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Estimating the likelihood of the next word given previous words
For example,   
𝑃𝑃 𝑇𝑇𝑇𝑇𝑇 𝑠𝑠𝑇𝑇𝑠𝑠 𝑖𝑖𝑠𝑠 𝑟𝑟𝑇𝑇𝑟𝑟 = P The, sea, is, red

= P 𝑇𝑇𝑇𝑇𝑇 P 𝑠𝑠𝑇𝑇𝑠𝑠|𝑇𝑇𝑇𝑇𝑇 P 𝑖𝑖𝑠𝑠|𝑇𝑇𝑇𝑇𝑇 𝑠𝑠𝑇𝑇𝑠𝑠 P red The sea is
≈ P 𝑇𝑇𝑇𝑇𝑇 P 𝑠𝑠𝑇𝑇𝑠𝑠|𝑇𝑇𝑇𝑇𝑇 P 𝑖𝑖𝑠𝑠| 𝑠𝑠𝑇𝑇𝑠𝑠 P(red|is)∗

Language Models

2

*Approximation based on Markov's assumptions
1. https://web.stanford.edu/~jurafsky/slp3/3.pdf



Estimating the likelihood of the next word given previous words
For example,   
𝑃𝑃 𝑇𝑇𝑇𝑇𝑇 𝑠𝑠𝑇𝑇𝑠𝑠 𝑖𝑖𝑠𝑠 𝑟𝑟𝑇𝑇𝑟𝑟 = P The, sea, is, red

= P 𝑇𝑇𝑇𝑇𝑇 P 𝑠𝑠𝑇𝑇𝑠𝑠|𝑇𝑇𝑇𝑇𝑇 P 𝑖𝑖𝑠𝑠|𝑇𝑇𝑇𝑇𝑇 𝑠𝑠𝑇𝑇𝑠𝑠 P red The sea is
≈ P 𝑇𝑇𝑇𝑇𝑇 P 𝑠𝑠𝑇𝑇𝑠𝑠|𝑇𝑇𝑇𝑇𝑇 P 𝑖𝑖𝑠𝑠| 𝑠𝑠𝑇𝑇𝑠𝑠 P(red|is)∗

Language Models

3

*Approximation based on Markov's assumptions
1. https://web.stanford.edu/~jurafsky/slp3/3.pdf

What could be some drawbacks?



Recurrent Neural Networks (RNNs)
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𝑇(… ) 𝑇𝑡𝑡−1

𝑥𝑥(𝑡𝑡−1)

𝑇𝑡𝑡

𝑥𝑥(𝑡𝑡)

𝑇𝑡𝑡+1 𝑇(… )

𝑥𝑥(𝑡𝑡+1)

Unfold

I love Cats

Ich liebe Katzen

Introduce a latent variable 𝑇𝑡𝑡 state 
such that, 𝑦𝑦𝑡𝑡 = 𝑔𝑔(𝑇𝑡𝑡)

where,
𝑇𝑡𝑡 = 𝑓𝑓 𝑇𝑡𝑡−1, 𝑥𝑥𝑡𝑡
𝑥𝑥𝑡𝑡 is the input at time t
𝑦𝑦𝑡𝑡 is the output at time t



Shortcomings of RNNs
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1. Sequential processing word by word (computation for time step t 
cannot be done until the computation for the time step t-1 has been 
completed slowing down training and inference).

2. Vanishing or exploding gradients during backpropagation through 
time.

3. Difficulty in accessing information from a  long time ago.



1. Gradient clipping – numerically stable but erroneous gradient updates.
2. Control the gradient information flow using gates (LSTMs, GRUs) 

‒ Sequential nature prevents parallelization and limits batch processing.
‒ Unidirectional processing.

3. Bidirectional RNNs (BiLSTMs) process the information in forward and 
backward passes producing outputs which are finally concatenated to create 
the final output
‒ Slower than LSTMs.
‒ Lack of parallelism.
‒ Difficulty in capturing long-term dependencies and lack of directional 

information.

