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PERSPECTIVE

Developing a predictive science of the biosphere requires 
the integration of scientific cultures
Brian J. Enquista,b,1 , Christopher P. Kempesb, and Geoffrey B. Westb
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Increasing the speed of scientific progress is urgently needed 
to address the many challenges associated with the biosphere 
in the Anthropocene. Consequently, the critical question 
becomes: How can science most rapidly progress to address 
large, complex global problems? We suggest that the lag in the 
development of a more predictive science of the biosphere 
is not only because the biosphere is so much more complex, 
or because we do not have enough data, or are not doing 
enough experiments, but, in large part, because of unresolved 
tension between the three dominant scientific cultures that 
pervade the research community. We introduce and explain 
the concept of the three scientific cultures and present a 
novel analysis of their characteristics, supported by examples 
and a formal mathematical definition/representation of what 
this means and implies. The three cultures operate, to varying 
degrees, across all of science. However, within the biosciences, 
and in contrast to some of the other sciences, they remain 
relatively more separated, and their lack of integration has 
hindered their potential power and insight. Our solution to 
accelerating a broader, predictive science of the biosphere 
is to enhance integration of scientific cultures. The process 
of integration—Scientific Transculturalism—recognizes that 
the push for interdisciplinary research, in general, is just 
not enough. Unless these cultures of science are formally 
appreciated and their thinking iteratively integrated into 
scientific discovery and advancement, there will continue to 
be numerous significant challenges that will increasingly limit 
forecasting and prediction efforts.

biosphere | three cultures of science | science |  
Scientific Transculturalism | Earth Sciences

One of science’s grand challenges is understanding the struc-
ture, dynamics, and evolution of the biosphere. The ultimate 
goal is to develop quantitative, predictive theories grounded 
in underlying principles and supported by data, observation, 
and experiment (1). There are two principal reasons for cre-
ating such a broad, integrated science of the biosphere. The 
first is the traditional philosophical aim of any science, namely 
to develop a deep fundamental understanding of an impor-
tant aspect of nature. The second reason is the mounting 
urgency to respond to an increasing number of significant 
biosphere challenges threatening human well- being and soci-
oeconomic life (2–5). For instance, we would like to be able to 
forecast the future of biodiversity and ecosystem functioning, 
predict with reasonable accuracy the onset and extent of the 
next pandemic or when the tropical forests of the Amazon 
will reach a potentially catastrophic tipping point of collapse 
and what the ramifications of such tipping points will be, 
including their timing, magnitude, and impact (Box 1). Equally 
important is to identify the dominant critical parameters and 

dynamics that underlie these threats and then craft a quan-
titative strategy for minimizing negative consequences and 
mitigating potential disasters. However, the complexity of the 
biosphere is characterized by biological processes operating 
across a vast range of spatial and temporal scales.

From enzymes to the biosphere, biological processes oper-
ate across a staggering ~37 orders of magnitude in mass and 
the multilevel interactions among the various organizational 
levels within the biosphere make the challenge of developing 
a predictive science of the biosphere daunting. While multi-
level interactions and the extraordinary complexity of ecology 
and the biosphere pose huge challenges, it does not preclude 
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Box 1. 

Crucial questions for a science of the biosphere:

How will climate warming alter life on Earth?
How important are changes in biodiversity to human 
well- being?
What is needed for a sustainable future?
Can we predict essential biosphere measures including:

Ecological collapses (when and how fast) and spe-
cies extinctions;

Shifts in ecosystem functioning; Duration and wide-
spreadness of epidemics;

Shifts in regional agricultural productivity;
Positive and negative feedbacks between the bio-

sphere and climate system;
Origin of new diseases;
Shifts in pollutant concentrations in the atmosphere 

and ocean;
Eutrophication of the ocean; Human habitability 

zones and migrations?
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the possibility of discovering effective theories and emergent 
mechanisms (6).

There is an increasing urgency to accelerate the science of 
the biosphere. First, we have limited resources, capacity, and 
time for intervention, action, and conservation, so more pre-
cise predictions are needed for efficiency. Second, there is 
considerable uncertainty about how the biosphere would shift 
if some policies emphasized radical new interventions beyond 
carbon emission reduction and standard conservation tech-
niques. This requires new types of fundamental understand-
ing to evaluate the effectiveness and consequences of any 
new course of action. While the urgent focus here is predic-
tion, science requires first developing knowledge and under-
standing (7, 8). Understanding is the primary and ultimate 
goal, but prediction, integral to understanding, is the more 
immediate goal for society and application (9).

