Winter School 2024 Reinforcement Learning

Elementary Reinforcement Learning

Dr. Lorenzo Brigato

Artificial Intelligence in Health and Nutrition (AIHN) Laboratory ARTORG Center for Biomedical Engineering Research University of Bern

Outlook

- ‒ Introducing the RL Problem
- ‒ Markov Decision Processes (MDPs)
- Exploration and Exploitation

The Agent and the Environment

- $-$ At each step t the agent:
	- Receives observation O_t (and reward R_t)
	- $-$ Executes action A_t
- ‒ The environment:
	- $-$ Receives action A_t
	- Emits observation O_{t+1} (and reward R_{t+1})

Core Concepts

The RL formalism includes:

- Reward signal (specifies the goal)
- ‒ Environment (dynamics of the problem)
- ‒ Agent, containing:
	- Agent state
	- **Policy**
	- Value function estimate (?)
	- Environment Model (?)

Major Components of an RL Agent

- ‒ An RL agent may include one or more of these components:
	- Policy: agent's behavior function
	- Value function: how good is each state and/or action
	- Model: agent's representation of the environment

Maze Example

[Hado van Hasselt, 2021]

Agent Categories (1/2)

‒ Value Based

- No Policy (Implicit)
- Value Function

‒ Policy Based

- Policy
- No Value Function

‒ Actor Critic

- Policy
- Value Function

Agent Categories (2/2)

- ‒ Model Free
	- Policy and/or Value Function
	- No Model
- ‒ Model Based
	- Optionally Policy and/or Value Function
	- Model

Introduction to MDPs

- ‒MDPs formally describe an environment for RL
- ‒Current state completely characterizes the process (fully observability)
- ‒Almost all RL problems can be formalized as MDPs, e.g.
	- Optimal control primarily deals with continuous MDPs
	- Partially observable problems can be converted into MDPs (POMDPs)
	- Bandits are MDPs with one state

Information or Markov State

‒ An information state (a.k.a. Markov state) contains all useful information from the history.

Definition

A state is Markov if and only if:

 $\mathbb{P}[S_{t+1} | S_t] = \mathbb{P}[S_{t+1} | S_1 ... S_t]$

- ‒ "The future is independent of the past given the present"
- ‒ Doesn't mean it contains everything, just that adding more history doesn't help
- ‒ Once the state is known, the history may be thrown away

Markov Decision Process

‒A Markov decision process (MDP) is an environment in which all states are Markov and defined as follows

Definition

A Markov Process (or Markov Chain) is a 4-tuple $\lt S$ *, A, P, R,* γ $>$

- δ is a (finite) set of states
- $\mathcal A$ is a (finite) set of actions
- $\mathcal P$ is a state transition matrix, i.e., $\mathcal P^a_{ss'}$ $S_{ss'}^{a} = \mathbb{P}[S_{t+1} = s' | S_t = s, A_t = a]$
- \mathcal{R} is a reward function, $\mathcal{R}_s^a = \mathbb{E}[R_{t+1} | S_t = s, A_t = a]$
- γ is a discount factor, $\gamma \in [0, 1]$

State Transition Matrix

‒For a Markov state s, an action a, and a successor state s′, the state transition probability is defined by

$$
\mathcal{P}_{ss'}^a = \mathbb{P}[S_{t+1} = s' \mid S_t = s, At = a]
$$

 $-A$ State transition matrix P can also be defined that holds the transition probabilities from all state-action couples (s, a) to all successor states s' \mathcal{P}_{11} \cdots \mathcal{P}_{1n}

$$
\mathcal{P} = \begin{bmatrix} 0 & 11 & \cdots & 0 & 1n \\ \vdots & & \ddots & & \vdots \\ \mathcal{P}_{n1} & \cdots & \mathcal{P}_{nn} \end{bmatrix}
$$

each row of the matrix sums to 1.