Attempted resolutions
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Sequence to Sequence Models
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Sequence to Sequence ModelI love cats Ich liebe katzen



Sequence to Sequence Models
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Separating encoding from decoding has the following advantages
1. The decoder now has access to the full context before beginning 

decoding.
2. Parallel encoding and decoding is now possible for different 

sequences.

Sequence to Sequence Models
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1. Encoder encodes the inputs step by step into a context vector
2. Context vector is processed by a decoder to produce outputs and 

decoder hidden states.

Encoder Decoder RNN Models
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I Ich

Encoder Decoder

love cats

𝑇0 𝑇1 𝑇2 𝑐𝑐 s1 s2

liebe Katzen



Encoder Decoder RNN Models
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I Ich

Encoder Decoder

love cats

𝑇0 𝑇1 𝑇2 𝑐𝑐 s1 s2

liebe Katzen

Context Vector, 𝑐𝑐 = 𝑞𝑞({𝑇1, … , 𝑇𝑇𝑇}), 
where 𝑞𝑞 is a non-linear function



Encoder Decoder RNN Models

12

I Ich

Encoder Decoder

love cats

𝑇0 𝑇1 𝑇2 𝑐𝑐 𝑠𝑠1 s2

liebe Katzen

The problem?



Bottleneck! No access to previous hidden states!
• Information has to be compressed into a fixed length vector leading to 

loss of information
• Especially information found early in the sequence tends to be 

“forgotten” after the entire sequence is processed. 

Encoder Decoder RNN Models
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I Ich

Encoder Decoder

love cats

𝑇0 𝑇1 𝑇2 𝑐𝑐 𝑠𝑠1 𝑠𝑠2

liebe Katzen



How about we give the decoder the access to all the encoder hidden 
states?

Sequence to Sequence RNN Models
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I Ich

Encoder Decoder

love cats

𝑇0 𝑇1 𝑇2 𝑐𝑐 s1 s2

liebe Katzen



Higher complexity….where should we pay attention?

Encoder Decoder RNN Models
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I Ich

Encoder Decoder

love cats

𝑇0 𝑇1 𝑇2 𝑐𝑐 𝑠𝑠1 𝑠𝑠2

liebe Katzen



Instead of one context vector, we give a series of context vectors computed 
from the hidden states, where 𝛼𝛼𝑡𝑡,𝑖𝑖 is the corresponding weight (alignment 
score) for hidden state 𝑇𝑖𝑖

Sequence to Sequence RNN Models
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I Ich

Encoder Decoder

love cats

𝑇0 𝑇1 𝑇2 𝑐𝑐 s1 s2

liebe Katzen



𝛼𝛼𝑡𝑡,𝑖𝑖 =

𝑠𝑠𝑡𝑡𝑇𝑇 . 𝑇𝑖𝑖 , 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑔𝑔 2015

�𝑠𝑠𝑡𝑡𝑇𝑇 . 𝑇𝑖𝑖
𝐿𝐿

𝑠𝑠𝑡𝑡𝑇𝑇 .𝑊𝑊𝑎𝑎 . 𝑇𝑖𝑖 , 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑔𝑔 2015
𝑣𝑣𝑎𝑎𝑇𝑇 tanh 𝑊𝑊𝑎𝑎 𝑠𝑠𝑡𝑡;𝑇𝑖𝑖 𝐵𝐵𝑠𝑠𝑇𝑟𝑟𝑠𝑠𝐿𝐿𝑠𝑠𝐿𝐿 2014

Examples of Alignment Scoring Functions
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Adapted from Luong, M. T., Pham, H., & Manning, C. D. (2015). Effective approaches to attention-based neural 
machine translation. arXiv preprint arXiv:1508.04025.