How can science most rapidly progress to address large, 
complex global problems such as those in Box 1? The Earth 
sciences are a case in point, having successfully predicted 
the developing climate crisis by integrating fundamental the-
ory with increasingly more sophisticated observations and 
experiments incorporated into simulation frameworks*. 
Indeed, atmospheric and ocean science has correctly pre-
dicted global temperature changes and increasingly more 
detailed past, current, and future predictions of shifts in tem-
perature and circulation patterns (10, 11). Similar efforts to 
successfully predict analogous phenomena in the biosphere 
have arguably lagged (1, 12).

For example, there is still considerable fundamental disa-
greement and uncertainty about how the biosphere, including 
feedback with human activities, will respond to increases in 
atmospheric CO2 and the subsequent changes in ambient 
temperatures (13–15). Similarly, debates persist related to i) 
when or if specific tipping points exist (16–21), ii) whether 
global biodiversity is decreasing (22, 23), iii) what the rate and 
impact of the current wave of extinction of species in the 
Anthropocene are (24, 25), and iv) the long- term effects of 
geoengineering, such as iron fertilization (26). Further, there 
is considerable uncertainty in how the entire Earth System will 
respond to climate change due to the uncertainty in the bio-
sphere’s response (14). This highlights the critical need to gen-
erate basic predictions rooted in more fundamental principles 
and develop a deeper understanding of the interconnections 
between the multiple components of the biosphere.
We suggest that the lag in the development of a more pre-
dictive science of the biosphere is not only because the bio-
sphere is so complex or because we do not have enough 
data or that we are not doing enough experiments (1, 12) but 
also in large part because of unresolved tension between the 
three dominant scientific cultures that pervade the research 
community. By scientific culture, we mean the sociological 
definition of the process by which information and knowl-
edge is discovered, shared, discussed, and understood (27). 
Another way to define culture would be what constitutes 
understanding and/or explanation for a given system, prob-
lem, or question. These three cultures operate, to varying 
degrees, across all of science. However, within the bio-
sciences in particular, they remain relatively separated, and 
their lack of integration has restrained their potential power 

and insight—a classic case of “the whole being less than the 
sum of its parts.” Although these cultures overlap and share 
similar directions and purposes, they are relatively distinct. 
They can be summarized as follows:

(i) The variance culture, originating from natural history 
and the study of the qualitative variability and diversity 
occurring in nature. It is arguably the basis of modern 
biology, including molecular biology, genetics, and 
numerous fields that currently do not rely much on 
natural history. This culture emphasizes detailed 
observations and focuses on differences and devia-
tions. It leans more toward experimental and obser-
vational methods of investigation. Questions typically 
focus on the processes generating variation in the 
natural world (28). This focus often comes at the 
expense of seeking to model, integrate, and generalize 
information or to understand what framework explains 
the central tendency around which variance occurs.

(ii) The exactitude culture, named after the Borges short 
story “On Exactitude in Science” (29), strives to account 
for all of the known Scientific understanding at an 
increasingly finer resolution to most faithfully and accu-
rately capture, predict, and interrogate a system of inter-
est. The exactitude culture emphasizes incorporating 
more detail, typically focusing on specific problems or 
phenomena and more general concepts or understand-
ing. Exactitude culture is in contrast to the movement 
toward simplification and generalization (29). Approaches 
include detailed statistical modeling, machine learning 
(ML), and AI untethered to parsimony and assessing 
competing models based on information criteria. Models 
tend to be phenomenological with many parameters, 
often disconnected from underlying principles (30), 
which can lead to overfitting. This culture emphasizes 
the importance of detailed dynamics, mechanisms, and 
interconnections within specific contexts.

(iii) The coarse- grained culture focuses primarily on abstrac-
tion and simplification and the search for generalities 
that transcend diversity and variance and can be encap-
sulated in underlying parsimonious principles (30). This 
culture sacrifices detail and accuracy for generality and 
provides principled baselines for defining and exploring 
variation and further refinement at progressively finer 
scales. This approach can include mathematical deriva-
tions of probabilistic outcomes or take the form of a 
parsimonious statistical theory. This culture may 
exclude details that could be important for opening up 
new lines of discovery and progress and, in specific 
cases, give poor predictions.

