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uw Language Models

Estimating the likelihood of the next word given previous words

For example,
P(The sea is red) = P(The,sea,is, red)

= P(The)P(sea|The)P(is|The sea)P(red|The sea is)
~ P(The)P(sea|The)P(is| sea)P(red|is)*

*Approximation based on Markov's assumptions
1. https://web.stanford.edu/~jurafsky/slp3/3.pdf
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Language Models

Estimating the likelihood of the next word given previous words

For example,

P(The sea is red) = P(The,sea,is, red)
= P(The)P(sea|The)P(is|The sea)P(red|The sea is)
~ P(The)P(sea|The)P(is| sea)P(red|is)*

What could be some drawbacks?

*Approximation based on Markov's assumptions
1. https://web.stanford.edu/~jurafsky/slp3/3.pdf
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Recurrent Neural Networks (RNNSs)

Introduce a latent variable h, state

such that, y, = g(h;) h I|ebe Katzen

geiile

love Cats

where,

he = f(he—q,X¢)

x; is the input at time t
v is the output at time t




Shortcomings of RNNs

1. Sequential processing word by word (computation for time step t
cannot be done until the computation for the time step t-1 has been
completed slowing down training and inference).

2. Vanishing or exploding gradients during backpropagation through
time.

3. Difficulty in accessing information from a long time ago.
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Attempted resolutions

1. Gradient clipping — numerically stable but erroneous gradient updates.

2. Control the gradient information flow using gates (LSTMs, GRUs)

— Sequential nature prevents parallelization and limits batch processing.
— Unidirectional processing.

3. Bidirectional RNNs (BiLSTMs) process the information in forward and

backward passes producing outputs which are finally concatenated to create
the final output

— Slower than LSTMs.
— Lack of parallelism.

— Difficulty in capturing long-term dependencies and lack of directional
information.



u Sequence to Sequence Models

[ | love cats Sequence to Sequence Model Ich liebe katzen ]




u Sequence to Sequence Models

[ | love cats ﬂ —> [ Ich liebe katzen ]

Context Vector




u Sequence to Sequence Models

[ | love cats — [ Ich liebe katzen ]
Decoder

Separating encoding from decoding has the following advantages

1. The decoder now has access to the full context before beginning
decoding.

2. Parallel encoding and decoding is now possible for different
sequences.

Context Vector




uw Encoder Decoder RNN Models

: Encoder Decoder

C |

[ Katzen ]

1. Encoder encodes the inputs step by step into a context vector

2. Context vector is processed by a decoder to produce outputs and
decoder hidden states.
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Encoder Decoder RNN Models

Encoder C 5
9:0:;
B
[l

[ Katzen ]

Context Vector, c = q({h4, ..., ht}),
where q is a non-linear function
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uw Encoder Decoder RNN Models

Encoder C 5 Decoder
It

B B

[l [l

[ Katzen ]

The problem?
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uw Encoder Decoder RNN Models

Bottleneck! No access to previous hidden states!

* Information has to be compressed into a fixed length vector leading to
loss of information

* Especially information found early in the sequence tends to be
“forgotten” after the entire sequence is processed.
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Sequence to Sequence RNN Models

Encoder

- love cats

How about we give the decoder the access to all the encoder hidden
states?

Decoder

[ Katzen ]
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uw Encoder Decoder RNN Models

Encoder

- love cats

Higher complexity....where should we pay attention?

Decoder

[ Katzen ]
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Sequence to Sequence RNN Models

Decoder

Instead of one context vector, we give a series of context vectors computed
from the hidden states, where «a, ; is the corresponding weight (alignment

score) for hidden state h;

[ Katzen ]
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Examples of Alignment Scoring Functions

( s{ . h;, Luong 2015

S;:T. h’l/
Ui = o v
s .W,.h;, Luong 2015

\Va tanh(W,[s;; h;]) Bahdanau 2014

Adapted from Luong, M. T., Pham, H., & Manning, C. D. (2015). Effective approaches to attention-based neural

machine translation. arXiv preprint arXiv:1508.04025.
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uw Sequence to Sequence RNN Models

Encoder

- love cats

Decoder hidden state s; = f(s;_1, V¢+—1,Ct)

Decoder

[ Katzen ]

Where, y;_, represents the earlier predicted words

18



uw Encoder Decoder RNN with Attention

Attention weights a;; = XD \here,
D=1 €XP(@t k)

a¢ ; is the alignment score
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uw Encoder Decoder RNN with Attention

Context Vector ¢, = X[, a;;.h;
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uw Encoder Decoder RNN with Attention




uw Encoder Decoder RNN with Attention

W/// |
J
:




uw Encoder Decoder RNN with Attention
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u Takeaway

1. Encoder — Decoder architecture helps to produce variable length
outputs (n->m).

2. An attention mechanism allows the modelling of dependencies
without regard for the distance in either input or output sequences.