Sequence to Sequence RNN Models
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I Ich

Encoder Decoder

love cats

𝑇0 𝑇1 𝑇2 𝑐𝑐 s1 s2

liebe Katzen

Decoder hidden state 𝑠𝑠𝑡𝑡 = 𝑓𝑓(𝑠𝑠𝑡𝑡−1,𝑦𝑦𝑡𝑡−1, 𝑐𝑐𝑡𝑡)
Where, 𝑦𝑦𝑡𝑡−1 represents the earlier predicted words



Encoder Decoder RNN with Attention
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I love cats

𝑇0 𝑇1 𝑇2 𝑇3 s0 s1

𝑠𝑠11 𝑠𝑠12 𝑠𝑠13

Attention weights 𝑠𝑠𝑡𝑡,𝑖𝑖 = exp(𝛼𝛼𝑡𝑡,𝑖𝑖)

∑𝑘𝑘=1
𝑇𝑇

exp(𝛼𝛼𝑡𝑡,𝑘𝑘)
where,

𝛼𝛼𝑡𝑡,𝑖𝑖 is the alignment score



Encoder Decoder RNN with Attention
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I love cats

𝑇0 𝑇1 𝑇2 𝑇3 s0 s1

𝑠𝑠11 𝑠𝑠12 𝑠𝑠13

𝑐𝑐1

Attention Layer

Context Vector  𝑐𝑐𝑡𝑡 = ∑𝑖𝑖=1𝑇𝑇 𝑠𝑠𝑡𝑡,𝑖𝑖 . 𝑇𝑖𝑖



Encoder Decoder RNN with Attention
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I love cats

𝑇0 𝑇1 𝑇2 𝑇3 s0 s1

𝑠𝑠11 𝑠𝑠12 𝑠𝑠13

𝑐𝑐1

Ich

s1
Attention Layer



Encoder Decoder RNN with Attention
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I love cats

𝑇0 𝑇1 𝑇2 𝑇3 s0 s1 s2

𝑠𝑠21 𝑠𝑠22 𝑠𝑠23

𝑐𝑐2

Ich liebe

s1 �s2
Attention Layer



Encoder Decoder RNN with Attention
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I love cats

𝑇0 𝑇1 𝑇2 𝑇3 s0 s1 s2

𝑠𝑠31 𝑠𝑠32 𝑠𝑠33

𝒔𝒔𝟑𝟑

𝑐𝑐3

Ich liebe Katzen

s1 �s2 �s3
Attention Layer



1. Encoder – Decoder architecture helps to produce variable length 
outputs (n->m).

2. An attention mechanism allows the modelling of dependencies 
without regard for the distance in either input or output sequences.

3. However, sequential nature of a RNN prevents parallelization 
within training examples. This becomes critical at longer sequence 
lengths as memory constraints limit batching across examples.

Takeaway

24



How about a model that avoids recurrence 
and simply relies on simply attention 
mechanism?

Transformer Model

25
Picture Credits: Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need.
Advances in neural information processing systems, 30.



Transformer Model
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𝑃𝑃𝑃𝑃(𝑝𝑝𝑝𝑝𝑝𝑝,2𝑖𝑖) = sin
𝑝𝑝𝐿𝐿𝑠𝑠

10000 �2𝑖𝑖 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑃𝑃𝑃𝑃(𝑝𝑝𝑝𝑝𝑝𝑝,2𝑖𝑖+1) = cos(
𝑝𝑝𝐿𝐿𝑠𝑠

10000 �2𝑖𝑖 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

)

Residual connections

Picture Credits: Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need.
Advances in neural information processing systems, 30.

Layer Normalisation
(residual + layer output)

Encoder Decoder

𝑟𝑟𝑒𝑒 = 512



Transformer Model
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𝑃𝑃𝑃𝑃(𝑝𝑝𝑝𝑝𝑝𝑝,2𝑖𝑖) = sin
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𝑃𝑃𝑃𝑃(𝑝𝑝𝑝𝑝𝑝𝑝,2𝑖𝑖+1) = cos(
𝑝𝑝𝐿𝐿𝑠𝑠

10000 �2𝑖𝑖 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

)

Residual connections

Picture Credits: Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need.
Advances in neural information processing systems, 30.