We contend that the rate at which science progresses, the 
depth and rigor of our understanding, and our ability to predict 
depend on the healthy integration of these three cultures. The 
inherent tug- and- pull between the three cultures will likely 
accelerate the process of scientific self- correction of miscon-
ceived worldviews and paradigms. With balanced integration 
between them and interlocutors who promote communication, 
scientific understanding remains cohesive, and progress is 
maintained. Integrating these three cultures mirrors the long-
standing arguments for the importance of interdisciplinarity, *https://www.nobelprize.org/prizes/physics/2021/press- release/.D
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where historians and philosophers, in particular, have argued 
that individual disciplines are often defined by arbitrary divi-
sions or arise out of institutional convenience (see ref. 31 for a 
review). An appropriate emphasis on each of the three cultures 
is closely related to the need for interdisciplinary efforts and 
synthesis (see also ref. 32). Historically and currently, the bio-
logical sciences overemphasize the exactitude and variance 
cultures and underutilize coarse- grained cultures (30, 33–35).

Our focus on differing cultures harkens back to C.P. Snow’s 
arguments on the barriers separating science from the human-
ities (36). Indeed, Snow emphasized that separating their dis-
tinct worldviews has slowed progress in our understanding of 
the human condition. Similarly, the diverse cultures within 
science originate from the 19th- century (37) division of natural 
philosophy into specialized fields, a split driven by varying 
methodologies for investigating nature. This fragmentation has 
resulted in a lack of understanding and appreciation of each’s 
strengths, limitations, and unique advantages and drawbacks, 
depending on the problem. Furthermore, developing a more 
rigorous science is impeded when these cultures operate in 
isolation, without the benefit of cross- fertilization. The advance-
ment of each culture is crucially dependent on shared insights 
and methodologies.

Below, we briefly overview the three different cultures 
operating in science:

The Variance Culture

Within biology, Marston Bates defined natural history as “the 
study of life at the individual level—of what plants and animals 
do, how they react to each other and their environment, how 
they are organized into larger groupings like populations and 
communities” (38). A common thread in natural history is the 
inclusion of a descriptive component. Because of the focus 
on description and the science of individuals and the impor-
tance of “place- based” observations (39), natural history is 
more focused on describing differences (i.e., variance, diver-
sity, interconnections, and variability) or the necessary detail 
to characterize a given location or system of study. Principles 
of abstraction and parsimony are generally not one of its core 
components. Much of the focus and central insights of bio-
logical science have been the discovery of the laws generating 
and maintaining biological variation as epitomized by the 
Darwinian theory of evolution by natural selection and its 
elaborations, such as the genetic laws of inheritance, the evo-
lutionary synthesis, and the discovery of the genetic code. But 
a complete theory of biology also requires a comparable focus 
on understanding the origin, dynamics, and laws governing 
the mean values of traits, behaviors, and so on, if only to 
define a meaningful baseline for quantitatively defining what 
variance is; in other words: variation with respect to what? 
Furthermore, understanding smaller- scale phenomena often 
does not translate to predictable community structure at 
larger scales (40). Emergent behavior is a critical component 
of biological systems, communities, and complex systems (6).

The Exactitude Culture

Inspired by Borges’ parable of the “life- sized map” described 
in his fictional story “On Exactitude in Science’’ (29), where 
he “imagines an empire where the science of cartography 

becomes so exact that only a map on the same scale as the 
empire itself will suffice.........[S]ucceeding Generations... 
came to judge a map of such Magnitude cumbersome... In 
the western Deserts, tattered Fragments of the Map are still 
to be found, Sheltering an occasional Beast or beggar.” The 
drive to add more detail and myriad subdominant, often 
minute, effects to incorporate greater biological realism plays 
a more central role than the drive to simplify and start with 
the best first approximation that captures the dominant 
essential features. A Borges culture minimizes abstraction 
at the expense of detail and inessential complexity.

To quote (30), there is “a growing infatuation with ever 
more complex models. It’s gotten to the point where some 
models look as inscrutable as nature itself. With numerous 
adjustable parameters, these models are generally unfalsi-
fiable, so that the opportunity to learn from a wrong predic-
tion is short circuited.” Demand for more biological realism 
and complexity to already complex models is increasing, but 
acquiescing to this demand may prove counterproductive. 
For example, a large body of research comparing older and 
more recent climate change forecasts and simulations con-
cludes that while the push for increased spatial resolution 
of newer simulations has improved predictions, the overall 
improvement in performance is relatively minor (11). There 
is some improvement for certain variables, regions, and sea-
sons; for others, there is little difference or even sometimes 
degradation in performance, as greater complexity does not 
necessarily imply improved performance (see ref. 41).

