Winter School 2024 Reinforcement Learning

Advanced Reinforcement Learning

Dr. Lorenzo Brigato

Artificial Intelligence in Health and Nutrition (AIHN) Laboratory ARTORG Center for Biomedical Engineering Research University of Bern

Outlook

- Value Function Approximation
- Policy Gradient
- Deep Reinforcement Learning

Large-Scale Reinforcement Learning

-Reinforcement learning can be used to solve large problems, e.g.

- $-$ Backgammon: 10^{20} states
- $-$ Go: 10^{170}
- Robots: continuous state space
- ‒How can we scale up e.g., the model-free methods for prediction and control seen before?

Value Function Approximation

‒So far, we have represented value function by a lookup table

- Every state s has an entry $V(s)$
- Or every state-action pair s, a has an entry $Q(s, a)$
- -Problem with large MDPs:
	- There are too many states and/or actions to store in memory
	- It is too slow to learn the value of each state individually
- ‒Solution for large MDPs:
	- Estimate value function with function approximation

 $\hat{V}(s; w) \approx V_{\pi}(s)$ $\hat{q}(s, a; w) \approx q_{\pi}(s, a)$

- Generalize from seen states to unseen states
- Update parameter w using MC or TD learning

Types of Value Function Approximation

Value Function Approx. By Stochastic Gradient Descent

- Goal: find parameter vector w minimizing mean-squared error between approximate value function $\hat{v}(s; w)$ and true value function $v_{\pi}(s)$

$$
J(\mathbf{w}) = \mathbb{E}_{\pi}[(\vee_{\pi}(s) - \hat{\vee}(s; \mathbf{w}))^{2}]
$$

‒ Gradient descent finds a local minimum

$$
\Delta w = -\frac{1}{2} a \nabla_w J(w)
$$

= $\alpha \mathbb{E}_{\pi} [(\nu_{\pi}(s) - \hat{v}(s; w)) \nabla_w \hat{v}(s; w)]$

‒ Stochastic gradient descent samples the gradient

 $\Delta w = \alpha (v_\pi(s) - \hat{v}(s; w)) \nabla_w \hat{v}(s; w)$

‒ Expected update is equal to full gradient update

Feature Vectors

-Represent state by a feature vector

$$
x(s) = \begin{pmatrix} x_1(s) \\ \vdots \\ x_n(s) \end{pmatrix}
$$

- ‒E.g., Polynomials, Fourier Basis
- ‒For example:
	- Distance of robot from landmarks
	- Trends in the stock market
	- Piece and pawn configurations in chess

Linear Value Function Approximation

‒ Represent value function by a linear combination of features

$$
\hat{v}(s; \mathbf{w}) = x(s)^T \mathbf{w} = \sum_{i=0}^n x_i(s) w_i
$$

 \sim Objective function is quadratic in parameters \bm{w}

$$
J(w) = \mathbb{E}_{\pi}[(\vee_{\pi}(s) - x(s)^{T}w)^{2}]
$$

- ‒ Stochastic gradient descent converges on global optimum
- ‒ Update rule is particularly simple

$$
\nabla_{W}\hat{\mathbf{v}}(s; \mathbf{w}) = x(s) \n\Delta \mathbf{w} = \alpha(\mathbf{v}_{\pi}(s) - \hat{\mathbf{v}}(s; \mathbf{w}))x(s)
$$

 $-$ Update = step-size \times prediction error \times feature value

Incremental Prediction Algorithms

- -Assumed true value $v_\pi(s)$ function given by supervisor
- -But in RL there is no supervisor, only rewards
- $-\ln$ practice, we substitute a target for $v_{\pi}(s)$

– For MC, the target is the return G_t

$$
\Delta w = \alpha (G_t - \hat{v}(S_t; w)) \nabla_w \hat{v}(S_t; w)
$$

– For TD(0), the target is the TD target $G_{t:t+1} = R_{t+1} + \gamma \hat{V}(s_{t+1}; w)$

$$
\Delta w = \alpha (R_{t+1} + \gamma \hat{v}(S_{t+1}; w) - \hat{v}(S_t; w)) \nabla_w \hat{v}(S_t; w)
$$