Layer Normalisation
(residual + layer output)

Encoder Decoder



Three ways of attention

28

Encoder Decoder attention

Encoder Self-Attention Masked Decoder Self-Attention



Self Attention
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I love cats

𝐴𝐴𝑄𝑄1𝐾𝐾1

𝑋𝑋1 𝑋𝑋2 𝑋𝑋3

𝑉𝑉1 𝑄𝑄2𝐾𝐾1 𝐾𝐾2 𝑉𝑉2 𝑄𝑄3 𝐾𝐾3 𝑉𝑉3𝑄𝑄1

Scaled Dot-Product Attention score 𝑍𝑍𝑄𝑄𝑖𝑖 = ∑𝑖𝑖=1𝑇𝑇 𝐴𝐴𝑖𝑖𝑖𝑖

Where 𝐴𝐴𝑖𝑖𝑖𝑖 = 𝑠𝑠𝐿𝐿𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑥𝑥
𝑄𝑄𝑖𝑖𝐾𝐾𝑗𝑗

𝑇𝑇

𝑑𝑑𝑘𝑘
𝑉𝑉𝑖𝑖

𝑤𝑤𝑇𝑇𝑇𝑟𝑟𝑇𝑇 𝑄𝑄𝑖𝑖 = 𝑊𝑊𝑞𝑞𝑋𝑋𝑖𝑖 (Query),
𝐾𝐾𝑖𝑖= 𝑊𝑊𝑘𝑘𝑋𝑋𝑖𝑖 (Key),
𝑉𝑉𝑖𝑖 = 𝑊𝑊𝑣𝑣𝑋𝑋𝑖𝑖 (Value),

𝐴𝐴𝑄𝑄1𝐾𝐾2 𝐴𝐴𝑄𝑄1𝐾𝐾3

𝑍𝑍𝑄𝑄1



Self Attention
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I love cats

𝐴𝐴𝑄𝑄2𝐾𝐾1

𝑋𝑋1 𝑋𝑋2 𝑋𝑋3

𝑉𝑉1 𝑄𝑄2𝐾𝐾1 𝐾𝐾2 𝑉𝑉2 𝑄𝑄3 𝐾𝐾3 𝑉𝑉3𝑄𝑄1

Scaled Dot-Product Attention score 𝑍𝑍𝑄𝑄𝑖𝑖 = ∑𝑖𝑖=1𝑇𝑇 𝐴𝐴𝑖𝑖𝑖𝑖

Where 𝐴𝐴𝑖𝑖𝑖𝑖 = 𝑠𝑠𝐿𝐿𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑥𝑥
𝑄𝑄𝑖𝑖𝐾𝐾𝑗𝑗

𝑇𝑇

𝑑𝑑𝑘𝑘
𝑉𝑉𝑖𝑖

𝑤𝑤𝑇𝑇𝑇𝑟𝑟𝑇𝑇 𝑄𝑄𝑖𝑖 = 𝑊𝑊𝑞𝑞𝑋𝑋𝑖𝑖 (Query),
𝐾𝐾𝑖𝑖= 𝑊𝑊𝑘𝑘𝑋𝑋𝑖𝑖 (Key),
𝑉𝑉𝑖𝑖 = 𝑊𝑊𝑣𝑣𝑋𝑋𝑖𝑖 (Value),

𝐴𝐴𝑄𝑄2𝐾𝐾2 𝐴𝐴𝑄𝑄2𝐾𝐾3

𝑍𝑍𝑄𝑄2



Self Attention
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I love cats

𝐴𝐴𝑄𝑄3𝐾𝐾1

𝑋𝑋1 𝑋𝑋2 𝑋𝑋3

𝑉𝑉1 𝑄𝑄2𝐾𝐾1 𝐾𝐾2 𝑉𝑉2 𝑄𝑄3 𝐾𝐾3 𝑉𝑉3𝑄𝑄1

Scaled Dot-Product Attention score 𝑍𝑍𝑄𝑄𝑖𝑖 = ∑𝑖𝑖=1𝑇𝑇 𝐴𝐴𝑖𝑖𝑖𝑖

Where 𝐴𝐴𝑖𝑖𝑖𝑖 = 𝑠𝑠𝐿𝐿𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑥𝑥
𝑄𝑄𝑖𝑖𝐾𝐾𝑗𝑗

𝑇𝑇

𝑑𝑑𝑘𝑘
𝑉𝑉𝑖𝑖

𝑤𝑤𝑇𝑇𝑇𝑟𝑟𝑇𝑇 𝑄𝑄𝑖𝑖 = 𝑊𝑊𝑞𝑞𝑋𝑋𝑖𝑖 (Query),
𝐾𝐾𝑖𝑖= 𝑊𝑊𝑘𝑘𝑋𝑋𝑖𝑖 (Key),
𝑉𝑉𝑖𝑖 = 𝑊𝑊𝑣𝑣𝑋𝑋𝑖𝑖 (Value),

