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Outlook

— Introducing the RL Problem
— Markov Decision Processes (MDPs)
— Exploration and Exploitation
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The Agent and the Environment

environment

agent Jaton

— At each step t the agent:
— Receives observation 0; (and reward R; )
— Executes action A;

— The environment:
— Recelves action A4;
— Emits observation 0,4 (and reward R, )

[Hado van Hasselt, 2021]
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Core Concepts

The RL formalism includes:
— Reward signal (specifies the goal)
— Environment (dynamics of the problem)

— Agent, containing:
— Agent state
— Policy
— Value function estimate (?)
— Environment Model (?)
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Major Components of an RL Agent

— An RL agent may include one or more of these components:
— Policy: agent’s behavior function
— Value function: how good is each state and/or action
— Model: agent’s representation of the environment
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Maze Example
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[Hado van Hasselt, 2021]




Agent Categories (1/2)

— Value Based
— No Policy (Implicit)
— Value Function
— Policy Based
— Policy
— No Value Function
— Actor Critic
— Policy
— Value Function
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Agent Categories (2/2)

— Model Free

— Policy and/or Value Function
— No Model

— Model Based

— Optionally Policy and/or Value Function
— Model
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Introduction to MDPs

—MDPs formally describe an environment for RL

—Current state completely characterizes the process (fully
observability)

—Almost all RL problems can be formalized as MDPs, e.g.
— Optimal control primarily deals with continuous MDPs
— Partially observable problems can be converted into MDPs (POMDPSs)
— Bandits are MDPs with one state

L. Brigato Reinforcement Learning: Elementary RL



Information or Markov State

— An information state (a.k.a. Markov state) contains all useful
information from the history.

A state S; is Markov if and only if:

P[Se411Se] = P[St41[S7 .. Sl

— “The future is independent of the past given the present”

— Doesn't mean it contains everything, just that adding more history
doesn’t help

— Once the state is known, the history may be thrown away
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Markov Decision Process

—A Markov decision process (MDP) is an environment in which all
states are Markov and defined as follows

A Markov Process (or Markov Chain) is a 4-tuple < §, A, P, R,y >

* S isa (finite) set of states

* A is a (finite) set of actions

* P is astate transition matrix, i.e, Po.r = P[S¢qq =5 | Sy =5, 4; = a]
« Risareward function, R¢ = E[R;11 | S; = s, A; = a]

* vyisadiscount factor,y € [0, 1]

L. Brigato
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State Transition Matrix

—For a Markov state s, an action a, and a successor state s', the state
transition probability is defined by

P =P[Si1q1 =5"| Sp=s5,At = a]

— A State transition matrix P can also be defined that holds the transition

probabilities from all state-action couples (s, a

P =

each row of the matrix sums to 1.

11

Pna

in

PTLTL -

) to all successor states s’
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Return

The return G; is the total discounted reward from time-step t:

Ge = Ryyq + YRey2 +Y2Regs + - = Z Y*Reskr1
k=0

—The discount y € [0, 1] is the present value of future rewards
—The value of receiving reward R after k + 1 time-steps is y*R.
— This values immediate reward above delayed reward.

— v close to 0 leads to "myopic” evaluation
— vy close to 1 leads to “far-sighted” evaluation

L. Brigato
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Policies

A policy m is a distribution over actions given states:

m(als) = P[4A; = a| S; = s]

—A policy fully defines the behaviour of an agent
—MDP policies depend on the current state (not the history)

L. Brigato
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State-Value and Action-Value Functions

The state-value function v, (s) of an MDP is the expected return starting from state s, and then
following policy m:

Vr(s) = EnlGe | S¢= s]

The action-value function g, (s, a) of an MDP is the expected return starting from state s, taking
action a, and then following policy m:

Qn(si a) = [Erc[Gt | Se=S, Ar= a]

L. Brigato
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Bellman Expectation Equation

— The value function can be decomposed into two parts:

— Immediate reward R;., 4

— Discounted value of successor state yv_(S¢41) under policy

Vn(S) = E;
— IETC

:IEn

Gy | Sp = 5]
Rit1+ YRip2 +V2Reyz + | S = 5]
Revq + Y(Res2 tYResz + )| S¢= s]

Rev1 +YGegq| Se= 5]

Ret1 + YV (Ser1)| Se= 5]

= Ep|Re+1]| Se=s] + YEL[V(St+1)| St = 5]

