
Winter School 2024
Reinforcement Learning

Advanced Reinforcement Learning
Dr. Lorenzo Brigato

Artificial Intelligence in Health and Nutrition (AIHN) Laboratory
ARTORG Center for Biomedical Engineering Research

University of Bern

UBERN: S. Mougiakakou

Outlook

‒ Value Function Approximation

‒ Policy Gradient

‒ Deep Reinforcement Learning

1L. Brigato Reinforcement Learning: Advanced RL

UBERN: S. Mougiakakou

Large-Scale Reinforcement Learning

‒Reinforcement learning can be used to solve large problems, e.g.
– Backgammon: 1020 states

– Go: 10170

– Robots: continuous state space

‒How can we scale up e.g., the model-free methods for prediction
and control seen before?

2L. Brigato Reinforcement Learning: Advanced RL

UBERN: S. Mougiakakou

Value Function Approximation

‒So far, we have represented value function by a lookup table
– Every state s has an entry 𝑉(𝑠)
– Or every state-action pair s, a has an entry 𝑄 𝑠, 𝑎

‒Problem with large MDPs:
– There are too many states and/or actions to store in memory
– It is too slow to learn the value of each state individually

‒Solution for large MDPs:
– Estimate value function with function approximation

ොv 𝑠; 𝒘 ≈ v𝜋 𝑠
ො𝑞 𝑠, 𝑎; 𝒘 ≈ 𝑞𝜋(𝑠, 𝑎)

– Generalize from seen states to unseen states
– Update parameter w using MC or TD learning

3L. Brigato Reinforcement Learning: Advanced RL

UBERN: S. Mougiakakou

Types of Value Function Approximation

𝒘𝑠 ොv 𝑠; 𝒘

𝒘
𝑠

𝑎
ො𝑞 𝑠, 𝑎; 𝒘

𝒘𝑠
ො𝑞 𝑠, 𝑎1; 𝒘

ො𝑞 𝑠, 𝑎𝑚; 𝒘
⋮

4L. Brigato Reinforcement Learning: Advanced RL

UBERN: S. Mougiakakou

Value Function Approx. By Stochastic Gradient Descent

‒ Goal: find parameter vector 𝒘 minimizing mean-squared error between approximate
value function ොv(𝑠; 𝒘) and true value function v𝜋(𝑠)

𝐽 𝒘 = 𝔼𝜋[(v𝜋 𝑠 − ොv(𝑠; 𝒘))2]

‒ Gradient descent finds a local minimum

∆𝒘 = −
1

2
𝑎∇𝑤𝐽 𝒘

= 𝛼𝔼𝜋[v𝜋 𝑠 − ොv(𝑠; 𝒘) ∇𝑤ොv(𝑠; 𝒘)]

‒ Stochastic gradient descent samples the gradient

∆𝒘 = 𝛼 v𝜋 𝑠 − ොv(𝑠; 𝒘) ∇𝑤ොv(𝑠; 𝒘)

‒ Expected update is equal to full gradient update

5L. Brigato Reinforcement Learning: Advanced RL

UBERN: S. Mougiakakou

Feature Vectors

‒Represent state by a feature vector

𝑥(𝑠) =

𝑥1(𝑠)

⋮
𝑥𝑛(𝑠)

‒E.g., Polynomials, Fourier Basis

‒For example:
– Distance of robot from landmarks

– Trends in the stock market

– Piece and pawn configurations in chess

6L. Brigato Reinforcement Learning: Advanced RL

UBERN: S. Mougiakakou

Linear Value Function Approximation

‒ Represent value function by a linear combination of features

ොv 𝑠; 𝒘 = 𝑥(𝑠)𝑇𝒘 = ෍

𝑖=0

𝑛

𝑥𝑖(𝑠)𝑤𝑖

‒ Objective function is quadratic in parameters 𝒘

𝐽 𝑤 = 𝔼𝜋[(v𝜋 𝑠 − 𝑥(𝑠)𝑇𝒘)2]

‒ Stochastic gradient descent converges on global optimum

‒ Update rule is particularly simple

∇𝑤 ොv 𝑠; 𝒘 = 𝑥(𝑠)
∆𝒘 = 𝛼 v𝜋 𝑠 − ොv 𝑠; 𝒘 𝑥(𝑠)