Similarly, the development of coupled ecosystem climate 
modeling has increasingly examined the physical, chemical, 
and biological processes by which terrestrial ecosystems 
affect and are affected by climate (42). These approaches 
have incorporated increasing modules of realism (43), includ-
ing how plants compete for light, functional differences 
between vegetation types, variations in plant hydraulics, 
various plant functional traits that influence growth, and 
more details of life history differences (12, 44). While incor-
porating such detail has appeal in the sense that fewer eco-
logical processes are “missing” (45), the pull to add more and 
more components can also be counterproductive by obscur-
ing the primary biological drivers of ecosystem and bio-
sphere functioning and yielding greater uncertainty and 
compounding error among multiple parameters (46, 47).

The drive to add more components of the biosphere to 
these models has several consequences. For example, the 
drive for greater realism without a clear infrastructure or con-
ceptual framework to support (48) the proliferation of addi-
tional parameters also introduces the risk of overfitting. 
Further, the predictive success of complex models can be 
difficult to assess because it is often unclear which functions, 
assumptions, and inputs may be responsible for departures 
of predictions from observed data (44, 49). These issues create 
difficulty in summarizing, understanding, and assessing the 
robustness and generality of predictions (44). A recent review 
suggested forecasting efforts should focus on increasingly 
shorter time scales to project “the state of ecosystems, eco-
system services, and natural capital, with fully specified uncer-
tainties” (49). Predictive success is expected through local 
“calibration” of functions and model parameters. However, as 
foreshadowed by Borges, the concern is that the loss of gen-
erality inherent in focusing on local time and spatial scales 
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may ultimately limit the impact and utility of the predictions. 
The key to exactitude culture is to ask what is achieved by 
adding new details. In some cases, adding detail can improve 
predictions and performance. In other cases, additional details 
lead to overfitting and compounding parameter uncertainty, 
making models difficult to understand and deploy.

The Coarse- Grained Culture

This is epitomized by the classic observation of Newton 
(Box 2), that only having theories of unique events is generally 
not of interest. We need generalizations and coarse- grained 
theories and models that capture the essence of the problem 
and provide a leading approximation that acts as a point of 
departure (30) for adding more detail. The initial focus is to 
develop simple, tractable, mechanistic models with relatively 
few variables and parameters. These may be caricatures of 
the system, but they play a crucial role because they attempt 
to incorporate the important variables and essential features 
that determine the system’s organization, structure, devel-
opment, and dynamics (35). The emphasis is on making these 
models falsifiable so that they can be appropriately modified 
when their predictions are confronted with data. Coupled 
with the development of such models is the parsimony of 
parameters; consequently, it is critical to identify appropri-
ately aggregated system variables that encompass subsets 
of the detailed variables in traditional complex models.

A potential problem can occur when precision, realism, and 
the uniqueness of the system under study are sacrificed to 
generality. Macroecological theories, such as the neutral theory 
(50) metabolic scaling theory (51), and the maximum entropy 
theory of ecology (52), have been successful in predicting a large 
number of phenomena, including species richness, productivity, 
abundance distributions, and growth curves, and scaling laws 
with a small, efficient group of parameters and assumptions. 
However, this may hamper the inclusion of important contex-
tual details of specific systems that may not have been included 
in more general models. For example, assumptions like “demo-
graphic neutrality” or “space- filling networks”, while mathemat-
ically tractable and useful as leading approximations, are 
sometimes difficult to extend to specific ecological systems.

Another challenge in a coarse- grained culture is identify-
ing the fundamental principles. Success can be stymied by 
starting from the wrong principles. The tension is that, on 
the one hand, to quote—Vlad Taltos (Issola, Steven Brust). 
“Everyone generalizes from one example. At least, I do”. On 
the other hand, to quote Ruth Bader Ginsburg, “I am fearful, 
or suspicious, of generalizations... They cannot guide me 
reliably in making decisions about particular individuals†.” 
However, the power of a parsimonious, principled, coarse- 
grained approach is that it is typically falsifiable. A well- 
defined theory with specific testable predictions proven 
wrong by confrontation with data can provide important 
insights for moving a field in the right direction.

Given a system with such a high degree of complexity, how 
do you identify the general principles underlying that vari-
ance? We contend that the answer lies in the integration of 
the three cultures.

How to Synthesize the Three Cultures; 
Scientific Transculturalism

Ultimately, the real challenge in addressing the problems of 
the biosphere is to produce an integrated conceptual frame-
work leading to models whose predictions are trustworthy 
enough to guide the decisions of conservationists and policy- 
makers (53). We have argued that biology has struggled to 
address this challenge because the three cultures remain 
only loosely interconnected, with the coarse- grained culture 
playing a relatively minor role. The issue for biology was pith-
ily expressed by the biologist and Nobel Laureate Sidney 
Brenner: “Biological research is in crisis, …Technology gives 
us the tools to analyse organisms at all scales, but we are 
drowning in a sea of data and thirsting for some theoretical 
framework with which to understand it. Although many 
believe that “more is better”, history tells us that “least is 
best”. We need theory and a firm grasp on the nature of the 
objects we study to predict the rest” (54).

