Wartungsarbeiten: Opencast, Podcasts & Tobira Di 19. August 2025 08:00 - 15:00 | Aufgrund von Wartungsarbeiten an den Opencast-Servern werden Ihnen Podcasts, Opencast-Videos und Tobira nicht zur Verfügung stehen. Kontakt: www.podcast.unibe.ch

HS2023: 42032/62032 Machine Learning and Data Mining

This course gives an introduction to the theory of machine learning. Application is in the form of a course project. During the course, you will be able to: - Formulate machine learning problems in terms of opimisation or probabilistic inference. - Apply off-the-shelf algorithms to problems. - Develop custom models and algorithms using the TensorFlow python library.

Allgemeine Informationen

Kursbeschreibung
This course gives an introduction to the theory of machine learning. Application is in the form of a course project.
During the course, you will be able to:

- Formulate machine learning problems in terms of opimisation or probabilistic inference.
- Apply off-the-shelf algorithms to problems with scikit-learn
- Develop custom models and algorithms using python libraries such as pyTorch

Grading:
- Exam: 40%
- Project: 40%
- Assignments: 20%
Kursprogramm
1. Learning as optimisation
1.1 Objective functions
1.2 k-Nearest neighbours
1.3 Generalisation
1.4 Linear neural networks
1.5 Stochastic gradient descent
1.6 Multi-layer neural networks
1.7 Backpropagation
2. Learning as probabilistic inference
2.1 Probabilistic models
2.2 Discriminative models
2.3 Generative models
2.4 Expectation Maximisation
2.5 Monte-Carlo Inference
2.6 Variational inference
3. Sequence modelling
3.1. Auto-regresive models
3.1.1 MLP Auto-Regressors and Transformers
3.1.2 (Variable Order) Markov Models
3.2. Recursive models:
3.2.1. Recursive Neural Networks
3.2.2. Hidden Markov Models
4. Decision making
4.1. General statistical decision problems
4.2. Reinforcement learning

Beschreibung

This course gives an introduction to the theory of machine learning. Application is in the form of a course project.
During the course, you will be able to:

- Formulate machine learning problems in terms of opimisation or probabilistic inference.
- Apply off-the-shelf algorithms to problems.
- Develop custom models and algorithms using the TensorFlow python library.

Allgemein

Sprache
Deutsch
Copyright
This work has all rights reserved by the owner.

Kontakt

Name
Christos Dimitrakakis
E-Mail
christos.dimitrakakis@unine.ch
Sprechstunde
Fridays 13:00-14:00, B116, by appointment.

Verfügbarkeit

Zugriff
Unbegrenzt – wenn online geschaltet
Aufnahmeverfahren
Sie können diesem Kurs direkt beitreten.
Zeitraum für Beitritte
Unbegrenzt

Für Kursadministratoren freigegebene Daten

Daten des Persönlichen Profils
Anmeldename
Vorname
Nachname
E-Mail