‒ Update = step-size × prediction error × feature value

7L. Brigato Reinforcement Learning: Advanced RL

UBERN: S. Mougiakakou

Incremental Prediction Algorithms

‒Assumed true value v𝜋 𝑠 function given by supervisor

‒But in RL there is no supervisor, only rewards

‒ In practice, we substitute a target for v𝜋 𝑠
– For MC, the target is the return 𝐺𝑡

∆𝒘 = 𝛼 𝐺𝑡 − ොv 𝑆𝑡; 𝒘 ∇𝑤ොv 𝑆𝑡; 𝒘

– For TD(0), the target is the TD target 𝐺𝑡:𝑡+1 = 𝑅𝑡+1 + 𝛾 ොv(𝑠𝑡+1; 𝒘)

∆𝒘 = 𝛼 𝑅𝑡+1 + 𝛾 ොv(𝑆𝑡+1; 𝒘) − ොv 𝑆𝑡; 𝒘 ∇𝑤ොv 𝑆𝑡; 𝒘

8L. Brigato Reinforcement Learning: Advanced RL

UBERN: S. Mougiakakou

Monte-Carlo with Value Function Approximation (1/2)

‒Return 𝐺𝑡 is an unbiased, noisy sample of true value v𝜋 𝑠𝑡

‒Can therefore apply supervised learning to “training data”:

< 𝑆1, 𝐺1 >, < 𝑆2, 𝐺2 >, … , < 𝑆𝑇 , 𝐺𝑇 >

‒For example, using linear Monte-Carlo policy evaluation

∆𝒘 = 𝛼 𝐺𝑡 − ොv 𝑆𝑡; 𝒘 ∇𝑤ොv 𝑆𝑡; 𝒘

= 𝛼 𝐺𝑡 − ොv 𝑆𝑡; 𝒘 𝒙(𝑆𝑡)

‒Monte-Carlo evaluation converges to a local optimum

‒Even when using non-linear value function approximation

9L. Brigato Reinforcement Learning: Advanced RL

UBERN: S. Mougiakakou

Monte-Carlo with Value Function Approximation (2/2)

[An Introduction to Reinforcement Learning, Sutton and Barto]

10L. Brigato Reinforcement Learning: Advanced RL

UBERN: S. Mougiakakou

TD Learning with Value Function Approximation (1/2)

‒ The TD-target 𝐺𝑡:𝑡+1 = 𝑅𝑡+1 + 𝛾 ොv(𝑠𝑡+1; 𝒘) is a biased sample of true value
v𝜋 𝑠𝑡

‒Can still apply supervised learning to “training data”:

< 𝑆1, 𝑅1 + 𝛾 ොv(𝑆2; 𝒘) >, < 𝑆2, 𝑅3 + 𝛾 ොv(𝑆3; 𝒘) >, … , < 𝑆𝑇−1, 𝑅𝑇 >

‒ For example, using linear TD(0)

∆𝒘 = 𝛼 𝑅 + 𝛾 ොv(𝑆′; 𝒘) − ොv 𝑆𝑡; 𝒘 ∇𝑤ොv 𝑆𝑡; 𝒘
= 𝛼𝛿𝒙(𝑆)

‒ (Semi-Gradient) We do not consider the effect of changing 𝒘 on the target

‒ Linear TD(0) converges (close) to global optimum

11L. Brigato Reinforcement Learning: Advanced RL

UBERN: S. Mougiakakou

TD Learning with Value Function Approximation (2/2)

[An Introduction to Reinforcement Learning, Sutton and Barto]

12L. Brigato Reinforcement Learning: Advanced RL

UBERN: S. Mougiakakou

Control with Value Function Approximation

‒Policy evaluation
– Approximate policy evaluation, ො𝑞(∙,∙; 𝒘) ≈ 𝑞𝜋

‒Policy improvement
– ε-Greedy policy improvement

[David Silver, IRL, UCL 2015]

13L. Brigato Reinforcement Learning: Advanced RL

UBERN: S. Mougiakakou

Action-Value Function Approximation

‒ Approximate the action-value function

ො𝑞(𝑆, 𝐴; 𝒘) ≈ 𝑞𝜋(𝑆, 𝐴)

‒Minimize mean-squared error between approximate action-value function
ො𝑞(𝑆, 𝐴, 𝒘) and true action-value function 𝑞𝜋(𝑆, 𝐴)

