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Large-Scale Reinforcement Learning

—Reinforcement learning can be used to solve large problems, e.g.

— Backgammon: 102° states
— Go: 10170
— Robots: continuous state space

—How can we scale up e.g., the model-free methods for prediction
and control seen before?
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Value Function Approximation

—So far, we have represented value function by a lookup table
— Every state s has an entry V(s)
— Or every state-action pair s, a has an entry Q(s, a)

—Problem with large MDPs:
— There are too many states and/or actions to store in memory
— It is too slow to learn the value of each state individually

— Solution for large MDPs:
— Estimate value function with function approximation

V(s;w) = v (s)
4(s,a; w) = qp(s,a)
— Generalize from seen states to unseen states
— Update parameter w using MC or TD learning

L. Brigato

Reinforcement Learning: Advanced RL



Types of Value Function Approximation
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Value Function Approx. By Stochastic Gradient Descent

— Goal: find Earameter vector w minimizing mean-squared error between approximate
value function V(s; w) and true value function v, (s

JW) = Eq[(Va(s) —V(s;w))?]

— Gradient descent finds a local minimum

Aw = — %aVW](w)

= alE [(V;(s) —V(s;w))V,V(s;w)]
— Stochastic gradient descent samples the gradient

Aw = a(v;(s) —V(s;w))V,V(s;w)
— Expected update is equal to full gradient update
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Feature Vectors

Represent state by a feature vector

X1(5)
x(s) =
Xn(S)
E.g., Polynomials, Fourier Basis

For example:
Distance of robot from landmarks
Trends in the stock market
Piece and pawn configurations in chess

Text Flappy Bird!
Score: @

Player Action (Idle)
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Linear Value Function Approximation

— Represent value function by a linear combination of features

n

U(s;w) = x(s)Tw = z x; (S)w;

i=0
— Objective function is quadratic in parameters w

JWw) = Ex[(Va(s) — x(s)"w)?]
— Stochastic gradient descent converges on global optimum
— Update rule is particularly simple

V,,V(s;w) = x(s)
Aw = a(v(s) —V(s;w))x(s)

— Update = step-size x prediction error x feature value
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Incremental Prediction Algorithms

—Assumed true value v, (s) function given by supervisor
—But in RL there is no supervisor, only rewards

—In practice, we substitute a target for v.(s)
— For MC, the target is the return G;

Aw = a(G; — V(S W)V, 9(Ss; w)
— For TD(0), the target is the TD target Gi.pyq = Risq + 7 V(Sir1; W)

Aw = “(Rt+1 + Y V(S W) — V(S W))va(sti w)
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Monte-Carlo with Value Function Approximation (1/2)

—Return G; is an unbiased, noisy sample of true value v (s;)
—Can therefore apply supervised learning to “training data”:

<S,G1>,<8,,G, >,..., < S8p,Gp >
—For example, using linear Monte-Carlo policy evaluation

Aw = a(G; — (S w) )V, 9(S; w)
= “(Gt — V(S¢; W))x(St)
—Monte-Carlo evaluation converges to a local optimum
—Even when using non-linear value function approximation
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Monte-Carlo with Value Function Approximation (2/2)

Gradient Monte Carlo Algorithm for Estimating ¢ ~ v,

Input: the policy 7 to be evaluated

Input: a differentiable function 9 : § x R? — R

Algorithm parameter: step size a > 0

Initialize value-function weights w € R? arbitrarily (e.g., w = 0)

Loop forever (for each episode):
Generate an episode Sy, Ag, R1,S51,A1,..., Ry, ST using 7
Loop for each step of episode, t =0,1,...,T — 1:
W< W+« [Gt — @(St,W)] V@(St,W)

[An Introduction to Reinforcement Learning, Sutton and Barto]
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TD Learning with Value Function Approximation (1/2)

—Th(e T)D—target Giir1 = Ripq + v V(st11; W) Is a biased sample of true value
Ve (Se
— Can still apply supervised learning to “training data™:

< Sl' R]_ + ) 4 \7(52, W) >, < Sz,R3 + Y \7(53, W) >, . < ST—l' RT >
— For example, using linear TD(0)