Why does the speed of scientific progress depend on inte-
gration? To quote the biologist J.B.S. Haldane, “In scientific 
thought we adopt the simplest theory which will explain all 
the facts under consideration and enable us to predict new 
facts of the same kind”‡, and similarly echoed by the physicist 
A. Einstein, “everything should be as simple as possible but 
no simpler.” Inspired by these quotations, we argue that the 
integration of the three cultures is the mechanism for devel-
oping the “simplest” yet most effective scientific framework. 
We believe this occurs because i) integration exposes assump-
tions much more clearly via a healthy tension between the 
cultures, which leads to a transparent understanding of the 
key variables and mechanisms driving the system; ii) integra-
tion increases the effectiveness of predictions by avoiding 

Box 2. 

The coarse- grained culture formalized by 
Newton.

Isaac Newton’s Mathematical Principles of Natural 
Philosophy (1687), where he states several “Rules of 
Reasoning”.

Rule I. No more causes of natural things should be 
admitted than are both true and sufficient to explain 
their phenomena.
Rule II. Therefore, the causes assigned to natural 
effects of the same kind must be, so far as possible, the 
same. Examples are the cause of respiration in man 
and beast, or of the falling of stones in Europe and 
America, or of the light of a kitchen fire and the Sun, or 
of the reflection of light on our Earth and the planets.
Similarly, in Newton’s Untitled Treatise on Revelation 
(section 1.1).

“choose those constructions which without 
straining reduce things to the greatest simplicity… 
Truth is ever to be found in the simplicity, and 
not in the multiplicity and confusion of things.”

†Ginsburg, Ruth Bader. “Some Thoughts on the 1980’s Debate Over Special Versus Equal 
Treatment for Women”. Law & Ineq. 4 (1986): 143. ‡J.B.S. Haldane In ‘Science and Theology as Art- Forms’, Possible Worlds (1927), 227.D
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issues of overfitting and overparameterization and by con-
tinually challenging theory with data; and iii) integration pro-
vides a mechanism of iteration between (i) and (ii) which more 
rapidly provides refinements to the assumptions and predic-
tions and guides new data collection (49, 55). We refer to this 

integrated paradigm as Scientific Transculturalism. We pro-
vide a mathematical formalism of Scientific Transculturalism 
in Box 3.

In Scientific Transculturalism, each science culture is cog-
nizant of and informed by the others. Variance culture is used 

Box 3. 

A heuristic formalism of Scientific Transculturalism:

To elucidate the differences and linkages between the three cultures (Fig. 1), we outline a formalism to illustrate what 
we mean conceptually by Scientific Transculturalism.

Consider a general system, whether the entire biosphere or a specific ecosystem or organism, characterized by all 
N possible independent variables 

{

x
j

}

≡ x
1
, x

2
, ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅ , x

N⋅
 These are the input, or basis, for constructing a theory, a 

model, or a numerical simulation of the system. In science, we are typically interested in measuring, calculating, or 
deriving various emergent properties of the system: 

{

Y
i

}

≡

{

Y
1
, Y

2
, ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ Y

m

}

 . In terms of this general framework, 
the three scientific cultures can be summarized symbolically as follows:

i) The Variance Framework -  This framework focuses on understanding and categorizing the diversity of a given sys-
tem. It starts with collecting as many observations for both the Y

i
 and 

{

x
j

}

 as possible. Each observational datum, YO
i

 , 
is collated and effectively used to construct a norm or average, Ỹ

i
 , from which the variance is determined:

The set of YO
i

 provide the observational foundations for building theories, which in turn iteratively provide feedback 
on the variance by associating Ỹ

i
 with expectations from coarse- grained theories (see iii below).

ii) The Exactitude Framework -  In the extreme version of this framework, all possible N independent variables, 
{

x
j

}

 , 
are included, so each derived quantity Y

i
 can be formally expressed as a function of all of the 

{

x
j

}

:

Typically, the number of calculable properties of the system (and consequently, the number of predictions), m, is 
much smaller than the number of input variables, N; i.e., m << N. A large number of variables usually means that the 
system cannot be solved analytically or even approximately. Hence, solutions and predictions often take the form 
of simulations or numerical computations.