Return

Definition

The return G_t is the total discounted reward from time-step t :

$$
G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}
$$

- $-T$ he discount $\gamma \in [0, 1]$ is the present value of future rewards
- The value of receiving reward R after $k + 1$ time-steps is $\gamma^k R$.
- ‒This values immediate reward above delayed reward.
	- γ close to 0 leads to "myopic" evaluation
	- γ close to 1 leads to "far-sighted" evaluation

Policies

Definition

A policy π *is a distribution over actions given states:*

$$
\pi(a|s) = \mathbb{P}[A_t = a \mid S_t = s]
$$

-A policy fully defines the behaviour of an agent ‒MDP policies depend on the current state (not the history)

State-Value and Action-Value Functions

Definition

The state-value function $v_\pi(s)$ *of an MDP is the expected return starting from state s, and then following policy π:*

 $v_{\pi}(s) = \mathbb{E}_{\pi}[G_t | S_t = s]$

Definition

The action-value function $q_{\pi}(s, a)$ *of an MDP is the expected return starting from state s, taking action a, and then following policy π:*

$$
q_{\pi}(s, a) = \mathbb{E}_{\pi}[G_t | S_t = s, A_t = a]
$$

Bellman Expectation Equation

‒The value function can be decomposed into two parts:

- Immediate reward R_{t+1}
- Discounted value of successor state $\gamma v_\pi(S_{t+1})$ under policy π

$$
\begin{aligned}\n\mathbf{v}_{\pi}(s) &= \mathbb{E}_{\pi}[G_t \mid S_t = s] \\
&= \mathbb{E}_{\pi}[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots \mid S_t = s] \\
&= \mathbb{E}_{\pi}[R_{t+1} + \gamma (R_{t+2} + \gamma R_{t+3} + \dots) \mid S_t = s] \\
&= \mathbb{E}_{\pi}[R_{t+1} + \gamma G_{t+1} \mid S_t = s] \\
&= \mathbb{E}_{\pi}[R_{t+1} + \gamma \mathbf{v}_{\pi}(S_{t+1}) \mid S_t = s] \\
&= \mathbb{E}_{\pi}[R_{t+1} \mid S_t = s] + \gamma \mathbb{E}_{\pi}[\mathbf{v}(S_{t+1}) \mid S_t = s]\n\end{aligned}
$$

Bellman Expectation Equation for v_{π}

Bellman Expectation Equation for q_{π}

$$
q_{\pi}(s, a) \leftrightarrow s, a
$$
\n
$$
v_{\pi}(s') \leftrightarrow s' \quad \bigcirc
$$

$$
q_{\pi}(s, a) = \mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a v_{\pi}(s')
$$

Example: Song Learning MDP

Example: Bellman Expectation Equation in MDP

 $v_{\pi}(s)$ for $\pi(a|s) = 0.5$

Example: Bellman Expectation Equation in MDP

Bellman Expectation Equation (Matrix Form)

‒The Bellman equation is a linear equation

$$
V_{\pi} = \mathcal{R}^{\pi} + \gamma \mathcal{P}^{\pi} V
$$

-It can be solved directly

$$
V_{\pi} = (I - \gamma \mathcal{P}^{\pi})^{-1} \mathcal{R}^{\pi}
$$

- Matrix Inversion is computational heavy $O(n^3)$
- ‒Direct solution only possible for small MDPs
- ‒There are many iterative methods for large MDPs, e.g.
	- Dynamic programming
	- Monte-Carlo evaluation
	- Temporal-Difference learning

Optimal Value Function

Definition

The optimal state-value function $v_*(s)$ is the maximum value function over all policies

 $v_*(s) = \max_{\pi} v_{\pi}(s)$

The optimal action-value function $q_*(s, a)$ *is the maximum action-value function over all policies*

 $q_*(s, a) = \max_{\pi} q_{\pi}(s, a)$

‒The optimal value function specifies the best possible performance in the MDP

‒An MDP is "solved" when we know the optimal value function

Exploration vs. Exploitation Dilemma

- ‒Online decision-making involves a fundamental choice:
	- Exploitation Make the best decision given current information
	- Exploration Gather more information
- ‒The best long-term strategy may involve short-term sacrifices
- ‒Gather enough information to make the best overall decisions

Principles

-Naive Exploration

– Add noise to greedy policy (e.g., ε-greedy)

