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Bidirectional Encoder Representations from Transformers
Architecture Comparison

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for
language understanding. arXiv preprint arXiv:1810.04805.5
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Transformer 
(Vaswani et al 2017)

BERT- base BERT - large

N
(Number of encoder layers)

6 12 24

𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
(Model Dimensions)

512 768 1024

A
(Number of attention heads)

8 12 16

𝑧𝑧𝑎𝑎
(Dimension of each head)

512/8 = 64 768/12 = 64 1024/12 = 64

Dimension Comparison 
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Three ways of attention
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Encoder Decoder attention

Encoder Self-Attention Masked Decoder Self-Attention



Masked Language Modelling 
‒ MLM randomly masks some of the tokens from the input, and 

the objective is to predict the original vocabulary id of the 
masked word based only on its context.

‒ The MLM objective helps in training in a deeply bidirectional 
manner by fusing the left and the right context.

‒ 15% of the tokens are masked in each sequence at random

BERT Pre-Training Objective 1
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Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for 
language understanding. arXiv preprint arXiv:1810.04805.

I liked it because it was a Bluebird



BERT Pre-Training Objective 1
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Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for 
language understanding. arXiv preprint arXiv:1810.04805.

1. Masking whole sequence by a decoder
‒ I liked <Masked Sequence>

2. Masking by MLM
‒ I liked <Mask> because it was a Bluebird



Next Sentence Prediction
‒ Binary classification if Sentence B follows Sentence A.
‒ 50% of the time B is the actual next sentence that follows A 
‒ Special tokens added
‒ [CLS] for binary classification
‒ [SEP] denoting end of a sequence.

BERT Pre-Training Objective 2
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Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for 
language understanding. arXiv preprint arXiv:1810.04805.

I liked it. It was a Bluebird [CLS] i liked it [SEP] it was a Bluebird [SEP]



Input [CLS] I liked it [SEP] It is a blue ##bird [SEP]

Token 
Embeddings

𝐸𝐸[𝐶𝐶𝐶𝐶𝐶𝐶] 𝐸𝐸𝑖𝑖 𝐸𝐸𝑚𝑚𝑖𝑖𝑙𝑙𝑚𝑚𝑚𝑚 𝐸𝐸𝑖𝑖𝑖𝑖 𝐸𝐸[𝐶𝐶𝑆𝑆𝑆𝑆] 𝐸𝐸𝑖𝑖𝑖𝑖 𝐸𝐸𝑖𝑖𝑖𝑖 𝐸𝐸𝑎𝑎 𝐸𝐸𝑏𝑏𝑚𝑚𝑏𝑏𝑚𝑚 𝐸𝐸##𝑏𝑏𝑖𝑖𝑏𝑏𝑚𝑚 𝐸𝐸[𝐶𝐶𝑆𝑆𝑆𝑆]

+ + + + + + + + + +

Segment 
Embeddings

𝐸𝐸𝐴𝐴 𝐸𝐸𝐴𝐴 𝐸𝐸𝐴𝐴 𝐸𝐸𝐴𝐴 𝐸𝐸𝐴𝐴 𝐸𝐸𝐵𝐵 𝐸𝐸𝐵𝐵 𝐸𝐸𝐵𝐵 𝐸𝐸𝐵𝐵 𝐸𝐸𝐵𝐵 𝐸𝐸𝐵𝐵

+ + + + + + + + + + +

Positional 
Encoding

𝐸𝐸0 𝐸𝐸1 𝐸𝐸2 𝐸𝐸3 𝐸𝐸4 𝐸𝐸5 𝐸𝐸6 𝐸𝐸7 𝐸𝐸8 𝐸𝐸9 𝐸𝐸10

BERT Input Representation
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BERT Architecture
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1. Prepare dataset in the desired language.
‒ Original BERT used the BookCorpus dataset.

2. Train a Tokenizer on the training dataset.
3. Preprocess the dataset.
4. Pre-train BERT using MLM and NSP objectives.

Pre-Training BERT Steps
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1. Initialise a pre-trained BERT model with the respective 
configurations.

2. Prepare labelled training data for the downstream task (e.g. Text 
Classification, Question Answering).

3. Tokenize the input text using the BERT tokenizer.
4. Fine tune Model by training.

Fine Tuning BERT Steps
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1. Masking is performed in a static manner only once during the 
pretraining
‒ [MASK] token is never seen during finetuning.
‒ Only 15% tokens are masked and predicted which could mean 

data is underutilized.

2. Computational Complexity and large size of the BERT model can 
lead to higher latency.

Limitations of BERT
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1. Masking is performed in a static manner only once during the 
pretraining
‒ [MASK] token is never seen during finetuning.
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Limitations of BERT
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What are our alternatives?