L. Brigato
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Bellman Expectation Equation for v,

v (8) 1 8

V. (s) = Z m(als) (SQ? + vy Z ?;/Vn(sl)>

ac€A s'eS

V()= ) m(als) RE+y ) n<a|s><z ?:;,v(s')>

acA acA s'es

L. Brigato
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Bellman Expectation Equation for g,

L. Brigato

Reinforcemen t Learning: Elementary RL

17



Example: Song Learning MDP

R=+1 < N
~—— Bar 0.4 ~
)
A
Break 0.4 Break
0.2

Chorus Practic Solo

Stop Stop Stop Practice
\—> Done <«—
| R =+10
Youtube 1.0

R=-1 ¢

hill

L. Brigato
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Example: Bellman Expectation Equation in MDP

R=+1 < N
Bar 0.4
v (s) form(als) = 0.5 ( )
N
A
Break 0.4 Break
0.2
\
Verse Prac[ice SO'O
R=- R=-2
v=-13 v=74
Stop Stop Practice
| R =+10
Youtube 1.0
R =—1 ¢ v=+10
v=-2.3
Ready R=0
hill v=20
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Example: Bellman Expectation Equation in MDP

v (s) form(als) = 0.5

74 =05%(1—-02%13 +04%274+04x7.4)
+ 0.5% 10

® |©

Chorus Pracllc SOI
R=-2
Vﬂ =74
Stop f Prachce)
Done
Voutub I R=+410
outube 1.0
R =-1 J v
vy = —2.3
Ready R=0
hill v, =0
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Bellman Expectation Equation (Matrix Form)

—The Bellman equation is a linear equation

Vg = R" +yP"v
—It can be solved directly
vV, = (1 —yP™®)1R"
—Matrix Inversion is computational heavy 0 (n®)
— Direct solution only possible for small MDPs

— There are many iterative methods for large MDPs, e.g.
— Dynamic programming
— Monte-Carlo evaluation
— Temporal-Difference learning

L. Brigato

Reinforcement Learning: Elementary RL

21



Optimal Value Function

The optimal state-value function v, (s) is the maximum value function over all policies

v.(s) = max v (S)

The optimal action-value function q.(s, a) is the maximum action-value function over all policies

g.(s,a) = max g, (s, a)
T

—The optimal value function specifies the best possible performance
in the MDP

—An MDP is “solved” when we know the optimal value function
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Exploration vs. Exploitation Dilemma

—0Online decision-making involves a fundamental choice:
— Exploitation Make the best decision given current information
— Exploration Gather more information

—The best long-term strategy may involve short-term sacrifices
—Gather enough information to make the best overall decisions

UBERN: L. Brigato Reinforcement Learning: Elementary RL
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Principles

—Naive Exploration

— Add noise to greedy policy (e.g., e-greedy)
—QOptimistic Initialization

— Assume the best until proven otherwise

—QOptimism in the Face of Uncertainty
— Prefer actions with uncertain values

UBERN: L. Brigato Reinforcement Learning: Elementary RL
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Multi-Armed Bandits

— A multi-armed bandit is a set of distributions
<A R>

- A is a (known) set of actions (or “arms")

~R%(r) = PP[r]a] is an unknown probability
distribution over rewards

—At each step t the agent selects an action
a, € A

— The environment generates a reward ry~R %t

— The goal is to maximize cumulative reward
t
Zr=1 £,

[David Silver, IRL, UCL 2015]
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10-armed Testbed

—

Reward
distribution

9+(2)

q.(4

q+(10)

q+(6)

[An Introduction to Reinforcement Learning, Sutton and Barto]

UBERN: L. Brigato
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Greedy Algorithm

—0One of the simplest algorithm

—Select action with highest value:
Ay = argmaxQs(a)
aeA

—Greedy can lock onto a suboptimal action forever

UBERN: L. Brigato Reinforcement Learning: Elementary RL
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e-Greedy Algorithm

—The e-greedy algorithm:

— With probability 1 —¢ select greedy action: A; = argmaxQ:(a)
aeA
— With probability € select a random action

—g-greedy continues to explore

UBERN: L. Brigato Reinforcement Learning: Elementary RL



Greedy vs £-Greedy

100% _
80% _
%  60%_

Optimal
action 40% -
20%
0% | | | | |
1 250 500 750 1000
Steps

[An Introduction to Reinforcement Learning, Sutton and Barto]
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Upper Confidence Bound (UCB)

— The e-Greedy algorithm performs exploration without any preference
(random).

—Why not explore in a more explicit way?

—UCB selects the actions with the most uncertain value function
estimates!

Int
A; = argmax a)+c
t ga Qt( ) NNt(a)

— N;(a) denotes the times action a was selected pridr to time t
—Eventually, the square-root term is a measure of uncertainty

UBERN: L. Brigato Reinforcement Learning: Elementary RL



UCB vs e-Greedy

L5} UCB c=2
o A A
E-greedy € =0.1
1 -
Average
reward
0.5F
I
I 250 500 750 1000

Steps

[An Introduction to Reinforcement Learning, Sutton and Barto]
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Issues In Exploration

—Differently that in Bandits we have:
— States (usually very large)
— Sometimes sparse / long-term reward
— Function approximation

—We can apply lessons from simple Bandits but also conceive more
general strategies

UBERN: L. Brigato Reinforcement Learning: Elementary RL
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Intrinsic Reward

—Augment the reward with an additional (vanishing) reward term
Rt =R, + B R

—with Ré; being the extrinsic reward (task reward) and RY; the
intrinsic reward (exploration bonus)