Aw = a(R +y V(S w) — V(S w))VWV(St; w)
= adx(S)

— (Semi-Gradient) We do not consider the effect of changing w on the target
— Linear TD(0) converges (close) to global optimum

L. Brigato
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TD Learning with Value Function Approximation (2/2)

Semi-gradient TD(0) for estimating v ~ v,

Input: the policy 7 to be evaluated

Input: a differentiable function ¢ : 8T x R? — R such that ¢(terminal,-) = 0
Algorithm parameter: step size o > 0

Initialize value-function weights w € R? arbitrarily (e.g., w = 0)

Loop for each episode:
Initialize S
Loop for each step of episode:
Choose A ~ m(-|.5)
Take action A, observe R, S’
w W+ a|R+v9(S',w) — (S,w)| Vi(S,w)
S+ 5

until S is terminal

[An Introduction to Reinforcement Learning, Sutton and Barto]
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Control with Value Function Approximation

—Policy evaluation
— Approximate policy evaluation, §(-,;; w) = g,

—Policy improvement
— e-Greedy policy improvement

[David Silver, IRL, UCL 2015]
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Action-Value Function Approximation

— Approximate the action-value function

q(S,4;w) = qz(S,4)

— Minimize mean-squared error between approximate action-value function
q(S,A,w) and true action-value function q,(S, A)

](W) - En[(qn(S; A) - EI\(S; A; W))Z]
— Use stochastic gradient descent to find a local minimum

1
= 5 Vu] (W) = (g=(S,4) — (S, A; W)V, (S, 4; w)
Aw = a(q,(S,A) — §(S, 4, w))V,,4(S, 4; w)
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Linear Action-Value Function Approximation

— Represent state and action by a feature vector

xl(S,A)
x(S,A)z( 5 )
xXn(S,A4)

— Represent action-value function by linear combination of features

n
AS, A W) = x(5, D)W = ) x(S,A)w,

i=0
— Stochastic gradient descent update

Vi G(S, 4;w) =x(S,A)
Aw = a(q,(S,A) — G(S, 4;w))x(S, A)
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Incremental Control Algorithms

—Like prediction, we must substitute a target for g, (S, 4)
— For MC, the target is the return G;

Aw = “(Gt — 4 (Se, Ag; W))VWEI\(StAt; w)
— For TD(0), the target is the TD target Gi.pyq = Risq + 7 V(Sir1; W)

Aw = “(Rt+1 + ¥ V(Ser1w) — q(Se Ag; W))qu(StAt; w)

L. Brigato
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Policy-Based Reinforcement Learning

—Previously we approximated the value or action-value function
using parameters w

Vi (5) = vy (s)
Aw (s, a) = qr(s,a)
—A policy was generated directly from the value function
—e.g., using e-greedy

—We now directly parametrize the policy
mg(s,a) = Pla|s; 0]

L. Brigato
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Value-Based and Policy-Based RL

—Value Based
— Learnt Value Function
— Implicit policy
(e.g., e-greedy)
—Policy Based
— No Value Function
— Learnt Policy

—Actor-Critic
— Learnt Value Function
— Learnt Policy

Value Function

Value-Based

Actor
Critic

Policy

Policy-Based

[David Silver, IRL, UCL 2015]
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Advantages of Policy-Based RL

—Advantages:

— Better convergence properties (in contrast to value function
approximation that can oscillate in some configurations)

— Effective in high-dimensional or continuous action spaces
— Can learn stochastic policies

—Disadvantages:
— Typically converge to a local rather than global optimum
— Evaluating a policy is typically inefficient and high variance
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Policy Optimization

—Policy based reinforcement learning is an optimization problem
—Find @ that maximizes J(8)

—Many possible optimization approaches
— Gradient-free (e.g., Hill climbing, Genetic algorithms, etc.)
— Gradient-based (e.g., Gradient descent)

—We focus on gradient descent, many extensions possible

L. Brigato
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Policy Gradient

—Let J(0) be any policy objective function

— Policy gradient algorithms search for a local
maximum in ]%9) y ascending the gradient of
the policy, w.r.t. parameters 6