Monte-Carlo with Value Function Approximation (1/2)

–Return G_t is an unbiased, noisy sample of true value $\vee_\pi(s_t)$ - Can therefore apply supervised learning to "training data":

 $\langle S_1, G_1 \rangle, \langle S_2, G_2 \rangle, \ldots, \langle S_T, G_T \rangle$

‒For example, using linear Monte-Carlo policy evaluation

$$
\Delta w = \alpha (G_t - \hat{v}(S_t; w)) \nabla_w \hat{v}(S_t; w)
$$

= $\alpha (G_t - \hat{v}(S_t; w)) x(S_t)$

- ‒Monte-Carlo evaluation converges to a local optimum
- ‒Even when using non-linear value function approximation

Monte-Carlo with Value Function Approximation (2/2)

Gradient Monte Carlo Algorithm for Estimating $\hat{v} \approx v_{\pi}$

```
Input: the policy \pi to be evaluated
Input: a differentiable function \hat{v}: \mathcal{S} \times \mathbb{R}^d \to \mathbb{R}Algorithm parameter: step size \alpha > 0Initialize value-function weights \mathbf{w} \in \mathbb{R}^d arbitrarily (e.g., \mathbf{w} = \mathbf{0})
Loop forever (for each episode):
    Generate an episode S_0, A_0, R_1, S_1, A_1, \ldots, R_T, S_T using \piLoop for each step of episode, t = 0, 1, ..., T - 1:
        \mathbf{w} \leftarrow \mathbf{w} + \alpha [G_t - \hat{v}(S_t, \mathbf{w})] \nabla \hat{v}(S_t, \mathbf{w})
```
TD Learning with Value Function Approximation (1/2)

- The TD-target $G_{t:t+1} = R_{t+1} + \gamma \hat{V}(s_{t+1}; w)$ is a biased sample of true value $V_{\pi}(S_t)$
- ‒ Can still apply supervised learning to "training data":

 $S_1, R_1 + \gamma \hat{V}(S_2; w) > S_2, R_3 + \gamma \hat{V}(S_3; w) > S_{T-1}, R_T >$ $-$ For example, using linear $TD(0)$

$$
\Delta w = \alpha (R + \gamma \hat{v}(S'; w) - \hat{v}(S_t; w)) \nabla_w \hat{v}(S_t; w)
$$

= $\alpha \delta x(S)$

 \sim (Semi-Gradient) We do not consider the effect of changing w on the target ‒ Linear TD(0) converges (close) to global optimum

TD Learning with Value Function Approximation (2/2)

Semi-gradient TD(0) for estimating $\hat{v} \approx v_{\pi}$

```
Input: the policy \pi to be evaluated
Input: a differentiable function \hat{v}: \mathcal{S}^+ \times \mathbb{R}^d \to \mathbb{R} such that \hat{v} (terminal, \cdot) = 0
Algorithm parameter: step size \alpha > 0Initialize value-function weights \mathbf{w} \in \mathbb{R}^d arbitrarily (e.g., \mathbf{w} = \mathbf{0})
Loop for each episode:
    Initialize SLoop for each step of episode:
        Choose A \sim \pi(\cdot|S)Take action A, observe R, S'\mathbf{w} \leftarrow \mathbf{w} + \alpha [R + \gamma \hat{v}(S',\mathbf{w}) - \hat{v}(S,\mathbf{w})] \nabla \hat{v}(S,\mathbf{w})S \leftarrow S'until S is terminal
```
Control with Value Function Approximation

– ε-Greedy policy improvement

[David Silver, IRL, UCL 2015]

