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Recall

‒ Why RL?

‒ State Value function

‒ Action Value function

‒ MC vs TD
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Outlook

‒ Policy Iteration

‒ Monte Carlo Control

‒ Q-Learning
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How to Improve a Policy 

‒Given a policy 𝜋
– Evaluate the policy 𝜋

v𝜋 𝑠 = 𝔼𝜋 𝑅𝑡+1 + 𝛾𝑅𝑡+2+𝛾
2𝑅𝑡+3 +⋯ 𝑆𝑡= 𝑠]

– Improve the policy by acting greedily with respect to v𝜋

𝜋′ = 𝑔𝑟𝑒𝑒𝑑𝑦(v𝜋)

‒ In Small Gridworld improved policy was optimal, 𝜋′ = 𝜋∗

‒ In general, need more iterations of improvement/evaluation 

‒But this process of policy iteration always converges to π∗
(deterministic environments)
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Policy Iteration

‒Policy evaluation Estimate v𝜋
– Iterative policy evaluation 

‒Policy improvement Generate 𝜋′ ≥ 𝜋
– Greedy policy improvement 

[An Introduction to Reinforcement Learning, Sutton and Barto]
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Policy Iteration

[An Introduction to Reinforcement Learning, Sutton and Barto]
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Model-Free Control 

‒Some problems can’t be tackled with DP:
– MDP model is unknown, but experience can be sampled 

– MDP model is known, but is too big to use, except by samples 

‒Model-free control can solve these problems 
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Generalized Policy Iteration for Monte-Carlo

‒Policy evaluation
– Monte-Carlo policy evaluation, V = v𝜋 ?

‒Policy improvement
– Greedy policy improvement ?

[An Introduction to Reinforcement Learning, Sutton and Barto]
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Model-Free Policy Iteration Using Action-Value Function 

‒Greedy policy improvement over 𝑉(𝑠) requires model of MDP

𝜋′ 𝑠 = argmax
𝑎∈𝒜

ℛ𝑠
𝑎 + 𝒫𝑠𝑠′

𝑎 𝑉(𝑠′)

‒Greedy policy improvement over 𝑄(𝑠, 𝑎) is model-free

𝜋′ 𝑠 = argmax
𝑎∈𝒜

𝑄(𝑠, 𝑎)
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Generalized Policy Iteration with Action-Value Function 

‒Policy evaluation
– Monte-Carlo policy evaluation, Q = q𝜋

‒Policy improvement
– Greedy policy improvement ?

[An Introduction to Reinforcement Learning, Sutton and Barto]

[David Silver, IRL, UCL 2015]
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ε-Greedy Exploration

‒Simplest idea for ensuring continual exploration 

‒All actions are tried with non-zero probability 

‒With probability 1 − 𝜀 choose the greedy action 

‒With probability 𝜀 choose an action at random

𝜋 𝑎 𝑠 = ቐ
Τ𝜀 𝑚 + 1 − 𝜀 , 𝑖𝑓 𝑎∗ = argmax

𝑎∈𝒜
𝑄(𝑠, 𝑎)

Τ𝜀 𝑚 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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Monte-Carlo Policy Iteration 

‒Policy evaluation
– Monte-Carlo policy evaluation, Q = q𝜋

‒Policy improvement
– ε-Greedy policy improvement

[David Silver, IRL, UCL 2015]
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Monte-Carlo Control

Every episode:

‒ Policy evaluation
– Monte-Carlo policy evaluation, 𝑄 ≈ q𝜋

‒ Policy improvement
– ε-Greedy policy improvement
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GLIE Monte-Carlo Control