AO = an](H)
—Where Vg (0) is the policy gradient
aJ(6)
00,
VoJ(8) = | :
aJ(6)
26,

—and a Is a step-size parameter

L. Brigato
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Policy Objective Functions

— Goal: given policy mg (s, a) with parameters 6, find best
— But how do we measure the quality of a policy mg?
— In episodic environments we can use the start value

J1(8) = V™(s1) = Egq,[v4]
— In continuing environments, we can use the average value

Jaw (8) = ) de(s) VT (s)

S
— Or the average reward per time-step

Jaor(8) = ) d™(s) ) q(s, )RS

where d™6 (s) is stationary distribution of Markov chain for mg

L. Brigato
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One-Step MDPs

— Consider a simple class of one-step MDPs
— Starting in state s ~ d(s)
— Terminating after one time-step with reward r = R¢

— Use likelihood ratios to compute the policy gradient

J(0) = Eq,lr]

= 2 d(s) Z (s, a) RY

SES a€eA

Vomg(s,a)
mg(s,a)
= 1g(s,a)Vglogmy(s,a)

Vomg(s,a) = mg(s,a)

Vo J(6) = ) d(s) ) ma(s,a) Vglogm(s, a) R

SES a€EeA

= Er,[Vg logmg(s,a) r]

L. Brigato
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Policy Gradient Theorem

— K/lhg olicy gradient theorem generalizes the likelihood ratio approach to multi-step
S

— Replaces instantaneous reward r with long-term value q,(s, a)

— Policy gradient theorem applies to start state objective, average reward and average
value objective

Theorem (Policy Gradient)

For any differentiable policy mg (s, a) and for any of the policy objective functions ] = J;,]4ur OF
ﬁ Jawv the policy gradient is

Vo J(0) = IET[@ [Vg logmg (s, a)qr (s, a) |
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Monte-Carlo Policy Gradient (REINFORCE)

— Update parameters by stochastic gradient ascent
— Using policy gradient theorem
—Using return G; as an unbiased sample of g, (s¢, at)

AB; = aVylogmy(ss, a;) Gy

REINFORCE: Monte-Carlo Policy-Gradient Control (episodic) for ,

Input: a differentiable policy parameterization w(als, @)
Algorithm parameter: step size o > 0

Initialize policy parameter @ € R% (e.g., to 0)

Loop forever (for each episode):
Generate an episode Sy, Ay, R, ...,S7_1,Ar_1, Ry, following 7 (-|-, @)
Loop for each step of the episode t =0,1,..., T-1:
G = e 7 R (Gy)
0+ 0+ ay'GVInm(AsS;, 0)

[An Introduction to Reinforcement Learning, Sutton and Barto]
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Reducing Variance Using a Critic

—Monte-Carlo policy gradient still has high variance

—\We use a critic to estimate the action-value function
qQw(s,a) = qr,(s,a)

—Actor-critic algorithms maintain two sets of parameters

— Critic Updates action-value function parameters w
— Actor Updates policy parameters 6, in direction suggested by critic

—Actor-critic algorithms follow an approximate policy gradient
Vo J(0) =~ E,[Vglogmg (s, a)qy(s,a) |
AB = aVylogmy(s,a)q,, (s, a)

L. Brigato
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Estimating the Action-Value Function

—The critic is solving a familiar problem: policy evaluation (prediction)
—How good is policy gy for current parameters 67
—Could also use e.qg., least-squares policy evaluation

L. Brigato
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Action-Value Actor-Ciritic (1/2)

—Simple actor-critic algorithm based on action-value critic

—Using linear value function approximation g,,(s,a) = @(s,a) 'w
— Critic Updates w by linear TD(0)
— Actor Updates 6 by policy gradient

L. Brigato
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Action-Value Actor-Ciritic (2/2)

One-step Actor—Critic (episodic), for estimating 79 ~ .,

Input: a differentiable policy parameterization (als, @)
Input: a differentiable state-value function parameterization o(s,w)
Parameters: step sizes a® > 0, a% > 0
Initialize policy parameter 8 € R% and state-value weights w € R? (e.g., to 0)
Loop forever (for each episode):

