Winter School 2024 Reinforcement Learning

Prediction

Dr. Lorenzo Brigato

Artificial Intelligence in Health and Nutrition (AIHN) Laboratory ARTORG Center for Biomedical Engineering Research University of Bern

Outlook

- ‒ Model-based prediction (via Dynamic Programming)
- ‒ Monte Carlo Learning
- ‒ Temporal Difference (TD) Learning
- ‒ N-Step TD

Policy Evaluation

 $-$ Goal: learn v_{π} from episodes of experience under policy π

 $S_1, A_1, R_1, ..., S_k \sim \pi$

‒Known MDP (model available)

- Dynamic Programming
- ‒Unknown MDP (model not available)
	- Monte-Carlo Learning
	- Temporal-Difference Learning
	- N-step TD

Planning by Dynamic Programming

- ‒Dynamic programming assumes full knowledge of the MDP, and it is used for planning:
- ‒For Prediction:
	- Input: MDP/MRP and policy π
	- Output: State-value function
- ‒For Control:
	- Input: MDP
	- Output: optimal value function and optimal policy

Iterative Policy Evaluation

- $-$ Problem: evaluate a given policy π
- ‒Solution: iterative application of Bellman expectation update

 $V_1 \rightarrow V_2 \rightarrow \cdots \rightarrow V_{\pi}$

- ‒Using synchronous updates,
	- At each iteration $k + 1$
	- For all states $s \in S'$
	- Update $v_{k+1}(s)$ from $v_k(s')$
	- where s′ is a successor state of s
- -Convergence to v_{π} is proven at a geometric rate (refer to Banach's fixed-point theorem)

Iterative Policy Evaluation

Evaluating a Random Policy in the Small Gridworld

- $-$ Undiscounted episodic MDP ($y = 1$)
- ‒ Nonterminal states 1, ..., 14
- ‒ Terminal states shown as shaded squares
- ‒ Actions leading out of the grid leave state unchanged
- ‒ Reward is −1 until the terminal state is reached
- ‒ Agent follows uniform random policy

$$
\pi(u \mid \cdot) = \pi(d \mid \cdot) = \pi(r \mid \cdot) = \pi(l \mid \cdot) = 0.25
$$

Iterative Policy Evaluation in Small Gridworld (1/2)

Iterative Policy Evaluation in Small Gridworld (2/2)

Dynamic Programming Update

$V(S_t) \leftarrow \mathbb{E}_{\pi}[R_{t+1} + \gamma V(S_{t+1})]$

[David Silver, IRL, UCL 2015]

Model-Free Policy Evaluation

‒Monte-Carlo (MC) Learning

- MC methods learn from complete episodes of experience
	- Simplest possible idea: value = mean return
- Caveat: can only apply MC to episodic MDPs
	- All episodes must terminate
- ‒Temporal-Difference (TD) Learning
	- TD methods learn from incomplete episodes of experience
		- TD learns from episodes, by bootstrapping (updates a guess towards a guess)

Example: Blackjack

- ‒ States (200 in total):
	- Current sum (12-21)
	- Dealer's showing card (ace or 2-10)
	- Do I have a "useable" ace? (yes-no)
- ‒ Actions
	- *hit*: Take another card (no replacement)
	- *stick*: Stop receiving cards (and terminate)
- ‒ Rewards
	- for stick:
		- $-$ +1 if sum of cards $>$ sum of dealer cards
		- $-$ 0 if sum of cards $=$ sum of dealer cards
		- -1 if sum of cards < sum of dealer cards
	- for hit:
		- $-$ -1 if sum of cards > 21 (and terminate)
		- 0 otherwise
- $-$ Policy: stick if sum of cards ≥ 20 , otherwise hit

Blackjack Value Function after MC Learning

Incremental Mean

- The mean μ_k of a sequence $x_1, x_2, ..., x_k$ can be computed incrementally,

$$
\mu_k = \frac{1}{k} \sum_{i=1}^k x_i
$$

= $\frac{1}{k} \left(x_k + \sum_{i=1}^{k-1} x_i \right)$
= $\frac{1}{k} (x_k + (k-1)\mu_{k-1})$
= $\mu_{k-1} + \frac{1}{k} (x_k - \mu_{k-1})$