Action-Value Function Approximation

‒ Approximate the action-value function

 $\hat{q}(S, A; \mathbf{w}) \approx q_{\pi}(S, A)$

‒ Minimize mean-squared error between approximate action-value function $\hat{q}(S, A, w)$ and true action-value function $q_{\pi}(S, A)$

$$
J(\mathbf{w}) = \mathbb{E}_{\pi}[(q_{\pi}(S, A) - \hat{q}(S, A; \mathbf{w}))^{2}]
$$

‒ Use stochastic gradient descent to find a local minimum

$$
-\frac{1}{2}\nabla_w J(\mathbf{w}) = (q_\pi(S, A) - \hat{q}(S, A; \mathbf{w}))\nabla_w \hat{q}(S, A; \mathbf{w})
$$

\n
$$
\Delta \mathbf{w} = \alpha (q_\pi(S, A) - \hat{q}(S, A; \mathbf{w}))\nabla_w \hat{q}(S, A; \mathbf{w})
$$

Linear Action-Value Function Approximation

‒ Represent state and action by a feature vector

$$
x(S, A) = \begin{pmatrix} x_1(S, A) \\ \vdots \\ x_n(S, A) \end{pmatrix}
$$

- Represent action-value function by linear combination of features

$$
\hat{q}(S, A, \mathbf{w}) = x(S, A)^T \mathbf{w} = \sum_{i=0}^n x_i(S, A) w_i
$$

‒ Stochastic gradient descent update

$$
\nabla_{\mathbf{w}} \hat{q}(S, A; \mathbf{w}) = x(S, A)
$$

\n
$$
\Delta \mathbf{w} = \alpha (q_{\pi}(S, A) - \hat{q}(S, A; \mathbf{w})) x(S, A)
$$

Incremental Control Algorithms

-Like prediction, we must substitute a target for $q_{\pi}(S, A)$ – For MC, the target is the return G_t

$$
\Delta w = \alpha (G_t - \hat{q}(S_t, A_t; w)) \nabla_w \hat{q}(S_t A_t; w)
$$

– For TD(0), the target is the TD target $G_{t:t+1} = R_{t+1} + \gamma \hat{V}(s_{t+1}; w)$

$$
\Delta w = \alpha (R_{t+1} + \gamma \hat{v}(S_{t+1}; w) - \hat{q}(S_t, A_t; w)) \nabla_w \hat{q}(S_t A_t; w)
$$

Policy-Based Reinforcement Learning

‒Previously we approximated the value or action-value function using parameters w

> $V_W(s) \approx V_\pi(s)$ $q_w(s, a) \approx q_\pi(s, a)$

‒A policy was generated directly from the value function – e.g., using ε-greedy

‒We now directly parametrize the policy $\pi_{\theta}(s, a) = \mathbb{P}[a \mid s; \theta]$

Value-Based and Policy-Based RL

‒Value Based

- Learnt Value Function
- Implicit policy (e.g., ε-greedy)
- ‒Policy Based
	- No Value Function
	- Learnt Policy
- ‒Actor-Critic
	- Learnt Value Function
	- Learnt Policy

Advantages of Policy-Based RL

‒Advantages:

- Better convergence properties (in contrast to value function approximation that can oscillate in some configurations)
- Effective in high-dimensional or continuous action spaces
- Can learn stochastic policies
- ‒Disadvantages:
	- Typically converge to a local rather than global optimum
	- Evaluating a policy is typically inefficient and high variance

Policy Optimization

- ‒Policy based reinforcement learning is an optimization problem
- $-Find \theta$ that maximizes $J(\theta)$
- ‒Many possible optimization approaches
	- Gradient-free (e.g., Hill climbing, Genetic algorithms, etc.)
	- Gradient-based (e.g., Gradient descent)
- ‒We focus on gradient descent, many extensions possible