𝐽 𝒘 = 𝔼𝜋 𝑞𝜋 𝑆, 𝐴 − ො𝑞(𝑆, 𝐴; 𝒘) 2

‒Use stochastic gradient descent to find a local minimum

−
1

2
∇𝑤𝐽 𝒘 = 𝑞𝜋 𝑆, 𝐴 − ො𝑞 𝑆, 𝐴; 𝒘 ∇𝑤 ො𝑞(𝑆, 𝐴; 𝒘)

Δ𝐰 = 𝛼 𝑞𝜋 𝑆, 𝐴 − ො𝑞 𝑆, 𝐴; 𝒘 ∇𝑤 ො𝑞(𝑆, 𝐴; 𝒘)

14L. Brigato Reinforcement Learning: Advanced RL

UBERN: S. Mougiakakou

Linear Action-Value Function Approximation

‒ Represent state and action by a feature vector

𝑥(𝑆, 𝐴) =

𝑥1(𝑆,𝐴)

⋮
𝑥𝑛(𝑆,𝐴)

‒ Represent action-value function by linear combination of features

ො𝑞 𝑆, 𝐴, 𝒘 = 𝑥 𝑆, 𝐴 𝑇𝒘 = ෍

𝑖=0

𝑛

𝑥𝑖(𝑆, 𝐴)𝑤𝑖

‒ Stochastic gradient descent update

∇𝑤 ො𝑞 𝑆, 𝐴; 𝒘 = 𝑥(𝑆, 𝐴)
Δ𝐰 = 𝛼 𝑞𝜋 𝑆, 𝐴 − ො𝑞 𝑆, 𝐴; 𝒘 𝑥(𝑆, 𝐴)

15L. Brigato Reinforcement Learning: Advanced RL

UBERN: S. Mougiakakou

Incremental Control Algorithms

‒Like prediction, we must substitute a target for 𝑞𝜋(𝑆, 𝐴)
– For MC, the target is the return 𝐺𝑡

∆𝒘 = 𝛼 𝐺𝑡 − ො𝑞 𝑆𝑡, 𝐴𝑡; 𝒘 ∇𝑤 ො𝑞 𝑆𝑡𝐴𝑡; 𝒘

– For TD(0), the target is the TD target 𝐺𝑡:𝑡+1 = 𝑅𝑡+1 + 𝛾 ොv(𝑠𝑡+1; 𝒘)

∆𝒘 = 𝛼 𝑅𝑡+1 + 𝛾 ොv(𝑆𝑡+1; 𝒘) − ො𝑞 𝑆𝑡, 𝐴𝑡; 𝒘 ∇𝑤 ො𝑞 𝑆𝑡𝐴𝑡; 𝒘

16L. Brigato Reinforcement Learning: Advanced RL

UBERN: S. Mougiakakou

Policy-Based Reinforcement Learning

‒Previously we approximated the value or action-value function
using parameters w

v𝑤 𝑠 ≈ v𝜋 𝑠
q𝑤 𝑠, 𝑎 ≈ 𝑞𝜋(𝑠, 𝑎)

‒A policy was generated directly from the value function
– e.g., using ε-greedy

‒We now directly parametrize the policy
𝜋𝜃 𝑠, 𝑎 = ℙ 𝑎 | 𝑠 ; 𝜃

17L. Brigato Reinforcement Learning: Advanced RL

UBERN: S. Mougiakakou

Value-Based and Policy-Based RL

‒Value Based
– Learnt Value Function

– Implicit policy
(e.g., ε-greedy)

‒Policy Based
– No Value Function

– Learnt Policy

‒Actor-Critic
– Learnt Value Function

– Learnt Policy

[David Silver, IRL, UCL 2015]

18L. Brigato Reinforcement Learning: Advanced RL

UBERN: S. Mougiakakou

Advantages of Policy-Based RL

‒Advantages:
– Better convergence properties (in contrast to value function

approximation that can oscillate in some configurations)

– Effective in high-dimensional or continuous action spaces

– Can learn stochastic policies

‒Disadvantages:
– Typically converge to a local rather than global optimum

– Evaluating a policy is typically inefficient and high variance

19L. Brigato Reinforcement Learning: Advanced RL

UBERN: S. Mougiakakou

Policy Optimization

‒Policy based reinforcement learning is an optimization problem

‒Find 𝜃 that maximizes 𝐽(𝜃)

‒Many possible optimization approaches
– Gradient-free (e.g., Hill climbing, Genetic algorithms, etc.)