iii) Coarse- grained or Zeroth- Order Framework -  This approach starts by significantly reducing the number of inde-
pendent input variables, 

{

x
j

}

 , to a relatively small subset deemed to be the major determinants of the system’s 
essential features, thereby capturing most of the variation. Consequently, the derived or predicted quantities are 
idealized norms, or average approximations, 

{

Y
i

}

 , to the exact, 
{

Y
i

}

 which can be formally expressed as

In this case, the number of input variables, n≪ N , and the predicted quantities, 
{

Y
i

}

 , are idealized approximations to 
the equations governing the exact 

{

Y
i

}

 . Similarly, m≫ n , meaning that the number of predicted quantities (m) is typi-
cally much larger than the number of input variables or parameters n, which potentially comes at the cost of accuracy.

The coarse- grained average, 
{

Y
i

}

 , can be identified with the averages from variance culture, Ỹ
i
≈ Y

i
 , implying that 

variation, ΔY
i
 , derives from the set of subdominant (N − n) variables neglected in the coarse- grained framework. If 

the exactitude framework could accommodate all N contributing variables and, therefore, accurately predict the 
measured YO

i
 , then we can likewise identify Y

i
≈ Y

O

i
.

This formalism illustrates the three cultures are defined by focusing on different subsets of 
{

x
j

}

 and 
{

Y
i

}

 , and 
different mappings from 

{

x
j

}

 to 
{

Y
i

}

 . As discussed in the main text, Scientific Transculturalism yokes together the 
three cultures to address a common problem, such as those in Box 1. The intersection between the three cultures 
can accelerate the pace of science by appropriately iterating between different treatments of 

{

Y
i

}

 and 
{

x
j

}

 . Initially, 
large sets of 

{

Y
i

}

 and 
{

x
j

}

 are observed from which simple regularities can be extracted and fundamental theory 
built which predicts 

{

Y
i

}

 from a reduced 
{

x
j

}

 . This theory then feedbacks on the observations by defining new types 
of expected averages. It can be elaborated through exactitude culture to more accurately predict specific contexts 
using expanded sets of 

{

x
j

}

.

ΔY
i
= Y

O

i
− Ỹ

i
.

Y
i
= F

i

[

x
1
, x

2
, . . . x

N

]

.

Y
i
= f

i
[x

1
, x

2
, . . . x

n
].
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to observe phenomena and characterize diversity, and 
coarse- grained culture is used to identify regularities, funda-
mental mechanisms, and foundational theories from the 
observations. Exactitude culture should be used to build 
models that mirror the theory and add successive layers of 
detail to integrate available data. Variance culture is used 
iteratively and concurrently to evaluate the performance of 
these models and provide feedback on the theory by pointing 
out contexts or outliers where theories fail. Indeed, this is 
how many past scientific advances have occurred.

In the biosphere sciences, the separation of the cultures 
has not always been the case. In the history of the develop-
ment of biosphere science, there are several cases where 
Scientific Transculturalism has led to key revolutions and 
greatly increased fundamental insights and the rate of scien-
tific progress.

The first is the history leading to the Modern Evolutionary 
Synthesis (1930 to 1950). Wallace and Darwin, working ini-
tially within the variance culture, used myriad observations 
to eventually infer and propose a coarse- grained general 
mechanism for evolution by natural selection. This case also 
illustrates the rapid iteration between two of the cultures 
where their work also drew upon the earlier coarse- grained 
theories of Malthus, Lyell, and von Humboldt (56). This iter-
ation may have been responsible for such a rapid scientific 
revolution. Later, this theory was combined with observa-
tions from genetics to produce more general mathematical 
theories for population genetics, which in turn have been 
elaborated with exactitude culture to make a variety of spe-
cific predictions for new types of data (57).

A second example is climate science. Here, coarse- grained 
culture characterized the early development of climate physics 
(58), which was initially used to apply the basic equations of 
hydrodynamics (the Navier–Stokes equations) to new types of 
meteorological and oceanic observations stemming from var-
iance culture. The initial theoretical work was to find the appro-
priate reductions and approximations that effectively predicted 
weather and circulation patterns (59). As the field progressed, 
exactitude culture was used to build more accurate theories, 
adding important complications of the atmosphere and ocean, 
such as temperature and salinity effects, and an ever- refining 
understanding of vorticity and turbulence. These more compli-
cated models were tested against massive new datasets (vari-
ance culture) and were also rereduced into coarse- grained 
perspectives that can be readily understood and checked. This 
iterative structure, although idealized in our representation, 
involved all three cultures and led to the impressive ability to 
forecast local weather days in advance, a general and effective 
understanding of past and present climate, the ability to predict 
atmospheric dynamics on other planets, and exoplanets, and 
ultimately, the recent Nobel Prize in physics.