MC Incremental Update

- -Update $V(s)$ incrementally after episode $S_1, A_1, R_1, ..., S_k$
- -For each state S_t with return G_t and number of visits $N(S_t)$:
	- Update state value

Temporal-Difference Learning

- ‒TD methods learn directly from episodes of experience
- ‒TD is model-free: no knowledge of MDP transitions / rewards
- ‒TD learns from incomplete episodes, by bootstrapping
- ‒TD updates a guess towards a guess

MC and TD

 $-$ Goal: learn v_{π} from episodes of experience under policy π

‒Incremental Monte-Carlo

– Update value $V(S_t)$ toward actual return G_t

 $V(S_t) \leftarrow V(S_t) + \alpha (G_t - V(S_t))$

‒Simplest temporal-difference learning algorithm: TD(0) – Update value $V(S_t)$ toward estimated return $R_{t+1} + \gamma V(S_{t+1})$

$$
V(S_t) \leftarrow V(S_t) + \alpha(R_{t+1} + \gamma V(S_{t+1}) - V(S_t))
$$

$$
- R_{t+1} + \gamma V(S_{t+1})
$$
 is called TD target
- $\delta_t = R_{t+1} + \gamma V(S_{t+1}) - V(S_t)$ is called the TD error

TD Incremental Update

-Update $V(s)$ incrementally after transition S_t , A_t , R_{t+1} , S_{t+1}

 $-For$ each state S_t with reward R_{t+1} :

– Update state value toward estimated return $R_{t+1} + \gamma V(S_{t+1})$ $V(S_t) \leftarrow V(S_t) + \alpha(R_{t+1} + \gamma V(S_{t+1}) - V(S_t))$

Advantages and Disadvantages of MC vs TD (1/3)

‒TD can learn before knowing the outcome

- TD can learn online after every step
- MC must wait until end of episode before return is known
- ‒TD can learn without the outcome
	- TD can learn from incomplete sequences
	- MC can only learn from complete sequences
	- TD works in continuing (non-terminating) environments
	- MC only works for episodic (terminating) environments

Advantages and Disadvantages of MC vs TD (2/3)

‒MC has high variance, zero bias

- Good convergence properties
- Not very sensitive to initial value
- Very simple to understand and use
- ‒TD has low variance, some bias
	- Usually more efficient than MC
	- $-TD(0)$ converges to $v_{\pi}(s)$
	- More sensitive to initial value

Advantages and Disadvantages of MC vs. TD (3/3)

‒TD exploits Markov property

- Usually more efficient in Markov environments
- ‒MC does not exploit Markov property
	- Usually more effective in non-Markov environments

Unified View of Reinforcement Learning

- -Bootstrapping: update involves an estimate
	- MC does not bootstrap
	- DP bootstraps
	- TD bootstraps
- -Sampling: update samples an expectation
	- MC samples
	- DP does not sample
	- TD samples

n-Step Prediction

-Instead of just looking one step in the future, let's look n steps:

n-Step Return

‒ Consider the following n-step returns for n=1,2,…,∞ $- n = 1 - TD$ $G_{t:t+1} = R_{t+1} + \gamma V(S_{t+1})$ $- n = 2$ $G_{t:t+2} = R_{t+1} + \gamma R_{t+1} + \gamma^2 V(S_{t+2})$ $- n = \infty - MC$ $G_{t:t+\infty} = R_{t+1} + \gamma R_{t+1} + ...$

‒ We can define the n-step return

$$
G_{t:t+n} = R_{t+1} + \gamma R_{t+1} + \dots + \gamma^n V(S_{t+n})
$$

‒ n-step temporal-difference learning

$$
V(S_t) \leftarrow V(S_t) + \alpha(G_{t:t+n} - V(S_t))
$$

Example: Random Walk (19-states)

 0.5 Average 0.45 **RMS** error over 19 states 0.4 and first 10 $0.35 - n = 32$ episodes $n = 16$ 0.3