– Gradient-based (e.g., Gradient descent)

‒We focus on gradient descent, many extensions possible

20L. Brigato Reinforcement Learning: Advanced RL

UBERN: S. Mougiakakou

Policy Gradient

‒ Let 𝐽(𝜃) be any policy objective function

‒ Policy gradient algorithms search for a local
maximum in 𝐽(𝜃) by ascending the gradient of
the policy, w.r.t. parameters 𝜃

∆𝜃 = 𝑎∇𝜃𝐽 𝜽

‒Where ∇𝜃𝐽 𝜽 is the policy gradient

∇𝜃𝐽 𝜽 =

𝜕𝐽(𝜃)
𝜕𝜃1

⋮
𝜕𝐽(𝜃)
𝜕𝜃𝑛

‒ and α is a step-size parameter

21L. Brigato Reinforcement Learning: Advanced RL

UBERN: S. Mougiakakou

Policy Objective Functions

‒ Goal: given policy 𝜋𝜃 𝑠, 𝑎 with parameters 𝜃, find best 𝜃

‒ But how do we measure the quality of a policy 𝜋𝜃?

‒ In episodic environments we can use the start value

𝐽1 𝜃 = V𝜋𝜃 𝑠1 = 𝔼𝜋𝜃
v1

‒ In continuing environments, we can use the average value

𝐽𝑎𝑣𝑉 𝜃 = ෍

𝑠

𝑑𝜋𝜃(𝑠) V𝜋𝜃 𝑠

‒ Or the average reward per time-step

𝐽𝑎𝑣𝑅 𝜃 = ෍

𝑠

𝑑𝜋𝜃(𝑠) ෍

𝑎

𝜋𝜃(𝑠, 𝑎)ℛ𝑠
𝑎

where 𝑑𝜋𝜃(𝑠) is stationary distribution of Markov chain for 𝜋𝜃

22L. Brigato Reinforcement Learning: Advanced RL

UBERN: S. Mougiakakou

‒ Consider a simple class of one-step MDPs
– Starting in state 𝑠 ~ 𝑑(𝑠)
– Terminating after one time-step with reward 𝑟 = ℛ𝑠

𝑎

‒ Use likelihood ratios to compute the policy gradient

𝐽 𝜃 = 𝔼𝜋𝜃
𝑟

= ෍

𝑠∈𝒮

𝑑(𝑠) ෍

𝑎∈𝒜

𝜋𝜃(𝑠, 𝑎) ℛ𝑠
𝑎

∇𝜃 𝐽 𝜃 = ෍

𝑠∈𝒮

𝑑(𝑠) ෍

𝑎∈𝒜

𝜋𝜃(𝑠, 𝑎) ∇𝜃 log 𝜋𝜃 𝑠, 𝑎 ℛ𝑠
𝑎

= 𝔼𝜋𝜃
∇𝜃 log 𝜋𝜃 𝑠, 𝑎 𝑟

One-Step MDPs

23L. Brigato Reinforcement Learning: Advanced RL

∇𝜃𝜋𝜃 𝑠, 𝑎 = 𝜋𝜃 𝑠, 𝑎
∇𝜃𝜋𝜃 𝑠,𝑎

𝜋𝜃 𝑠,𝑎

 = 𝜋𝜃 𝑠, 𝑎 ∇𝜃 log 𝜋𝜃 𝑠, 𝑎

UBERN: S. Mougiakakou

Policy Gradient Theorem

‒ The policy gradient theorem generalizes the likelihood ratio approach to multi-step
MDPs

‒ Replaces instantaneous reward 𝑟 with long-term value 𝑞𝜋(𝑠, 𝑎)

‒ Policy gradient theorem applies to start state objective, average reward and average
value objective

For any differentiable policy 𝜋𝜃 𝑠, 𝑎 and for any of the policy objective functions 𝐽 = 𝐽1, 𝐽𝑎𝑣𝑅 or
1

1−𝛾
𝐽𝑎𝑣𝑉 the policy gradient is

∇𝜃 𝐽 𝜃 = 𝔼𝜋𝜃
∇𝜃 log 𝜋𝜃 𝑠, 𝑎 𝑞𝜋(𝑠, 𝑎)

Theorem (Policy Gradient)

