Winter School 2024 Reinforcement Learning

Control

Dr. Lorenzo Brigato

Artificial Intelligence in Health and Nutrition (AIHN) Laboratory ARTORG Center for Biomedical Engineering Research

Dr. Mykhailo Vladymyrov

Data Science Lab

University of Bern

Recall

- Why RL?
- State Value function
- Action Value function
- MC vs TD

Outlook

- Policy Iteration
- Monte Carlo Control
- Q-Learning

How to Improve a Policy

- -Given a policy π
 - Evaluate the policy π

$$V_{\pi}(s) = \mathbb{E}_{\pi}[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \cdots \mid S_t = s]$$

– Improve the policy by acting greedily with respect to v_{π}

$$\pi' = greedy(v_{\pi})$$

- -In Small Gridworld improved policy was optimal, $\pi' = \pi^*$
- In general, need more iterations of improvement/evaluation
- But this process of policy iteration always converges to π* (deterministic environments)

Policy Iteration

- -Policy evaluation Estimate v_{π}
 - Iterative policy evaluation
- -Policy improvement Generate $\pi' \geq \pi$
 - Greedy policy improvement

[An Introduction to Reinforcement Learning, Sutton and Barto]

Policy Iteration

Policy Iteration (using iterative policy evaluation) for estimating $\pi \approx \pi_*$

```
1. Initialization
```

```
V(s) \in \mathbb{R} and \pi(s) \in \mathcal{A}(s) arbitrarily for all s \in \mathcal{S}; V(terminal) \doteq 0
```

2. Policy Evaluation

Loop:

$$\Delta \leftarrow 0$$

Loop for each $s \in S$:

$$v \leftarrow V(s)$$

$$V(s) \leftarrow \sum_{s',r} p(s',r|s,\pi(s)) [r + \gamma V(s')]$$

$$\Delta \leftarrow \max(\Delta, |v - V(s)|)$$

until $\Delta < \theta$ (a small positive number determining the accuracy of estimation)

3. Policy Improvement

$$policy$$
- $stable \leftarrow true$

For each $s \in S$:

$$old\text{-}action \leftarrow \pi(s)$$

$$\pi(s) \leftarrow \operatorname{arg\,max}_a \sum_{s',r} p(s',r|s,a) \big[r + \gamma V(s') \big]$$

If $old\text{-}action \neq \pi(s)$, then $policy\text{-}stable \leftarrow false$

If policy-stable, then stop and return $V \approx v_*$ and $\pi \approx \pi_*$; else go to 2

[An Introduction to Reinforcement Learning, Sutton and Barto]

Model-Free Control

- –Some problems can't be tackled with DP:
 - MDP model is unknown, but experience can be sampled
 - MDP model is known, but is too big to use, except by samples
- Model-free control can solve these problems

Generalized Policy Iteration for Monte-Carlo

- Policy evaluation
 - Monte-Carlo policy evaluation, $V = V_{\pi}$?
- -Policy improvement
 - Greedy policy improvement ?

[An Introduction to Reinforcement Learning, Sutton and Barto]

Model-Free Policy Iteration Using Action-Value Function

-Greedy policy improvement over V(s) requires model of MDP

$$\pi'(s) = \underset{a \in \mathcal{A}}{\operatorname{argmax}} \left[\mathcal{R}_s^a + \mathcal{P}_{ss'}^a V(s') \right]$$

-Greedy policy improvement over Q(s, a) is model-free

$$\pi'(s) = \underset{a \in \mathcal{A}}{\operatorname{argmax}} Q(s, a)$$

Generalized Policy Iteration with Action-Value Function

- Policy evaluation
 - Monte-Carlo policy evaluation, $Q = q_{\pi}$
- -Policy improvement
 - Greedy policy improvement ?

[David Silver, IRL, UCL 2015]

[An Introduction to Reinforcement Learning, Sutton and Barto]

ε-Greedy Exploration

- -Simplest idea for ensuring continual exploration
- -All actions are tried with non-zero probability
- -With probability 1ε choose the greedy action
- -With probability ε choose an action at random

$$\pi(a \mid s) = \begin{cases} \varepsilon/m + 1 - \varepsilon &, if \ a^* = \operatorname*{argmax}_{a \in \mathcal{A}} Q(s, a) \\ \varepsilon/m &, otherwise \end{cases}$$

Monte-Carlo Policy Iteration

- Policy evaluation
 - Monte-Carlo policy evaluation, $Q = q_{\pi}$
- -Policy improvement
 - <u>ε-Greedy</u> policy improvement

[David Silver, IRL, UCL 2015]

Monte-Carlo Control

Every episode:

- Policy evaluation
 - Monte-Carlo policy evaluation, $Q \approx q_{\pi}$
- Policy improvement
 - <u>ε-Greedy</u> policy improvement

GLIE Monte-Carlo Control

- Sample kth episode using π : {S₁, A₁, R₂, ..., S_T} $\sim \pi$
- For each state S_t and action A_t in the episode,

$$N(S_t, A_t) \leftarrow N(S_t, A_t) + 1$$

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \frac{1}{N(S_t, A_t)} (G_t - Q(S_t, A_t))$$

Improve policy based on new action-value function

$$\varepsilon \leftarrow \frac{1}{k}$$

$$\pi \leftarrow \varepsilon - greedy(Q)$$

Theorem

GLIE Monte-Carlo control converges to the optimal action-value function, $Q(s,a) \rightarrow q_*(s,a)$

