Winter School 2024 Reinforcement Learning

Prediction

Dr. Lorenzo Brigato

Artificial Intelligence in Health and Nutrition (AIHN) Laboratory ARTORG Center for Biomedical Engineering Research University of Bern

Outlook

- Model-based prediction (via Dynamic Programming)
- Monte Carlo Learning
- Temporal Difference (TD) Learning
- N-Step TD

Policy Evaluation

-Goal: learn v_{π} from episodes of experience under policy π

$S_1, A_1, R_1, \dots, S_k \sim \pi$

-Known MDP (model available)

- Dynamic Programming
- -Unknown MDP (model not available)
 - Monte-Carlo Learning
 - Temporal-Difference Learning
 - N-step TD

Planning by Dynamic Programming

- Dynamic programming assumes full knowledge of the MDP, and it is used for planning:
- -For Prediction:
 - Input: MDP/MRP and policy π
 - Output: State-value function
- -For Control:
 - Input: MDP
 - Output: optimal value function and optimal policy

Iterative Policy Evaluation

- –Problem: evaluate a given policy π
- -Solution: iterative application of Bellman expectation update

$$\vee_1 \to \vee_2 \to \cdots \to \vee_{\pi}$$

- -Using synchronous updates,
 - At each iteration k + 1
 - For all states $s \in S'$
 - Update $v_{k+1}(s)$ from $v_k(s')$
 - where s' is a successor state of s
- –Convergence to v_{π} is proven at a geometric rate (refer to Banach's fixed-point theorem)

Iterative Policy Evaluation

Evaluating a Random Policy in the Small Gridworld

- Undiscounted episodic MDP ($\gamma = 1$)
- Nonterminal states 1, ..., 14
- Terminal states shown as shaded squares
- Actions leading out of the grid leave state unchanged
- Reward is -1 until the terminal state is reached
- Agent follows uniform random policy

$$\pi(u \mid \cdot) = \pi(d \mid \cdot) = \pi(r \mid \cdot) = \pi(l \mid \cdot) = 0.25$$

Iterative Policy Evaluation in Small Gridworld (1/2)

	v_k for the random policy	greedy policy w.r.t. v_k	
k = 0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ \end{array} $	_ random policy
<i>k</i> = 1	0.0-1.0-1.0-1.0-1.0-1.0-1.0-1.0-1.0-1.0-1.0-1.0-1.0-1.0-1.00.0	$\begin{array}{c} \leftarrow & \leftarrow \\ \uparrow & \leftarrow \\ \uparrow & \leftarrow \\ \uparrow & \leftarrow \\ \downarrow & \leftarrow \\ \downarrow & \leftarrow \\ \leftarrow \\ \downarrow & \leftarrow \\ \downarrow \\ \downarrow \\ \downarrow & \leftarrow \\ \downarrow \\$	
<i>k</i> = 2	0.0 -1.7 -2.0 -2.0 -1.7 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -1.7 -2.0 -2.0 -1.7 0.0	$\begin{array}{c c} \leftarrow & \leftarrow & \leftarrow \\ \uparrow & \leftarrow & \leftarrow & \downarrow \\ \leftarrow & \leftarrow & \leftarrow & \leftarrow \end{array}$	

Iterative Policy Evaluation in Small Gridworld (2/2)

Dynamic Programming Update

$V(S_t) \leftarrow \mathbb{E}_{\pi}[R_{t+1} + \gamma V(S_{t+1})]$

[David Silver, IRL, UCL 2015]

Model-Free Policy Evaluation

-Monte-Carlo (MC) Learning

- MC methods learn from complete episodes of experience
 - Simplest possible idea: value = mean return
- Caveat: can only apply MC to episodic MDPs
 - All episodes must terminate
- -Temporal-Difference (TD) Learning
 - TD methods learn from incomplete episodes of experience
 - TD learns from episodes, by bootstrapping (updates a guess towards a guess)

Example: Blackjack

- States (200 in total):
 - Current sum (12-21)
 - Dealer's showing card (ace or 2-10)
 - Do I have a "useable" ace? (yes-no)
- Actions
 - hit: Take another card (no replacement)
 - *stick*: Stop receiving cards (and terminate)
- Rewards
 - for stick:
 - +1 if sum of cards > sum of dealer cards
 - 0 if sum of cards = sum of dealer cards
 - -1 if sum of cards < sum of dealer cards
 - for hit:
 - -1 if sum of cards > 21 (and terminate)
 - 0 otherwise
- Policy: stick if sum of cards ≥ 20 , otherwise hit