A third nascent example is the recent Madingley Model 
efforts to model the biosphere (53). In the spirit of Scientific 
Transculturalism, it is a mechanistic general ecosystem 
model that is a detailed, but not too detailed, model of the 
biosphere. Based on a set of fundamental ecological pro-
cesses, it simulates a coherent global ecosystem consisting 
of photoautotrophic and heterotrophic life (60). This and 
other efforts (61) are an ongoing attempt at Scientific 
Transculturalism on a broad scale for the biosphere.

“I am among those who think that science has great 
beauty.”—Marie Curie§

How can we inspire the integration of scientific cultures in 
developing the science of the biosphere? Scientific 
Transculturalism is the process of leveraging the differing 
cultures of science to solve complex problems efficiently. We 
propose multiple solutions for bringing researchers of all cul-
tures together, mirroring similar efforts over the last 25 y to 
encourage greater interdisciplinary collaboration in science. 
Past investments of federal funding agencies in interdiscipli-
nary research have begun to break down the barriers between 
disciplines successfully. Interdisciplinarity is now widely 
accepted as increasingly important for addressing the major 
challenges we face in the 21st century (62). So it is, we believe, 
with Scientific Transculturalism. Consequently, the next step 
is a distinct and potentially more daunting challenge, separate 
from, but in addition to, integrating across multiple disciplines. 
Integrating the three cultures in science requires focusing on 
projects that merge their differing approaches and thinking, 
focusing on how scientists interact with those teams.

We suggest four key recommendations:
First, a potential catalyst for promoting the integration of 

scientific cultures might well be inspired by integrating insights 
from the history of science and, in particular, from the bur-
geoning new study of the “science of science” (63–65), into the 
practice of how science is actually done. In other words, learn-
ing from the perspective of those whose prime intellectual 
focus is addressing how did, and how does, science happen 
could help guide practitioners in understanding how successful 
science can be accomplished. Specifically, the scientific com-
munity needs to continue to engage more fully with scholars 
studying the history and philosophy of science and technology 
to gain an outside perspective. Similarly, the same issues of 
the three cultures apply to historians and philosophers of sci-
ence themselves, who would also benefit from viewing debates, 
controversies, and progress in science through the lens of 
Scientific Transculturalism or as the result of the interplay and 
degree of integration of the three cultures.

Second, we encourage the support of workshops, out-
reach activities, novel integrated courses, and flagship pro-
jects that demonstrate a requirement for input from all three 
cultures where tradeoffs of their integration are openly dis-
cussed and debated (Fig. 1). This would mirror past success-
ful efforts of federal funding agencies to foster interdisciplinary 
research but expand that thinking to integrate fundamentally 
differing scientific approaches.

Third, undergraduate and graduate education, curricula, 
and training should emphasize the utility and tradeoffs of 
each of the three cultures to address major challenges. In 
particular, biology departments should foster a culture of 
closely integrated coarse- grained thinking with detailed 
observations and specific models.

Fourth, we suggest that the scientific reward system of 
departments, higher administration, funding agencies, and 
professional societies consider how other evaluation metrics 
could be improved by including considerations of Scientific 
Transculturalism.

§”Madame Curie: A Biography”. Book by Eve Curie Labouisse translated by Vincent Sheean, 
1937.
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Fifth, journals could play a central role in promoting 
papers that integrate across science cultures and encourage 
editors to guide referees in reviewing such manuscripts. 
These practices are already being experimented with by 
PNAS through consultative review. Our arguments go well 
beyond the necessity for encouraging interdisciplinarity, 
which focuses on bringing together different expertise to 
solve a problem (9, 66), to urgently encourage transcending 
cultural practices that approach science differently. We need 
a new type of cultural integration or reintegration at the level 
of the entire field, strongly supported by scientific societies, 
academic institutions, and funding organizations.

Conclusions

Humanity’s response to global environmental challenges 
requires biology to be more quantitatively predictive and to 
be able to forecast the future with a greater degree of con-
fidence in future scenarios, and an understanding of the 
consequences of proposed interventions (49). To accelerate 
the pace and efficiency of science, it is necessary to strongly 
encourage a proactive appreciation of and a formal engage-
ment in integrating the three scientific cultures. Scientific 
Transculturalism is the process of integration of the three 
cultures—variance, coarse- graining, and exactitude. Scientific 
Transculturalism is a critical step in stimulating and acceler-
ating a science of the biosphere capable of tackling some of 
the greatest challenges facing our society (Box 1).