𝐴𝐴𝑄𝑄3𝐾𝐾2 𝐴𝐴𝑄𝑄3𝐾𝐾3

𝑍𝑍𝑄𝑄3



Self Attention
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I love cats

𝑋𝑋1 𝑋𝑋2 𝑋𝑋3

𝑉𝑉1 𝑄𝑄2𝐾𝐾1 𝐾𝐾2 𝑉𝑉2 𝑄𝑄3 𝐾𝐾3 𝑉𝑉3𝑄𝑄1

Scaled Dot-Product Attention score 𝑍𝑍𝑄𝑄𝑖𝑖 = ∑𝑖𝑖=1𝑇𝑇 𝐴𝐴𝑖𝑖𝑖𝑖

Where 𝐴𝐴𝑖𝑖𝑖𝑖 = 𝑠𝑠𝐿𝐿𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑥𝑥
𝑄𝑄𝑖𝑖𝐾𝐾𝑗𝑗

𝑇𝑇

𝑑𝑑𝑘𝑘
𝑉𝑉𝑖𝑖

𝑤𝑤𝑇𝑇𝑇𝑟𝑟𝑇𝑇 𝑄𝑄𝑖𝑖 = 𝑊𝑊𝑞𝑞𝑋𝑋𝑖𝑖 (Query),
𝐾𝐾𝑖𝑖= 𝑊𝑊𝑘𝑘𝑋𝑋𝑖𝑖 (Key),
𝑉𝑉𝑖𝑖 = 𝑊𝑊𝑣𝑣𝑋𝑋𝑖𝑖 (Value),

𝑍𝑍𝑄𝑄1 𝑍𝑍𝑄𝑄2 𝑍𝑍𝑄𝑄3
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I love cats

𝐴𝐴𝑄𝑄1𝐾𝐾1

𝑋𝑋1 𝑋𝑋2 𝑋𝑋3

𝑉𝑉1 𝑄𝑄2𝐾𝐾1 𝐾𝐾2 𝑉𝑉2 𝑄𝑄3 𝐾𝐾3 𝑉𝑉3𝑄𝑄1

Scaled Dot-Product Attention score 𝑍𝑍𝑄𝑄𝑖𝑖 = ∑𝑖𝑖=1𝑇𝑇 𝐴𝐴𝑖𝑖𝑖𝑖

Where 𝐴𝐴𝑖𝑖𝑖𝑖 = 𝑠𝑠𝐿𝐿𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑥𝑥
𝑄𝑄𝑖𝑖𝐾𝐾𝑗𝑗

𝑇𝑇

𝑑𝑑𝑘𝑘
𝑉𝑉𝑖𝑖

𝑤𝑤𝑇𝑇𝑇𝑟𝑟𝑇𝑇 𝑄𝑄𝑖𝑖 = 𝑊𝑊𝑞𝑞𝑋𝑋𝑖𝑖 (Query),
𝐾𝐾𝑖𝑖= 𝑊𝑊𝑘𝑘𝑋𝑋𝑖𝑖 (Key),
𝑉𝑉𝑖𝑖 = 𝑊𝑊𝑣𝑣𝑋𝑋𝑖𝑖 (Value),

𝐴𝐴𝑄𝑄1𝐾𝐾2 𝐴𝐴𝑄𝑄1𝐾𝐾3

𝑍𝑍𝑄𝑄1 𝑍𝑍𝑄𝑄2 𝑍𝑍𝑄𝑄3

Note these values can be 
calculated in parallel !
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I love cats

𝑋𝑋1 𝑋𝑋2 𝑋𝑋3

𝑉𝑉1 𝑄𝑄2𝐾𝐾1 𝐾𝐾2 𝑉𝑉2 𝑄𝑄3 𝐾𝐾3 𝑉𝑉3𝑄𝑄1

Attention Matrix   A(Q,𝐾𝐾,𝑉𝑉) = 𝑠𝑠𝐿𝐿𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑥𝑥 𝑄𝑄𝐾𝐾𝑇𝑇

𝑑𝑑𝑘𝑘
𝑉𝑉

𝑍𝑍𝑄𝑄1 𝑍𝑍𝑄𝑄2 𝑍𝑍𝑄𝑄3

Attention Head 
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)

Residual connections

Picture Credits: Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need.
Advances in neural information processing systems, 30.