Blackjack Value Function after MC Learning

Incremental Mean

- The mean μ_k of a sequence $x_1, x_2, ..., x_k$ can be computed incrementally,

$$\mu_{k} = \frac{1}{k} \sum_{i=1}^{k} x_{i}$$

$$= \frac{1}{k} \left(x_{k} + \sum_{i=1}^{k-1} x_{i} \right)$$

$$= \frac{1}{k} \left(x_{k} + (k-1)\mu_{k-1} + \frac{1}{k} (x_{k} - \mu_{k-1}) \right)$$

)

MC Incremental Update

- -Update V(s) incrementally after episode $S_1, A_1, R_1, \dots, S_k$
- -For each state S_t with return G_t and number of visits $N(S_t)$:
 - Update state value

Temporal-Difference Learning

- -TD methods learn directly from episodes of experience
- -TD is model-free: no knowledge of MDP transitions / rewards
- -TD learns from incomplete episodes, by bootstrapping
- -TD updates a guess towards a guess

MC and TD

–Goal: learn v_{π} from episodes of experience under policy π

-Incremental Monte-Carlo

- Update value $V(S_t)$ toward actual return G_t

 $V(S_t) \leftarrow V(S_t) + \alpha(\mathbf{G_t} - V(S_t))$

- Simplest temporal-difference learning algorithm: TD(0) - Update value $V(S_t)$ toward estimated return $R_{t+1} + \gamma V(S_{t+1})$

$$V(S_t) \leftarrow V(S_t) + \alpha(R_{t+1} + \gamma V(S_{t+1}) - V(S_t))$$

-
$$R_{t+1} + \gamma V(S_{t+1})$$
 is called TD target
- $\delta_t = R_{t+1} + \gamma V(S_{t+1}) - V(S_t)$ is called the TD error

TD Incremental Update

-Update V(s) incrementally after transition $S_t, A_t, R_{t+1}, S_{t+1}$

-For each state S_t with reward R_{t+1} :

- Update state value toward estimated return $R_{t+1} + \gamma V(S_{t+1})$ $V(S_t) \leftarrow V(S_t) + \alpha (R_{t+1} + \gamma V(S_{t+1})) = V(S_t))$

Advantages and Disadvantages of MC vs TD (1/3)

-TD can learn before knowing the outcome

- TD can learn online after every step
- MC must wait until end of episode before return is known
- -TD can learn without the outcome
 - TD can learn from incomplete sequences
 - MC can only learn from complete sequences
 - TD works in continuing (non-terminating) environments
 - MC only works for episodic (terminating) environments

Advantages and Disadvantages of MC vs TD (2/3)

-MC has high variance, zero bias

- Good convergence properties
- Not very sensitive to initial value
- Very simple to understand and use
- -TD has low variance, some bias
 - Usually more efficient than MC
 - TD(0) converges to $v_{\pi}(s)$
 - More sensitive to initial value

Advantages and Disadvantages of MC vs. TD (3/3)

-TD exploits Markov property

- Usually more efficient in Markov environments
- -MC does not exploit Markov property
 - Usually more effective in non-Markov environments

Unified View of Reinforcement Learning

- Bootstrapping: update involves an estimate
 - MC does not bootstrap
 - DP bootstraps
 - TD bootstraps
- -Sampling: update samples an expectation
 - MC samples
 - DP does not sample
 - TD samples

n-Step Prediction

-Instead of just looking one step in the future, let's look n steps:

n-Step Return

- Consider the following n-step returns for n=1,2,..., ∞ - n = 1 - TD $G_{t:t+1} = R_{t+1} + \gamma V(S_{t+1})$ - n = 2 $G_{t:t+2} = R_{t+1} + \gamma R_{t+1} + \gamma^2 V(S_{t+2})$ - $n = \infty$ - MC $G_{t:t+\infty} = R_{t+1} + \gamma R_{t+1} + ...$

-We can define the n-step return

$$G_{t:t+n} = R_{t+1} + \gamma R_{t+1} + \dots + \gamma^n V(S_{t+n})$$
n-step temporal-difference learning

$$V(S_t) \leftarrow V(S_t) + \alpha(G_{t:t+n} - V(S_t))$$

— I

Example: Random Walk (19-states)

512

128

/n=64

0.55 r

n=32 0.5 Average 0.45 **RMS** error over 19 states 0.4 and first 10 0.35 - n=32 episodes n=16 0.3 n=2 n=8 n=4 0.25 0.2 0.6 0.8 0.4 0

 α

n=1