MC vs. TD Control

- Temporal-difference (TD) learning has several advantages over Monte-Carlo (MC)
 - Lower variance
 - Online
 - Incomplete sequences
- -Natural idea: use TD instead of MC in our control loop
 - Apply TD to Q(S, A)
 - Use ε-greedy policy improvement
 - Update every time-step

Updating Action-Value Functions with Sarsa

$$Q(S,A) \leftarrow Q(S,A) + \alpha(R + \gamma Q(S',A') - Q(S,A))$$

[David Silver, IRL, UCL 2015]

On and Off-Policy Learning

- On-policy learning
 - "Learn on the job"
 - Learn about policy π from experience sampled from π
- –Off-policy learning
 - "Look over someone's shoulder"
 - Learn about policy π from experience sampled from μ

Sarsa Algorithm for On-Policy Control

```
Sarsa (on-policy TD control) for estimating Q \approx q_*
Algorithm parameters: step size \alpha \in (0,1], small \varepsilon > 0
Initialize Q(s, a), for all s \in S^+, a \in A(s), arbitrarily except that Q(terminal, \cdot) = 0
Loop for each episode:
   Initialize S
   Choose A from S using policy derived from Q (e.g., \varepsilon-greedy)
   Loop for each step of episode:
      Take action A, observe R, S'
       Choose A' from S' using policy derived from Q (e.g., \varepsilon-greedy)
      Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma Q(S', A') - Q(S, A)]
      S \leftarrow S'; A \leftarrow A';
   until S is terminal
```

Off-Policy Learning

- -Evaluate target policy $\pi(a|s)$ to compute $v_{\pi}(s)$ or $q_{\pi}(s,a)$
- -While following behavior policy $\mu(a|s)$

$$\{S_1, A_1, R_2, ..., S_T\} \sim \mu$$

- –Why is this important?
 - Learn from observing humans or other agents
 - Re-use experience generated from old policies $\pi_1, \pi_2, ..., \pi_{t-1}$
 - Learn about optimal policy while following exploratory policy
 - Learn about multiple policies while following one policy

Off-Policy Control with Q-Learning

- We now allow both behavior and target policies to improve
- The target policy π is greedy w.r.t. Q(s, a)

$$\pi(S_{t+1}) = \underset{a'}{\operatorname{argmax}} Q(S_{t+1}, a')$$

- The behavior policy μ is e.g., ϵ -greedy w.r.t. Q(s,a)
- The Q-learning target then simplifies:

$$R_{t+1} + \gamma Q(S_{t+1}, A')$$

$$= R_{t+1} + \gamma Q\left(S_{t+1}, \operatorname{argmax}_{a'} Q(S_{t+1}, a')\right)$$

$$= R_{t+1} + \gamma \max_{a'} Q(S_{t+1}, a')$$

Q-Learning Control Algorithm

$$Q(S,A) \leftarrow Q(S,A) + \alpha(R_{t+1} + \gamma \max_{a'} Q(S',a') - Q(S,A))$$

[David Silver, IRL, UCL 2015]

Q-Learning Algorithm for Off-Policy Control

```
Q-learning (off-policy TD control) for estimating \pi \approx \pi_*
Algorithm parameters: step size \alpha \in (0,1], small \varepsilon > 0
Initialize Q(s,a), for all s \in \mathbb{S}^+, a \in \mathcal{A}(s), arbitrarily except that Q(terminal, \cdot) = 0
Loop for each episode:
Initialize S
Loop for each step of episode:
Choose A from S using policy derived from Q (e.g., \varepsilon-greedy)
Take action A, observe R, S'
Q(S,A) \leftarrow Q(S,A) + \alpha \big[ R + \gamma \max_a Q(S',a) - Q(S,A) \big]
S \leftarrow S'
until S is terminal
```

```
Sarsa (on-policy TD control) for estimating Q \approx q_*

Algorithm parameters: step size \alpha \in (0,1], small \varepsilon > 0

Initialize Q(s,a), for all s \in \mathbb{S}^+, a \in \mathcal{A}(s), arbitrarily except that Q(terminal, \cdot) = 0

Loop for each episode:

Initialize S

Choose A from S using policy derived from Q (e.g., \varepsilon-greedy)

Loop for each step of episode:

Take action A, observe R, S'

Choose A' from S' using policy derived from Q (e.g., \varepsilon-greedy)

Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma Q(S',A') - Q(S,A)\right]
S \leftarrow S'; A \leftarrow A';
until S is terminal
```

Q-learning (off-policy TD control) for estimating $\pi \approx \pi_*$

```
Algorithm parameters: step size \alpha \in (0,1], small \varepsilon > 0

Initialize Q(s,a), for all s \in \mathbb{S}^+, a \in \mathcal{A}(s), arbitrarily except that Q(terminal, \cdot) = 0

Loop for each episode:

Initialize S

Loop for each step of episode:

Choose A from S using policy derived from Q (e.g., \varepsilon-greedy)

Take action A, observe R, S'

Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma \max_a Q(S',a) - Q(S,A)\right]

S \leftarrow S'

until S is terminal
```

[An Introduction to Reinforcement Learning, Sutton and Barto]

55

Example: Cliff Walking