Initialize S (first state of episode)

I+1
Loop while S is not terminal (for each time step):
A~7(S,0)
Take action A, observe S/, R
0+ R+~vyo(S",w) —9(S,w) (if S’ is terminal, then 9(S’,w) = 0)

w < w+aVIVo(S,w)
0+ 0+a°15Vinm(A|S,0)
I < ~I

S5

- v

[An Introduction to Reinforcement Learning, Sutton and Barto]
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Approximation with Deep Networks

—S0 far, the feature representation was typically “fixed”

—The parametrised functions V(s; w)/ my (s, a) were linear mappings
of input features

—More complicated non-linear mappings are needed to generalize
to more complex domains

—Popular choice is to use deep neural networks

— Known to discover useful feature representation tailored to the specific
task

— We can leverage extensive research on architectures and optimisation
from Supervised Learning

L. Brigato
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Batch Reinforcement Learning

—Gradient descent is simple and appealing

—But it is not sample efficient

—Batch methods seek to find the best fitting value function
—@Given the agent’s experience (“training data”)

L. Brigato
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Stochastic Gradient Descent with Experience Replay

— Given experience consisting of (state, value) pairs

D = (51 (52 VEY), o (G5m V)

—Repeat:
1. Sample state, value from experience

(s,v*) ~D
2. Apply stochastic gradient descent update

Aw = a(Vy(s) —V(s;w))V,,V(s; w)

—Converges to least squares solution
w™ = argmin LS (w)
w

L. Brigato
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Experience Replay in Deep Q-Networks (DQN)

—Example of DQN that uses experience replay and fixed Q-targets
— Take action a; according to e-greedy policy
— Store transition (s, as, 7r41, S¢+1) IN replay memory D
— Sample random mini-batch of transitions (s,a,r,s’) from D
— Compute Q-learning targets w.r.t. the parameters of a DQN w~
— Optimize MSE between Q-network and Q-learning targets

2
Li(w) = Egqps'~p, [(T +ymax Q(s',a'swi) = Q(s, a;wy)) ]

L. Brigato
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Continuous Action Spaces

—Vanilla DQN can’t be used for continuous action spaces (CAS)
— oo many outputs to parametrize with a neural network
— Discretization would be needed (suboptimal)

—Deep Deterministic Policy Gradient (DDPG) extends DQN to CAS

— DDPG is an Actor Critic algorithm with critic g and actor Q,, networks
— Policy is deterministic, noise added for exploration a, = my(s,) + €
— Update the critic with the actor as max and then the actor to maximize the critic

Liw) = Eggpsrop [(r +vQ(s',m(s";07); wi) — Q(s, a; wy))?]

Li(8;) = Es.p,[Q(s,7(s; 0); w)]
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DDPG

Algorithm 1 Deep Deterministic Policy Gradient

1: Input: initial policy parameters 6, Q-function parameters ¢, empty replay buffer D
2: Set target parameters equal to main parameters €y, < 0, dpary ¢ @

3: repeat
4:  Observe state s and select action a = clip(pe(s) + €, @row, @High), Where € ~ N
5:  Execute a in the environment
6 Observe next state s', reward r, and done signal d to indicate whether s’ is terminal
7. Store (s,a,r, s, d) in replay buffer D
8 If " is terminal, reset environment state.
9: if it’s time to update then
10: for however many updates do
11: Randomly sample a batch of transitions, B = {(s,a,r,s',d)} from D
12: Compute targets
y('!"., SF! d) =r+ ’Y(l - d)Q¢1.;1rg(3"- #91:\:—3(3’))
13: Update Q-function by one step of gradient descent using
1 2
Vol Y (Quls.a) —y(r, s, d))

(sa,rs" d)eB

14: Update policy by one step of gradient ascent using
1
Vnm > Quls, pols))
sel

15: Update target networks with

¢targ — p‘f’targ o (]- - p)@-l"

Igtﬁr‘@; — pgta.rg + (1 - ij
16: end for
17: end if

18: until convergence

L. Brigato
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