—You can run any algorithm using the new reward R¢;

UBERN: L. Brigato Reinforcement Learning: Elementary RL
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Intrinsic Reward

—How can we define the intrinsic reward bonus? Several options
(on-going research):
— Discover new states
— Improve knowledge
— Improve controllability

—Some of the approaches:
— Count-based bonus
— Prediction-based bonus
— Empowerment bonus

UBERN: L. Brigato Reinforcement Learning: Elementary RL
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Count-based

downsample
code [-1
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[#Exploration: A Study of Count-Based Exploration for Deep Reinforcement Learning, Tang et al.]
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Prediction-based

—Computational Curiosity idea: Let’s explore to improve skills
—Look for novelty and surprises

—Execute behaviors that reduce uncertainty on how the world works
looking for novelty and surprises

—It implies a world-model (model-based RL)
— predict what is going to happen given what | am expecting to happen

UBERN: L. Brigato Reinforcement Learning: Elementary RL
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Prediction-based

—Example: Add as bonus the error in the prediction. Bigger error in
prediction means less knowledge of the next state (= increased
novelty)

— Given an encoding of the state ¢(s) the agent learns a prediction model:

f: (¢(s),at) > ¢(s, 1)

— Use prediction error e, (properly normalized and scaled) as exploration
bonus RY;:

Riet = [[p(s, | 1) - F($(s), an)]

UBERN: L. Brigato Reinforcement Learning: Elementary RL
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Prediction-based

—Problem with previous example: Predicting every possible change
in the transitions is difficult and may not be necessary

— E.g., predictions that do not depend on agent actions

—Proof-of-fact examples:
— Agent can't predict TV schedule, so it gets stuck behind the TV

— Agent can't predict the random movements of leafes due to wind, so it
gets stuck looking at trees

UBERN: L. Brigato Reinforcement Learning: Elementary RL

38



Prediction-based

—Predict changes that depend on agent’s actions, ignore the rest

— The features of the state depend on the inverse model

Inverse dynamics: h : (o(st), d(si41)) — @y Intrinsic reward:
Forward dynamics: f: (¢(s¢), ar) — O(St+1) ry = ||o(si+1) — (,.ir(s,+1}||§
r r;
t $
ICM ICM
T
I $(8141) o e > @t
5t+1 t \

\@\/@/@\ B

?"t +1"t

ﬂt+1

@(st) @(se41)

Tii + ‘-'"f,+1 a

[Curiosity-driven Exploration by Self-supervised Prediction, Pathak et al.]

UBERN: L. Brigato
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Prediction-based

—Test: As TV is not controllable by the agent, the model will be blind
to the features of the TV

1.2
ICM + A3C
—— ICM (pixels) + A3C

U 1.0
o
O
k%
LE-O,B
—
v
o
» 0.6
o
e
1]
5 0.4
o
o
go2
far
x
(UN]

0.0

- e I g O 2 4 6 8 10 12 14 16 18 20
(b) Input w/ noise Number of training steps (in millions)

[Curiosity-driven Exploration by Self-supervised Prediction, Pathak et al.]

UBERN: L. Brigato Reinforcement Learning: Elementary RL 40



	Slide 1: Winter School 2024 Reinforcement Learning
	Slide 2: Outlook
	Slide 3: The Agent and the Environment
	Slide 4: Core Concepts
	Slide 5: Major Components of an RL Agent
	Slide 6: Maze Example
	Slide 7: Agent Categories (1/2)
	Slide 8: Agent Categories (2/2)
	Slide 9: Introduction to MDPs
	Slide 10: Information or Markov State
	Slide 11: Markov Decision Process
	Slide 12: State Transition Matrix 
	Slide 13: Return
	Slide 14: Policies
	Slide 15: State-Value and Action-Value Functions
	Slide 16: Bellman Expectation Equation
	Slide 17: Bellman Expectation Equation for v sub pi 
	Slide 18: Bellman Expectation Equation for q sub pi 
	Slide 19: Example: Song Learning MDP
	Slide 20: Example: Bellman Expectation Equation in MDP
	Slide 21: Example: Bellman Expectation Equation in MDP
	Slide 22: Bellman Expectation Equation (Matrix Form)
	Slide 23: Optimal Value Function
	Slide 24: Exploration vs. Exploitation Dilemma
	Slide 25: Principles
	Slide 26: Multi-Armed Bandits
	Slide 27: 10-armed Testbed
	Slide 28: Greedy Algorithm
	Slide 29: ε-Greedy Algorithm
	Slide 30: Greedy vs ε-Greedy 
	Slide 31: Upper Confidence Bound (UCB)
	Slide 32: UCB vs ε-Greedy 
	Slide 33: Issues in Exploration
	Slide 34: Intrinsic Reward
	Slide 35: Intrinsic Reward
	Slide 36: Count-based
	Slide 37: Prediction-based
	Slide 38: Prediction-based
	Slide 39: Prediction-based
	Slide 40: Prediction-based
	Slide 41: Prediction-based