24L. Brigato Reinforcement Learning: Advanced RL

UBERN: S. Mougiakakou

Monte-Carlo Policy Gradient (REINFORCE)

‒Update parameters by stochastic gradient ascent

‒Using policy gradient theorem

‒Using return G𝑡 as an unbiased sample of 𝑞𝜋𝜃
(𝑠𝑡 , 𝑎𝑡)

Δθ𝑡 = 𝛼∇𝜃 log 𝜋𝜃 𝑠𝑡 , 𝑎𝑡 G𝑡

[An Introduction to Reinforcement Learning, Sutton and Barto]

25L. Brigato Reinforcement Learning: Advanced RL

UBERN: S. Mougiakakou

Reducing Variance Using a Critic

‒Monte-Carlo policy gradient still has high variance

‒We use a critic to estimate the action-value function

𝑞𝑤 𝑠, 𝑎 ≈ 𝑞𝜋𝜃
(𝑠, 𝑎)

‒Actor-critic algorithms maintain two sets of parameters
– Critic Updates action-value function parameters 𝑤
– Actor Updates policy parameters 𝜃, in direction suggested by critic

‒Actor-critic algorithms follow an approximate policy gradient

∇𝜃 𝐽 𝜃 ≈ 𝔼𝜋𝜃
∇𝜃 log 𝜋𝜃 𝑠, 𝑎 𝑞𝑤 𝑠, 𝑎

Δθ = α∇𝜃 log 𝜋𝜃 𝑠, 𝑎 𝑞𝑤 𝑠, 𝑎

26L. Brigato Reinforcement Learning: Advanced RL

UBERN: S. Mougiakakou

Estimating the Action-Value Function

‒The critic is solving a familiar problem: policy evaluation (prediction)

‒How good is policy 𝜋𝜃 for current parameters 𝜃?

‒Could also use e.g., least-squares policy evaluation

27L. Brigato Reinforcement Learning: Advanced RL

UBERN: S. Mougiakakou

Action-Value Actor-Critic (1/2)

‒Simple actor-critic algorithm based on action-value critic

‒Using linear value function approximation 𝑞𝑤 𝑠, 𝑎 = 𝜑(𝑠, 𝑎) 𝑇𝑤
– Critic Updates 𝑤 by linear TD(0)

– Actor Updates 𝜃 by policy gradient

28L. Brigato Reinforcement Learning: Advanced RL

UBERN: S. Mougiakakou

Action-Value Actor-Critic (2/2)

[An Introduction to Reinforcement Learning, Sutton and Barto]

29L. Brigato Reinforcement Learning: Advanced RL

UBERN: S. Mougiakakou

Approximation with Deep Networks

‒So far, the feature representation was typically “fixed”

‒The parametrised functions ොv 𝑠; 𝑤 / 𝜋𝜃 𝑠, 𝑎 were linear mappings
of input features

‒More complicated non-linear mappings are needed to generalize
to more complex domains

‒Popular choice is to use deep neural networks
– Known to discover useful feature representation tailored to the specific

task

– We can leverage extensive research on architectures and optimisation
from Supervised Learning

30L. Brigato Reinforcement Learning: Advanced RL

UBERN: S. Mougiakakou

Batch Reinforcement Learning

‒Gradient descent is simple and appealing

‒But it is not sample efficient

‒Batch methods seek to find the best fitting value function

‒Given the agent’s experience (“training data”)

31L. Brigato Reinforcement Learning: Advanced RL

UBERN: S. Mougiakakou

Stochastic Gradient Descent with Experience Replay

‒Given experience consisting of ⟨𝑠𝑡𝑎𝑡𝑒, 𝑣𝑎𝑙𝑢𝑒⟩ pairs

𝒟 = 𝑠1, v1
𝜋 , 𝑠2, v2

𝜋 , … , 𝑠Τ, vΤ
𝜋

‒Repeat:
1. Sample state, value from experience

𝑠, v𝜋 ~𝒟
2. Apply stochastic gradient descent update

∆𝒘 = 𝛼 v𝜋 𝑠 − ොv(𝑠; 𝒘) ∇𝑤ොv(𝑠; 𝒘)
‒Converges to least squares solution

𝒘𝜋 = argmin
𝒘

𝐿𝑆(𝒘)

32L. Brigato Reinforcement Learning: Advanced RL

UBERN: S. Mougiakakou

Experience Replay in Deep Q-Networks (DQN)