Policy Gradient

- $-\text{Let } J(\theta)$ be any policy objective function
- Policy gradient algorithms search for a local max imum in $J(\theta)$ by ascending the gradient of the policy, w.r.t. parameters θ

$$
\Delta \theta = a \nabla_{\theta} J(\boldsymbol{\theta})
$$

– Where $\nabla_{\theta} J(\boldsymbol{\theta})$ is the policy gradient

$$
\nabla_{\theta} J(\boldsymbol{\theta}) = \begin{pmatrix} \frac{\partial J(\boldsymbol{\theta})}{\partial \theta_1} \\ \vdots \\ \frac{\partial J(\boldsymbol{\theta})}{\partial \theta_n} \end{pmatrix}
$$

‒ and α is a step -size parameter

Policy Objective Functions

- Goal: given policy $\pi_{\theta}(s, a)$ with parameters θ , find best θ
- But how do we measure the quality of a policy π_{θ} ?
- In episodic environments we can use the start value

$$
J_1(\theta) = \nabla^{\pi_\theta}(s_1) = \mathbb{E}_{\pi_\theta}[\vee_1]
$$

- In continuing environments, we can use the average value

$$
J_{avV}(\theta) = \sum_{s} d^{\pi_{\theta}}(s) V^{\pi_{\theta}}(s)
$$

‒ Or the average reward per time-step

$$
J_{avR}(\theta) = \sum_{s} d^{\pi_{\theta}}(s) \sum_{a} \pi_{\theta}(s, a) \mathcal{R}_{s}^{a}
$$

where $d^{\pi_{\theta}}(s)$ is stationary distribution of Markov chain for π_{θ}

One-Step MDPs

- ‒ Consider a simple class of one-step MDPs
	- Starting in state $s \sim d(s)$
	- Terminating after one time-step with reward $r = \mathcal{R}_s^d$

‒ Use likelihood ratios to compute the policy gradient

 $\nabla_{\theta} \pi_{\theta}(s, a) = \pi_{\theta}(s, a) \frac{\nabla_{\theta} \pi_{\theta}(s, a)}{\pi_{\theta}(s, a)}$ $\pi_{\theta}(\mathbf{s}, \mathbf{a}%)=\left\{ \begin{array}{cl} \mathbf{0} & \math$ $= \pi_{\theta}(s, a) \nabla_{\theta} \log \pi_{\theta}(s, a)$

$$
J(\theta) = \mathbb{E}_{\pi_{\theta}}[r]
$$

= $\sum_{s \in S} d(s) \sum_{a \in \mathcal{A}} \pi_{\theta}(s, a) \mathcal{R}_{s}^{a}$

$$
\nabla_{\theta} J(\theta) = \sum_{s \in S} d(s) \sum_{a \in \mathcal{A}} \pi_{\theta}(s, a) \nabla_{\theta} \log \pi_{\theta}(s, a) \mathcal{R}_{s}^{a}
$$

= $\mathbb{E}_{\pi_{\theta}}[\nabla_{\theta} \log \pi_{\theta}(s, a) r]$

Policy Gradient Theorem

- ‒ The policy gradient theorem generalizes the likelihood ratio approach to multi-step MDPs
- Replaces instantaneous reward r with long-term value $q_{\pi}(s, a)$
- ‒ Policy gradient theorem applies to start state objective, average reward and average value objective

Theorem (Policy Gradient)

For any differentiable policy $\pi_{\theta}(s, a)$ and for any of the policy objective functions $J = J_1, J_{avR}$ or 1 1− *the policy gradient is*

 $\nabla_{\theta} J(\theta) = \mathbb{E}_{\pi_{\theta}}[\nabla_{\theta} \log \pi_{\theta}(s, a) q_{\pi}(s, a)]$

Monte-Carlo Policy Gradient (REINFORCE)

- ‒ Update parameters by stochastic gradient ascent
- ‒ Using policy gradient theorem
- Using return G_t as an unbiased sample of $q_{\pi_\theta}(s_t, a_t)$

 $\Delta \theta_t = \alpha \nabla_{\theta} \log \pi_{\theta}(s_t, a_t) \, \mathsf{G}_t$