Layer Normalisation
(residual + layer output)

Encoder Decoder



1. Apply self-attention multiple times in parallel and concatenate the 
results
‒ 8 attention heads in the original transformer by Vaswani et al. 2017

2. For each self attention head, use different 𝑊𝑊𝑞𝑞, 𝑊𝑊𝑘𝑘, 𝑊𝑊𝑣𝑣

3. Helps to focus on different parts in the sequence.

Multi-Head Self Attention

36
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Layer Normalisation
(residual + layer output)

Encoder Decoder

Masked



Masking of subsequent sequence elements (so that these values are 
not selected) and allow attending to positions up to and including the 
current position.

Attention A Q,𝐾𝐾,𝑉𝑉 = 𝑠𝑠𝐿𝐿𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑥𝑥 𝑄𝑄𝐾𝐾𝑇𝑇

𝑑𝑑𝑘𝑘
𝑉𝑉

Masked Attention A(Q,𝐾𝐾,𝑉𝑉) = 𝑠𝑠𝐿𝐿𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑥𝑥 𝑄𝑄𝐾𝐾𝑇𝑇+𝑀𝑀
𝑑𝑑𝑘𝑘

𝑉𝑉

where M is a mask matrix

Masked Multi Head Attention
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Layer Normalisation
(residual + layer output)

Encoder Decoder

𝑟𝑟𝑒𝑒 = 512



1. In the absence of element-wise non-linearities, self-attention is 
simply performing a re-averaging of the value vector

2. Solution: A feedforward layer after each attention head

Point Wise Feed Forward Networks
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1. Difficult to train the parameters of a given layer because its input 
from the preceding layer keeps shifting
‒ Solution: Normalization across layers (8 attention heads) to zero 

mean and standard deviation of one within each layer.
2. Residual connections provide another path for data to reach latter 

parts of the neural network by skipping some layers
‒ Helps to preserve the ‘identity’ function, i.e., the original input

Residual Connections and Layer Normalisation
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Encoder Decoder



1. Self-attention operation (Scaled dot-product and fully connected 
layer) are permutation invariant.

2. Encode the positional information such that
‒ Large and small values can be managed.
‒ Value is unique to a position and independent of sentence 

length.
‒ Stays within a range (bounded) and varies non-linearly.
‒ Sinusoidal positional encoding is a vector of small constants 

added to the embeddings

Positional Embeddings 
Why do we need them?
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https://erdem.pl/2021/05/understanding-positional-encoding-in-transformers#positional-encoding-visualization
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Layer Normalisation
(residual + layer output)

Encoder Decoder



Encode and Decoder Stacks
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Encoder

Encoder

Encoder

Encoder

Encoder

Decoder
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Decoder
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1. Self-attention mechanism helps to encode long-range 
dependencies.

2. Transformer models can be parallelized making them faster to 
process.

3. Transformer models are self-supervised and can learn useful 
representations even from unlabeled data.

Takeaway 
Why are Transformers so successful?
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1. Pre-training on large unlabeled datasets (Self-supervised learning)
2. Training for downstream-tasks on labeled data (supervised 

learning)

Transformer Training Approach
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Quadratic computation in self-attention (in recurrent models 
computation was linear)

‒ Suggested approaches include
‒ Local attention instead of global.
‒ Random interactions.

Limitations
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• The Illustrated Transformer – Jay Alammar – Visualizing machine 
learning one concept at a time. (jalammar.github.io)

• 2021-
CS109B/docs/lectures/lecture24/presentation/Lecture24_Attention.p
df at master · Harvard-IACS/2021-CS109B (github.com)

• The Transformer Family | Lil'Log (lilianweng.github.io)
• Introduction to Deep Learning (sebastianraschka.com)

References
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