‒Optimistic Initialization

– Assume the best until proven otherwise

‒Optimism in the Face of Uncertainty

– Prefer actions with uncertain values

Multi-Armed Bandits

- ‒A multi-armed bandit is a set of distributions $<\mathcal{A},\mathcal{R}>$
- $-\mathcal{A}$ is a (known) set of actions (or "arms")
- $-R^{a}(r) = \mathbb{P}[r|a]$ is an unknown probability distribution over rewards
- -At each step t the agent selects an action $a_t \in \mathcal{A}$
- $-$ The environment generates a reward $r_t \sim \mathcal{R}^{a_t}$
- The goal is to maximize cumulative reward $\sum_{\tau=1}^t r_\tau$

10-armed Testbed

[An Introduction to Reinforcement Learning, Sutton and Barto]

Greedy Algorithm

‒One of the simplest algorithm

-Select action with highest value:

$$
A_t = \underset{a \in \mathcal{A}}{argmax} Q_t(a)
$$

‒Greedy can lock onto a suboptimal action forever

ε-Greedy Algorithm

‒The ε-greedy algorithm:

– With probability 1 -ε select greedy action: $A_t = argmax Q_t(a)$ $a \in A$

– With probability ε select a random action

‒ε-greedy continues to explore

Greedy vs ε-Greedy

[An Introduction to Reinforcement Learning, Sutton and Barto]

Upper Confidence Bound (UCB)

- ‒The ε-Greedy algorithm performs exploration without any preference (random).
- ‒Why not explore in a more explicit way?
- ‒UCB selects the actions with the most uncertain value function estimates!

$$
A_t \doteq \underset{a}{\operatorname{argmax}} \left[Q_t(a) + c \sqrt{\frac{\ln t}{N_t(a)}} \right]
$$

 $-N_t(a)$ denotes the times action a was selected prior to time t ‒Eventually, the square-root term is a measure of uncertainty

UCB vs ε-Greedy

[An Introduction to Reinforcement Learning, Sutton and Barto]

Issues in Exploration

‒Differently that in Bandits we have:

- States (usually very large)
- Sometimes sparse / long-term reward
- Function approximation
- ‒We can apply lessons from simple Bandits but also conceive more general strategies

Intrinsic Reward

‒Augment the reward with an additional (vanishing) reward term

$$
R^t{}_t = R^e{}_t + \beta R^i{}_t
$$

-with Re_t being the extrinsic reward (task reward) and R^i_t the intrinsic reward (exploration bonus)

-You can run any algorithm using the new reward $R^t{}_t$

Intrinsic Reward

‒How can we define the intrinsic reward bonus? Several options (on-going research):

- Discover new states
- Improve knowledge

 $-$

– Improve controllability

- ‒Some of the approaches:
	- Count-based bonus
	- Prediction-based bonus
	- Empowerment bonus

Count-based

[#Exploration: A Study of Count-Based Exploration for Deep Reinforcement Learning, Tang et al.]

- ‒Computational Curiosity idea: Let's explore to improve skills
- -Look for novelty and surprises
- ‒Execute behaviors that reduce uncertainty on how the world works looking for novelty and surprises
- -It implies a world-model (model-based RL)
	- predict what is going to happen given what I am expecting to happen

- ‒Example: Add as bonus the error in the prediction. Bigger error in prediction means less knowledge of the next state (= increased novelty)
	- Given an encoding of the state $\phi(s)$ the agent learns a prediction model:

$$
f\colon(\phi(s),at)\to\phi(s_{t+1})
$$

– Use prediction error e_t (properly normalized and scaled) as exploration bonus R^i_{t}:

$$
R^i_t \propto et = ||\phi(s_{t+1}) - f(\phi(s), at)||^2
$$

‒Problem with previous example: Predicting every possible change in the transitions is difficult and may not be necessary

– E.g., predictions that do not depend on agent actions

‒Proof-of-fact examples:

- Agent can't predict TV schedule, so it gets stuck behind the TV
- Agent can't predict the random movements of leafes due to wind, so it gets stuck looking at trees

– …

‒Predict changes that depend on agent's actions, ignore the rest – The features of the state depend on the inverse model

[Curiosity-driven Exploration by Self-supervised Prediction, Pathak et al.]

‒Test: As TV is not controllable by the agent, the model will be blind to the features of the TV

[Curiosity-driven Exploration by Self-supervised Prediction, Pathak et al.]