Prepare labelled training data for the downstream task (e.g. Text Classification, Question Answering).
- 3. Tokenize the input text using the BERT tokenizer.
- 4. Fine tune Model by training.

u^b Limitations of BERT

- Masking is performed in a static manner only once during the pretraining
 - [MASK] token is never seen during finetuning.
 - Only 15% tokens are masked and predicted which could mean data is underutilized.
- 2. Computational Complexity and large size of the BERT model can lead to higher latency.

u^b Limitations of BERT

- Masking is performed in a static manner only once during the pretraining
 - [MASK] token is never seen during finetuning.
 - Only 15% tokens are masked and predicted which could mean data is underutilized.
- 2. Computational Complexity and large size of the BERT model can lead to higher latency.

What are our alternatives?

u^b DistilBERT

- Uses Distillation technique which is a compression technique in which a compact model - the student - is trained to reproduce the behaviour of a larger but better performing model - the teacher - or an ensemble of models
- 2. DistilBERTas shown to achieve 97% of BERT's results with 40% less memory and with 60% higher speed.

u^b Knowledge Distillation

u^{\flat} RoBERTa

A Robustly Optimized BERT Pretraining Approach

- 1. Modified the pre-training approach
 - Dynamic Masking in MLM that is randomly generated every time a sample is fed into the model.
 - Removed NSP task.
- Trained on a much larger dataset with longer sequences and bigger batch sizes as compared to BERT
 - Datsets used: BookCorpus, CC-News, OpenWebText, STORIES
- 3. Removing NSP improved performance.
- RoBERTa shown to outperform BERT by a large margin for NLU and QA tasks

u^b Transformer Family

20

u^b Generative Pre-trained Transformer (GPT)

- 1. It is an autoregressive model that uses attention unidirectionally i.e to predict the next token in a sequence based on the previous tokens
- 2. Architecture: 12-layer decoder-only transformer with masked self-attention heads $(d_{model} = 768)$.

$oldsymbol{u}^{\scriptscriptstyle b}$ Generative Pre-trained Transformer (GPT)

- 4. Proposes a two step Training:
 - Generative pre-training (large unlabeled data)
 - Discriminative fine-tuning (small labeled data)
- 5. Dataset: Book Corpus
- 6. Number of parameters: 100M
- 7. Showed to outperform existing models (original transformer, LSTM) on reasoning, question answering, textual entailment.

- 1. Similarities with GPT
 - Unidirectional language modelling
- 2. Improvements compared to GPT
 - Larger Dataset (WebText 8M Documents)
 - Larger Model (1.5B Parameters)
 - No Fine tuning (Zero Shot learning)
 - Architecture changes

Architecture:

- 24 48 layer decoder-only transformer with masked self-attention heads (d_{model} ranges from 1024 -1600)
- Rearranged the layer norm and residual layers
- Vocabulary size increased (30k -> 50k)
- Context Size increased (512 -> 1024 tokens)

Performance

- Increasing model size increased performance
- Beat the SOTA models on Zero shot learning tasks such as Common Sense Reasoning, Question Answering, Summarization etc.

- 1. Similarities with GPT-2
 - Unidirectional language modelling
 - Architecture
- 2. Improvements compared to GPT-2
 - Larger Dataset (300B tokens from Common Crawl, WebText2, Books1&2, Wikipedia)
 - Larger Model (175B Parameters)
 - Zero Shot, One Shot and Few Shot Task
 Learning
- 3. Implicit Task Learning via in-context learning

Architecture:

- 96-layer decoder-only transformer with masked selfattention heads (d_{model} = 12288)
- Context Size increased (1024 -> 2048 tokens)
- Alternating dense and locally banded sparse attention patterns in the layers of the transformer.

Performance:

Beat the SOTA models on Question Answering,
 Summarization etc.

u^b Transformer Family

27

u^b Text-to-Text Transfer Transformer (T5)

Unifies NLU and NLG tasks by converting them to text-to-text generation.

$oldsymbol{u}^{\scriptscriptstyle b}$ Text-to-Text Transfer Transformer (T5)

- 1. Architecture
 - Roughly equivalent to the original Transformer
 - 12 layers of encoder and decoder
 - $-d_{model} = 768$
- 2. Number of parameters = 220M
- 3. During Pretraining, 15% of the tokens are dropped randomly, masking consecutively dropped tokens with a single sentinel token

$u^{\scriptscriptstyle b}$ Text-to-Text Transfer Transformer (T5)

- 1. Dataset: Colossal Clean Crawled Corpus (C4).
- 2. Results
 - Performance was greatly improved by pretraining.
 - The Encoder Decoder architecture with denoising performed the best.
 - Sharing parameters can reduce the number of parameters to half with minimal loss of performance.