There is nothing to indicate that the scientific method will 
ultimately fail in ecology, nor that new regularities, predictive 
theories, and understanding can't be developed. The last 30 y 
has seen advances in ecological theories, modeling, and our 
understanding of biodiversity on the planet that do illustrate 
regularities and new types of prediction. Theories include the 
metabolic scaling theory (51, 67), maximum entropy theory 
(52), neutral theory (50), species coexistence theory (68), trait 
optimality theory (69–71), and many others (33). Our ability to 

monitor and understand global biodiversity is also rapidly 
increasing (72, 73). These are all ingredients priming us for 
rapid scientific integration through Scientific Transculturalism.

One major challenge for the community is harnessing and 
guiding the increasing role of big data, ML, modeling, and 
statistical complexity, which in our framework falls under the 
exactitude culture. Multiple aspects of science have undoubt-
edly been and will be accelerated by data- derived modeling 
(74). The tradeoff here is that, on the one hand, ML and AI 
often provide impressive accuracy based on existing data, 
but, on the other hand, they can also overfit past data and 
generally do not provide transparent models which reveal 
mechanisms (75, 76). Consequently, ML and AI are often very 
good at short- term predictions but tend to be suspect for 
longer- term forecasting. We worry that this invokes a deus 
ex machina paradigm in addressing and developing a science 
of complex adaptive systems and pushes us away from 
underlying mechanistic understanding.

It is unclear whether including more biological realism, 
detailed mechanisms, and parameters into already complex 
forecasting models will improve predictions without a con-
comitant expansion of theory and understanding. The field’s 
general view of ML and data- derived modeling is that it is an 
advanced form of regression (75). Thus, while ML provides 
impressive new abilities, it also suffers from the same chal-
lenges as more simple regression approaches and the typical 
challenges associated with exactitude culture. In contrast to 
ML, coarse- grained approaches can make reliable predic-
tions beyond the boundaries of the input data, provide 
unique lenses to analyze data that reveal new simplicities, 
and avoid overfitting. However, regression approaches, 
including ML, can often be useful for predictions in cases 
where theory is lacking or for in- sample applications. In addi-
tion, interesting and powerful coarse- grained ML approaches 
are being developed (e.g., refs. 77–80).

It is important to emphasize that these three scientific 
cultures are not rigid structures, nor do they fall into neat, 

Fig. 1.   The integration of scientific cultures. The act of intersecting the three science cultures (Scientific Transculturalism) comes with the opportunity for 
positive and negative combinations. As noted in blue and red, each culture alone, and in pairs, has benefits and detriments that can limit progress. These can 
be avoided by integrating the three and being aware of the detriments of each. The intersection between cultures can both leverage their strengths through 
positive synergies (in blue) and enhance their weaknesses through combinations that take the worst of each culture (in red). Scientific Transculturalism is the act 
of merging the intersections between each culture and focuses on developing science that lies in the intersections bringing novel synergy and the potential for 
more rapid scientific advancement. Synthetic, synergistic, and integrated science occurs when all three cultures are merged. The figure provides a few examples 
of the fields already defined by the intersection of each culture.
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bounded groups. Rather, each consists of differing shades 
of emphasized thinking and mindsets that overlap to varying 
degrees. Similarly, fields may undergo many cycles of tran-
sitioning between dominance or codominance as one or two 
cultures become overrepresented, just as physics may be 
overly coarse- grained in some subdisciplines. Biology was 
once more driven by coarse- grained culture and is now more 
dominated by variance and exactitude cultures.

We have argued that the reason for the relatively slow 
pace of a general science of the biosphere is that biology 
has not developed a healthy integration of the three cul-
tures of science. Further, progress in all aspects of Earth 
System science will benefit from a more open discussion 

on how to integrate best and iterate the process of science 
through the lens of each culture. Our solution emphasizes 
Scientific Transculturalism, which recognizes that the push 
for interdisciplinary research is just not enough. An impor-
tant next step is the integration of the three cultures. 
Scientific Transculturalism makes an explicit effort to rec-
ognize the limits of research within each specific culture 
and to encourage interactions that leverage the strengths 
of each culture. Unless these cultures are formally appre-
ciated and their thinking iteratively integrated into scientific 
discovery and advancement, our forecasting, prediction, 
and understanding of the biosphere will continue to be 
limited.
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