‒ Sample kth episode using 𝜋: {S1, 𝐴1, 𝑅2, … , 𝑆𝑇}~𝜋

‒ For each state 𝑆𝑡 and action 𝐴𝑡 in the episode, 

𝑁 𝑆𝑡 , 𝐴𝑡 ← 𝑁 𝑆𝑡 , 𝐴𝑡 + 1

𝑄 𝑆𝑡 , 𝐴𝑡 ← 𝑄 𝑆𝑡 , 𝐴𝑡 +
1

𝑁 𝑆𝑡 , 𝐴𝑡
(𝐺𝑡 − 𝑄 𝑆𝑡 , 𝐴𝑡 )

‒ Improve policy based on new action-value function

𝜀 ← ൗ1 𝑘
𝜋 ← 𝜀 − 𝑔𝑟𝑒𝑒𝑑𝑦(𝑄)

GLIE Monte-Carlo control converges to the optimal action-value function, 𝑄(𝑠, 𝑎) → 𝑞∗(𝑠, 𝑎)

Theorem
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MC vs. TD Control

‒Temporal-difference (TD) learning has several advantages over 
Monte-Carlo (MC) 

– Lower variance 

– Online

– Incomplete sequences 

‒Natural idea: use TD instead of MC in our control loop 
– Apply TD to 𝑄(𝑆, 𝐴)

– Use ε-greedy policy improvement 

– Update every time-step 
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Updating Action-Value Functions with 
Sarsa

𝑄 𝑆, 𝐴 ← 𝑄 𝑆, 𝐴 + 𝛼(𝑅 + 𝛾𝑄 𝑆′, 𝐴′ − 𝑄(𝑆, 𝐴))

[David Silver, IRL, UCL 2015]
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On and Off-Policy Learning

‒On-policy learning 
– “Learn on the job” 

– Learn about policy 𝜋 from experience sampled from 𝜋

‒Off-policy learning 
– “Look over someone’s shoulder” 

– Learn about policy 𝜋 from experience sampled from 𝜇
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Sarsa Algorithm for On-Policy Control

[An Introduction to Reinforcement Learning, Sutton and Barto]
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Off-Policy Learning

‒Evaluate target policy 𝜋(𝑎|𝑠) to compute v𝜋(𝑠) or q𝜋 𝑠, 𝑎

‒While following behavior policy 𝜇 𝑎 𝑠

{S1, 𝐴1, 𝑅2, … , 𝑆𝑇}~𝜇

‒Why is this important?
– Learn from observing humans or other agents

– Re-use experience generated from old policies π1, 𝜋2, … , 𝜋𝑡−1
– Learn about optimal policy while following exploratory policy 

– Learn about multiple policies while following one policy 
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Off-Policy Control with Q-Learning

‒ We now allow both behavior and target policies to improve 

‒ The target policy 𝜋 is greedy w.r.t. 𝑄(𝑠, 𝑎)

𝜋 S𝑡+1 = argmax
𝑎′

𝑄(𝑆𝑡+1, 𝑎
′)

‒ The behavior policy 𝜇 is e.g., ε-greedy w.r.t. 𝑄(𝑠, 𝑎)

‒ The Q-learning target then simplifies: 

𝑅𝑡+1 + 𝛾𝑄 𝑆𝑡+1, 𝐴
′

= 𝑅𝑡+1 + 𝛾𝑄 𝑆𝑡+1, argmax
𝑎′

𝑄(𝑆𝑡+1, 𝑎
′)

= 𝑅𝑡+1 + γ max
𝑎′

𝑄(𝑆𝑡+1, 𝑎
′)
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Q-Learning Control Algorithm

𝑄 S, A ← 𝑄 𝑆, 𝐴 + 𝛼(𝑅𝑡+1 + γmax
𝑎′

𝑄(𝑆′, 𝑎′) − 𝑄 𝑆, 𝐴 )

[David Silver, IRL, UCL 2015]

Reinforcement Learning: ControlL. Brigato 54



UBERN: S. Mougiakakou

Q-Learning Algorithm for Off-Policy Control 

[An Introduction to Reinforcement Learning, Sutton and Barto]
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[An Introduction to Reinforcement Learning, Sutton and Barto]
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Example: Cliff Walking
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