‒Example of DQN that uses experience replay and fixed Q-targets
– Take action 𝑎𝑡 according to ε-greedy policy

– Store transition 𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡+1, 𝑠𝑡+1 in replay memory 𝒟

– Sample random mini-batch of transitions 𝑠, 𝑎, 𝑟, 𝑠′ from 𝒟

– Compute Q-learning targets w.r.t. the parameters of a DQN 𝑤−

– Optimize MSE between Q-network and Q-learning targets

ℒ𝑖 𝑤𝑖 = 𝔼𝑠,𝑎,𝑟,𝑠′~𝒟𝑖
𝑟 + 𝛾 max

𝑎′
𝑄 𝑠′, 𝑎′; 𝑤𝑖

− − 𝑄(𝑠, 𝑎; 𝑤𝑖)
2

33L. Brigato Reinforcement Learning: Advanced RL

UBERN: S. Mougiakakou

DQN in Atari

[doi:10.1038/nature14236]

34L. Brigato Reinforcement Learning: Advanced RL

UBERN: S. Mougiakakou

Continuous Action Spaces

‒Vanilla DQN can’t be used for continuous action spaces (CAS)
– Too many outputs to parametrize with a neural network

– Discretization would be needed (suboptimal)

‒Deep Deterministic Policy Gradient (DDPG) extends DQN to CAS
– DDPG is an Actor Critic algorithm with critic 𝜋𝜃 and actor 𝑄𝑤 networks

– Policy is deterministic, noise added for exploration 𝑎𝑡 = 𝜋𝜃 𝑠𝑡 + ε

– Update the critic with the actor as max and then the actor to maximize the critic

ℒ𝑖 𝑤𝑖 = 𝔼𝑠,𝑎,𝑟,𝑠′~𝒟𝑖
𝑟 + 𝛾𝑄 𝑠′, 𝜋(𝑠′; 𝜃𝑖

−); 𝑤𝑖
− − 𝑄(𝑠, 𝑎; 𝑤𝑖) 2

ℒ𝑖 𝜃𝑖 = 𝔼𝑠~𝒟𝑖
𝑄 𝑠, 𝜋(𝑠; 𝜃); 𝑤𝑖

35L. Brigato Reinforcement Learning: Advanced RL

UBERN: S. Mougiakakou

DDPG

36L. Brigato Reinforcement Learning: Advanced RL

	Slide 1: Winter School 2024 Reinforcement Learning
	Slide 2: Outlook
	Slide 3: Large-Scale Reinforcement Learning
	Slide 4: Value Function Approximation
	Slide 5: Types of Value Function Approximation
	Slide 6: Value Function Approx. By Stochastic Gradient Descent
	Slide 7: Feature Vectors
	Slide 8: Linear Value Function Approximation
	Slide 9: Incremental Prediction Algorithms
	Slide 10: Monte-Carlo with Value Function Approximation (1/2)
	Slide 11: Monte-Carlo with Value Function Approximation (2/2)
	Slide 12: TD Learning with Value Function Approximation (1/2)
	Slide 13: TD Learning with Value Function Approximation (2/2)
	Slide 14: Control with Value Function Approximation
	Slide 15: Action-Value Function Approximation
	Slide 16: Linear Action-Value Function Approximation
	Slide 17: Incremental Control Algorithms
	Slide 18: Policy-Based Reinforcement Learning
	Slide 19: Value-Based and Policy-Based RL
	Slide 20: Advantages of Policy-Based RL
	Slide 21: Policy Optimization
	Slide 22: Policy Gradient
	Slide 23: Policy Objective Functions
	Slide 24: One-Step MDPs
	Slide 25: Policy Gradient Theorem
	Slide 26: Monte-Carlo Policy Gradient (REINFORCE)
	Slide 27: Reducing Variance Using a Critic
	Slide 28: Estimating the Action-Value Function
	Slide 29: Action-Value Actor-Critic (1/2)
	Slide 30: Action-Value Actor-Critic (2/2)
	Slide 31: Approximation with Deep Networks
	Slide 32: Batch Reinforcement Learning
	Slide 33: Stochastic Gradient Descent with Experience Replay
	Slide 34: Experience Replay in Deep Q-Networks (DQN)
	Slide 35: DQN in Atari
	Slide 36: Continuous Action Spaces
	Slide 37: DDPG