Reducing Variance Using a Critic

‒Monte-Carlo policy gradient still has high variance

‒We use a critic to estimate the action-value function

 $q_w(s, a) \approx q_{\pi_\theta}(s, a)$

- ‒Actor-critic algorithms maintain two sets of parameters
	- $-$ Critic Updates action-value function parameters w
	- Actor Updates policy parameters θ , in direction suggested by critic

‒Actor-critic algorithms follow an approximate policy gradient

$$
\nabla_{\theta} J(\theta) \approx \mathbb{E}_{\pi_{\theta}} [\nabla_{\theta} \log \pi_{\theta}(s, a) q_{w}(s, a)]
$$

$$
\Delta \theta = \alpha \nabla_{\theta} \log \pi_{\theta}(s, a) q_{w}(s, a)
$$

Estimating the Action-Value Function

- ‒The critic is solving a familiar problem: policy evaluation (prediction) $-$ How good is policy π_{θ} for current parameters θ ?
- ‒Could also use e.g., least-squares policy evaluation

Action-Value Actor-Critic (1/2)

‒Simple actor-critic algorithm based on action-value critic

- -Using linear value function approximation $q_w(s, a) = \varphi(s, a)$ $w = r$
	- Critic Updates w by linear TD(0)
	- Actor Updates θ by policy gradient

Action-Value Actor-Critic (2/2)

One-step Actor-Critic (episodic), for estimating $\pi_{\theta} \approx \pi_*$

Input: a differentiable policy parameterization $\pi(a|s, \theta)$ Input: a differentiable state-value function parameterization $\hat{v}(s, \mathbf{w})$ Parameters: step sizes $\alpha^{\theta} > 0$, $\alpha^{\mathbf{w}} > 0$ Initialize policy parameter $\boldsymbol{\theta} \in \mathbb{R}^{d'}$ and state-value weights $\mathbf{w} \in \mathbb{R}^{d}$ (e.g., to 0) Loop forever (for each episode): Initialize S (first state of episode) $I \leftarrow 1$ Loop while S is not terminal (for each time step): $A \sim \pi(\cdot | S, \theta)$ Take action A, observe S', R (if S' is terminal, then $\hat{v}(S', \mathbf{w}) \doteq 0$) $\delta \leftarrow R + \gamma \hat{v}(S',\mathbf{w}) - \hat{v}(S,\mathbf{w})$ $\mathbf{w} \leftarrow \mathbf{w} + \alpha^{\mathbf{w}} \delta \nabla \hat{v}(S, \mathbf{w})$ $\theta \leftarrow \theta + \alpha^{\theta} I \delta \nabla \ln \pi (A | S, \theta)$ $I \leftarrow \gamma I$ $S \leftarrow S'$

[An Introduction to Reinforcement Learning, Sutton and Barto]

Approximation with Deep Networks

- ‒So far, the feature representation was typically "fixed"
- The parametrised functions $\hat{v}(s; w) / \pi_{\theta}(s, a)$ were linear mappings of input features
- ‒More complicated non-linear mappings are needed to generalize to more complex domains
- ‒Popular choice is to use deep neural networks
	- Known to discover useful feature representation tailored to the specific task
	- We can leverage extensive research on architectures and optimisation from Supervised Learning

Batch Reinforcement Learning

- ‒Gradient descent is simple and appealing
- But it is not sample efficient
- ‒Batch methods seek to find the best fitting value function
- ‒Given the agent's experience ("training data")

Stochastic Gradient Descent with Experience Replay

–Given experience consisting of (*state, value*) pairs

$$
\mathcal{D} = \{ \langle s_1, v_1^{\pi} \rangle, \langle \langle s_2, v_2^{\pi} \rangle \rangle, ..., \langle \langle s_T, v_T^{\pi} \rangle \rangle \}
$$

‒Repeat:

1. Sample state, value from experience

 $s, v^{\pi} \rangle \sim \mathcal{D}$

2. Apply stochastic gradient descent update

$$
\Delta w = \alpha (v_{\pi}(s) - \hat{v}(s; w)) \nabla_{w} \hat{v}(s; w)
$$

-Converges to least squares solution

$$
w^{\pi} = \operatorname*{argmin}_{w} LS(w)
$$

Experience Replay in Deep Q-Networks (DQN)

-Example of DQN that uses experience replay and fixed Q-targets

- Take action a_t according to ε -greedy policy
- Store transition $(s_t, a_t, r_{t+1}, s_{t+1})$ in replay memory $\mathcal D$
- Sample random mini-batch of transitions (s, a, r, s') from D
- Compute Q-learning targets w.r.t. the parameters of a DQN w^-
- Optimize MSE between Q-network and Q-learning targets

$$
\mathcal{L}_i(w_i) = \mathbb{E}_{s,a,r,s' \sim \mathcal{D}_i} \left[\left(r + \gamma \max_{a'} Q(s', a'; w_i^-) - Q(s, a; w_i) \right)^2 \right]
$$

DQN in Atari

Continuous Action Spaces

‒Vanilla DQN can't be used for continuous action spaces (CAS)

- Too many outputs to parametrize with a neural network
- Discretization would be needed (suboptimal)
- ‒Deep Deterministic Policy Gradient (DDPG) extends DQN to CAS
	- DDPG is an Actor Critic algorithm with critic π_{θ} and actor Q_{w} networks
	- Policy is deterministic, noise added for exploration $a_t = \pi_\theta(s_t) + \varepsilon$
	- Update the critic with the actor as max and then the actor to maximize the critic

$$
\mathcal{L}_i(w_i) = \mathbb{E}_{s,a,r,s' \sim \mathcal{D}_i} [(r + \gamma Q(s', \pi(s'; \theta_i^-); w_i^-) - Q(s, a; w_i))^2]
$$

$$
\mathcal{L}_i(\theta_i) = \mathbb{E}_{s \sim \mathcal{D}_i} [Q(s, \pi(s; \theta); w_i)]
$$

DDPG

Algorithm 1 Deep Deterministic Policy Gradient

- 1: Input: initial policy parameters θ , Q-function parameters ϕ , empty replay buffer $\mathcal D$
- 2: Set target parameters equal to main parameters $\theta_{\text{targ}} \leftarrow \theta$, $\phi_{\text{targ}} \leftarrow \phi$

$3:$ repeat

- Observe state s and select action $a = \text{clip}(\mu_{\theta}(s) + \epsilon, a_{Low}, a_{High})$, where $\epsilon \sim \mathcal{N}$ $4:$
- Execute a in the environment 5:
- Observe next state s' , reward r , and done signal d to indicate whether s' is terminal 6:
- Store (s, a, r, s', d) in replay buffer D $7:$
- If s' is terminal, reset environment state. 8:
- if it's time to update then 9:
- for however many updates do $10:$
- Randomly sample a batch of transitions, $B = \{(s, a, r, s', d)\}\$ from D $11:$
- Compute targets $12:$

$$
y(r, s', d) = r + \gamma (1 - d) Q_{\phi_{\text{targ}}}(s', \mu_{\theta_{\text{targ}}}(s'))
$$

Update Q-function by one step of gradient descent using 13:

$$
\nabla_{\phi} \frac{1}{|B|} \sum_{(s,a,r,s',d) \in B} \left(Q_{\phi}(s,a) - y(r,s',d) \right)^2
$$

Update policy by one step of gradient ascent using $14:$

$$
\nabla_{\theta} \frac{1}{|B|} \sum_{s \in B} Q_{\phi}(s, \mu_{\theta}(s))
$$

Update target networks with $15:$

$$
\phi_{\text{targ}} \leftarrow \rho \phi_{\text{targ}} + (1 - \rho)\phi
$$

$$
\theta_{\text{targ}} \leftarrow \rho \theta_{\text{targ}} + (1 - \rho)\theta
$$

end for 16: end if $17:$ 18: until convergence