1. Uses Distillation technique which is a compression technique in 
which a compact model - the student - is trained to reproduce the 
behaviour of a larger but better performing model - the teacher - or 
an ensemble of models

2. DistilBERTas shown to achieve 97% of BERT’s results with 40% 
less memory and with 60% higher speed.

DistilBERT

Sanh, V., Debut, L., Chaumond, J., & Wolf, T. (2019). DistilBERT, a distilled version of BERT: smaller, faster, 
cheaper and lighter. arXiv preprint arXiv:1910.01108.
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Knowledge Distillation
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1. Modified the pre-training approach
‒ Dynamic Masking in MLM that is randomly generated every time a 

sample is fed into the model.
‒ Removed NSP task.

2. Trained on a much larger dataset with longer sequences and 
bigger batch sizes as compared to BERT
‒ Datsets used: BookCorpus, CC-News, OpenWebText, STORIES

3. Removing NSP improved performance. 
4. RoBERTa shown to outperform BERT by a large margin for NLU and QA 

tasks

RoBERTa
A Robustly Optimized BERT Pretraining Approach

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., ... & Stoyanov, V. (2019). Roberta: A robustly optimized
bert pretraining approach. arXiv preprint arXiv:1907.11692.19
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1. It is an autoregressive model that uses 
attention unidirectionally i.e to predict the next 
token in a sequence based on the previous 
tokens

2. Architecture: 12-layer decoder-only 
transformer with masked self-attention heads 
(𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 768). 

Generative Pre-trained Transformer (GPT)

Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language understanding by
generative pre-training.21
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4. Proposes a two step Training: 
- Generative pre-training (large unlabeled data)
- Discriminative fine-tuning (small labeled data)

5.   Dataset: Book Corpus
6. Number of parameters: 100M
7.   Showed to outperform existing models (original 
transformer, LSTM) on reasoning, question 
answering, textual entailment.

Generative Pre-trained Transformer (GPT)

Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language understanding by 
generative pre-training.22
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1. Similarities with GPT
‒ Unidirectional language modelling

2. Improvements compared to GPT
‒ Larger Dataset (WebText 8M Documents)
‒ Larger Model (1.5B Parameters)
‒ No Fine tuning (Zero Shot learning)
‒ Architecture changes 

GPT-2

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language models are unsupervised multitask learners. OpenAI blog, 1(8), 9.
23
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Architecture: 
‒ 24 - 48 layer decoder-only transformer with masked 

self-attention heads (𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ranges from 1024 -1600 )

‒ Rearranged the layer norm and residual layers

‒ Vocabulary size increased (30k -> 50k)

‒ Context Size increased (512 -> 1024 tokens)

Performance
‒ Increasing model size increased performance

‒ Beat the SOTA models on Zero shot learning tasks 
such as Common Sense Reasoning, Question 
Answering, Summarization etc.

GPT-2

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language models are unsupervised
multitask learners. OpenAI blog, 1(8), 9.24
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1. Similarities with GPT-2
‒ Unidirectional language modelling
‒ Architecture

2. Improvements compared to GPT-2
‒ Larger Dataset (300B tokens from Common 

Crawl, WebText2, Books1&2, Wikipedia)
‒ Larger Model (175B Parameters)
‒ Zero Shot, One Shot and Few Shot Task 

Learning 

3. Implicit Task Learning via in-context learning

GPT-3
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models are few-shot learners. Advances in neural information processing systems, 33, 1877-1901.
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Architecture: 
‒ 96-layer decoder-only transformer with masked self-

attention heads (𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚= 12288 )

‒ Context Size increased (1024 -> 2048 tokens)

‒ Alternating dense and locally banded sparse attention 
patterns in the layers of the transformer.

Performance:
‒ Beat the SOTA models on Question Answering, 

Summarization etc.

GPT-3
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Unifies NLU and NLG tasks by converting them to text-to-text 
generation.

Text-to-Text Transfer Transformer (T5)

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., ... & Liu, P. J. (2020). Exploring the limits of transfer learning with a unified 
text-to-text transformer. The Journal of Machine Learning Research, 21(1), 5485-5551.28



1. Architecture
‒ Roughly equivalent to the original Transformer 
‒ 12 layers of encoder and decoder

‒ 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚= 768

2. Number of parameters = 220M
3. During Pretraining, 15% of the tokens are dropped randomly, 

masking consecutively dropped tokens with a single sentinel token

Text-to-Text Transfer Transformer (T5)

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., ... & Liu, P. J. (2020). Exploring the limits of transfer learning with a unified 
text-to-text transformer. The Journal of Machine Learning Research, 21(1), 5485-5551.29



1. Dataset: Colossal Clean Crawled Corpus (C4).
2. Results

‒ Performance was greatly improved by pretraining.
‒ The Encoder Decoder architecture with denoising performed 

the best.
‒ Sharing parameters can reduce the number of parameters to 

half with minimal loss of performance.

Text-to-Text Transfer Transformer (T5)
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