3. However, sequential nature of a RNN prevents parallelization
within training examples. This becomes critical at longer sequence
lengths as memory constraints limit batching across examples.
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Transformer Model

Output
Probabilities
How about a model that avoids recurrence =
and simply relies on simply attention (Gt
. Feed
mechanism? Forvard
(ﬁ—_Add&Norm )
Feed Attention
Forward 2 ) E Nx
Nx | —{"Add & Norm )
Multi-Head Multi-Head
Attention Attention
At ) At
S — J —
Positional "
ey QO O~ troodng
Input Output
Embedding Embedding
Inputs QOutputs

Picture Credits: Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N, ... & Polosukhin, I. (2017). Attention is all you need.
25 Advances in neural information processing systems, 30.
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Transformer Model
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26 Advances in neural information processing systems, 30.

Multi-Head Attention
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f |
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Scaled Dot-Product Attention

MatMul

SoftMax
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Scale
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Picture Credits: Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N, ... & Polosukhin, I. (2017). Attention is all you need.



Transformer Model
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Multi-Head Attention
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Picture Credits: Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N, ... & Polosukhin, I. (2017). Attention is all you need.
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Three ways of attention

N

28

A

Encoder Self-Attention

Encoder Decoder attention

£~

Masked Decoder Self-Attention




u Self Attention

Scaled Dot-Product Attention score Z,. = ¥/_, 4;;
QK]
Where 4;; = softmax (\/d_;> Vi

where Q; = Wy X; (Query),
Ki= Wi X; (Key),
Vi = W, X; (Value),
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u Self Attention

Scaled Dot-Product Attention score Z,. = ¥/_, 4;;

Vj

Where 4;; = soft Quk)
= max | —==
lj dk

where Q; = Wy X; (Query),
Ki= Wi X; (Key),
Vi = W, X; (Value),

30



u Self Attention

Scaled Dot-Product Attention score Z,. = ¥/_, 4;;
QK]
Where 4;; = softmax (\/d_;> Vi

where Q; = Wy X; (Query),
Ki= Wi X; (Key),
Vi = W, X; (Value),
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u Self Attention

Scaled Dot-Product Attention score Z,. = ¥/_, 4;;
QK]
Where 4;; = softmax (\/d_;) Vi

where Q; = W, X; (Query),
Ki= Wle' (Key),
V; = W, X; (Value),
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u Self Attention

Scaled Dot-Product Attention score Z,. = ¥/_, 4;;
QK]
Where 4;; = softmax (\/d_ljc> Vi

where Q; = W, X; (Query),
Ki= Wle' (Key),
V; = W, X; (Value),

Note these values can be
calculated in parallel !
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u Self Attention

T
Attention Head Attention Matrix A(Q, K, V) = softmax (%) %
k
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Transformer Model
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w Multi-Head Self Attention

1. Apply self-attention multiple times in parallel and concatenate the
results

— 8 attention heads in the original transformer by Vaswani et al. 2017

2. For each self attention head, use different W, Wy, W,,

3. Helps to focus on different parts in the sequence.
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Transformer Model
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w Masked Multi Head Attention

Masking of subsequent sequence elements (so that these values are
not selected) and allow attending to positions up to and including the
current position.

T
Attention A(Q,K,V) = softmax (%) V

, oK' +M
Masked Attention A(Q,K,V) = softmax ( ) V
Vak

where M is a mask matrix
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uw Transformer Model
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uw Point Wise Feed Forward Networks

1. In the absence of element-wise non-linearities, self-attention is
simply performing a re-averaging of the value vector

2. Solution: A feedforward layer after each attention head
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Residual Connections and Layer Normalisation

1. Difficult to train the parameters of a given layer because its input
from the preceding layer keeps shifting

- Solution: Normalization across layers (8 attention heads) to zero
mean and standard deviation of one within each layer.
2. Residual connections provide another path for data to reach latter
parts of the neural network by skipping some layers
- Helps to preserve the ‘identity’ function, i.e., the original input
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Transformer Model
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Positional Embeddings

Why do we need them?

1. Self-attention operation (Scaled dot-product and fully connected
layer) are permutation invariant.

2. Encode the positional information such that
- Large and small values can be managed.

- Value is unique to a position and independent of sentence
length.

- Stays within a range (bounded) and varies non-linearly.

- Sinusoidal positional encoding is a vector of small constants
added to the embeddings

https://erdem.pl/2021/05/understanding-positional-encoding-in-transformers#positional-encoding-visualization
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Transformer Model
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u’ Encode and Decoder Stacks
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Takeaway
Why are Transformers so successful?

1. Self-attention mechanism helps to encode long-range
dependencies.

2. Transformer models can be parallelized making them faster to
process.

3. Transformer models are self-supervised and can learn useful
representations even from unlabeled data.
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w Transformer Training Approach

1. Pre-training on large unlabeled datasets (Self-supervised learning)

2. Training for downstream-tasks on labeled data (supervised
learning)
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w Limitations

Quadratic computation in self-attention (in recurrent models
computation was linear)

- Suggested approaches include
- Local attention instead of global.
- Random interactions.
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